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ABSTRACT
In this paper, numerical boundary stabilisation of a non-uniform hyperbolic system
of balance laws is studied. For the numerical discretisation of the balance laws, a
first order explicit upwind scheme is used for the spatial discretisation; and for the
temporal discretisation a splitting technique is employed. A discrete L2−Lyapunov
function is employed to investigate conditions for the stability of the system. After
constructing discrete numerical Lyapunov functionals, we prove an asymptotic expo-
nential stability result for a class of non-uniform linear hyperbolic systems of balance
laws. Convergence of the solution to its equilibrium is proved. Further application of
the approach to practical problems through concrete examples is presented together
with suggestions for numerical implementation. The numerical computations also
demonstrate the stability of the numerical scheme with parameters chosen to satisfy
the stability requirements.
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1. Introduction

In this paper, numerical stabilisation of a hyperbolic k × k system of non-uniform
balance laws in one-space dimension by boundary controls is considered. Hyperbolic
systems of balance laws are useful in describing the transport of a set of physical
quantities that have a mathematical physics and an engineering interest. Therefore,
these kinds of systems have a large number of applications in the physical modelling of
different phenomena. Some of the relevant examples include the telegrapher equation
that describes the propagation of an electric signal along an electric line, Karaguler
(2008); the Aw-Rascle and Greenberg equation that describes the dynamics of road
traffic flow, Siebel & Mauser (2006); the Saint-Venant equation that describes the
dynamics of shallow water flow along an open channel, Bastin, Coron, & d’Andréa
Novel (2008); the Saint-Venant Exner equation that describes the dynamics of shallow
water flow with sediment transportation along an open channel, A. Diagne, Bastin, &
Coron (2012); and the Euler equations for gas dynamics that describe the behaviour of
gas flow through a medium Chalons, Girardin, & Kokh (2012). In addition, hyperbolic
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systems of balance laws are used to model networked flow in which case the flow
through the edge of the network is governed by the hyperbolic balance law. The flow
through the node (or vertex) of the network, outgoing or ingoing to the edge, is coupled
by algebraic conditions motivated by physical considerations Bastin et al. (2008).

The mathematical analysis of hyperbolic balance laws has been an active field of
research for more than fifty years Dafermos (2009). For more details of the mathemat-
ical properties of hyperbolic balance laws, the reader is referred to the introduction
part in Dafermos (2009). In particular, in the recent past the boundary control prob-
lem of hyperbolic systems of balance laws has been a very active area of research
Bastin & Coron (2011); Coron, Bastin, & d’Andréa Novel (2008); Coron, d’Andréa
Novel, & Bastin (2007); A. Diagne et al. (2012); Di Meglio, Vazquez, & Krstic (2013);
Dos Santos, Bastin, Coron, & d’Andréa Novel (2008); Gugat & Herty (2011); Litrico
& Fromion (2009); Prieur (2009); Prieur, Winkin, & Bastin (2008); Vazquez, Coron,
Krstic, & Bastin (2011).

In such cases, researchers have focused on well-posedness (i.e. existence, uniqueness
and stability) of a hyperbolic system of balance laws Coron (2007); Gugat, Herty,
Klar, Leugering, & Schleper (2012). Besides the existence and uniqueness, a stability
analysis for boundary control of a hyperbolic system of balance laws has been studied
for different categories such as for a linear hyperbolic system of conservation laws
in Litrico & Fromion (2009), a linear hyperbolic system of balance laws in Prieur et
al. (2008), a non-linear hyperbolic system of conservation laws in Prieur (2009) and
networks of such in de Halleux, Prieur, Coron, d’Andréa Novel, & Bastin (2003).

In general, the objective is to stabilize a solution of a hyperbolic system of balance
laws to a preferred equilibrium state by finding boundary control action that will be
used at the boundary points (or at the nodes of the network in networked flow). For the
stability analysis of a boundary control of a hyperbolic system of balance laws, there
exists a candidate Lyapunov function which is a positive quadratic form. According to
the Lyapunov stability analysis theorem, the time derivative of the Lyapunov function
needs to be in a negative quadratic form to exhibit the stability of the system. This
technique was introduced for a linear hyperbolic system of conservation laws in Coron
et al. (2007); Dos Santos et al. (2008), a linear hyperbolic system of balance laws in
Bastin, Coron, & d’Andréa Novel (2009) and later for networks of hyperbolic 2 × 2
systems of balance laws in Bastin et al. (2008). This approach was briefly analysed for a
linear hyperbolic system of balance laws in A. Diagne et al. (2012). Using the discussion
of the linear case, this approach was further extended to a non-linear hyperbolic system
of conservation laws in Coron et al. (2008).

For practical purposes, numerical aspects of a hyperbolic system of balance laws
have also undergone tremendous development Prieur, Girard, & Witrant (2012, 2014).
For instance, in the above mentioned literature and in general, numerical results for
the stability analysis of a hyperbolic system of balance laws have been given to sup-
port the theoretical stability analysis. This stability analysis has been applied to some
important examples such as shallow water flow along an open channel Bastin et al.
(2008); Coron et al. (2007); de Halleux & Bastin (2002); A. Diagne et al. (2012) and
gas dynamics Banda, Herty, & Klar (2006). However, there is limited literature on the
numerical boundary stability analysis of hyperbolic systems of balance laws. Recently,
researchers have investigated conditions for the numerical stability of a discretised lin-
ear hyperbolic system of conservation laws by considering a single flow domain Banda
& Herty (2013) and networked flow domain Dick et al. (2014). In these studies, a
discrete Lyapunov function was introduced and the decay of the discrete Lyapunov
proved. The purpose of the current work is to consider a numerical boundary sta-
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bilisation of a non-uniform linear hyperbolic system of balance laws. The analysis of
a numerical discretisation of stabilisation problems with boundary controls for such
a linear hyperbolic system of balance laws will be undertaken. In particular the nu-
merical analysis of the convergence of a numerical solution of a non-uniform linear
hyperbolic system of balance laws to a preferred equilibrium is proved. An investiga-
tion of conditions for the decay of discrete solutions of non-uniform linear hyperbolic
systems of balance laws will be presented. The numerical boundary stabilisation will
also be applied to relevant examples in the field of fluid dynamics.

For details of numerical analysis the reader is referred to Section 3. The numerical
stability analysis technique used in this work is similar to that used in Banda & Herty
(2013) and Gottlich & Schillen (2017). A discrete Lyapunov function will be applied
in the investigation of conditions for decay rates depending on numerical schemes that
have been employed. Numerical results for this study will be presented in Section 4.

2. Boundary Stabilisation of Linear Hyperbolic System of Balance Laws

In this section, we consider the following non-uniform linear hyperbolic k × k system
of balance laws in one-space dimension:

∂tW + Λ(x)∂xW + Π(x)W = 0, x ∈ [0, l], t ∈ [0,+∞), (1)

where W :=
[
w1, . . . , wk

]T
: [0, l] × [0,+∞) → Ω, a non-empty, open and connected

subset of Rk, Λ(x) := diag{λ1(x), . . . , λk(x)}, and Π(x) is a real k × k matrix. Here
we assume that Λ(x) has non-zero real smooth diagonal entries that can be arranged
as follows

λk(x) ≤ · · · ≤ λm+1(x) < 0 < λm(x) ≤ · · · ≤ λ1(x), ∀x ∈ [0, l].

In addition, we introduce the following notation

W := [W+,W−]T , Λ(x) := diag{Λ+(x),−Λ−(x)}
and |Λ(x)| := diag{Λ+(x),Λ−(x)},

with W+ :=
[
w1, . . . , wm

]T
, W− :=

[
wm+1, . . . , wk

]T
,

Λ+(x) := diag{λ1(x), . . . , λm(x)} and Λ−(x) := diag{|λm+1(x)|, . . . , |λk(x)|}.

Thus, the system (1) with this notation can be expressed as follows:

∂t

[
W+

W−

]
+

[
Λ+(x) 0

0 −Λ−(x)

]
∂x

[
W+

W−

]
+Π(x)

[
W+

W−

]
= 0, x ∈ [0, l], t ∈ [0,+∞). (2)

In order to formulate a Cauchy problem associated with the linear system (2), we
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prescribe the following initial conditions[
W+(x, 0)

W−(x, 0)

]
:=

[
W+

0 (x)

W−0 (x)

]
, x ∈ (0, l), (3)

where
[
W+

0 ,W
−
0

]T
: [0, l]→ Ω and boundary conditions of the form

[
W+(0, t)

W−(l, t)

]
:=

[
K11 K12

K21 K22

]
︸ ︷︷ ︸

K

[
W+(l, t)

W−(0, t)

]
, t > 0. (4)

At this point, it can also be pointed out that since

∂x (Λ(x)W ) = Λ(x)∂xW + Λ′(x)W,

the system (2) can be written in the following form

∂tW + ∂x (Λ(x)W ) +
(
Π(x)− Λ′(x)

)
W = 0. (5)

Consideration for the initial boundary compatibility condition of the form[
W+(0, 0)

W−(l, 0)

]
:= K

[
W+(l, 0)

W−(0, 0)

]
, (6)

is made and the fact that it satisfies the existence and uniqueness of a solution to
the Cauchy problem (2), (3), (4) is stated in Bastin & Coron (2016). Further, a weak
formulation of a solution to the Cauchy problem (2), (3), (4) is also defined in Bastin
& Coron (2016).

The central theme of this paper is to analyse a numerical stability for the non-
uniform linear hyperbolic system of balance laws. To prepare the setting, we discuss
the analytical stability analysis for this system. At first, we give the following definition
of exponential stability of the linear system.

Definition 2.1 (Exponential Stability Bastin & Coron (2016)). The linear system
(2) with boundary condition (4) is exponentially stable for the L2−norm if there exist
η > 0 and C > 0 such that, for every initial condition W0(x) ∈ L2((0, l);Rk), the
L2−solution to the Cauchy problem (2), (3), (4) satisfies

‖W (·, t)‖L2((0,l);Rk) ≤ Ce
−ηt‖W0‖L2((0,l);Rk), ∀t > 0.

In order to stabilise the linear system (2) with boundary condition (4) a candidate
L2−Lyapunov function is used in Bastin & Coron (2016) and it is defined as follows:

L(t) :=

∫ l

0
W TΦ(x)Wdx, t ≥ 0, (7)
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where Φ(x) := diag{P+e−µx, P−eµx} with P+ := diag{p1, . . . , pm} and P− :=
diag{pm+1, . . . , pk}, where pi > 0, i = 1, . . . , k.

Using the Lyapunov function in (7), we have the following result:

Theorem 2.2 (Bastin & Coron (2016)). The system (2) with boundary condition (4)
is exponentially stable for the L2−norm if there exists µ > 0 and pi > 0, i = 1, . . . , k,
such that the following matrices[

Λ+(l)P+e−µl 0

0 Λ−(0)P−

]
−KT

[
Λ+(0)P+ 0

0 Λ−(l)P−eµl

]
K (8)

and

µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + ΠT (x)Φ(x) + Φ(x)Π(x), ∀x ∈ [0, l] (9)

are positive definite quadratic forms.

Remark 1. From Theorem 2.2, one sees that a matrix K is determined by positive
constants µ > 0 and pi > 0, i = 1, . . . , k, which is discussed in Section 4.

A special case of the system (2), which is a linear system with constant coefficients,
can be expressed as follows:

∂t

[
W+

W−

]
+

[
Λ+ 0

0 −Λ−

]
∂x

[
W+

W−

]
+ Π

[
W+

W−

]
= 0, x ∈ [0, l], t ∈ [0,+∞), (10)

where Λ+ := diag{λ1, . . . , λm}, Λ− := diag{|λm+1|, . . . , |λk|} and Π is a real k × k
constant matrix. Then, the result in Theorem 2.2 for the system (10) with boundary
condition (4) is stated as follows:

Corollary 2.3 (A. Diagne et al. (2012)). The system (10) with boundary condition (4)
is exponentially stable for the L2−norm if there exist µ > 0 and pi > 0, i = 1, 2, . . . , k,
such that the following matrices[

Λ+P+e−µl 0

0 Λ−P−

]
−KT

[
P+Λ+ 0

0 P−eµlΛ−

]
K (11)

and

µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π, ∀x ∈ [0, l] (12)

are positive definite quadratic forms.

One of the requirements in Corollary 2.3 is to show that the matrix (11) is positive
definite, which is alternatively described in the following remark.

Remark 2. As stated in Bastin & Coron (2016), if there exists µ > 0 and pi >
0, i = 1, . . . , k such that the matrix (12) is positive definite and ‖∆K∆−1‖ < 1, with

∆ :=
√
P |Λ|, where P := diag{P+, P−}, then the system in (10) with boundary

condition (4) is exponentially stable for the L2−norm.
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With this background, the formulation of the discrete numerical boundary sta-
bilisation can be presented. The conditions under which a numerical stabilisation is
asymptotically stable will be derived and proofs presented to back such claims in the
next section, Section 3.

3. Numerical Boundary Stabilisation of Non-uniform Linear Hyperbolic
System of Balance Laws

In this section, we investigate conditions for a numerical stability analysis of one
dimensional non-uniform linear hyperbolic system of balance laws. Thus, we consider
the Cauchy problem (2), (3), (4) where the independent variables, x and t, are defined
on finite intervals [0, l] and [0, T ], respectively, with l > 0 and T > 0. In order to obtain
a numerical solution for this system, the finite volume methods (FVM) LeVeque (2002)
will be used. For simplicity, we use a uniform grid with grid size for the temporal
and spatial intervals denoted by ∆t and ∆x, respectively. Hence, there are a finite
number of grid points along the time and the space directions, which are denoted by
tn := n∆t, n = 0, . . . , N and xj− 1

2
= j∆x, j = 0, . . . , J, with N∆t = T and J∆x = l,

respectively. Moreover, the left and right boundary points are denoted by x− 1

2
and

xJ− 1

2
, respectively. Let xj = (j + 1

2)∆x for j = 0, . . . , J − 1 denote cell centres.

The next step in FVM is to approximate the cell average of W over each cell
(xj− 1

2
, xj+ 1

2
). Hence, the value Wn

j approximates the jth cell average at time tn, n =

0, . . . , N and it can be expressed as

Wn
j =

1

∆x

∫ xj+1
2

xj− 1
2

W (x, tn)dx, j = 0, . . . , J − 1. (13)

Since W is a smooth function, the approximate value, Wn
j , can be used to approximate

the value of W at the cell-centre in a numerical quadrature. In this case the midpoint
value of W in each cell is approximated by Wn

j at each midpoint of the cells. Thus
the midpoint quadrature rule is applied for the integral over the spatial domain [0, l]

and will be approximated by
∑J−1

j=0 W
n
j ∆x at each time step tn, n = 0, . . . , N.

By integrating the system (5) over [xj− 1

2
, xj+ 1

2
)× [tn, tn+1) and applying first order

upwind explicit scheme with a time splitting method, the following discretisation of
the Cauchy problem (2), (3), (4) for n = 0, . . . , N − 1 is introduced:[

W̃+
n

j

W̃−
n

j

]
=

[
W+n

j

W−
n
j

]
− ∆t

∆x

[
Λ+
j−1 0

0 Λ−j+1

][
W+n

j −W+n
j−1

W−
n
j −W−

n
j+1

]
, n = 0, . . . , N − 1;[

W+n+1
j

W−
n+1
j

]
=

[
W̃+

n

j

W̃−
n

j

]
−∆tΠj

[
W̃+

n

j

W̃−
n

j

]
, j = 0, . . . , J − 1;

(14a)
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W 0
j =

1

∆x

∫ xj+1
2

xj− 1
2

W0(x)dx, j = 0, . . . , J − 1; (14b)

[
W+n+1

−1

W−
n+1
J

]
= K

[
W+n+1

J−1

W−
n+1
0

]
, n = 0, . . . , N − 1. (14c)

We now define exponential stability of the discretised Cauchy problem (14) as fol-
lows:

Definition 3.1. The discretised non-uniform linear hyperbolic system (14a) with the
discretised boundary conditions (14c) is exponentially stable if there exist η > 0 and
C > 0 such that, for every W 0

j ∈ L2((xj− 1

2
, xj+ 1

2
);Rk), j = 0, . . . , J − 1, the solution

to the discretised Cauchy problem (14) satisfies

∆x

J−1∑
j=0

[
Wn
j

]T [
Wn
j

]
≤ Ce−ηtn∆x

J−1∑
j=0

[
W 0
j

]T [
W 0
j

]
, n = 0, . . . , N.

In order to obtain conditions for the stability of the Cauchy problem, we define the
following discrete Lyapunov function

Ln = ∆x

J−1∑
j=0

(
Wn
j

)T
ΦjW

n
j , n = 0, . . . , N, (15)

with Φj := diag{P+e−µxj , P−eµxj} where P+ := diag{p1, . . . , pm} and P− :=
diag{pm+1, . . . , pk} with pi > 0, i = 1, . . . , k.

With the above background material, the main result of the paper can now be stated
and proved as follows:

Theorem 3.2. Let T > 0 be fixed and for each j = 0, . . . , J − 1 assume
λi,j > 0, i = 1, . . . ,m and λi,j < 0, i = m+ 1, . . . , k. Let the discrete Lyapunov func-

tion be defined by (15). If the CFL condition
∆t

∆x
max
1≤i≤k

0≤j≤J−1

|λi,j | ≤ 1 holds and there

exists real µ > 0, pi > 0, i = 1, . . . , k, α = min
1≤i≤k

0≤j≤J−1

|λi,j | and β = max
1≤i≤k

0≤j≤J−1

λ′i,j, such

that 0 < µαe−µ∆x − β < 1,

ΠT
j Φj + ΦjΠj −∆tΠT

j ΦjΠj , j = 0, . . . , J − 1, is positive semi-definite (16)

and [
P+e−µxJ Λ+

J−1 0

0 P−eµx−1Λ−0

]
−KT

[
P+e−µx0Λ+

−1 0

0 P−eµxJ−1Λ−J

]
K, (17)

is positive definite, then the numerical solution Wn
j of the Cauchy problem (14) con-

verges to 0 for the L2−norm.

Proof. The time derivative of the Lyapunov function (7) is approximated by using
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the discrete Lyapunov function (15), which is obtained in the following form

Ln+1 − Ln

∆t
=
Ln+1 − L̃n

∆t
+
L̃n − Ln

∆t
, n = 0, . . . , N, (18)

where

L̃n := ∆x

J−1∑
j=0

(
W̃n
j

)T
ΦjW̃

n
j .

In order to show that the time derivative (18) is a negative definite quadratic form, it
suffices to show that both approximations of the time derivatives

Ln+1 − L̃n

∆t
=

∆x

∆t

J−1∑
j=0

[(
Wn+1
j

)T
ΦjW

n+1
j −

(
W̃n
j

)T
ΦjW̃

n
j

]
, (19)

and

L̃n − Ln

∆t
=

∆x

∆t

J−1∑
j=0

[(
W̃n
j

)T
ΦjW̃

n
j −

(
Wn
j

)T
ΦjW

n
j

]
(20)

are negative definite quadratic forms.
We use now the discretised system (14a) with boundary condition (14c) to obtain

the following

Ln+1 − L̃n

∆t
=

∆x

∆t

J−1∑
j=0

[(
W̃n
j −∆tΠjW̃

n
j

)T
Φj

(
W̃n
j −∆tΠjW̃

n
j

)
−
(
W̃n
j

)T
Φj

(
W̃n
j

)]
,

=
∆x

∆t

J−1∑
j=0

[(
W̃n
j

)T
Φj

(
W̃n
j

)
−
(
W̃n
j

)T
Φj

(
W̃n
j

)]

−∆x

J−1∑
j=0

[(
W̃n
j

)T
ΠT
j Φj

(
W̃n
j

)
+
(
W̃n
j

)T
ΦjΠj

(
W̃n
j

)
−∆t

(
W̃n
j

)T
ΠT
j ΦjΠj

(
W̃n
j

)]
,

=−∆x

J−1∑
j=0

(
W̃n
j

)T [
ΠT
j Φj + ΦjΠj −∆tΠT

j ΦjΠj

] (
W̃n
j

)
, (21)
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and

L̃n − Ln

∆t
=

∆x

∆t

J−1∑
j=0

(Wn
j −

∆t

∆x

[
Λ+
j−1 0

0 Λ−j+1

][
W+n

j −W+n
j−1

W−
n
j −W−

n
j+1

])T
Φj

(
Wn
j −

∆t

∆x

[
Λ+
j−1 0

0 Λ−j+1

][
W+n

j −W+n
j−1

W−
n
j −W−

n
j+1

])
−
(
Wn
j

)T
Φj

(
Wn
j

)]
,

=
∆x

∆t

J−1∑
j=0

[(
Wn
j −Dj

(
Wn
j − Ξnj

))T
Φj

(
Wn
j −Dj

(
Wn
j − Ξnj

))
−
(
Wn
j

)T
Φj

(
Wn
j

)]
,

with Dj :=

[
D+
j−1 0

0 D−j+1

]
and Ξnj :=

[
W+n

j−1

W−
n
j+1

]
, where D+

j−1 := ∆t
∆xΛ+

j−1 and D−j+1 :=

∆t
∆xΛ−j+1. Then,

L̃n − Ln

∆t
=

∆x

∆t

J−1∑
j=0

[(
Wn
j

)T
Φj

(
Wn
j

)
− 2

(
Wn
j

)T
ΦjDj

(
Wn
j

)
+ 2

(
Wn
j

)T
ΦjDj

(
Ξnj
)

+
(
Wn
j

)T
DjΦjDj

(
Wn
j

)
+
(
Ξnj
)T
DjΦjDj

(
Ξnj
)

−2
(
Wn
j

)T
DjΦjDj

(
Ξnj
)
−
(
Wn
j

)T
Φj

(
Wn
j

)]
,

=
∆x

∆t

J−1∑
j=0

[
−2
(
Wn
j

)T
ΦjDj

(
Wn
j

)
+ 2

(
Wn
j

)T
(I −Dj) ΦjDj

(
Ξnj
)

+
(
Wn
j

)T
DjΦjDj

(
Wn
j

)
+
(
Ξnj
)T
DjΦjDj

(
Ξnj
)]
.

By the CFL condition and since (I −Dj) ΦjDj is a positive definite diagonal matrix,
we have I −Dj ≥ 0 and using Young’s inequality, we obtain

2
(
Wn
j

)T
(I −Dj) ΦjDj

(
Ξnj
)
≤
(
Wn
j

)T
(I −Dj) ΦjDj

(
Wn
j

)
+
(
Ξnj
)T

(I −Dj) ΦjDj

(
Ξnj
)
,

=
(
Wn
j

)T
ΦjDj

(
Wn
j

)
−
(
Wn
j

)T
DjΦjDj

(
Wn
j

)
+
(
Ξnj
)T

ΦjDj

(
Ξnj
)
−
(
Ξnj
)T
DjΦjDj

(
Ξnj
)
.

Therefore,

L̃n − Ln

∆t
≤∆x

∆t

J−1∑
j=0

[
−
(
Wn
j

)T
ΦjDj

(
Wn
j

)
+
(
Ξnj
)T

ΦjDj

(
Ξnj
)]
,

=−
J−1∑
j=0

[
W+n

j

W−
n
j

]T
Φj

[
Λ+
j−1 0

0 Λ−j+1

][
W+n

j

W−
n
j

]

+

J−1∑
j=0

[
W+n

j−1

W−
n
j+1

]T
Φj

[
Λ+
j−1 0

0 Λ−j+1

][
W+n

j−1

W−
n
j+1

]
. (22)
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Consider the second term on the right hand side of the above equation (22) comple-
mented by xj = xj−1 + ∆x and xj = xj+1 −∆x:

J−1∑
j=0

[
W+n

j−1

W−
n
j+1

]T
Φj

[
Λ+
j−1 0

0 Λ−j+1

][
W+n

j−1

W−
n
j+1

]

=

J−1∑
j=0

[
W+n

j−1

W−
n
j+1

]T [
P+e−µxjΛ+

j−1 0

0 P−eµxjΛ−j+1

][
W+n

j−1

W−
n
j+1

]
,

=

J−1∑
j=0

[
W+n

j−1

W−
n
j+1

]T [
e−µ∆xP+e−µxj−1Λ+

j−1 0

0 e−µ∆xP−eµxj+1Λ−j+1

][
W+n

j−1

W−
n
j+1

]
,

= e−µ∆x
J−1∑
j=0

[
W+n

j

W−
n
j

]T
Φj

[
Λ+
j 0

0 Λ−j

][
W+n

j

W−
n
j

]

+

[
W+n

−1

W−
n
J

]T [
P+e−µx0Λ+

−1 0

0 P−eµxJ−1Λ−J

][
W+n

−1

W−
n
J

]

−

[
W+n

J−1

W−
n
0

]T [
P+e−µxJ Λ+

J−1 0

0 P−eµx−1Λ−0

][
W+n

J−1

W−
n
0

]
,

= e−µ∆x
J−1∑
j=0

[
W+n

j

W−
n
j

]T
Φj

[
Λ+
j 0

0 Λ−j

][
W+n

j

W−
n
j

]

+

[
W+n

J−1

W−
n
0

]T
KT

[
P+e−µx0Λ+

−1 0

0 P−eµxJ−1Λ−J

]
K

[
W+n

J−1

W−
n
0

]

−

[
W+n

J−1

W−
n
0

]T [
P+e−µxJ Λ+

J−1 0

0 P−eµx−1Λ−0

][
W+n

J−1

W−
n
0

]
.

By using assumption (17), we have

J−1∑
j=0

[
W+n

j−1

W−
n
j+1

]T
Φj

[
Λ+
j−1 0

0 Λ−j+1

][
W+n

j−1

W−
n
j+1

]

≤ e−µ∆x
J−1∑
j=0

[
W+n

j

W−
n
j

]T
Φj

[
Λ+
j 0

0 Λ−j

][
W+n

j

W−
n
j

]
.
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Therefore,

L̃n − Ln

∆t
≤−

J−1∑
j=0

[
W+n

j

W−
n
j

]T
Φj

[
Λ+
j−1 0

0 Λ−j+1

][
W+n

j

W−
n
j

]

+ e−µ∆x
J−1∑
j=0

[
W+n

j

W−
n
j

]T
Φj

[
Λ+
j 0

0 Λ−j

][
W+n

j

W−
n
j

]
,

=

J−1∑
j=0

[
W+n

j

W−
n
j

]T
Φj

[
e−µ∆xΛ+

j − Λ+
j 0

0 e−µ∆xΛ−j − Λ−j

][
W+n

j

W−
n
j

]

+

J−1∑
j=0

[
W+n

j

W−
n
j

]T
Φj

[
−Λ+

j−1 + Λ+
j 0

0 −Λ−j+1 + Λ−j

][
W+n

j

W−
n
j

]
,

= −µe−µ∆x∆x

J−1∑
j=0

(
Wn
j

)T
Φj |Λj |

(
Wn
j

)
+ ∆x

J−1∑
j=0

(
Wn
j

)T
ΦjΛ

′
j

(
Wn
j

)
.

(23)

By assumption (16) and the condition: for α = min
1≤i≤k

0≤j≤J−1

|λi,j | and β = max
1≤i≤k

0≤j≤J−1

λ′i,j ,

such that 0 < µαe−µ∆x − β < 1, we have

Ln+1 − L̃n

∆t
≤ 0, (24)

and

L̃n − Ln

∆t
< −ηLn, (25)

with η := µαe−µ∆x − β. Thus,

Ln+1 − Ln

∆t
< −ηLn. (26)

Recursively applying inequality (26) yields

Ln+1 < (1−∆tη)n+1L0 ≤ e−η∆t(n+1)L0 = e−ηt
n+1L0, n = 0, . . . , N − 1. (27)

We use now the inequality (27) to conclude the proof. To this end, let

C1 := min
1≤i≤k

0≤j≤J−1

{σi,j : |Φj − σi,jI| = 0} and C2 := max
1≤i≤k

0≤j≤J−1

{σi,j : |Φj − σi,jI| = 0}.

Then,

C1I ≤ Φj ≤ C2I, j = 0, . . . , J − 1. (28)
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From inequalities (27) and (28), one obtains

C1∆x

J−1∑
j=0

[
Wn
j

]T [
Wn
j

]
≤ Ln ≤ C2e

−ηtn∆x

J−1∑
j=0

[
W 0
j

]T [
W 0
j

]
, n = 0, . . . , N.

It follows that

∆x

J−1∑
j=0

[
Wn
j

]T [
Wn
j

]
≤ Ce−ηtn∆x

J−1∑
j=0

[
W 0
j

]T [
W 0
j

]
, n = 0, . . . , N

where C := C2/C1. Hence, the numerical solution Wn
j of the Cauchy problem in (14)

is exponentially stable for the L2−norm.

Stability conditions for non-uniform linear hyperbolic system with variable coeffi-
cients as presented in Theorem 3.2 above are analysed for specific examples in Section
4 below.

The special case of the system in Equation (10) for n = 0, . . . , N − 1 is expressed
as follows:[

W̃+
n

j

W̃−
n

j

]
=

[
W+n

j

W−
n
j

]
− ∆t

∆x

[
Λ+ 0

0 Λ−

][
W+n

j −W+n
j−1

W−
n
j −W−

n
j+1

]
, n = 0, . . . , N − 1,[

W+n+1
j

W−
n+1
j

]
=

[
W̃+

n

j

W̃−
n

j

]
−∆tΠ

[
W̃+

n

j

W̃−
n

j

]
, j = 0, . . . , J − 1.

(29)

A numerical stability analysis for discretised linear hyperbolic systems with constant
coefficients (29) is also analysed as in Theorem 3.2 and given in the following corollary.

Corollary 3.3. Let T > 0 and assume that λi > 0, i = 1, . . . ,m and λi < 0,
i = m + 1, . . . , k. Let the Lyapunov function be given by (15). If the CFL condition
∆t
∆x max1≤i≤k |λi| ≤ 1 holds and if there exists µ > 0 such that

ΦjΠ + ΠTΦj −∆tΠTΦjΠ is positive semi-definite (30)

and [
P+e−µxJ Λ+ 0

0 P−eµx−1Λ−

]
−KT

[
P+e−µx0Λ+ 0

0 P−eµxJ−1Λ−

]
K, (31)

is positive definite for each j = 0, . . . , J − 1, then the numerical solution Wn
j of the

Cauchy problem (14b), (14c), (29) satisfies

Ln ≤ e−ηtnL0, (32)

for some η > 0. Moreover, Wn
j is exponentially stable for the L2−norm.

The proof of Corollary 3.3 uses the same idea applied in the proof of Theorem 3.2
with Λj and Πj , j = 0, . . . , J − 1 considered as constant matrices.

12



One of the conditions in Corollary 3.3 is to show that the matrix (31) is positive
definite, which is alternatively described in the following proposition.

Proposition 3.4. Let T > 0 and assume that λi > 0, i = 1, . . . ,m and λi < 0,
i = m + 1, . . . , k. Let the discrete Lyapunov function be given by (15). If the CFL
condition ∆t

∆x max1≤i≤k |λi| ≤ 1 holds and if there exists µ > 0 such that the condition
(30) holds and

‖∆K∆−1‖ < 1, (33)

with ∆ :=
√
P |Λ|, where P := diag{P+, P−}, then the numerical solution Wn

j of
the Cauchy problem (29), (14b), (14c) satisfies the inequality (32) for some η > 0.
Moreover, Wn

j is exponentially stable for the L2− norm.

Proof. The approximation of the time derivative of the Lyapunov function (7) under
the CFL condition ∆t

∆x max1≤i≤k |λi| ≤ 1 is given by (18) with (21) and

L̃n − Ln

∆t
< −µαe−µ∆xLn +

[
W+n

J−1

W−
n
0

]T
KT

[
P+e−µx0Λ+ 0

0 P−eµxJ−1Λ−

]
K

[
W+n

J−1

W−
n
0

]

−

[
W+n

J−1

W−
n
0

]T [
P+e−µxJ Λ+ 0

0 P−eµx−1Λ−

][
W+n

J−1

W−
n
0

]
, (34)

where α := min1≤i≤k |λi|.
By assumption (30), the inequality (24) holds. In order to show that the right hand
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side of the inequality (34) is negative, consider the following quadratic form

−

[
W+n

J−1

W−
n
0

]T [
Λ+P+ 0

0 Λ−P−

][
W+n

J−1

W−
n
0

]
+

[
W+n

J−1

W−
n
0

]T
KT

[
Λ+P+ 0

0 Λ−P−

]
K

[
W+n

J−1

W−
n
0

]
,

=−

[
W+n

J−1

W−
n
0

]T [
Λ+P+ 0

0 Λ−P−

][
W+n

J−1

W−
n
0

]

+

[
W+n

J−1

W−
n
0

]T
KT

(√
|Λ|P

)T (√
|Λ|P

)
K

[
W+n

J−1

W−
n
0

]
,

=−

[
W+n

J−1

W−
n
0

]T [
Λ+P+ 0

0 Λ−P−

][
W+n

J−1

W−
n
0

]
+

(√
|Λ|PK

[
W+n

J−1

W−
n
0

])T (√
|Λ|PK

[
W+n

J−1

W−
n
0

])
,

=−

[
W+n

J−1

W−
n
0

]T [
Λ+P+ 0

0 Λ−P−

][
W+n

J−1

W−
n
0

]
+

∥∥∥∥∥√|Λ|PK
[
W+n

J−1

W−
n
0

]∥∥∥∥∥
2

,

=−

[
W+n

J−1

W−
n
0

]T [
Λ+P+ 0

0 Λ−P−

][
W+n

J−1

W−
n
0

]

+

∥∥∥∥∥(√|Λ|P)K (√|Λ|P)−1 (√
|Λ|P

)[W+n
J−1

W−
n
0

]∥∥∥∥∥
2

,

≤−

[
W+n

J−1

W−
n
0

]T [
Λ+P+ 0

0 Λ−P−

][
W+n

J−1

W−
n
0

]

+

∥∥∥∥(√|Λ|P)K (√|Λ|P)−1
∥∥∥∥2
∥∥∥∥∥(√|Λ|P)

[
W+n

J−1

W−
n
0

]∥∥∥∥∥
2

,

where in the last line, pi > 0, i = 1, . . . , k, can be selected such that∥∥∥∥∥(√|Λ|P)
[
W+n

J−1

W−
n
0

]∥∥∥∥∥ = 1 and

[
W+n

J−1

W−
n
0

]
6= 0, n = 0, . . . , N − 1.

If

∥∥∥∥(√|Λ|P)K (√|Λ|P)−1
∥∥∥∥ < 1, then

−

[
W+n

J−1

W−
n
0

]T [
Λ+P+ 0

0 Λ−P−

][
W+n

J−1

W−
n
0

]
+

[
W+n

J−1

W−
n
0

]T
KT

[
Λ+P+ 0

0 Λ−P−

]
K

[
W+n

J−1

W−
n
0

]
,

<−

[
W+n

J−1

W−
n
0

]T
|Λ|P

[
W+n

J−1

W−
n
0

]
+

∥∥∥∥∥√|Λ|P
[
W+n

J−1

W−
n
0

]∥∥∥∥∥
2

,

=−

[
W+n

J−1

W−
n
0

]T
|Λ|P

[
W+n

J−1

W−
n
0

]
+

[
W+n

J−1

W−
n
0

]T
|Λ|P

[
W+n

J−1

W−
n
0

]
= 0.
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Therefore, by assumption (33), a sufficiently small µ > 0 can be chosen such that
the inequality (25) holds with η := µαe−µ∆x and then the inequality (26) also holds.
Hence, the conclusion of this proof follows from the proof of Theorem 3.2.

Remark 3. At this point it can be observed that through the analysis of the discrete
problem a relationship between η and µ has also been established.

4. Applications

In this section, we apply the numerical boundary stabilisation technique to some im-
portant examples of hyperbolic systems of balance laws in one-space dimension.

4.1. Application to the Saint-Venant Equations

Consider water flow along a prismatic channel with a rectangular cross-section, a
length of l units and constant bottom slope. In this case, the Saint-Venant Equations
Bastin et al. (2008) is given by

∂tH + ∂x(HV ) = 0,

∂tV + ∂x

(1

2
V 2 + gH

)
+ (gCf

V 2

H
− gSb) = 0,

x ∈ [0, l], t ≥ 0, (35)

where the physical quantities H and V represent the depth and velocity of the water,
respectively, and the parameters in the source terms g, Cf and Sb represent gravita-
tional constant, a friction parameter and the constant bottom slope of the channel,
respectively, with initial conditions

H(x, 0) = H0(x), V (x, 0) = V0(x), x ∈ [0, l], (36)

and boundary conditions

V (0, t) = −k0H(0, t), V (l, t) = klH(l, t), t ≥ 0, (37)

where k0 and kl are parameters.
The system (35) can be written in the form of non-uniform symmetric hyperbolic

2 × 2 system of balance laws (1) (The calculation is done in accordance with the
discussion in Bastin & Coron (2016)).

∂t

[
w1

w2

]
+

[
λ1(x) 0

0 λ2(x)

]
∂x

[
w1

w2

]
+

[
γ11(x) γ12(x)

γ21(x) γ22(x)

][
w1

w2

]
= 0, x ∈ [0, l], t ≥ 0, (38)
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with

w1 := V − V ∗(x) + (H −H∗(x))

√
g

H∗(x)
,

w2 := V − V ∗(x)− (H −H∗(x))

√
g

H∗(x)
,

λ1(x) := V ∗(x) +
√
gH∗(x), λ2(x) := V ∗(x)−

√
gH∗(x),

γ11(x) :=
3

4

g

H∗(x)

(
SbH

∗(x)− CfV ∗2(x)

λ1(x)

)
+
gCfV

∗2(x)

2H∗(x)

(
2

V ∗(x)
− 1√

gH∗(x)

)
,

γ12(x) :=
1

4

g

H∗(x)

(
SbH

∗(x)− CfV ∗2(x)

λ1(x)

)
+
gCfV

∗2(x)

2H∗(x)

(
2

V ∗(x)
+

1√
gH∗(x)

)
,

γ21(x) :=
1

4

g

H∗(x)

(
SbH

∗(x)− CfV ∗2(x)

λ2(x)

)
+
gCfV

∗2(x)

2H∗(x)

(
2

V ∗(x)
− 1√

gH∗(x)

)
,

γ22(x) :=
3

4

g

H∗(x)

(
SbH

∗(x)− CfV ∗2(x)

λ2(x)

)
+
gCfV

∗2(x)

2H∗(x)

(
2

V ∗(x)
+

1√
gH∗(x)

)
,

where H∗(x), V ∗(x) is an equilibrium solution.
The initial condition (36) and boundary conditions (37) in the new coordinates can

be expressed in the following form[
w1(x, 0)

w2(x, 0)

]
:=

(V0(x)− V ∗(x)) + (H0(x)−H∗(x))
√

g
H∗(x)

(V0(x)− V ∗(x))− (H0(x)−H∗(x))
√

g
H∗(x)

 , x ∈ [0, l], (39)

and [
w1(0, t)

w2(l, t)

]
=

[
0 k12

k21 0

][
w1(l, t)

w2(0, t)

]
, t ≥ 0, (40)

with

k12 :=
k0 −

√
g

H∗(0)

k0 +
√

g
H∗(0)

, k21 :=
kl −

√
g

H∗(l)

kl +
√

g
H∗(l)

.

The discretisation of the linear system (38), initial condition (39) and boundary
conditions (40) is given by (14a), (14b) and[

w1
n+1
−1

w2
n+1
J

]
=

[
0 k12

k21 0

][
w1

n+1
J−1

w2
n+1
0

]
, n = 0, . . . , N − 1, (41)

respectively.
The discrete Lyapunov function for the discretised Cauchy problem (14a), (14b),

(41) is defined by (15) and the approximation of the time derivative of the Lyapunov
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function is given by (18) with (21). Thus, if the CFL condition

∆t

∆x
max

0≤j≤J−1
{|λ1,j |, |λ2,j |} ≤ 1

holds and if there exists µ > 0, p1 > 0 and p2 > 0 such that the condition (16) holds
and [

p1e
−µxJ |λ1,J−1| 0

0 p2e
µx−1 |λ2,0|

]

−

[
0 k12

k21 0

]T [
p1e
−µx0 |λ1,−1| 0

0 p2e
µxJ−1 |λ2,J |

][
0 k12

k21 0

]
(42)

is positive definite, then both inequalities (24) and (25) hold with

0 < η := µαe−µ∆x − β < 1, α := min
0≤j≤J−1

{|λ1,j |, |λ2,j |},

β := max
0≤j≤J−1

{
λ1,j − λ1,j−1

∆x
,
λ2,j+1 − λ2,j

∆x

}
.

In order to show that both conditions (16) and (42) hold, it suffices to show that
the determinant of every principal sub-matrix of the matrices[

M11,j M12,j

M12,j M22,j

]
, (43)

with

M11,j := 2p1e
−µxjγ11,j −∆t

(
p1e
−µxjγ2

11,j + p2e
µxjγ2

21,j

)
,

M12,j := p2e
µxjγ21,j + p1e

−µxjγ12,j −∆t
(
p1e
−µxjγ11,jγ12,j + p2e

µxjγ21,jγ22,j

)
,

M22,j := 2p2e
µxjγ22,j −∆t

(
p1e
−µxjγ2

12,j + p2e
µxjγ2

22,j

)
,

and

diag{p1e
−µxJ |λ1,J−1| − k2

21p2e
µxJ−1 |λ2,J |, p2e

µx−1 |λ2,0| − k2
12p1e

−µx0 |λ1,−1|}, (44)

is non-negative for 0 ≤ j ≤ J − 1 and positive, respectively.
The determinant of the sub-matrices of the matrix (43) are

M11,j = 2p1e
−µxjγ11,j −∆t

(
p1e
−µxjγ2

11,j + p2e
µxjγ2

21,j

)
, 0 ≤ j ≤ J − 1, (45)
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and

M11,jM22,j−M2
11,j = ∆t2γ2

11,jγ
2
22,jp1p2 − 2∆t2γ11,jγ12,jγ21,jγ22,jp1p2

+ ∆t2γ2
12,jγ

2
21,jp1p2

− 2∆tγ2
11,jγ22,jp1p2 + 2∆tγ11,jγ12,jγ21,jp1p2 − 2∆tγ11,jγ

2
22,jp1p2

+ 2∆tγ12,jγ21,jγ22,jp1p2 + 4γ11,jγ22,jp1p2

− e−2µxjγ2
12,jp

2
1 − 2γ12,jγ21,jp1p2 − e2µxjγ2

21,jp
2
2

= ∆t2 (γ11,jγ22,j − γ12,jγ21,j)
2 p1p2

− 2∆t (γ11,j + γ22,j) (γ11,jγ22,j − γ12,jγ21,j) p1p2

+ 4 (γ11,jγ22,j − γ12,jγ21,j) p1p2 −
(
p1e
−µxjγ12,j − p2e

µxjγ21,j

)2
,

= ∆t2 (γ11,jγ22,j − γ12,jγ21,j)
2 p1p2 −

(
p1e
−µxjγ12,j − p2e

µxjγ21,j

)2
+ (4− 2∆t (γ11,j + γ22,j)) (γ11,jγ22,j − γ12,jγ21,j) p1p2, 0 ≤ j ≤ J − 1.

(46)

For i = 0, . . . , J − 1, and sufficiently small µ > 0, if

γ11,jγ22,j − γ12,jγ21,j > 0, γ11,j > 0, γ12,j > 0, γ21,j > 0, γ22,j > 0

and δt <
2

γ11,j + γ22,j
, and if p1 and p2 can be chosen such that

p1

p2
= max

0≤j≤J−1

{
δtγ2

21,je
2µxj

(2− δtγ11,j)γ11,j

}
, p1 =

[
max

0≤j≤J−1
γ12,j

]−1
,

and p2 =
[

max
0≤j≤J−1

γ21,j

]−1
,

then the determinants (45) and (46) are non-negative.
Therefore, with the choice of p1 and p2, the matrix (44) is positive definite if k12

and k21 satisfy

|k12| <

√∣∣∣∣ λ2,0

λ1,−1

∣∣∣∣ p2

p1
and |k21| <

√∣∣∣∣λ1,J−1

λ2,J

∣∣∣∣ p1

p2
e−µl,

respectively.
To simplify the numerical computations, we take a constant steady state,

H∗(x) = 2, V ∗(x) = 3,

for x ∈ [0, l], from A. Diagne, Diagne, Tang, & Krstic (2017); M. Diagne, Tang, Diagne,
& Krstic (2017) with physical parameters g = 9.81, Cf = 0.1 and Sb = 0.0459 and
initial condition for the system (35),

H(x, 0) = 2.5, V (x, 0) = 4 sin(πx), for x ∈ [0, 1].

The linear system has eigenvalues, λ1 = 7.4294 and λ2 = −1.4294 and coefficients
of the source terms are γ11 = γ21 = 0.0992 and γ12 = γ22 = 0.2008.
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We set an initial condition,

w1(x, 0) = −1.8926 + 4 sin(πx), w2(x, 0) = −4.1074 + 4 sin(πx),

for x ∈ [0, 1].
The condition for the decay rate is 0 < η := αµe−µ∆x−β < 1 where α = 1.4294 and

β = 0 and the spatial gridsize is ∆x = 1/200 = 0.05 with CFL = 0.75. This implies
0 < µ < 0.7021 or µ > 1539.26. For numerical implementation, a sufficiently small
value of µ is chosen such that for the constant steady state the parameters p1 and p2

are chosen such that p1γ12 = p2γ21. For this example, the values p1 = γ21 = 0.0992 and
p2 = γ12 = 0.2008 were used. With this choice of parameters, we obtain |k12| < 0.6241
and |k21| < 1.6024e−µ < 1.6024. The numerical convergence of the discrete Lyapunov
function for different values of µ > 0 is shown in Figure 1 below.

The three curves that are obtained for different values of µ > 0, which are shown in
Figure 1, are nearly indistinguishable asymptotically in time. This shows that in the
sense of the L2−norm, the Cauchy problem (14a), (14b), (41) is exponentially stable
for a preferred equilibrium solution, W ∗(x) ≡ 0 (Wn

j ≡ 0).
Similar tests were also applied to the isentropic Euler equations (see also Weldegiy-

orgis (2017)). As expected, the behaviour of the Lyapunov function is similar.

4.2. Application to the Saint-Venant-Exner Equations

Consider the transport of sediments in a water flow along the prismatic channel with
rectangular cross-section and constant bottom slope where the sediment moves pre-
dominantly as bed load. In this case, the Saint-Venant-Exner equations A. Diagne et
al. (2012) results from coupling the Exner equation and the Saint-Venant equations,
which is given by

∂tH + ∂x (HV ) = 0,

∂tV + ∂x

(
1

2
V 2 + g (H +B)

)
+

(
Cf

V 2

H
− gSb

)
= 0,

∂tB + ∂x

(
1

3
aV 3

)
= 0,

x ∈ [0, l], t ≥ 0, (47)

where the physical quantities H, V and B represent the depth of the water, the velocity
of the water, and the bathymetry, respectively. The parameters in source term, g, Sb
and Cf represent the gravitational constant, the bottom slope of the channel and a
friction coefficient, respectively, with a parameter a, that encompasses porosity and
viscosity effects on the sediment dynamics. We set the following initial condition

[H(x, 0), V (x, 0), B(x, 0)]T = [H0(x), V0(x), B0(x)]T , x ∈ [0, l], (48)

and boundary conditions

V (0, t) = −k0H(0, t), V (l, t) = −kl (H(l, t) +B(l, t)) and B(0, t) = 0, t ≥ 0,
(49)

where k0 and kl are parameters, for the system (47).
The system (47) can be written in the form of symmetric hyperbolic 3 × 3 system
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of balance laws (10). See also, A. Diagne et al. (2012).

∂t


w1

w2

w3

+


λ1 0 0

0 λ2 0

0 0 λ3

 ∂x

w1

w2

w3

+


γ1 γ2 γ3

γ1 γ2 γ3

γ1 γ2 γ3



w1

w2

w3

 = 0, x ∈ [0, l], t ≥ 0, (50)

where the eigenvalues, λ1, λ2, λ3 can be obtained by using Cardano-Vieta method
Hudson & Sweby (2003), which are roots of a cubic equation, λ3 − 2V ∗λ2 + (V ∗2 −
g(H∗+V ∗2a))λ+V ∗3ag = 0, with corresponding left eigenvectors as given in A. Diagne
et al. (2012),

Li =
1

(λi − λj) (λi − λk)
[(V − λj) (V − λk) + gH∗, Hλi, gH],

for i 6= j 6= k ∈ {1, 2, 3}, and the new coordinates are defined by, wi :=
1

δi
ξi,

ξi := Li[H −H∗, V − V ∗, B −B∗]T ,

δi :=

(
Cf

V ∗

H∗

)(
λi

(λi − λj) (λi − λk)

)
,

for i 6= j 6= k ∈ {1, 2, 3}. Furthermore, the coefficients of the source terms are,

γ1 =
λ1 (2λ1 − 3V ∗)

(λ1 − λ2) (λ1 − λ3)

(
Cf

V ∗

H∗

)
, γ2 =

λ2 (2λ2 − 3V ∗)

(λ2 − λ1) (λ2 − λ3)

(
Cf

V ∗

H∗

)
,

γ3 =
λ3 (2λ3 − 3V ∗)

(λ3 − λ1) (λ3 − λ2)

(
Cf

V ∗

H∗

)
,

where H∗, V ∗, B∗ is an equilibrium solution.
The initial condition (48) and boundary conditions (49) in the new coordinates can

be expressed in the following form
w1(x, 0)

w2(x, 0)

w3(x, 0)

 =


1
δ1
L1

1
δ2
L2

1
δ3
L3



H(x, 0)−H∗

V (x, 0)− V ∗

B(x, 0)−B∗

 , x ∈ [0, l], (51)

and 
w1(0, t)

w2(0, t)

w3(l, t)

 =


0 0 k13

0 0 k23

k31 k32 0



w1(l, t)

w2(l, t)

w3(0, t)

 , t ≥ 0, (52)
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with

k13 :=
δ3L1ζ1

δ1L3ζ1
, k23 :=

δ3L2ζ1

δ2L3ζ1
, k31 :=

δ1 (L2ζ2L3ζ3 − L3ζ2L2ζ3)

δ3 (L2ζ2L1ζ3 − L1ζ2L2ζ3)
,

k32 :=
−δ2 (L1ζ2L3ζ3 − L3ζ2L1ζ3)

δ3 (L2ζ2L1ζ3 − L1ζ2L2ζ3)
,

where ζ1 := [1,−k0, 0]T , ζ2 := [0,−kl, 1]T and ζ3 := [1,−kl, 0]T .
The discretisation of the linear system (50) and initial condition (51) is given by

(29) and (14b), respectively, with discretised boundary conditions (52) expressed as
follows 

w1
n+1
−1

w2
n+1
−1

w3
n+1
J

 =


0 0 k13

0 0 k23

k31 k32 0



w1

n+1
J−1

w2
n+1
J−1

w3
n+1
0

 , n = 0, . . . , N − 1. (53)

The discrete Lyapunov function for the discretised Cauchy problem (29), (14b), (53)
is defined by (15) and the approximation of the time derivative of the Lyapunov func-

tion is given by (18) with (21). Thus, if the CFL condition
∆t

∆x
max{|λ1|, |λ2|, |λ3|} ≤ 1

holds and if there exists µ > 0, p1 > 0, p2 > 0 and p3 > 0 such that the condition (30)
holds and

p1e
−µxJ |λ1| 0 0

0 p2e
−µxJ |λ2| 0

0 0 p3e
µx−1 |λ3|



−


0 0 k13

0 0 k23

k31 k32 0


T 

p1e
−µx0 |λ1| 0 0

0 p2e
−µx0 |λ2| 0

0 0 p3e
µxJ−1 |λ3|




0 0 k13

0 0 k23

k31 k32 0

 (54)

is positive definite, then both inequalities (24) and (25) hold with

0 < η := µαe−µ∆x < 1, α := min{|λ1|, |λ2|, |λ3|}.

In order to show that both conditions (30) and (54) hold, it suffices to show that
the determinant of every principal sub-matrix of the matrices

M11 M12 M13

M12 M22 M23

M13 M23 M33

 , (55)
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with

M11 := 2p1e
−µxjγ1 −∆t

(
p1e
−µxjγ2

1 + p2e
−µxjγ2

1 + p3e
µxjγ2

1

)
,

M12 := p2e
−µxjγ1 + p1e

−µxjγ2 −∆t
(
p1e
−µxjγ1γ2 + p2e

−µxjγ1γ2 + p3e
µxjγ1γ2

)
,

M13 := p3e
µxjγ1 + p1e

−µxjγ3 −∆t
(
p1e
−µxjγ1γ3 + p2e

−µxjγ1γ3 + p3e
µxjγ1γ3

)
,

M22 := 2p2e
−µxjγ2 −∆t

(
p1e
−µxjγ2

2 + p2e
−µxjγ2

2 + p3e
µxjγ2

2

)
,

M23 := p3e
µxjγ2 + p2e

−µxjγ3 −∆t
(
p1e
−µxjγ2γ3 + p2e

−µxjγ2γ3 + p3e
µxjγ2γ3

)
,

M33 := 2p3e
µxjγ3 −∆t

(
p1e
−µxjγ2

3 + p2e
−µxjγ2

3 + p3e
µxjγ2

3

)
,

and 
σ11 σ12 0

σ12 σ22 0

0 0 σ33

 , (56)

with

σ11 := |λ1|p1e
−µxJ − k2

31|λ3|p3e
µxJ−1 , σ12 := −k31k32|λ3|p3e

µxJ−1 ,

σ22 := |λ2|p2e
−µxJ − k2

32|λ3|p3e
µxJ−1 ,

σ33 := |λ3|p3e
µx−1 − k2

13|λ1|p1e
−µx0 − k2

23|λ2|p2e
−µx0 ,

is non-negative and positive, respectively.
The determinant of the sub-matrices of the matrix (55) are

2p1e
−µxjγ1 −∆t

(
p1e
−µxjγ2

1 + p2e
−µxjγ2

1 + p3e
µxjγ2

1

)
, (57)

−
(
γ2

1p
2
2 − 2γ1γ2p1p2 + γ2

2p
2
1

)
e−2µxj = − (γ1p2 − γ2p1)2 e−2µxj , (58)

and ∣∣∣∣∣∣∣∣
M11 M12 M13

M12 M22 M23

M13 M23 M33

∣∣∣∣∣∣∣∣ = 0. (59)

If p1, p2 and p3 can be chosen such that p1 = γ1, p2 = γ2 and p3 = γ3, then for
γ1 > 0 and sufficiently small µ > 0,

∆tγ1 < max
0≤x≤l

{
2p1e

−µxj

(p1e−µxj + p2e−µxj + p3eµxj )

}
≈ 1,

and the determinants (57), (58) and (59) are non-negative. Therefore, with the choice
of p1 and p2, the matrix (56) is positive definite if k13, k23, k31 and k32 satisfy,

|k13| <

√∣∣∣∣λ3

λ1

∣∣∣∣ γ3

γ1
, |k23| <

√∣∣∣∣λ3

λ2

∣∣∣∣ γ3

γ2
, |k31| <

√∣∣∣∣λ1

λ3

∣∣∣∣ γ1

γ3
e−µl, |k32| <

√∣∣∣∣λ2

λ3

∣∣∣∣ γ2

γ3
e−µl.
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Consider a constant steady state A. Diagne et al. (2017); M. Diagne et al. (2017),

H∗(x) = 2, V ∗(x) = 3, B∗(x) = 0.4,

for x ∈ [0, 1], with physical parameter values g = 9.81, Cf = 0.1, a = 0.0184 and
Sb = 0.0459 in the system (47). The initial condition for the system (47) is given by
A. Diagne et al. (2017); M. Diagne et al. (2017)

H(x, 0) = 2.5−B(x, 0), V (x, 0) =
10 sin(πx)

H(x, 0)
,

B(x, 0) = 0.4

(
1 + 0.25 exp

(
−(x− 0.5)2

0.003

))
,

for x ∈ [0, 1]. The linear system has eigenvalues λ1 = 7.5383, λ2 = 0.3430 and λ3 =
−1.8813 and the coefficients of the source terms are γ1 = 0.1014, γ2 = 0.0267 and
γ3 = 0.1719. The initial condition, which is obtained from (51), is given by:

w1(x, 0) = −1.8926 + 4 sin(πx), w2(x, 0) = −4.1074 + 4 sin(πx),

for x ∈ [0, 1].
The condition for the numerical decay rate is 0 < η := αµe−µ < 1 where α = 1.8813,

the spatial gridsize is ∆x = 1/200 = 0.005 with CFL = 0.75. This gives 0 < µ <
0.532966 or µ > 1602.22. For numerical implementation we chose p1 = γ1 = 0.1014,
p2 = γ2 = 0.0267 and p3 = γ3 = 0.1719. With this choice of parameters, the control
parameters can be chosen as k13 < 0.6504, k23 < 5.9424, k31 < 1.5374e−µ < 1.5374
and k32 < 0.1683e−µ < 0.1683. The convergence of the discrete Lyapunov function for
different values of µ > 0 is shown in Figure 2 below.

The three curves that are obtained for different values of µ > 0, which are shown
in the Figure 2, are nearly indistinguishable. In Figure 2, we observe the decay of the
discrete Lyapunov function. This shows, in the sense of the L2−norm, the Cauchy
problem (29), (14b), (53) is exponentially stable for a preferred equilibrium solution,
W ∗(x) ≡ 0 (Wn

j ≡ 0).

5. Conclusion

In this paper, a linear hyperbolic system of balance laws has been considered and a
finite volume method is used in the discretisation of this linear system. In particular,
the upwind scheme and splitting method are used to discretise the space and time, re-
spectively. Beside this, an L2−Lyapunov function is discretised and used to investigate
conditions for exponential stability of the discretised system. Furthermore, the result
was applied to some relevant physical problems such as the telegrapher equations, isen-
tropic Euler equations, Saint-Venant equations and Saint-Venant-Exner equations. In
this article only the results from Saint-Venant and Saint-Venant-Exner equations were
discussed. Finally, numerical simulations are computed in order to test the results and
compare with analytical results.

As part of future work plans, the numerical stability analysis of the nonlinear hy-
perbolic systems of balance laws will be explored by using the H2−Lyapunov function.
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Further to that an extension of the above analysis to a network has also been planned
as future work.
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punov stability of linearised Saint-Venant equations for a sloping chan-
nel. Networks and Heterogeneous Media, 4 (2), 177-187. Retrieved from
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=4234 doi:

Chalons, C., Girardin, M., & Kokh, S. (2012). Operator-splitting based AP schemes for the
1D and 2D gas dynamics equations with stiff sources. In Aims series on applied mathemat-
ics, vol 8, 607–614(2014); Proceedings of the 2012 International Conference on Hyperbolic
Problems.

Coron, J.-M. (2007). Control and nonlinearity. Providence, Rhode Island: American Mathe-
matical Society. Retrieved from https://books.google.co.za/books?id=aEKv1bpcrKQC
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 Lyapunov Functions for Shallow Water Equations.
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Figure 1. The decay of Lyapunov function for Saint-Venant equations. The choice of parameters are p1 =

0.0992, p2 = 0.2008, k12 = 0.3 and k21 = 0.8 with l = 1, J = 200 and T = 10 under CFL = 0.75.
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Figure 2. The decay of Lyapunov function for Saint-Venant-Exner equations. The choice of parameters are
p1 = 0.1014, p2 = 0.0267, p3 = 0.1719, k13 = 0.6, k23 = 0.5, k31 = 0.15 and k32 = 0.15, with l = 1, J = 200

and T = 4 under CFL = 0.75.
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