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Abstract- This paper presents an approach to the energy management and control of the effective 

cost of energy in real-time electricity pricing environment. The strategy aims to optimise the 

overall energy flow in the electrical system that minimises the cost of power consumption from 

the grid. To substantiate these claims different cases of time-of-use (TOU) and renewable energy 

electricity tariff, i.e. in summer and winter seasons, and the robustness of system is analysed. A 

given energy demand for commercial usage in the city of Tshwane (South Africa) is used to 

investigate the behaviour of the designed method during low and high demand periods. As grid 

integrated renewable energy resources, photovoltaic (PV) is an important consideration in 

assuring excellent power supply and environmental issues in the commercial building. An 

adaptive optimal approach in the framework of model predictive control (MPC) is designed to 

coordinate the energy flow on the electrical system. The results show that the proposed adaptive 

MPC strategy can promote the new approach of an optimal electrical system design, which 

reduces the energy cost to pay the utility grid by about 46 % or more depending on the set target.

Index Terms—Battery bank, Energy management, Model predictive control, Photovoltaic, Smart 

grid, Time-of-use tariff.

NOMENCLATURE

𝐴 state matrix (-)
𝐵 input matrix (-)
𝑐 cost of electricity to pay or output vector (Rand or R)
𝑐1 cost of electricity to pay the utility grid (Rand or R)
𝑐2 cost of electricity consumption from the renewable energy (Rand or R)
𝑐3 cost of electricity consumption by the load (Rand or R)
𝐶 output matrix (-)

𝐸1 input vector (kWh)
𝐸1 energy flow of the utility grid (kWh)
𝐸2 energy flow of the PV (kWh)
𝐸3 energy flow of the charging of battery (kWh)
𝐸4 energy flow of the discharging of battery (kWh)
𝐸 energy consumption (kWh)
𝐸𝑐 charging energy on battery (kWh)
𝐸𝑑 discharging energy from battery (kWh)



The deployment of buildings’ energy management systems started in the 1970s when the 

development of direct digital control signal from the advent of a microprocessor was introduced. 

It offers the ability to control and manage the energy system by providing the users with a better-

quality environment. Since its inception, it has been observed that the development of energy 
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𝐸𝐷 energy demand (kWh)
𝐸𝑑𝑏 energy drawn from battery (kWh)
𝐸𝑖 energy consumption at sample  (kWh)𝑖
𝐸𝑔 energy supply from grid (kWh)

𝐸𝑚𝑎𝑥 maximum energy from battery (kWh)
𝐸𝑛𝑜𝑚 energy nominal on battery (kWh)
𝐸𝑝𝑣 energy supply from photovoltaic array (kWh)
𝐸𝑝𝑣𝑖 PV energy consumption at sample  (kWh)𝑖
𝐸𝑟 reference of energy demand (kWh)
𝐸𝑅 remaining battery energy (kWh)
𝛾 constraint vector 
𝑖𝑏 current on battery (A)

𝐼𝑝𝑣𝑖 PV average hourly solar irradiation incident at sample i (kWh/m2)
𝐽 performance index (-)
𝜎 hourly self-discharge rate which is fixed at 0.002

 𝑘 time index (–)
𝑀 constraint matrix (–)
𝑛 number of constraint (–)
𝑁 given horizon or time frame (hour)
𝑁𝑐 control horizon (–)
𝑁𝑝 predictive horizon (–)
𝜂𝑐 battery charging efficiency (–)

𝜂𝑐/𝑑 battery charging or discharging coefficient (–)
𝜂𝑑 battery discharging efficiency (–)

𝜂𝑖𝑛𝑣 inverter efficiency (–)
𝜂𝑝𝑣 PV array efficiency (–)
𝑝𝑑𝑏 average power drawn from battery (kW)
𝑝𝑖 average power at sample  (kW)𝑖

𝑃𝑟𝑒𝑛 overall tariff of renewable energy resources (Rand/kWh)
𝑃𝑇𝑂𝑈 time-of-use electricity tariffs (Rand/kWh)

𝑟𝑤 tuning parameter or weighted coefficient
𝑅 reference cost
𝑆 PV array area (m2)

𝑆𝑂𝐶 state of charge of the battery (–)
𝑆𝑂𝐶𝑖 Initial state of charge (–)

𝑡 time (h)
∆𝑡 sampling time (h)
𝑥 state vector (-)
𝑣𝑏 voltage on the battery (V)

1. INTRODUCTION
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management systems in buildings minimises the overall energy consumption of the building, 

which is an advantage to end users despite the technology cost [1]. The technology has since 

continued to develop to improve the overall performance of the buildings’ energy systems as 

well as improving user satisfaction and experience. Additionally, the recent deployment of smart 

grid technologies offer overall support for new and advanced energy efficiency services in the 

electric power system [1], which enhance the network management  and contribute to the achieve 

the high reliability indexes [2]. Thus, the application of smart grid technologies can permit 

multiple applications of energy saving, operational efficiency improvement and determination 

of real-time adequacy of supply margins [3]. The smart meter is often considered as the key for 

smart grid development since it offers several advantages in electrical system information and 

communication [4]. One of the benefits is to permit the consumers to participate proactively in 

electricity energy markets [5-7].

Six major approaches to manage the energy demand of a given building are described in 

the literature: peak clipping, valley filling, load shifting, strategic conservation, strategic load 

growth, and flexible load shape [8]. These load management methods have the potential to reduce 

the overall cost of energy in a system. Thus, demand optimisation entails modeling approaches 

of the system behaviour, which can be designed according to each of the above mentioned 

methods. Valley-filling and load-shifting strategies are both useful approaches that can be 

implemented for some defined kinds of loads, but they are less effective in commercial buildings 

applications due to the specified time of the highest daily energy demand. On the other hand, 

peak clipping is the most effective method for commercial buildings applications [6, 7] because 

the daily peak of the energy demand in a commercial building is mostly from late-morning to 

early-evening. It is also important to note that flexible load shape strategy could also give the 

same performance as peak clipping. The main objective of all demand-side management 

approaches is to induce a dynamic behaviour on electrical loads, which creates a flexibility on 

the power system that can reduce the cost of energy consumption [9, 10].

The development of the dynamic approach of energy management permits the flexibility 

and the efficiency of the energy cost optimisation. Several strategies develop the algorithm that 

can improve the energy management of the electrical system and optimise the cost of electricity 

consumption [11-13]. In this manner a specific mathematic concept creates a dynamic system 

strategy [12]. Further, the real-time electricity pricing method allows the dynamic strategy of the 

energy cost optimisation on the electrical system [13]. It is important to notice when the 

electricity usage, the time of day and the energy demand are established, the electricity pricing 
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dynamic can be developed, and it can be considered as a real-time electricity pricing environment 

[4-7]. This method can improve the efficiency of the power grid, reduce the peak demand, and 

mitigate the instability of electricity price. In general, real-time electricity pricing is a function 

of the customer location, weight of consumption, and the type of load [6, 7]. Therefore, it can be 

considered as a time variant function [6] or not [7], and it can be set by both the utility and the 

consumer for more flexibility of the energy cost [10]. MPC-based energy management system is 

considered as one of the accurate strategies that can effectively ensure control of the electrical 

system and reduce the overall cost of energy in real-time in many works. 

However, there are not many studies optimizing energy costs based on the real-time pricing 

with TOU, renewable energy tariffs and consumer’s flexibility. To coordinate such an adaptive 

system, a specified energy demand target from the utility grid is required [6, 7]. This study is 

trying to close the gap of adapting different electricity pricing schemes in real-time environment 

through a smart metering system. As an advanced model [7], this paper introduces an optimal 

strategy of energy flow coordination and consumption cost reduction using an adaptive TOU-

MPC managing system. The renewable energy is integrated by controlling the PV solar and 

battery energy storage system (BESS) using adaptive TOU-MPC managing configuration. Two 

demand seasons (Southern Hemisphere) of the year in South Africa are considered for 

performance evaluation. The daily energy demand and the reference of energy consumption for 

the low period (L-P) “summer” and high period (H-P) “winter” of commercial energy demand 

applications in the city of Tshwane are used to investigate the performance of the system design.

The main contribution of this paper is the introduction of an adaptive energy flow 

coordination, based on real-time pricing environment, into all levels of utility's TOU electricity 

tariffs combined with renewable energy tariffs. This structure is designed through MPC-based 

energy management system to minimize the energy cost consumption from the utility grid for a 

commercial building. A discrete dynamic model of the principal components of energy costs on 

the system, i.e. grid energy cost, renewable energy cost and total energy cost of the consumer, is 

augmented with the dynamics of BESS to fashion the system structure in MPC framework. The 

smart metering system, where two-way communication is available [3, 10, 14], can be used to 

share the information with the MPC controller in real-time. 

The remainder of the paper is organised as follows. Section 2 conducts and discusses a 

comprehensive literature review. Section 3 describes the system background and component for 

an optimal electrical cost reduction of a commercial building. The proposed design strategy with 
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MPC is presented in section 4. Section 5 presents the results achieved, as well as their analysis. 

The paper is concluded in section 6.

2. LITERATURE REVIEW

Real-time electricity pricing using energy management system, in the literature, refers to 

systems which are designed to optimise the energy flow and the cost of energy consumption. 

The principal aspects that are offered by such systems have been analysed in an extensive 

literature review of real-time pricing, which highlights benefits, opportunities, costs, and risks of 

real-time pricing strategies [15]. It is observed that the implementation of real-time electricity 

pricing brings several advantages for the electrical system. In this study, MPC-based energy 

management system is used to design the dynamic behaviour for the energy flow coordination, 

which optimises the cost of energy consumption for a commercial building in a real-time pricing 

environment. The use of MPC algorithms to reduce the cost of energy consumption has been 

studied on diverse published works. Several works focused on energy management of specified 

appliances or standalone energy supply system that can be injected into the electrical system.

2.1 Real-time electricity pricing approach

The real-time computation is used as part of smart grid technology to enhance the overall 

performance of an electric power system [ 14-16]. In [16], a dynamic load management for a 

residential customer using reinforcement learning approach is addressed to find an optimal 

solution that can substantially increase the efficiency of the energy system and reduce the energy 

bills and the peak load. The paper presents a smart energy hub which is supported by real-time 

computing that monitors and control the energy usages. In [17], real-time electricity pricing is 

combined with a stochastic model of natural-gas prices and electricity demands to build up an 

accurate framework for smart energy hubs. This system can reduce the operational cost in an 

uncertain environment. In [18], a demand side management approach using smart grid 

technology is proposed as a model that would enable user side load control strategy. 

Additionally, demand side management can use a passive controller that can efficiently react to 

real-time pricing. Moreover, real-time pricing could create an effective balance between the 

demand and the supply. A hybrid algorithm called genetic binary particle swarm optimization is 

presented as a new heuristically optimised home energy management controller strategy for 

smart grid in [19]. The proposed approach is implemented in real time electricity pricing 



Page 7 of 38 

environment and the system reduces the electricity bills and curtail the peak-to-average power 

ratio.

Wang et al. [20] have presented how the implementation of real-time electricity pricing 

can optimise the overall energy consumption for a residential user.  It is also observed that a 

dynamic pricing approach based on real-time policy can optimally shift the electricity demand 

from peak period to off-peak period. This strategy leads to the optimal reduction of the overall 

cost of the system operation [21]. In [22], the performance and feasibility of electricity priced-

based control models is analyzed for thermal storages in households. The paper estimates the 

influence of different models and volatility of the real-time pricing on the energy cost and 

electricity consumption, taking into account the comfort levels inside the building. The proposed 

strategy ensures a maximal electricity saving. In [23], a day-ahead real-time pricing tariff is 

presented as dynamic pricing strategy to build up a Dijkstra’s algorithm that deals with the 

operation scheduling of electric water heaters. Through a given preference of the user, the 

objective function aims to optimise the energy cost and the user’s comfort. Thus, the electrical 

water heaters can operate as a smart system that minimise the cost of energy consumption. 

2.2 MPC-based energy management

The investigation on different aspects of energy cost optimisation using MPC to coordinate 

the energy management for an electrical system has been conducted during recent years. In [24], 

an MPC system is designed for a commercial building to optimally manage in real time the 

energy supply from the grid, PV, and energy storage system. This strategy reduces cost and 

achieves load rump-rate reduction from the grid. In [25], the building energy management system 

under demand response program using an MPC is proposed to reduce the energy cost. This work 

introduces the new concepts of integrating the volume of price signals into the system regulation 

of the temperature and develops the strategy of cost-optimal control for large-scale buildings. A 

modified stochastic MPC method is established for the energy coordination procedure of a plug-

in hybrid electric bus in [26]. The designed model considers the unknown driver inputs in the 

prediction horizon as the stochastic disturbance data. This method is appropriate for the city bus 

driving conditions and can be converted to the online control strategy. In [27], central and 

standalone MPC is proposed to challenge different electricity pricing schemes as a market 

behaviour for residential buildings. The designed system aims to minimise the operation cost 

under a real-time five minutes pricing. It is observed that this method can achieve from 20 to 30 

% cost saving of a specific appliance, and overall of 42% for all system. 
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In [28], a new adaptive control strategy is investigated for a dynamic approach of the 

building energy efficiency. This approach controls and optimises the energy consumption 

through a model reference adaptive control to guarantee the indoor comfort of a building. In [29], 

a MPC is presented as an optimal control strategy that can efficiently save the energy 

consumption and achieve the required building comfort levels. In [30], an optimisation strategy 

for a hybrid PV-wind-battery system using an MPC was designed. The scheme coordinates the 

energy flow for a business building in a smart grid environment to optimally reduce the energy 

consumption from the grid and maximise the use of renewables. An integrated power 

management system for plug-in hybrid electric vehicles and an assistance power unit is presented 

in [31]. This research designs a control strategy that integrates the MPC controller to promote 

economic savings. In [32], a robust and economical closed-loop MPC approach that can handle 

the energy flow of a hybrid system is investigated. This strategy shows that the MPC is robust 

and reliable to deal with the overall system disturbances.  

A modular coordination of building comfort and microgrid energy flows using an MPC 

scheme is presented [33]. The developed smart building scheme enables cost savings under 

microgrid energy price profiles. In [34], an event driven MPC strategy for an energy management 

system of residential electricity prosumers is designed in the context of near real time load 

shifting control. This approach aims to enable the consumers to actively participate in demand 

side management programs by managing self-consumption while reducing the cost of energy. In 

[35], an MPC approach is used to develop an operation management system that can reduce 

energy consumption in residential buildings. This strategy contributes with three novel concepts, 

which consist of coordinating forecasting, operational planning, and operation control. A real-

time energy management approach for optimal renewable generation management, using an 

MPC for a microgrid, is presented in [36]. This strategy reduces the overall cost of the mcirogrid 

and improves the operation of a hydrogen energy storage. In [37], a new modeling approach is 

introduced to coordinate an energy storage system, renewable energy generation and energy 

prices using a MPC. This system allows the optimal integration of renewable energy on the 

electrical system.  

The integration of renewable energy in a real-time electricity-pricing environment using 

an MPC to reduce the cost of power consumption for a commercial building is recommended in 

[6, 7]. In the smart city and microgrid development context, it is observed that the integration of 

a solar energy generating system to the grid is environmental friendly for any commercial load 

[38]. When the renewable energy is combined with the energy storage system can efficiently 



This research provides the optimal strategy of energy reduction according to the purpose 
given by the interior system design by prioritising some of the loads on the demand side. This 
strategy allows the consumers to define the reference or the target energy that they are willing to 
pay to the utility grid. The energy tariff values are divided by the range of prices, which are fixed 
for every day of the specific season. The integration of renewable energy resources is optimal. 
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ensure the continuity of the optimal power supply [38, 39]. Several approaches have been 

implemented to manage the energy demand by optimising the consumer cost of electricity. The 

use of a MPC is encouraged in the energy management system [8-9] and recommended for a 

time-variant system to reduce the overall cost of electricity [39, 40]. However, several gaps are 

found in a time-variant electricity pricing system, which consists of TOU electricity tariffs and 

the introduction of renewable energy tariffs in the real-time environment. 

This paper investigates an adaptive MPC managing system that can deal with the dynamic 

behaviour of the energy flows on the electrical system. The study also presents a real time 

electricity pricing structure, which designs a discrete state space model of the energy cost. This 

is combined with the dynamic model of the energy storage system for the robustness of the 

schematic layout of the MPC design.

In this study, a novel real-time pricing approach and adaptive based MPC is introduced for 

energy cost optimisation of a commercial building. The control design considers an objective 

function with constraints that could follow any given consumer’s target. To achieve this 

performance, we pursue the following goals: first considering real-time pricing, a model is 

developed for discrete energy cost optimisation with specific tariff schemes; then an adaptive 

strategy is designed in the framework of smart grids to include MPC and a real-time electricity 

pricing environment. In addition, an approach to optimally manage PV-BESS in the context of 

a real-time electricity pricing structure for commercial buildings is also developed. The overall 

designed approach gives consumers the opportunity to deal with the cost of electricity usage and 

to play an active role into the amount of energy consumed and allow the utility to ensure an 

optimal energy supply. Therefore, the novelty of this paper is the strategy and modeling of the 

adaptive technique based on MPC for energy management in commercial buildings in a holistic 

and systematic perspective to optimize energy costs. This model combines various energy 

pricing schemes in a discrete real-time energy cost approach.

3. SYSTEM METHODOLOGY

3.1. System Hypothesis
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In case of excessive energy from PV and battery storage, the surplus of energy can be injected 

into the grid without any compensation. It is allowed self-consumption on the system, which 

means that renewable energy price is evaluated as an opportunity cost. The opportunity cost is 

the best available alternative. This means that the energy from the battery or PV is more valuable 

when the cost on the utility side is higher. It is important to notice that the converter efficiency 

of PV and battery storage are the same. Therefore, the designed approach could efficiently 

operate in the smart grid environment. 

3.2 Real-time electricity pricing and demand management

The electricity cost is established in [6, 7] as the function of the energy demand and the 

real-time price of electricity. The utility sets the price of electricity, and through a smart meter 

communication, the consumer can track it in real-time. The real-time electricity cost is expressed 

as a function of TOU scheme as follows [9]:

(1)
N

TOU dttEPtc
0

)()(

where c is the cost of electricity to pay [Rand], E(t) is the instantaneous energy consumption 

[kWh], N is a given horizon or time frame [hour], and PTOU is the TOU-Tariffs [Rand/kWh]. The 

TOU electricity tariff of the utility grid in South Africa (City of Tshwane) for commercial usage 

during low and high demand period is presented in Table 1 [41]. TOU is divided into three parts 

of the day that start from 00h00 to 24h00. These are an off-peak period from 00h00 to 7h00 and 

from 21h00 to 24h00, the standard time from 7h00 to 8h00 and from 11h00 to 18h00, and peak 

period from 8h00 to 11h00 and 18h00 to 21h00. 

The energy flow on the system depends on the active power and it can be expressed as 

follows;

  (2)𝐸𝑖(𝑘) = ∆𝑡∑𝑁
𝑘 = 1𝑝𝑖(𝑘)

where ∆t is the sampling time, and  is the average power at sample i.𝑝𝑖



Figures 1(a)-(b) depict the plane of array irradiance of a low demand period (L-P) and high 

demand (H-P) of the City of Tshwane in specified days [43]. These show the several of daily 
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Table 1. Daily Load Profiles and TOU Electricity tariffs

Load Target TOU tariff Load Target TOU tariff Load Target TOU tariff Load Target TOU tariff

hour kWh kWh Rand kWh kWh Rand hour kWh kWh Rand kWh kWh Rand
00:00 15 15 0,5125 15 15 0,615 12:00 70 30 0,725 80 30 1,073
01:00 15 15 0,5125 20 20 0,615 13:00 70 30 0,725 80 30 1,073
02:00 15 15 0,5125 20 20 0,615 14:00 70 30 0,725 80 30 1,073
03:00 15 15 0,5125 20 20 0,615 15:00 70 30 0,725 80 30 1,073
04:00 15 15 0,5125 20 20 0,615 16:00 50 30 0,725 60 30 1,073
05:00 15 15 0,5125 20 20 0,615 17:00 50 30 0,725 60 30 1,073
06:00 15 15 0,725 20 20 1,073 18:00 50 20 1,1514 60 30 4,115
07:00 15 15 1,1514 20 20 4,115 19:00 50 20 1,1514 60 30 4,115
08:00 70 30 1,1514 80 30 4,115 20:00 50 20 1,1514 60 30 4,115
09:00 70 30 1,1514 80 30 4,115 21:00 15 15 0,5152 20 20 0,615
10:00 70 30 0,725 80 30 1,073 22:00 15 15 0,5152 20 20 0,615
11:00 70 30 0,725 80 30 1,073 23:00 15 15 0,5152 20 20 0,615

Time of 
day 

Low demande period (L-P) High demande period (H-P) Time of 
day

Low demande period (L-P) High demande period (H-P)

3.3. Solar Energy resource

South Africa, with its abundant sunshine, is placed in the top 3 solar energy resource areas 

in the world. This ranking is due to its annual average sunshine rate of more than 2500 hours 

with an average range of direct solar radiation intensities of between 4.5 and 6.5 kWh/m2 per day 

[42]. Solar generation is a function of the type of array used in solar panel devices, as described 

in [38, 43]. Thus, South Africa’s solar generation can reach more than 8 kWh/m2 per day. This 

depends on location and station identification as well as the PV system specifications. The power 

rating or the energy conversion from solar is also a function of the electrical parameters, solar 

spectrum, temperature, the optical properties of the array and the amount and direction of 

incident radiation [38].

3.3.1. Energy Rating of PV array

The daily energy generation by the photovoltaic array is described by Eq. (3). This equation 

derives from the hours rating power of photovoltaic panel per unit of a surface [38], and it is 

formulated by using Eq. (2). It is also dependent on the efficiency of the solar cell.

  (3)𝐸𝑝𝑣𝑖(𝑘) = ∆𝑡𝜂𝑝𝑣𝑖𝑆∑𝑁
𝑘 = 1

𝐼𝑝𝑣𝑖(𝑘)

where  is the total PV array area,  is the efficiency of the PV array,  is the hourly solar 𝑆 𝜂𝑝𝑣 𝐼𝑝𝑣𝑖 

irradiation incident on the PV array, and  is the hourly energy of the PV generator. It is worth 𝐸𝑝𝑣

noting that the rating power of a PV array depends on geometric conditions and the atmospheric 

conditions (i.e. sun temperature) [44]. 



Page 12 of 38 

measured plane of array irradiance of different solar PV technology in South Africa. It is 

therefore important to notice that for an optimum design of a PV system the lowest specified day 

should be chosen for L-P and H-P. The selection depends on the lowest daily peak of the plane 

of array irradiance for fixed open crack PV technology, and the lowest monthly average of solar 

irradiance during the L-P and H-P respectively. Please notice in Fig. 1.b, the influence of shad 

(possibly cloud affecting the theoretical cure of irradiance, as seen by the array). 

3.4 Energy storage system

Two possibilities of energy storage technologies can be defined. On one hand, it consists 

of maintaining the quality of voltage supply which is based on the stability of the high cycle, and 

the rating output power supplied at short duration. On the other hand, it involves shifting the time 

which is based on the long-term storage, and the need for fewer cycles [45].
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Fig. 1. Daily plane of array irradiance [43].

3.4.1 Battery energy storage system

BESS, as well as other storage systems, are mainly chosen by considering the storage 

characteristics and parameters including the available energy, autonomy, costs, depth of 
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discharge or power transmission rate, discharge time, durability (cycling capacity), efficiency, 

feasibility and adaptation to the generating source, mass and volume densities of energy, self-

discharge, and storage capacity. Moreover, environmental aspects, monitoring and/or control 

equipment, operational constraints, reliability, and other technical characteristics describe the 

easy way to maintain the system. This is based on the simplicity of the design, operational 

flexibility, and the capacity to release the stored energy [46]. Therefore, BESS offers a long-term 

integration of energy storage for renewable energy systems. This can be a fixed or a mobile box 

as per the application [47]. In a power system, a right approach to choosing a battery is to base 

it on its performance characteristics such as cycle and calendar lifetimes; operational and 

maintenance requirements; power rating and energy storage capacity; round-trip energy 

efficiency levels; safety and licensing considerations; size; and whole life cost [48].

3.4.2 Dynamic model of battery

The energy storage market has many manufacturers and different kinds of battery storage 

systems. The PV module mostly uses batteries that generate energy in the form of chemical 

energy storage. It is important to note that chemical energy storage has a chemical component as 

a main element of the device. However, electrochemical energy storage, as part of chemical 

energy storage, has fuel cells as the principal component of the device or battery.

The renewable energy resources (wind and solar) are designed in combination with the 

batteries storage systems to overcome the fluctuations in the state of the wind and solar. These 

are devised with two chief objectives: First, to store the energy (charging process) when the 

resources are more than setting demand, and then the same stored energy is used to supply the 

load where the demand increases, or the resources decrease (discharging process). Equation (4) 

expresses the generated energy by the BESS [49, 50] that describes the process of charging and 

discharging. This manner represents the state of charge of the battery.

(4)𝑆𝑂𝐶 =
𝐸𝑅

𝐸𝑚𝑎𝑥

where , and  are the state of charge of the battery, the remaining battery energy, and  𝑆𝑂𝐶  𝐸𝑅 𝐸𝑚𝑎𝑥

the maximum energy from battery respectively. With  , and is the energy𝐸𝑅 = 𝐸𝑚𝑎𝑥 ‒ 𝐸𝑑𝑏 dbE

drawn from battery which is described as:

                                                                                                                         (5) 𝐸𝑑𝑏 = ∫𝑣𝑏𝑖𝑏𝑑𝑡



The structure of the optimal system that is described in Fig. 2 is devised in the core of an 

energy management system. In practical deployment, the proposed MPC-based energy 

management model has the potential to minimise the consumer’s energy demand in real-time. 

The proposed strategy presents an adaptive control where the flow of energy is specified to 

describe the system design as established in Fig. 2. Figure 2 describes the adaptive model of the 

advanced model in real-time electricity pricing. In this tariff scheme, the system is automatically 

updated in response to real time changes in electricity prices; which entails adaptation of the 

device to the control variable (the energy flow) according to the TOU electricity tariff. It is shown 

in Fig. 2, that the set system constitutes four inputs and four outputs. K1 and K2 are the smart 
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By combining Eqs. (4) and (5) and the developed state of charge model in [51], the dynamic 

model of the state of charge in continuous time of function of charge and discharge of the battery 

can be described as follows:

(6)𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶𝑖 ±
1

𝐸𝑛𝑜𝑚𝜂𝑐/𝑑
∫𝑡

0𝑝𝑑𝑏𝑑𝑡

where , and are respectively, the instant time in which the batteryt ,iSOC ,nomE ,/ dc  𝑝𝑑𝑏

dynamic is considered, the initial state of charge of battery, the nominal energy of the battery, 

the battery charging or discharging coefficient, and the power flowing from the battery which 

can be negative in charging state and positive in  discharging state. It is also important to notice 

that or  with and are battery charging and discharging efficiency cdc  1/  ddc  / ,c d


respectively. The dynamic functions of the energy flow on the battery system during each 

operating state are functions of (7) and (8) [52].

  (7)     ( 1) 1 /c c pv D inv cE t E t E E t      

 (8)       ( 1) 1 / ( ) /d d D inv pv dE t E t E t E t      

where are respectively, charging energy, discharging energy, energy ,cE ,dE ,DE , inv

demand, hourly self-discharge rate which is fixed at 0.002, and the efficiency of the inverter.

4. SYSTEM MODELLING AND DESIGN

4.1. System description
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switches which follow a control signal from the MPC managing system. The controller of the 

energy storage system, K2, can be either in charging or discharging state. Thus, the proposed 

system is designed with multiple input and output signals to emulate a MPC scheme where the 

state space is considered as the principal parameters of the system. The system is automatically 

updated following the real-time variation of the electricity pricing. It consists of adapting the 

mechanism to the control variable (the energy flow) according to the TOU electricity tariff.  This 

strategy consists of combing each TOU range on its MPC controller i.e. off peak MPC, standard 

MPC and peak MPC. 

      Fig. 2. Adaptive TOU-MPC managing system.

The energy flowing through the battery side depends totally on the power generated from 

the solar PV array. The battery storage system has a bi-directional energy flow system as 

described by Eqs. (7) - (8) and Fig. 2. Equation (3) describes the energy flow in the solar PV 

array, which is a function of solar irradiation as depicted in Fig. 1(a)-(b).  The developed system 

of the basic model [8-9] focus on the optimisation of the energy demand from the utility grid. 

This energy management approach is accurate and optimal in managing the supply side of the 

system when integrated with the MPC. for the advanced model described in Fig.2, the energy 

generated from the utility grid cannot charge the battery storage system (BSS). Through the 

model proposed in Fig. 2, Eqs. (9) - (12) establish the energy flow on the system as follows:

(9))()()( 1 tEtEtE rg 

(10)    )()()( 32 tEtEtE pv 

(11)0)(if)()( 3  tEtEtE dbdb

(12)0)(if)()( 4  tEtEtE dbdb



From Eq. (1), the continuous state space model is developed for a single input and single output 

system as described in [6, 7] (basic model). From Fig. 2, and Eqs. (9), (10) and (13), the cost of 

Page 17 of 38 

where Eg(t) is the energy supply from grid, Epv(t) is the energy flow from solar PV array, Er(t) is 

the reference energy demand, and Edb(t) is the energy generated by battery storage. Whereas 

Ei(t), with i = 1, 2, 3 and 4, are the energy flow of the utility grid, the solar PV, and the battery 

charging and discharging energy respectively. From Eq. (7) to (12), it is seen that the energy 

flows in Fig. 2 expressed as follows: 

  (13)𝐸𝐷(𝑡) = 𝐸1(𝑡) + 𝐸2(𝑡) + 𝐸4(𝑡)

where  is the load demand which depends on the energy supplies from the grid, PV and 𝐸𝐷(𝑡)

discharging of the battery. The battery charging, and discharge energy described by Eqs. (7) and 

(8) can be rewritten as a function of the energy flows on the PV and on demand side as follows: 

 (14)𝐸3(𝑡) = 𝐸2(𝑡) ‒
𝐸𝐷(𝑡)
𝜂𝑖𝑛𝑣

  (15)𝐸4(𝑡) =
𝐸𝐷(𝑡)
𝜂𝑖𝑛𝑣

‒ 𝐸2(𝑡)

4.2. System design

An MPC system design is developed in state-space or transfer function model, and it can 

be either in continuous or in discrete time [53]. However, in digital control system design, the 

discrete time models are widely used because of its high-performance. Through this strategy, the 

discrete-time system model equations described in [6, 7], which is a standard model in digital 

control systems, is developed. The advanced adaptive MPC system management developed in 

Fig. 2 can be rewritten in continuous state space model as

 (16)







)()()(
)()()(

tDEtCxtc
tBEtAxtx

where are respectively, the state matrix, input matrix, output matrix, and feed DCBA and,,

forward matrix respectively. are state vector, output vector and control or input vector Ecx and,

respectively. For  , and these involve that ,0t 𝑥(𝑡) ∈ ℝ𝑛,  𝑐(𝑡) ∈ ℝ𝑞 𝐸(𝑡)𝜖ℝ𝑝   ,dim nnA 

,  Due to the absence of direct feed through on pnB ]dim[ .]dim[and]dim[ pqDnqC 

the system model developed in [7], it is assumed that the feed forward matrix of the advanced 

adapted model is also zero. 
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energy flow on the system in real-time can be defined. This structure is discretised using Euler’s 

forward approximation method described by [6, 7], and it can be rewritten as follows:

 (17))()()1( 111 kEPkckc TOU

 (18)))()(()()1( 3222 kPkEPkckc ren 

  (19)))()(()()()1( 42133 kEkEPkEPkckc renTOU 

where  are respectively, the grid energy cost, the renewable energy cost, and the321 and, ccc

total energy cost of the end consumer. , with as a given period of the system, and  is Ttk  T k

the sample of time and ,  is the overall tariff of renewable energy resources that 𝑘 ∈ ℤ𝑇
renP

includes the operation and the maintenance cost of PV and battery storage. Equation (20) is the 

discrete formulation of the state of charge of the battery storage developed using the Euler 

forwarding method. It is derived from Eqs. (5) and (6). Equation (21) is the generic formulation 

of the energy storage developed from the dynamic models of the energy storage system Eqs. (6) 

and (8).

(20)  𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) ±
𝐸𝑑𝑏(𝑘)

𝐸𝑛𝑜𝑚𝜂𝑐/𝑑

(21) / / 3 4( )(1 ) ( ) ( ) /c d c d c dE E k E k E k     

 From Eqs. (17) to (21), the system modelling is described in discrete state space model.  

Equation (22) defines the digitalization of the continuous state space model given by Eq. (16) as 

follows: 

(22)  







)()(
)()()1(

kxCkc
kEBkxAkx

d

dd

where are respectively, the discrete system matrix, input matrix, and output ddd CBA and,,

matrix. From Fig. 2 and Eqs. (17) - (22), the input vector of the MPC-based energy management 

system is described by equation (23).

 (23) TkEkEkEkEkE )]()()()([)( 4321
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The system design entails formulation of all matrices of equation (22) with the energy 

management system described in Figure. 2. This system is based on real-time energy cost 

optimization. The system input vector has four elements as expressed in equation (23); therefore, 

the number of the state vectors has to be equal or more than the dimension of the manipulated 

variable vector. Equations (17) - (21), therefore, express the state vectors derived from the energy 

flow of the system Eqs. (9) - (15). By combining the dynamic relations given by Eqs. (17) and 

(21) with the energies that flow through the system, the system state vector is therefore of 

dimension 5. It is worth noting that this relationship involves the size of the state matrix of the 

advanced model. Therefore, the system state vector and matrix can be expressed as follows:

  (24)T
dcEkSOCkckckckx ])()()()([)( /311

 (25)   



























)1(0000
01000
00100
00010
00001



dA

By analysing the dimension of Eqs. (23) and (24), the control matrix size is . Thus, the 45

input matrix is expressed by analysing the vector Eqs. (9) - (21), (23), (24), (25) and the 

expressions of discrete state space model given by Eq. (22). Equation (26) is the input matrix. 

The control matrix is determined as a function of the energy cost as shown in Fig. 2. The state 

vector is given by Eq. (24) and the state space model expressed by Eq. (16) describe the design 

approach of the output matrix. One of the research hypotheses set out in this study is that the 

adoption of the proposed energy management system will reduce the energy cost incurred by the 

end consumer. Therefore, the energy costs associated with all the energy sources in the system 

must be accounted i.e. the energy system given by Eqs. (9) - (15), which define the state vectors 

of the energy costs, and Eqs. (17) - (19) are considered to determine some of the elements of the 

output matrix. Equation (27) describes the output matrix with the dimension developed from Eqs 

(23) - (26), which is augmented by the energy flow on the battery Eqs. (7) and (8). Whereas Eq. 

(28) describes the output vector, and this control variable is derived from the input vector and 

the state space model as described in Eq. (16).
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 (26)    

1

0 0 0
0

0 0
10 0

0 0

TOU

TOU ren ren

ren ren
d

c

nom nom d

c d

P
P P P

P P
B

E E



  

 
 
 
 

   
 
 

 

 (27)





















10000
00100
00010
00001

dC

         (28) T
dcEcccc ][ /321

where  are respectively, the grid energy cost, the end consumer’s total energy dcEccc /321 and,,,

cost, the solar PV generation cost, and the energy flow through the battery. By combining the 

state vector Eq. (24) and the output matrix Eq. (27), the system output cost is only constituted by 

the grid cost. As the system design should minimise the grid energy cost, it can be assumed that 

the consumer covers the distributed energy generation (solar PV and BESS) costs.

4.3 MPC design 

The matrices of state space design given in digital mode that is described from Eq. (24) to 

Eq. (28) can verify the controllability laws of system design in state space model. The MPC 

model consists of controlling the optimum approach that the observation sets at each predicted 

sequence. The performance index of the MPC design is evaluated by the relation (29), which is 

defined as a quadratic equation [6, 7, 53].  

(29)))()(())()(()( kRrkckRrkckJ w
T

w 

Where  are the output system or the cost of electricity, the weighted coefficient or Rrc w and,,

the tuning parameter, and the reference cost respectively. After computation of a given a sample 

 with a given predicted horizon and a given control horizon  through an MPC design,k PN cN

the optimal output or energy cost to pay is defined as follows 

(30))()()( kEkFxkc 



follows. 
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where   ,1(),...,1(),()(
T

P
TTT kNkckkckckc 

  ,1(),...,1(),()(
T

P
TTT kNkEkkEkEkE 

 and ,)(
2





















pN
dd

dd

dd

AC

AC
AC

kF
 .

0
00

)(

21 




















d

NN
ddd

N
ddd

N
dd

ddddd

dd

BACBACBAC

BCBAC
BC

k

cPPP 




By substituting the defined output vector according to the objective function given by Eq. (29), 

the minimum value of the performance index is, therefore, rewritten as follows.

                                                                   (31)))()()()()(
2
1min()(min kEkHkEkGkEkJ T 

with , and . Afterwards, optimising the given )()()( kkkG T   T
w kRrkFxkH ))()(()(

system by using the MPC design is the effect of implanting a quadratic equation which described 

Eq. (31) that could be realised whether by a constraining or un-constraining plant model [7, 53]. 

Therefore, finding the argument of MV is in relation to minimising the objective function given 

by Eq. (31).

4.4 System constraints

The choice of constraints in the MPC system design is the principal part of the optimal 

control implementation.  The restriction system of an optimal solution in the framework of the 

MPC model can be set in the function of some important parameters or variables. These 

parameters are the input signal control and/or its increment, the output signal, and the state vector 

as well as some equality and inequality constraints [6, 7, 53]. The development of constraints 

that a given system can have has to be less or equal to the total number of constraints which are 

defined in the MPC system design. Equation (32) describes the number of constraints that an 

MPC system design can handle [53].

                                                                                                         (32)𝑛 = 4𝑚𝑁𝑐 + 2𝑞𝑁𝑃

where  is the number of input,  is the control horizon,  is the number of output, and m cN q pN

the number of output. For the design system developed from Eq. (24) to Eq. (31), the number of 

constraints is set as follows:   

1. The constraint from a manipulated variable or control signal is imposed by the relation as
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 (33)
 

  ,
,

,

maxmin
1

1











T
jj

T
jj

EE

IIM

j

j



where is the diagonal identity matrix, and are respectively, the minimum and jI min
jE max

jE

maximum of each  column of control signal as described in Eq. (23) with    j 4.and3,2,1,j

2. The knowledge of the system’s minimum and maximum input defines the increment of

control signal constraint. Thus, the control signal increment is imposed as follows: 

 (34)
 

 








T

ijjijj

T
j

kEUEkEUE

UUM

j

jj

)1((),1((

,

1
max

1
min

2

222



where U1 and U2 are respectively, the identity vector and lower triangular vector in which all 

elements are one, and is considered as it is defined in point 1.j

3. By Eq. (30), the output constraint is defined as follows:

(35) 
 

 








T

ii

T

kFxckFxc

M

))((,))((

;,
maxmin

3

3



where are respectively, the minimum and maximum cost of electricity to pay to maxmin and cc

the utility grid.

4. There are two primary constraints of the state vector, which depend on the utility grid and

state of charge of battery. Through Eq. (26), the vectors that represent the state constraints can 

be described as follows:

(36)
 1

2

0 0 0

10 0

T
TOU

c

nom nom d

sv P

sv
E E




 

  

  
  

(37)
 

 









T
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T
svsv

LkxxLxkx

SSSSM
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,

0
maxmin
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
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where  are respectively, the lower diagonal square matrix of control LxxxSS llsv ll
and,,,, maxmin

0

horizon dimension and  element, initial, the minimum and maximum value of state  with lsv l

and identity vector of control horizon row.2,and1l

5. Equations (23) and (33) demonstrate that it is observed that some additional constraints on

the system can be rewritten. These are constituted by the constraint from the utility grid, demand 

side constraint, restrictions of the PV and battery storage. These additional constraints can be 

listed as follows:

- Constraints from the utility grid: this is based on the limitation of the energy flow from the 

utility grid as it is described in Fig. 2. The utility grid constraint can be rewritten as))(( kEg

follows:

 (38)
 

 









)(
1

1

5

'
5

T
g

T
j

kE

IM



where  is the diagonal identity matrix of the only column with  has 4 columns as '
jI jj but ,1

it is described Eq. (33). This means the remaining column has 0 element.

- Solar PV array constraints: the energy flow from the PV array is physically identified as a 

function of the input signal by the energy flow that supplies the load while charging the battery. 

Therefore, the PV power is limited to: 

(39)
 

 









)(
2

2

5

"
5

T
pv

T
j

kE

IM



 where  is the diagonal identity matrix of two column i.e.  but the number of "
jI 3,and2j

columns is described as defined for the utility grid.

- The energy flow on the demand side ( ) is a function of the different sources; the utility 𝐸𝐷(𝑘)

grid, PV and the BESS. Thus, the energy flow on the consumer side is subjected to the following 

constraint: 

(40){ 𝑀53 = [𝑁𝑗]𝑇

𝛾53 = [𝐸𝐷(𝑘)]𝑇
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where , as described for the utility grid and PV, is the diagonal identity matrix with threejN
columns that affect physical the energy demand i.e.   4.and2,,1j
- The BESS constraint is the charging and discharging of the energy of the device. As Eqs. (11) 

- (12) define it, simultaneous charging and discharging of the BESS is prohibited. This battery 

storage constraint is expressed by equation (41).

(41)
 

 









0
4

4

5

5

T

T
ij

i

i
NM



where has four columns ( , but it is an identical diagonal vector of either  (column) ijN )4j 4i

in charging process other elements are null or  (column) in discharging process. From Eqs. 3i

(14) - (15),  and    invD kEM
c

 )(,01-10
c44 55     invDkEM

d
 ),1-01-0

d44 55 

could added during charging and discharging processes of battery respectively. 

The system constraint is, therefore, the computation of Eqs. (33) - (41). The compact form of 

system constraint is defined as an inequality system matrix where the dimension is the function 

of the control signal and the number of constraints that the system that the system design can 

support. From Fig. 3, the adaptive MPC design system constraints can be rewritten as: 

 (42),)( kME

whereas are respectively the row vector of each  from Eq. (33) to Eq. (41) andM
jj iiM and

as described in [6]. 
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4.5 Adaptive TOU-MPC algorithm

The implementation of the designed approach consists of creating the algorithm instruction as 

described in [7, 53]. Considering the discrete state space model Eqs. (22), the system 

performances index Eq. (31) and the compact system constraints Eq. (42) which is a function of 

Eq. (33) to (41), therefore an adaptive TOU- MPC algorithm instructions can be devised. The 

optimization strategy involves the execution of the following steps: 

1. If the bulk electricity tariff as described in Table 1 is equal to:

- Off-peak value, execute the Off-Peak MPC;

- Standard value, go to the Standard MPC;

- Peak value, compile the Peak MPC.

2. For a given sample of time , determine the control horizon and predictive horizon of thek

system.

3. Compute the optimization strategy through the performance index as defined in (31), which

consist

4. Trough the MPC receding horizon control strategy determine the optimum system inputs

as described in (23).

5. Find the optimal system outputs which are defined in Eq. (30).

6. Go to the next sample , while updating the system inputs, outputs and states, and1k k 

then repeat the instructions 1 to 5 until .Pk N

5. SIMULATION AND RESULTS

From Table 1 and Fig. 1(a)-(b), due to the random variation of solar energy resources, it 

can be demonstrated that the electricity tariff and plane of array irradiance can affect negatively 

or positively the integration renewable energy resources into the electrical system. The PV array 

is therefore designed as per the season of the year which defines the variation of solar radiation 

or/and irradiance (Fig. 1(a)-(b)), and the peak of load demand (Table 1). There are several 

important factors to take into consideration when a PV array is integrated into a given electrical 

system as depicted in Fig. 2. The location’s geometric characteristics, the difference between 

system energy demand and the energy from the uncontrollable load (target of the energy 

demand), the energy storage system that has to cover the random variation of solar energy 

resources are also considered as primary factors in selecting a solar generating system. 
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It is observed that from Fig. 1(a)-(b) two-axis tracking can be chosen for optimal energy 

generation that can cover the total energy supply of the load. For a commercial system 

application, the parameters of the PV array are defined in Table 2 [43]. The choice of energy 

storage device is based on its power rating and its hourly energy rate.  Furthermore, charge and 

discharge efficiency, the state of charge and depth of discharge (the inverse of the state of charge 

Eq. (6)) of the battery are also the key parameters considered when selecting a battery energy 

storage. Table 2 describes the PV array parameters and the critical parameters of the energy 

storage used for an optimal energy supply. In Table 2, it is important to notice that the continuous 

discharge (CD) of the battery is set at rated power. 

The proposed energy management approach is applied to a grid connected end consumer 

with onsite renewable energy sources under a real-time electricity tariff with the objective of 

minimising grid energy cost and maximising the use of renewable energy resources. Thus, the 

system design from Eqs. (22) to (28) combines with the real-time electricity tariff and 

implemented as described in [6, 7]. The proposed MPC system with the integration of renewable 

energy (PV array and ESS) into the grid is simulated in the context of a South African city of 

Tshwane as presented in Table 1. Consequently, the restriction parameters of the designed 

system are chosen to function with TOU electricity tariff. Table 3 defines the relevant parameters 

used for the implementation of the MPC system design. It is also essential to note that the 

designed system has one hour as a sample of time to test the performance of the proposed 

approach in real-time.

Table 2 PV array and ESS parameters

PV System Specifications for commercial usage 
DC System Size (kW) LP/HP 350/450 System Losses 0.14

Module Type Standard Inverter Efficiency 0.96
Array Type 2-Axis Tracking DC to AC Size ratio 1.1
Array Tilt 25.7º Capacity Factor 0.245

Array Azimuth 0º PV price (Rand/kWh) R0.62
Battery Storage System Specifications (red 30-150)

Rated Power (kW) 30 Capacity (kWh) 150
Peak Power (Kw) 60 CD at rated power (h) 5

Charging efficiency 0.8 Discharging efficiency 1
SOC maximal 100 SOC minimal 10

5.1 Simulation 



The output of the system that is mostly based on the cost of electricity from the utility 

grid during the system simulation is depicted in Fig. 5. However, this is the comparison between 

the output from a system designed by using an MPC system to manage the reference electricity 
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The energy system design of this commercial building is analysed under two scenarios as 

described in Table 3. It worth noting that all minimum values of the constraint are set to zero. 

All these cases are calculated by using the system parameters and specification defined in Tables 

1, 2, and 3. However, the system constraint Eq. (41) is automatically shifted from charge to 

discharge mode in the response to solar PV output’s seasonal variations. This period is mostly 

from 5 pm to 6 pm for L-P and H-P respectively. Other constraint values such as of Eqs. (35) 

and (37) derive from Table 3 and their computational relationship. Figures. 3 to 8 present the 

simulations results of the advanced model.

Table 3 Simulation Parameters (constraints)

System 
Parameters

Off-Peak 
L-P

Standard
L-P

Peak
L-P

Off-Peak
H-P

Standard
H-P

Peak 
H-P

wr 1 1.70223 2.5 1 1.940209 3
(kWh)max1E 70 70 70 80 80 80
(kWh)max2E 350 350 350 450 450 450
(kWh)max3E 120 120 120 120 120 120
(kWh)max4E 15 80 80 20 20 20
(kWh)max1E 20 40 40 20 50 50
(kWh)max2E 40 40 40 50 50 50
(kWh)max3E 120 120 38 120 120 25
(kWh)max4E 40 40 40 50 50 50

5.1.1 Scenario 1

In this case, the MPC-based energy management system of a commercial building as 

described in Fig. 2 is simulated in low demand period. This entails an analysis of the electrical 

system behaviour during the low period demand where all system parameters and specifications 

are considered as described in Tables 2-3. The solar PV output in this season is set at 350 kW 

DC system, but other specifications do not change according to L-P parameters and plane of 

array irradiance that is depicted in Fig. 1(a). Figures 3 and 4 show the computation of the system 

inputs, the energy demand target and the solar PV energy supply. It is observed that the designed 

system is robust enough to respect all system constraints. From Fig. 3, it can be seen that the 

system behaviour is optimally following the set target.



Fig. 3. Optimum demand and reference of the energy from the utility grid for L-P. 
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cost of energy that the customer wants to pay the utility and the cost of energy, with one without 

the system managing. In fact, there are some differences between the target and the optimal 

charge at 7-9 am in the morning and 5-6 pm. However, from the consumer point of view, it can 

be seen that the cost electricity is optimally shrinking in target value.  Thus, Fig. 5 depicts an 

acceptable optimal result by reducing the cost of energy of a commercial building in a low 

demand period when the MPC managing system is embedded.

The simulation results of the system output based on the utility grid’s energy cost are 

shown in Fig. 5. This is the comparison between the output of a system designed using an MPC 

system to manage the reference utility grid energy cost and the baseline energy cost; that is, the 

energy cost without deployment of the MPC-based management system. As shown, there are 

some differences between the target and the optimal cost at 7:00-9:00 am in the morning and 

5:00-6:00 pm. However, from the consumer point of view, the target value of the electricity cost 

is optimally reduced. Figure 5 shows an acceptable optimal result by reducing the cost of energy 

of a commercial building in a low demand period when the MPC-based energy management 

system is embedded.
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The high demand period, that is, the winter season in South Africa has a negative impact 

on the performance of solar PV. Figure 1 (b) shows the plane of array irradiance of the winter 

period where there are minimal differences between all PV technology. This is one of the reasons 

for choosing a two-axis tracking system to analyse the system behaviour when the adaptive TOU-

MPC managing system is implemented. As shown in Fig. 1(a), all types of array during this 

period can give the optimal results of the system design. During the high demand period, the 

same solar PV array model that is used in low demand can be considered, but its DC system size 

is augmented to 100 kW. The main objective of the system design is to meet the system load 

demand in the most economical way. Simulation results of the MPC-based energy management 

system in winter are shown in Figures 6 - 8.

          Fig. 4. The flow of renewable energy resources (PV array) for L-P.

5.1.2 Scenario 2
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 Fig. 5. The different electricity costs from the utility grid for L-P.

Figure 6 shows that the MPC system design in winter also optimally follows the system 

constraints and the energy demand target. Moreover, like the low demand period, from Table 1 

and Figure 6, it is observed that a change in the energy demand can reduce the power to less than 

the set target of the demand. While the system constraints and parameters are respected, the solar 

energy resource is performing optimally as shown in Fig. 7. During the high demand period, the 

electricity cost is also optimally reduced for consumers by following the set cost target when the 

MPC-based energy management system is applied to a commercial building in winter.
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Fig. 6. Optimum demand and reference of the energy from the utility grid for H-P.

5.2 Results discussion

Through the simulation analysis, it is demonstrated that the integration of a solar energy 

generating system with the ESS assures the optimal cost of electricity that can follow the setting 

energy demand target. In fact, the improvement of the optimal energy charge can, therefore, be 

compared to the setting targets to test the accuracy of the MPC-based management system 

design. This approach is demonstrated from Figures 3-8. It is also observed that there are a few 

differences between the reference and the optimal energy cost that must follow the target. This 

observation is made after two similar periods for both L-P and H-P; firstly, when the system 

must shift between adaptive MPC as described in Fig. 2, and then when the energy demand 

change as shown in Table 1 with the optimal results in Figs. 3 and 6. The designed model is 

robust to satisfy the system constraints and to minimise the grid energy cost by following the set 

energy demand target. Table 4 describes the daily energy cost of network analysis in each period.

     Fig. 7. The flow of renewable energy resources (PV array) for H-P.
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Fig. 8. The different electricity cost from the utility grid for H-P.

Table 4 Different daily energy costs

Cost of energy to pay the Utility 
grid in Rand

Low demand 
period

High demand 
period

Difference 
 H-P vs L-P 

Without the MPC system R808.2 R2254.3 R1446.1
Target or Reference R409.5 R1086.2 R676.7

With the MPC system managing R396.5 R1038.6 R642.1

The weighted coefficient plays an important role in the optimization process. It can 

negatively or positively affect the performance index of the system design. The choice of this 

factor depends mostly on the variation of demand and real-time electricity pricing in the case of 

TOU-tariff as described in Table 3. The observation that can be made from this is that when the 

price of electricity and the demand, the weight coefficient also increases. Tables 3 describe the 

difference values of the tuning parameter during off-peak, standard, or peak periods of L-P and 

L-H.

From PV array types, as 2-axis system is used to compute this system design optimally, it 

can be observed that there was a difference of 100 kW DC power rating of the solar energy 

generating system between L-P and H-P computations. However, the selected daily plane of 

array irradiance during the lowest demand period of all PV technologies are nearly equal. The 
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system can also use a fixed axis PV of the total used DC power during the winter for both demand 

periods. The solar energy generating system is integrated as an optimal strategy for both L-P and 

L-H when it is about to supply the energy demand and to charge the BESS. The discharging 

process of the BESS is optimal following the system design and constraints. It is demonstrated 

by the start time of discharging process which begins only after the end of solar energy generation 

as it is depicted in Figures 5 and 8. Due to the difference of solar irradiance of each period, it is 

also important to notice that the PV energy generating system has a different starting and ending 

point for each season (L-P and H-P).

From Table 4, the sum of system outputs when the adaptive TOU-MPC managing system 

is implemented is compared with the set target and the cost savings. The optimization of 

electricity cost by using the proposed strategy is 49.059% of the total energy demand of the 

electrical system in low demand period. The same output of the system in high demand period 

is reduced to 46.072% of total energy demand. With a target of 50.688% and 48.183% of 

electricity to pay in L-P and H-P respectively, the system approach operated to minimise the grid 

energy cost. It was also observed that when the TOU-MPC model is deployed under real-time 

electricity tariff for a commercial building’s application, the difference between the set 

references and the optimal grid energy cost is 1.609% and 2.111% in L-P and H-P respectively.  

These results prove that this approach satisfies the system requirement.

6. CONCLUSION

The proposed strategy presents an adaptive TOU-MPC managing system design in a real-

time electricity pricing environment, which consists of integrating a solar energy generating and 

energy storage system into an isolated power grid. It has been observed that the system design is 

optimally efficacy and that the proposed strategy achieved a good performed by managing the 

energy consumption by prioritising some loads while controlling the power supply as a function 

of the demand. This approach gave the consumer an opportunity to maintain the cost of electricity 

to pay and to decide on the amount of the energy usage. The performance index of the system 

design was evaluated in conjunction with low and high demand periods. It was found that the 

proposed approach was effective thus confirming that the total cost of electricity can be reduced 

to suit the customer needs. It is therefore expected that the proposed approach can be seen as a 

benchmark to develop a real-time electricity pricing optimisation in any sector that has fair 

atmospheric and environmental conditions for renewable energy integration.
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Future work will focus on designing a system that accommodates demand from different 

customers with the same bulk point of power supply which includes both the utility grid and a 

renewable energy generating system. A system design that takes into consideration the 

opportunity cost will also be considered as a future study case.
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