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Abstract Particle swarm optimization (PSO) is a population-based, stochas-
tic search algorithm inspired by the flocking behaviour of birds. The PSO
algorithm has been shown to be rather sensitive to its control parameters
and thus performance may be greatly improved by employing appropriately
tuned parameters. However, parameter tuning is typically a time-intensive
empirical process. Furthermore, a priori parameter tuning makes the implicit
assumption that the optimal parameters of the PSO algorithm are not time-
dependent. To address these issues, self-adaptive particle swarm optimization
(SAPSO) algorithms adapt their control parameters throughout execution.
While there is a wide variety of such SAPSO algorithms in the literature, their
behaviours are not well understood. Specifically, it is unknown whether these
SAPSO algorithms will even exhibit convergent behaviour. This paper ad-
dresses this lack of understanding by investigating the convergence behaviours
of 18 SAPSO algorithms both analytically and empirically. This paper also
empirically examines whether the adapted parameters reach a stable point
and whether the final parameter values adhere to a well-known convergence
criterion. The results depict a grim state for SAPSO algorithms; over half of
the SAPSO algorithms exhibit divergent behaviour while many others prema-
turely converge.
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1 Introduction

The particle swarm optimization (PSO) algorithm (Kennedy and Eberhart,
1995) is a population-based, stochastic search algorithm inspired by the flock-
ing behaviour of birds. The searching capability of the algorithm, and by
extension the exploration/exploitation balance, is directly influenced by the
three main control parameters, namely the inertia weight (ω), the cognitive
acceleration coefficient (c1), and the social acceleration coefficient (c2) which
are described in greater detail in Section 2. The PSO algorithm has been shown
to be rather sensitive to these control parameters (Carlisle and Dozier, 2001;
Trelea, 2003; van den Bergh and Engelbrecht, 2006) and thus a priori tuning
of the control parameters may lead to improved performance. However, the
tuning of parameters is often a time-intensive process whereby a researcher
must empirically analyse a wide variety of parameter configurations to de-
cide on the best choice. While automated parameter configuration tools have
been proposed (for example, the F-Race algorithm by Birattari et al (2002)),
such tools have two obvious drawbacks. Firstly, such tools simply automate
the process of parameter selection and do not necessarily reduce the amount
of time required to effectively tune the parameters. Secondly, there is an im-
plicit assumption in a priori parameter tuning that the optimal parameter
configuration does not change over time. The time-sensitivity of the control
parameters is evidenced by Leonard and Engelbrecht (2013) where it was em-
pirically found that parameters well-suited for exploration were not well-suited
for exploitation, and vice versa. Moreover, the time-sensitivity of control pa-
rameter values is further evidenced by heterogeneous PSO algorithms which
have shown that the most suitable velocity update scheme to employ varies
during the search (Montes de Oca et al, 2009; Wang et al, 2011; Changhe Li
et al, 2012; Nepomuceno and Engelbrecht, 2013).

To alleviate the issue of a priori parameter tuning, various self-adaptive
particle swarm optimization (SAPSO) algorithms which adapt their control
parameters throughout execution have been proposed. SAPSO algorithms typ-
ically make use of introspective observation to refine the control parameters
based on their current and/or past performance. Table 1 lists 18 SAPSO algo-
rithms, along with the control parameters they tune and the net change in the
total number of control parameters relative to the canonical PSO (described
in Section 2). Values in the ‘Net Change’ column of Table 1 should be inter-
preted as the overall change in the number of control parameters relative to
the canonical PSO algorithm. Thus, positive values denote situations where an
algorithm introduces more control parameters than it tunes while negative val-
ues denote situations where an algorithm tunes one or more control parameters
without the introduction of further control parameters, leading to an overall
reduction in the number of control parameters relative to the canonical PSO.
In cases where there are multiple entries for the net change in parameters,
the entry in parenthesis indicates the net change if the constants defined by
that algorithm are treated as control parameters. For the case of grey particle
swarm optimization (GPSO), nd is the number of problem dimensions.
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Examining Table 1, it is clear that a significant amount of effort has been
devoted to solely adapting the inertia weight parameter. A further key obser-
vation is regarding the net change in the number of parameters. Of the 18
examined SAPSO algorithms, only five depict a net reduction in the num-
ber of parameters. Removal of the algorithm which simply generates random,
convergent parameters each iteration (see Section 4.13) leaves four out of 17
algorithms which actually reduce the number of parameters relative to the
standard PSO. If the constants defined by the various algorithms are treated
as control parameters, then only one of the algorithms leads to a reduction of
parameters while one further algorithm leads to no change in the number of
parameters. Given that one of the primary objectives of an adaptive variant is
to eliminate the need to specify values for the control parameters, proposing a
variant which increases the number of parameters is likely counter-productive,
unless insensitivity to the new parameters has been illustrated. Furthermore,
newly introduced parameters do not benefit from the plethora of theoretical
and empirical results readily available for the traditional PSO control param-
eters. Therefore, it may be more difficult to adequately tune the parameters
of a SAPSO relative to tuning the control parameters of a traditional PSO.
Nonetheless, it is entirely possible that an algorithm with a greater number of
control parameters is more robust and easier to adequately tune. Newly intro-
duced parameters should thus be accompanied by an appropriate sensitivity
analysis to ascertain their robustness.

Table 1: Net change in the number of control parameters of various SAPSO
algorithms relative to the canonical PSO. Entries in parenthesis indicate the
net change if the constants defined by the algorithm are treated as control
parameters. Note that nd is the number of problem dimensions.

Optimizer Parameters Tuned Net Change
PSO-TVIW (Shi and Eberhart, 1998, 1999) ω +1
PSO-AIWF (Liu et al, 2005) ω +1
DAPSO (Yang et al, 2007) ω +2
IPSO-LT (Li and Tan, 2008) ω +1
SAPSO-LFZ (Li et al, 2008) ω -1 (0)
SAPSO-DWCY (Dong et al, 2008) ω -1 (+2)
PSO-RBI (Panigrahi et al, 2008) ω +1
IPSO-CLL (Chen et al, 2009) ω -1
AIWPSO (Nickabadi et al, 2011) ω +1
APSO-VI (Xu, 2013) ω +2
SRPSO (Tanweer et al, 2015) ω +2
PSO-SAIC (Wu and Zhou, 2007) ω, c2 +2 (+4)
PSO-RAC ω, c1, c2 -3
PSO-TVAC (Ratnaweera et al, 2004) ω, c1, c2 +3
PSO-ICSA (Jun and Jian, 2009) ω, c1, c2 +3 (+31)
APSO-ZZLC (Zhan et al, 2009) ω, c1, c2 -3 (+35)
UAPSO-A (Hashemi and Meybodi, 2011) ω, c1, c2 +6
GPSO (Leu and Yeh, 2012) ω, c1, c2 +3 (+(nd + 3))
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While there are a large number of SAPSO algorithms which have been pro-
posed in the literature, their behaviour is still not well understood. Specifically,
it is unknown whether these algorithms will even exhibit convergent behaviour.
Convergence, in this context, refers to the attainment of an equilibrium state
such that the variance of the particle step sizes is zero. An algorithm designed
to adapt its control parameters can be reasonably expected to prevent di-
vergent behaviour given that parameters which lead to divergent behaviours
should be avoided by the adaptation mechanism. However, as previous works
have identified (van Zyl and Engelbrecht, 2014; Harrison et al, 2016a,b), this
is not always the case. Recently, evidence has been provided to suggest that
parameter configurations which adhere to a well-known convergence criterion
will generally lead to better performance than parameter configurations that
violate the criterion (Cleghorn and Engelbrecht, 2016; Harrison et al, 2017).
Furthermore, it has been shown that many of the parameter configurations
which violate the convergence criterion lead to worse performance than ran-
dom search (Cleghorn and Engelbrecht, 2016). As will be shown in this paper,
many of the SAPSO algorithms, as they were proposed in the literature, have
serious flaws which cause them to exhibit divergent behaviour. As such, this
paper provides an in-depth review of 18 SAPSO algorithms. Their respec-
tive parameter adaptation mechanisms are analytically dissected to determine
if and when they will lead to convergent behaviour. Finally, to support and
complement the analytical findings, the convergent behaviour is empirically
examined on a specially-formulated benchmark problem which isolates the
convergence behaviour. Note that the purpose is not to empirically analyse
and compare algorithms to determine which performs best, but only to anal-
yse their convergence behaviour. Furthermore, this study does not attempt
to prove or disprove the optimality of the control parameter values that are
produced by the algorithms at any given time throughout the search. In fact,
the question of whether the control parameter values adopted by SAPSO al-
gorithms at any particular time are well-suited for the current environment is,
to the best of the authors’ knowledge, still unanswered. Finally, the purpose of
this work is not to conduct a sensitivity analysis of the parameters introduced
by each algorithm as such an endeavour would warrant an entire study by
itself.

It should be noted that a recent study by the authors (Harrison et al,
2016a) provided a detailed analysis of inertia weight control strategies which
shares some commonalities with this paper. As part of the study on inertia
weight strategies, a theoretical analysis of convergence was performed using
the same methodology as this paper. Specifically, the derivation technique used
to determine when an algorithm will exhibit convergent behaviour is shared
between the studies. This paper provides an extension of that study to include
a variety of SAPSO algorithms, not strictly inertia weight adaptation strate-
gies. There are, however, six algorithms which are common to both studies,
four of which have the same parametrizations. While the empirical analysis
of convergence from the inertia weight study was provided through a suite of
60 benchmark problems, this paper uses a benchmark problem which is for-
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mulated explicitly for analysing convergence behaviour to provide generalized
empirical support for the theoretical findings. In the study of inertia weight
strategies, the average particle movement was used as an empirical measure
of convergence. This paper provides, in addition to the average particle move-
ment, three further measurements as part of the empirical analysis. Two of
the additional measures examine the convergence in parameter space while
the final additional measure examines the extent to which particles exit the
feasible region. The previous study by Harrison et al (2016a) provided no anal-
ysis of convergence in parameter space, nor did it explicitly examine whether
particles remained within the search space. This paper thus provides a much
more thorough investigation of the convergence behaviour of the algorithms.

The remainder of this paper is structured as follows. Section 2 provides an
overview of the canonical PSO algorithm. Section 3 describes the theoretical
conditions necessary for the PSO algorithm to exhibit convergent behaviour
and how such behaviour can be empirically captured. Section 4 serves as an
in-depth review of SAPSO algorithms and presents the results of both the
analytical and empirical investigation of their convergence. Finally, concluding
remarks and avenues of future research are presented in Section 5.

2 Particle swarm optimization

The PSO algorithm is inspired by the social behaviours of a flock of birds.
The algorithm consists of a swarm of agents, referred to as particles, where
each particle represents a candidate solution to the optimization problem at
hand. The basic steps of the algorithm are a repeated calculation and sub-
sequent application of a discrete velocity (or step size) associated with each
particle, thereby providing movement. A particle’s velocity is based largely
on an explicit attraction towards two promising locations in the search space,
namely the best position found by the particle and the best position found
by any particle within the particle’s neighbourhood. The neighbourhood of a
particle refers to the set of other particles within the swarm from which it may
take influence. The original PSO algorithm employed one of two neighbour-
hood topologies, either a star topology where the neighbourhood is the entire
swarm, or a ring topology where the neighbourhood consists of the immediate
neighbours when the particles are arranged in a ring. PSO variants employing
the star and ring neighbourhood topologies are commonly referred to as global-
best PSO and local-best PSO, respectively. Differences in performance between
the global-best and local-best PSO variants are largely problem-dependent and
neither topology can, in general, be regarded as strictly superior to the other
for many classes of optimization problems (Engelbrecht, 2013a). Furthermore,
if the objective of a study is to determine if a specific algorithmic change
leads to improved performance, then the choice of a global-best or local-best
topology is arbitrary (Engelbrecht, 2013a).

For the purposes of this study, a global-best topology is employed. The
velocity is calculated for particle i according to the inertia weight model of
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Shi and Eberhart (1998) as

vij(t+ 1) = ωvij(t) + c1r1ij(t)(yij(t)− xij(t))
+ c2r2ij(t)(ŷj(t)− xij(t))

(1)

where vij(t) and xij(t) are the velocity and position in dimension j at time
t, respectively. The inertia weight is given by ω while c1 and c2 represent the
cognitive and social coefficients, respectively. The stochastic component of the
algorithm is provided by the random numbers, r1ij(t), r2ij(t) ∼ U(0, 1), which
are independently sampled each iteration for all components of the velocity of
each particle. Finally, yij(t) and ŷj(t) denote the personal and neighbourhood
best positions in dimension j, respectively. The inertia weight PSO model
thus contains three primary control parameters, namely ω, c1, and c2. Particle
positions are then updated according to

xij(t+ 1) = xij(t) + vij(t+ 1). (2)

3 Convergence analysis of particle swarm optimization

There has been a significant amount of research effort devoted to the theoret-
ical study of PSO convergence (Trelea, 2003; van den Bergh and Engelbrecht,
2006; Kadirkamanathan et al, 2006; Poli and Broomhead, 2007; Poli, 2009;
Gazi, 2012; Cleghorn and Engelbrecht, 2014a, 2017). Specifically, researchers
are interested in analytically determining the values of PSO parameters which
lead to convergent behaviour. While convergent behaviour does not necessar-
ily translate to superior performance, it keeps particle step sizes within reason
and will generally cause the step sizes to tend towards zero. Conversely, diver-
gent behaviour can cause particle step sizes to be orders of magnitude larger
than the size of the initial search space (Cleghorn and Engelbrecht, 2014b),
thereby causing a large portion of the search effort to be wasted on infeasible
solutions and particles leaving the search space Engelbrecht (2013b).

According to the theoretical analyses of Poli and Broomhead (2007) and
Poli (2009), control parameters which adhere to

c1 + c2 <
24(1− ω2)

7− 5ω
(3)

will lead to convergent behaviour in the PSO algorithm. Alternatively, Eq. (3)
can be rewritten as

5C − g(C)

48
< ω <

5C + g(C)

48
(4a)

with
C = c1 + c2 and g(C) =

√
25C2 − 672C + 2304 (4b)

to provide a condition on ω. The region defined by Eq. (3), depicted in Figure
1, has been empirically demonstrated to be the most accurate of the various
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proposed convergence criteria (Cleghorn and Engelbrecht, 2014b, 2015) and
is thus the convergence criterion used in this study. Further studies by Liu
(2015) and Cleghorn and Engelbrecht (2015) have also suggested that the re-
gion defined by Eq. (3) is not dependent upon the neighbourhood topology
employed by PSO. Moreover, recent studies have provided evidence that pa-
rameter configurations which adhere to the criterion of Eq. (3) will generally
lead to better performance than parameter configurations which violate the
criterion (Cleghorn and Engelbrecht, 2016; Harrison et al, 2017). Specifically, it
was shown that a majority of theoretically unstable parameter configurations
cause the PSO algorithm to perform worse than random search and that select-
ing theoretically convergent parameters drastically increases the likelihood of
PSO outperforming random search (Cleghorn and Engelbrecht, 2016). There-
fore, a SAPSO algorithm should strive to ensure that the control parameter
values it adapts adhere to the theoretical convergence criterion.
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Fig. 1: Visualization of Poli’s convergent region for PSO parameters. Param-
eters which lie within the parabolic region lead to convergent behaviour.

3.1 Empirical convergence analysis of self-adaptive particle swarm optimizers

The empirical results in this study are obtained via a specially-formulated
benchmark function. The function used in this study is a vertically-shifted
version of the function proposed by Cleghorn and Engelbrecht (2014b, 2015)
and provides the algorithms with an environment in which complete stagnation
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is highly unlikely, thereby isolating the convergence behaviour. The function
is given by

F (x) ∼ U(0, 2000) (5a)

such that

F (x1) = F (x2) if x1 = x2. (5b)

Equation (5a) thus defines the fitness value of each position in the search
space as a randomly-sampled real value within the range [0, 2000]. Equation
(5b) stipulates that subsequent evaluations of the same position during a sim-
ulation will always result in the same fitness. Therefore, the fitness value of
each unique position is randomly determined, but remains fixed throughout
each independent simulation. Note that the function was shifted to produce
strictly non-negative fitness values as some of the examined algorithms require
such a condition. Also note that it is not strictly necessary for all particles to
converge toward the same point in the search space for Eq. (5) to correctly
identify scenarios in which the particle’s behaviour is convergent (Cleghorn
and Engelbrecht, 2014b). Rather, convergent behaviour, in this context, de-
notes a situation in which the particle positions have become stable, but not
necessarily to a single point.

To empirically measure convergence, the average Euclidean distance of the
particles’ movement (Cleghorn and Engelbrecht, 2014b, 2015) given by

∆(t+ 1) =
1

n

n∑
i=1

||xi(t+ 1)− xi(t)|| (6)

is employed. This measure will reflect a scenario in which even a single particle
is divergent. A sensible upper threshold, ∆max, is defined as the maximal
distance between any two points in the feasible search space, according to

∆max =
√
k(l − u)2 (7)

where [l, u]k is the (feasible) domain of the objective function (Cleghorn and
Engelbrecht, 2015). The use of ∆max as the criterion to determine convergence
has been empirically demonstrated to be 98.79% accurate when correlated with
the convergence criterion of Poli (Cleghorn and Engelbrecht, 2015). Due to the
well-known phenomenon of velocity explosion (Engelbrecht, 2013b), it is not
uncommon for convergent particles to have step sizes which initially exceed
∆max and decrease over time. However, if particle movements are consistently
exceeding this value, convergent behaviour is clearly not being exhibited. In
this study, the domain of the problem is fixed at [−100, 100]50 and, therefore,
∆max = 1414.214. Additionally, the movement values are capped at 2000 to
prevent excessively divergent behaviour from muddling the results.

An analogous version of Eq. (6) is used to measure the average Euclidean
distance of the parameter configurations between successive iterations. This
measure indicates the stability of control parameter values over time. Fur-
thermore, the percentage of particles with convergent values for their control
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parameters (i.e., values which adhere to Eq. (3)) and the percentage of par-
ticles which are outside the feasible region (i.e., have a bound violation in at
least one dimension) are measured at each iteration.

4 Critical analysis of self-adaptive particle swarm optimizers

SAPSO algorithms fall broadly into two categories, namely time-variant ap-
proaches and (true) self-adaptive approaches. Time-variant approaches alter
the control parameters based solely on the number of iterations which have
passed. Given that such algorithms make no introspective adaptations, they
cannot be considered self-adaptive in the proper sense. Nonetheless, time-
variant approaches encourage varied exploration and exploitation during the
search. In contrast to time-variant approaches, truly self-adaptive PSO vari-
ants use introspective observation to adapt their control parameters. Refine-
ment of control parameters is done at either the global (swarm) level or the
local (particle) level based on the state of the algorithm.

This section presents a number of self-adaptive PSO algorithms from both
categories. It should be noted that this section focuses solely on the adaptation
mechanisms and does not account for any additional algorithmic components
(e.g., mutations) that may be present in the algorithm. A theoretical analysis
of the convergent behaviour was performed, ultimately describing the algo-
rithmic conditions necessary for the respective algorithm to exhibit conver-
gent behaviour. Furthermore, Eq. (5) was employed to empirically investigate
the convergence of both the particles as well as the control parameters. This
empirical investigation provides an individualized profile of the convergence
behaviour of each algorithm and primarily serves to support and complement
the analytical results, rather than provide a direct comparison between algo-
rithms.

Four performance measures were employed to evaluate the behaviour of
each algorithm as follows:

1. The average particle movement was calculated using Equation (6) and
quantifies the average particle step size. If particle steps sizes do not de-
crease, particles will not converge. Furthermore, large step sizes may pre-
vent particles from exploiting promising locations in the search space.

2. The percentage of particles with convergent control parameters
measures the proportion of particles that had parameter settings which ad-
hered to Poli’s convergence criterion. This measure provides an indication
of an algorithm’s ability to generate convergent parameters.

3. The average parameter movement measures the average step size in
parameter space. This measure provides an indication of the stability of the
employed control parameter values. The average parameter movement was
calculated using Equation (6), using the control parameter values rather
than the particle position.

4. The percentage of particles with a bound violation measures the
proportion of particles which violated the boundary constraints in at least
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one dimension. This measure provides an indication of the search effort
which is wasted on infeasible solutions.

Empirical results depict the measured values of each of the four perfor-
mance measures averaged over 50 independent runs, each consisting of 5000
iterations. Each algorithm made use of a global best (star) topology, as used in
the original PSO algorithm (Kennedy and Eberhart, 1995), and a synchronous
iteration strategy (Carlisle and Dozier, 2001). Particle positions were randomly
initialized within the search space and their initial velocity was set to 0 (Engel-
brecht, 2012). To prevent invalid attractors, a particle’s personal best position
was only updated if the new position had a better objective function value and
was within the (feasible) search space. Algorithmic parameters, as described
below and summarized in Table 3, were employed based on the guidelines of
the respective authors.

It should be explicitly stated that there was no attempt to tune any of the
respective control parameter values and that the observations made herein
may change if the values of the control parameters are altered. While it can
be argued that different values for the various control parameters may lead to
an unfair comparison, the parameters employed in this study are those offered
by the respective authors and, therefore, this study examines the convergence
behaviour of the algorithms as they were published. Furthermore, given that a
self-adaptive algorithm is explicitly designed to remove the need for parameter
tuning, it is reasonable to assume that the parameters of such algorithms
should not need to be tuned.

4.1 Particle swarm optimization with time-varying inertia weight

The particle swarm optimization with time varying inertia weight (PSO-TVIW)
(Shi and Eberhart, 1998, 1999) was proposed as a method to linearly decrease
the inertia weight over time. This inertia weight strategy was based on the gen-
eral consensus that exploration is favoured early in the search process while
exploitation is favoured later. The inertia weight is calculated at each iteration
according to

ω(t) = ωs + (ωf − ωs)
t

T
(8)

where ωs and ωf are the initial and final inertia weights, respectively, and
T is the maximum number of iterations. The social and cognitive coefficients
remain static over the course of execution. Thus, the PSO-TVIW algorithm
tunes the ω parameter at the expense of adding two new control parameters,
namely ωs and ωf .

As employed by Shi and Eberhart (1999), the parameters for the PSO-
TVIW algorithm are set as ωs = 0.9 and ωf = 0.4, with c1 = c2 = 1.49618.
It was shown by Harrison et al (2016a)1 that using this parametrization, the

1 In the study of Harrison et al (2016a), PSO-TVIW was referred to as PSO-LDIW.
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PSO-TVIW algorithm will only exhibit convergent behaviour after 22.9% of
the search has completed.

As Figure 8a depicts, the average particle movement for PSO-TVIW drops
below ∆max after roughly 1000 iterations (i.e., 20%). However, as Figure
9a shows, the resulting control parameters were not convergent before the
expected 22.9% of the search was completed, indicating that the particle
step sizes dropped below ∆max slightly before the parameters adhered to the
convergence criterion. Given the aforementioned parametrization, the inertia
weight value changes by 0.0001 each iteration leading to the constant, near-zero
parameter movement values shown in Figure 10a. The PSO-TVIW algorithm
depicts a gradual decrease in particle bound violations over time, as shown in
Figure 11a. This is likely a result of the decreasing inertia weight gradually
altering the behaviour of the algorithm from exploration to exploitation as the
search progresses.

4.2 Particle swarm optimization with adaptive inertia weight factor

The particle swarm optimization with adaptive inertia weight factor (PSO-
AIWF) algorithm (Liu et al, 2005) adapts the inertia weight based on a par-
ticle’s fitness relative to the average fitness. The authors posit that particles
with good fitness values should be ‘protected’ through the use of low inertia
values while particles with inferior fitnesses should be ‘disrupted’ via larger
inertia weights. Using this premise, the inertia weight of each particle is given
by

ωi(t) =

{
ωmin + (ωmax−ωmin)(fi(t)−fmin(t))

f(t)−fmin(t)
if fi(t) ≤ f(t)

ωmax if fi(t) > f(t)
(9)

where f(t)) and fmin(t) are the average and minimum fitness values at time
t and ωmin and ωmax are the user-supplied minimum and maximum inertia
weights. The PSO-AIWF algorithm thus tunes the value of the ω parameter
but introduces two additional parameters, namely ωmin and ωmax.

Liu et al (2005) used parameters ωmin = 0.2, ωmax = 1.2, and c1 = c2 = 2,
which leads to a range of 1

3 < ωi(t) < 1
2 for convergent behaviour to be

exhibited. Examining Eq. (9), it is noted that any particle which has a fitness
value worse than the average will have an inertia value of 1.2 and therefore
will not demonstrate convergent behaviour. Furthermore, the only scenario in
which convergent behaviour will occur is when

fi(t) ≤ f(t)

and
2

15
<
fi(t)− fmin(t)

f(t)− fmin(t)
< 0.3.

Given that roughly half of the particles will exhibit divergent behaviour on any
given iteration, the PSO-AIWF algorithm is expected to demonstrate rapid
divergence.
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The rapid divergence of the PSO-AIWF algorithm is exemplified by the
average particle movement immediately hitting the maximal value of 2000 and
never decreasing, as shown in Figure 8b. Moreover, Figure 9b depicts that no
particles employ convergent parameter configurations indicating that Eq. (9) is
unsuccessful at generating inertia values within the convergent range. In fact,
Figure 10b depicts that the average change in parameter space is immediately
near zero, suggesting that the adaptation mechanism was failing to adapt the
inertia weight altogether. As a result, particles immediately exit the feasible
region and never return; Figure 11b indicates that 100% of the particles are
infeasible throughout the entirety of the search.

4.3 Dynamic adaptation particle swarm optimization

The dynamic adaptation particle swarm optimization (DAPSO) algorithm
(Yang et al, 2007) is a PSO variant whereby two calculated values are used to
describe the state of the algorithm. Adapted from those originally introduced
by Xuanping et al (2005), the evolutionary2 speed factor and aggregation
degree are used by the DAPSO algorithm to dynamically adapt the individu-
alized inertia weights.

The evolutionary speed factor of particle i at time t considers the history
of the particle according to

hi(t) =

∣∣∣∣min{f(yi(t− 1)), f(yi(t))}
max{f(yi(t− 1)), f(yi(t))}

∣∣∣∣ . (10)

Note that 0 ≤ h ≤ 1, and smaller values for h correspond to faster ‘evolution’;
a high value for h implies that a major improvement to the personal best
position has been achieved.

The aggregation degree measures the similarity between the average fitness
and the best fitness from iteration t according to

s(t) =

∣∣∣∣min{f(y∗(t)), favg(t)}
max{f(y∗(t)), favg(t)}

∣∣∣∣ (11)

where y∗i (t) denotes the best solution found during iteration t and favg(t) is
the average fitness of the entire swarm.

The inertia weight of particle i at time t is the calculated as

ωi(t) = ωs − α(1− hi(t)) + βs(t) (12)

where α and β are user-supplied values in the range [0, 1]. Due to both hi(t)
and s(t) being within the range [0, 1], it can be shown that

∀t : 1− α ≤ ωi(t) ≤ 1 + β. (13)

2 PSO does not actually exhibit evolution. Nonetheless, the original terminology is used
in this work.
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The DAPSO algorithm thus tunes the value of the ω parameter at the expense
of introducing three additional parameters, namely ωs, α, and β. Yang et al
(2007) concluded that the parametrization of DAPSO, specifically the α and
β parameters, does not have a significant impact on performance. Therefore,
the parameters used in this work, namely α = 1.0, β = 0.1, ωs = 1.0, and
c1 = c2 = 1.496180, are taken from previous usage (Yang et al, 2007; van Zyl
and Engelbrecht, 2014).

From Eq. (13), it follows that

∀t : 0.0 ≤ ωi(t) ≤ 1.1,

and, given the aforementioned social and cognitive control parameters, the
DAPSO algorithm thus requires ωi(t) < 0.78540 to be convergent. Eq. (12)
can then be simplified to

ωi(t) = hi(t) + 0.1s(t), (14)

demonstrating that the inertia, and thereby the convergence, is predominantly
influenced by hi(t). Furthermore, this indicates that

hi(t) + 0.1s(t) < 0.78450

is necessary for convergent behaviour. Given that the maximum value for si(t)
is 1.0, then

hi(t) < 0.68450

becomes the predominant requirement for convergence. Therefore, only when
the ratio of a particle’s personal best fitness to its previous personal best fitness
is below 0.68450 (i.e., improves by more than 31.6%) will the DAPSO algo-
rithm exhibit convergent behaviour. However, sustaining such a high degree
of fitness improvement is infeasible, thus the DAPSO algorithm is expected to
exhibit divergent behaviour.

Given the infeasibility of continual fitness improvements, the DAPSO al-
gorithm depicts immediately divergent behaviour, as shown in Figure 8c. Fur-
thermore, as Figures 9c and 10c demonstrate, the parameters generated via
the adaptation mechanism are never within the convergent region and are
wildly unstable. In fact, the adaptation mechanism fails to generate reason-
able parameters as a result of the explosive divergence, causing fitness values to
deteriorate such that they become too large to represent as a standard 32-bit
floating point value. As a result, Figure 11c shows that particles immediately
exit the feasible region and never return. Thus, the adaptation mechanism of
the DAPSO algorithm is wildly deficient.

4.4 Improved particle swarm optimization I

The improved particle swarm optimization I (IPSO-LT) algorithm (Li and
Tan, 2008) is premised on the assumption that the inertia weight should be in
direct relation to the convergence factor,
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ci(t) =
|f(yi(t− 1))− f(yi(t))|
f(yi(t− 1)) + f(yi(t))

, (15)

as well as the diffusion factor,

di(t) =
|f(yi(t))− f(ŷi(t))|
f(yi(t)) + f(ŷi(t))

, (16)

which characterize the state of the algorithm. The inertia weight of each par-
ticle is controlled by

ωi(t) = 1−
∣∣∣∣ α(1− ci(t))
(1 + di(t))(1 + β)

∣∣∣∣ (17)

where α, β ∈ [0, 1] are user-supplied constants. The IPSO-LT algorithm thus
tunes the value of the ω parameter but introduces two additional parameters,
namely α and β.

Li and Tan (2008) employed parameters of c1 = c2 = 2.0 but did not specify
the values used for α and β. Therefore, the mid-point of the allowable range
was used for both these parameters, namely α = β = 0.5. Using acceleration
coefficients of c1 = c2 = 1.496180, Harrison et al (2016a) demonstrated that

0.64380 <

∣∣∣∣ 1− ci(t)di(t) + 1

∣∣∣∣
was necessary for convergence. Following the same process with c1 = c2 = 2.0,

2

3
<

∣∣∣∣ 1− ci(t)di(t) + 1

∣∣∣∣ < 2 (18)

is necessary for convergence to be exhibited during any given iteration.

As evidenced by the average particle movement in Figure 8d, the IPSO-
LT algorithm demonstrates immediate divergent behaviour. Thus, it can be
concluded that the condition in Eq. (18) is never satisfied, thereby leading to
all particles having divergent behaviours. This is further evidenced by Figure
9d depicting that no particles employ convergent parameter configurations.
Moreover, Figure 10d shows that parameters are not changing over time, in-
dicating that the adaptation mechanisms is inherently flawed and is incapable
of tuning the inertia weight control parameter. However, Figure 11d shows
that not all particles are outside of the search space. Specifically, the particle
corresponding to the best position remains within the feasible region given
that it will have a zero velocity as a result.
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4.5 Self-adaptive particle swarm optimization I

The self-adaptive particle swarm optimization I (SAPSO-LFZ) algorithm (Li
et al, 2008) adapts the inertia weight of each particle based on its personal
best fitness in relation to the average personal best fitness. At each iteration,
the inertia weight is calculated as

ωi(t) = 0.15 +
1

1 + eFi(t)
(19a)

with

Fi(t) = f(y(t))− f(yi(t)) (19b)

where f(y(t)) is the average personal best fitness. Figure 2 visualizes the result
of Eq. (19a) based on the value of Fi(t). The SAPSO-LFZ algorithm thus
tunes the value of the ω parameter and does not introduce any additional
parameters. However, the value of 0.15 in Eq. (19a) may require tuning and
could be considered a control parameter.
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Fig. 2: The inertia value of the SAPSO-LFZ algorithm based on the value of
Fi(t).

Li et al (2008) used parameters c1 = c2 = 1.496180, which simplifies the
convergence criterion to

ωi(t) < 0.78540.

From (19a),

∀t : 0.15 < ωi(t) < 1.15,
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and furthermore, ωi(t) < 0.78540 occurs when

f(yi(t)) < f(yi(t)) + 0.55545. (20)

Thus, only particles which have a personal best fitness which is no greater
than 0.55545 above the average will exhibit convergent behaviour. Given that
particles tend to roam and exit the feasible search space early in the search
(Engelbrecht, 2012, 2013b), it is expected that not all particles will improve
their personal best positions initially. When a particle does not improve its
personal best position, the corresponding fitness does not improve and the
particle is assigned a divergent trajectory. This effectively prevents the particle
from improving its personal best fitness in subsequent iterations. Therefore,
divergent behaviour is expected for the SAPSO-LFZ algorithm.

Figure 8e depicts movement values which immediately hit the maximum
value of 2000 and never decrease, thereby validating the theoretical expecta-
tions. Given that particles which attain a fitness value no greater than the
average swarm fitness plus 0.55545 will lead to convergent behaviour, it is ex-
pected that roughly 50% of the particles will exhibit convergent behaviour.
As evidenced by Figure 9e, just under 50% of the particles show convergent
behaviour at any given iteration. To further support this observation, Figure
11e shows that just over 50% of particles (i.e., those with non-convergent be-
haviours) are outside the search space after only a few iterations. However, as
Figure 10e shows, there is little to no adaptation of parameters occurring which
is indicative of stagnating personal best fitness values. Thus, as expected, ini-
tially divergent behaviours cause no improvements in fitness, thereby causing
the adaptation mechanism to have virtually no effect.

4.6 Self-adaptive particle swarm optimization II

The self-adaptive particle swarm optimization II (SAPSO-DWCY) algorithm
(Dong et al, 2008) is based on an assumed relationship among various char-
acteristics of the search. The authors propose that there exists a relationship
between the inertia weight, fitness, swarm size, and problem dimension. The
authors also posit that problems in higher dimensions can benefit from an
increased inertia weight as this will help to escape local optima. Similarly, the
authors claim that higher inertia weight values, and thereby enhanced explo-
ration, can be used to compensate for smaller swarm sizes. To this end, the
inertia weight for a particle i at time t is calculated as

ωi(t) =
1

α− e−ns/β +
(
Ri(t)
γ∗nd

)2 (21)

where Ri(t) denotes the fitness rank of the particle, and α, β, and γ are
empirically determined constants with values 3, 200, and 8, respectively. The
SAPSO-DWCY algorithm thus tunes the value of the ω parameter without
introducing any additional parameters. However, the values of α, β, and γ in
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Fig. 3: The inertia value of the SAPSO-DWCY algorithm based on the fitness
rank of the particle, assuming 30 particles in 50 dimensions.

Eq. (21) may require tuning and could be considered as control parameters. It
should be noted that particles with better fitnesses are assigned higher ranks
– the best-fit particle is assigned a rank of ns while the worst-fit particle is
assigned a rank of 1. This update strategy increases the inertia weight for
low ranking particles (i.e., particles with relatively bad fitnesses) to enhance
their exploration while high ranked (i.e., more fit) particles have their inertia
decreased to encourage exploitation. Figure 3 demonstrates the inertia weight
values assuming a swarm size of 30 particles and a 50-dimensional problem.

Dong et al (2008) employed control parameters of c1 = c2 = 2.0, leading
to the necessary condition of

1

3
< ωi(t) <

1

2

for convergent behaviour to be depicted. By substituting minimum and max-
imum ranks of 1 and 30 into Eq. (21), the range of possible inertia values
exemplified by the SAPSO-DWCY algorithm is then given by

0.46622 < ωi(t) < 0.46744.

Thus, all possible values for the inertia weight fall within the convergent range,
and therefore the SAPSO-DWCY algorithm will exhibit convergent behaviour.
However, the strikingly small range for the inertia weight values (i.e., 0.00122)
will cause all configurations of the control parameters to lie relatively close to
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the boundaries of the convergent region. As a result, the SAPSO-DWCY algo-
rithm is expected to exhibit unreasonably slow declines in particle movement
(Cleghorn and Engelbrecht, 2014b).

While Figure 8f does depict the average particle movement value is below
the threshold for most iterations, there is no decline in particle movement
over time; the average particle movement value hovers around 1400. More-
over, as Figures 9f and 10f depict, the parameters are always within the con-
vergent region and are undergoing virtually no change over time. While the
SAPSO-DWCY algorithm could thus be considered convergent, it cannot be
said that the particles are stagnating nor that the swarm is converging to a
stable point. Finally, despite the categorically convergent behaviour, Figure
11f demonstrates that no solutions are retained within the feasible region; the
particles immediately exit the feasible region and never return.

4.7 Particle swarm optimization with rank-based inertia

The particle swarm optimization with rank-based inertia (PSO-RBI) algorithm
(Panigrahi et al, 2008) is based on a claim that the movement of the swarm
should be controlled by the objective function. Thus, the PSO-RBI algorithm
adapts the inertia weight of each particle based on the rank of its fitness
relative to the remainder of the swarm. The inertia weight of each particle is
given by

ωi(t) = ωmin +
Ri(t)(ωmax − ωmin)

ns
(22)

where Ri(t) is the fitness rank of particle i at time t and ωmin and ωmax are
the user-supplied minimum and maximum values of the inertia weight. The
PSO-RBI algorithm thus tunes the value of the ω parameter but introduces
two additional parameters, namely ωmin and ωmax. According to Eq. (22), the
best-fit particle (i.e., rank 1) will be assigned the lowest inertia weight while
the worst fit particle will be assigned the highest inertia weight as an attempt
to enhance exploitation for the best particles and exploration for the worst.

Parameters of ωmin = 0.4 and ωmax = 0.9 were employed by Panigrahi
et al (2008). However, there was no mention of the social and cognitive accel-
eration coefficients employed, and thus sensible defaults of c1 = c2 = 1.496180
(van den Bergh and Engelbrecht, 2006) are used for the purposes of this study.
Assuming a swarm size of 30 particles, Harrison et al (2016a) showed that the
worst 22.9% of the swarm will always exhibit non-convergent behaviour, lead-
ing to overall divergent behaviour being exhibited by the PSO-RBI algorithm.

The divergent behaviour of the PSO-RBI algorithm is evidenced by the
particle movement over time in Figure 8g, which depicts a rapid increase in
particle movement until the value reaches the maximal value of 2000, from
which it never decreases. The empirical results in Figure 9g suggest that 20%
of the particles employ divergent parameters, which is directly in line with the
theoretical prediction. Figure 10g demonstrates a non-zero particle movement
is maintained throughout the search, indicating the adaptive mechanism does
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not stagnate and thereby suggesting that the rank of particles is constantly
changing. Despite the overall divergent behaviour depicted by the PSO-RBI
algorithm, Figure 11g demonstrates that the number of infeasible particles
is constantly decreasing, finalizing at roughly 40% infeasible solutions after
5000 iterations. Thus, despite overall divergent behaviour, a majority of the
particles in the PSO-RBI algorithm remain within the bounds of the feasible
region.

4.8 Improved particle swarm optimization II

The improved particle swarm optimization II (IPSO-CLL) algorithm (Chen
et al, 2009) uses an adaptive inertia weight aimed at accelerating the conver-
gence speed of the PSO algorithm. To this end, the inertia weight at time t is
given by

ω(t) = e−λ(t) (23a)

with

λ(t) =
α(t)

α(t− 1)
(23b)

and

α(t) =
1

ns

ns∑
i=1

|f(xi(t))− f(y∗(t))| (23c)

where y∗(t) is the best particle found during iteration t. In Eq. (23a), the use of
the exponential function has not been empirically determined, but rather was
introduced based on its presence in engineering calculations (Chen et al, 2009).
In this approach, α(t) is used to identify the smoothness of the fitness values
and allows the inertia weight to vary according to the convergence of particles.
Chen et al (2009) further claim that the convergence state of the algorithm is
dependent upon the value of λ(t)3; when λ(t) < 1, the algorithm demonstrates
convergent behaviours while λ(t) > 1 leads to globally divergent behaviour.
Similarly, the value of λ(t) directly affects the exploration of particles as a
smaller value for λ(t) implies a larger ω(t), as seen in Figure 4, and thus
increased exploration. Note that the IPSO-CLL algorithm tunes the ω control
parameter while introducing no additional parameters.

Chen et al (2009) employed control parameters of c1 = c2 = 2.0 in their
initial proposal of the IPSO-CLL algorithm. Substitution of these values into
Eq. (4) reduces the convergence criterion to

1

3
< ω(t) <

1

2

for the IPSO-CLL algorithm. It then follows from Eq. (23a) that

log(2) < λ(t) < log(3)

3 No indication of the convergence when λ(t) = 1 was provided by Chen et al (2009).
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Fig. 4: The inertia value of the IPSO-CLL algorithm relative to the smoothness
function λ(t).

is necessary for convergent behaviour to occur. Moreover, convergent behaviour
at time t will only be exhibited when

log(2) <

ns∑
i=1

|f(xi(t))− f(y∗(t))|
ns∑
i=1

|f(xi(t− 1))− f(y∗(t− 1))|
< log(3).

In other words, convergent behaviour will only be exhibited when the average
difference in fitness between all particles and the iteration best deviates be-
tween 30.1% and 47.8%. Given that it would be unreasonable to attain a high
level of deviation between fitnesses during successive iterations, it is therefore
expected that the IPSO-CLL algorithm will lead to divergent behaviour. More-
over, given the large values for the cognitive and social control parameters, the
divergence of the IPSO-CLL algorithm is expected to be rapid.

Figure 8h depicts that the average particle movement exhibited by the
IPSO-CLL algorithm was immediately above the maximal value of 2000. De-
spite the divergent behaviour, the IPSO-CLL algorithm always employed con-
vergent parameters, as evidenced by Figure 9h. The only reasonable explana-
tion for this anomalous event was that the parameter values were generated
sufficiently close to the boundaries of the convergent region such that the move-
ment values were divergent; this is likely an example of the slight inaccuracy
associated with using ∆ to classify convergence (see Section 3.1). As Figure
10h indicates, the adaptation mechanism completely fails to adapt the param-
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eters, leading to no change in parameters over time. Finally, as indicated in
Figure 11h, particles immediately exit feasible space and never return. There-
fore, the adaptation mechanism of the IPSO-CLL algorithm is ineffective at
adapting the control parameters.

4.9 Adaptive inertia weight particle swarm optimization

The adaptive inertia weight particle swarm optimization (AIWPSO) algorithm
(Nickabadi et al, 2011) uses the success rate of the swarm as feedback to adapt
the inertia weight. The success rate of the swarm at time t is defined as the
proportion of particles which improved their personal best position during
iteration t. The inertia weight is then adapted according to

ω(t) = (ωmax − ωmin)Ps(t) + ωmin (24a)

with

Ps(t) =

ns∑
i=1

Si(t)

ns
(24b)

and

Si(t) =

{
1 if f(yi(t)) < f(yi(t− 1))

0 otherwise.
(24c)

The justification for this behaviour is that the algorithm increases the inertia
weight when particle successes are high to heighten exploration and to decrease
the inertia weight when particle successes are low to enhance exploitation.
Typically, higher success rates are attained early in a search when the fitness
values of particles are rapidly improving. Therefore, the inertia weight of the
AIWPSO algorithm is expected to be relatively large initially. However, the
inertia weight is also expected to decrease over time as fitness improvements
become more difficult to attain. The AIWPSO algorithm thus tunes the value
of the ω parameter but introduces two additional parameters, namely ωmin
and ωmax.

Nickabadi et al (2011) used parameters ωmin = 0.0 and ωmax = 1.0 while
no indication of the social and cognitive control parameters was given. There-
fore, the commonly employed parameters of c1 = c2 = 1.496180 (van den
Bergh and Engelbrecht, 2006) are assumed. As demonstrated in Harrison
et al (2016a), the AIWPSO algorithm will exhibit convergent behaviour when
Ps(t) < 0.78540. Due to the stochastic, exploratory nature of the PSO algo-
rithm, it would be unrealistic to sustain a success rate greater than 78.54%
for an extended period of time. Thus, the AIWPSO algorithm is expected to
exhibit convergent behaviour.

As expected, Figure 8i demonstrates the average particle movement is
well below ∆max, while Figure 9i depicts that the generated parameter con-
figurations are always within the convergent region. These two observations
provide conclusive evidence that the high rate of improvement necessary for
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non-convergent behaviour is unreasonable and will likely not be achieved in
practice. However, despite the convergent behaviour, the particle movement in
the AIWPSO is strikingly low which suggests that the algorithm suffers from
premature convergence. This is further supported by the parameter movement
immediately stagnating, as shown in Figure 10i. Thus, the adaptation mech-
anism of AIWPSO struggles to effectively adapt the parameters during the
search. The average percentage of particle bound violations, shown in Figure
11i, is by far the lowest among all the algorithms. Over 80% of the particles
are within the search space after only a few iterations while only four of the
remaining algorithms even attain 80% feasible solutions within 5000 iterations.

4.10 Adaptive particle swarm optimization based on velocity information

The adaptive parameter tuning of particle swarm optimization based on ve-
locity information (APSO-VI) algorithm (Xu, 2013) adapts the inertia weight
based on the current velocities of the particles, with the intention of pushing
the velocity closer to an “ideal” velocity. The concept of a decreasing target
velocity in the APSO-VI algorithm is borrowed from earlier work by Yasuda
et al (2008), which proposed adapting the inertia weight in a fully-informed
particle swarm to control exploration and exploitation. In the APSO-VI algo-
rithm, the average velocity of the swarm is calculated as

v(t) =
1

ndns

ns∑
i=1

nd∑
j=1

|vij(t)| (25)

where nd and ns represent the number of problem dimensions and the size of
the swarm, respectively. An equation defining the ideal (average) velocity was
proposed whereby the ideal velocity decreases over time, leading to heightened
exploitation nearer to the end of the search. Furthermore, Xu (2013) posits
that such an ideal velocity will be non-linear, having long exploratory and
exploitative phases with a minimal transition period. The ideal velocity at
time t is defined according to

videal(t) = vs

1 + cos
(
π t
T0.95

)
2

 (26)

where vs is the initial ideal velocity, given by xmax−xmin

2 , and T0.95 is the
point in which 95% of the search is complete. This ideal velocity function is
visualized in Figure 5.

The APSO-VI algorithm then dynamically adapts the inertia weight each
iteration based on the average velocity in relation to the ideal velocity as

ω(t+ 1) =

{
max{ω(t)−∆ω,ωmin} if v(t) ≥ videal(t+ 1)

min{ω(t) +∆ω,ωmax} if v(t) < videal(t+ 1)
(27)
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Fig. 5: The ideal velocity of APSO-VI as a function of time.

where ωmin and ωmax are the minimum and maximum inertia weights, respec-
tively, and ∆ω is the step size of the inertia weight. The APSO-VI algorithm
thus tunes the value of the ω parameter but introduces three additional pa-
rameters, namely ωmin, ωmax, and ∆ω.

Xu (2013) used parameters ωmin = 0.3, ωmax = 0.9, and ∆ω = 0.1 with
c1 = c2 = 1.496180. As demonstrated by Harrison et al (2016a), the decreasing
ideal velocity will influence the inertia weight value to decrease such that it
is within the convergent range, thereby causing the APSO-VI algorithm to
demonstrate convergent behaviour.

Figure 8j depicts a gradual, smooth decline in particle movement over
time. This is to be expected given that the APSO-VI algorithm is premised
on explicitly controlling the average velocity and, by extension, the particle
movement sizes. The percentage of convergent particles over time, shown in
Figure 9j, depicts an inverse relationship with the particle movement. That is,
the number of particles with convergent parameters shows a gradual increasing
trend over time such that after approximately 4000 (80%) iterations, the entire
swarm has convergent parameters. It is noted that around the same time
that all particles employ convergent parameter configurations, i.e., around
4000 iterations, the parameter movement also stabilizes. This is evidenced
by Figure 10j which shows the parameter adaptation abruptly ceases just
after 4000 iterations. Finally, the percentage of particles outside the feasible
region over time is shown in Figure 11j and indicates that almost all particles
immediately exit the feasible region and do not return until nearly half of the
search has completed. However, during the second half of the search, particle
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bound violations steadily decrease, eventually stabilizing around 6%. Thus,
the adaptation mechanism of APSO-VI is successfully controlling the inertia
weight.

4.11 Self-regulating particle swarm optimization

The self-regulating particle swarm optimization (SRPSO) algorithm (Tanweer
et al, 2015) controls the inertia weight of each particle such that the inertia
weight value is increased for the best particle and decreased for all other par-
ticles. This adaptation scheme is premised on the idea that the best particle
of the swarm should have a high level of confidence in its direction and thus
accelerate quicker. Additionally, the remainder of particles should follow a lin-
early decreasing inertia weight strategy similar in principle to the PSO-TVIW
algorithm. The inertia weight in the SRPSO algorithm is given by

ωi(t) =

{
ωi(t− 1) + η∆ω for the best particle

ωi(t− 1)−∆ω for all other particles
(28a)

with

∆ω =
ωs − ωf

T
(28b)

where η is a constant to control the rate of acceleration, ωs and ωf are the
initial and final values of the inertia weight, and T is the maximum number of
iterations. The AIWPSO algorithm thus tunes the value of the ω parameter
but introduces three additional parameters, namely ωs, ωf , and η.

Tanweer et al (2015) employed parameters of ωs = 1.05, ωf = 0.5, η = 1,
and c1 = c2 = 1.49445 in their study. Using a slightly different parametriza-
tion (namely, ωs = 0.9, ωf = 0.4, η = 1, and c1 = c2 = 1.496180), Harrison
et al (2016a) demonstrated that the SRPSO algorithm can only lead to conver-
gent behaviour when 1227.86 < t < 11378.50. The aforementioned condition
was derived with the following assumptions: a swarm size of 30, 5000 iter-
ations were to be executed, and each particle was equally likely to be have
the best fitness at any iteration. Using the same assumptions, it follows that
the parametrization used in this paper can only lead to convergent behaviour
when

2572.69 < t < 11816.70.

Therefore, the SRPSO algorithm will only exhibit convergence after 2573 iter-
ations under ideal conditions, which are likely problem-dependent due to the
assumption that all particles are equally likely to be the global best.

Figure 8k depicts the particle movement over time for the SRPSO algo-
rithm. As expected, the algorithm is divergent for the first half of the search.
However, it takes slightly longer than the (ideal) theoretically-predicted 2572
iterations to begin exhibiting convergent behaviour, suggesting that the ob-
served probability of particles attaining the best position was not uniform.
Furthermore, the movement values only briefly fall below the threshold before
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gradually increasing back to the maximum value of 2000. Figure 9k shows
that after roughly half of the search has completed, only 3.3% of the particles
(i.e., a single particle) employ non-convergent control parameters. This further
evidences that the best position is predominantly obtained by a single parti-
cle, thereby causing this particle to exhibit divergent behaviour. As shown
in Figure 10k, no parameter changes occur after 5000 iterations. However, as
shown in Figure 11k, the percentage of particles with a bound violation de-
creases near the end of the search. Despite nearly all of the particles initially
exiting the search space, particles begin re-entering the feasible region after
approximately 3000 iterations.

4.12 Particle swarm optimization with individual coefficients adjustment

The self-adaptive particle swarm optimization with individual coefficients ad-
justment (PSO-SAIC) algorithm (Wu and Zhou, 2007) adapts the inertia and
social acceleration coefficients of each particle based on its fitness in relation
to the global best fitness. This technique facilitates diversity injection when
particles are near the global best position.

Wu and Zhou (2007) first define the related distance for particle i as

ξi(t) =

{
0 if f(xi(t− 1)) = 0
f(xi(t−1))−f(ŷ(t−1))

f(xi(t−1)) otherwise
(29)

which quantifies the efficacy of particle i at time t. Clearly, ξi(t) = 1 when
particle i is far from the global best position and, conversely, ξi(t) = 0 when
particle i is near the global best. Note that the definition of related distance,
as defined in Eq. (29), presupposes a minimization problem with a positive
global minimum.

The inertia weight is then adapted according to

ωi(t) = ωaF (ξi(t)) + ωb (30a)

with

F (ξi(t)) = 2

(
1− cos

(
πξi(t)

2

))
(30b)

while the social acceleration coefficient is calculated as

c2i(t) = c2aG(ξi(t)) + c2b (31a)

with

G(ξi(t)) = 2.5

(
1− cos

(
πξi(t)

2

))
. (31b)

The PSO-SAIC algorithm thus tunes the value of the ω and c2 parameters
but introduces four additional parameters, namely ωa, ωb, c2a, and c2b. Note
that the constants 2 and 2.5 in Eqs. (30b) and (31b) may also be treated as
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Fig. 6: The adjustment values described by Eqs. (30b) and (31b) for the PSO-
SAIC algorithm.

control parameters. Figure 6 presents the adjustment values as calculated by
Eqs. (30b) and (31b).

Wu and Zhou (2007) employed parameters of ωa = 0.9, ωb = 0.45, c2a =
0.5, c2b = 2.5, and c1 = 2.05. It follows from Eq. (30) that

∀i, t : 0.45 ≤ ωi(t) ≤ 2.25,

and from Eq. (31) that

∀i, t : 2.5 ≤ c2i(t) ≤ 3.75.

Therefore,

∀i, t : c1 + c2i(t) ≥ 4.55,

which indicates that the PSO-SAIC can strictly never lead to convergent be-
haviour.

In line with the theoretical expectations, the average particle movement
over time, presented in Figure 8l, immediately reaches the maximum value
and never decreases. This is a result of the inability to generate convergent
parameter configurations which is empirically evidenced in Figure 9l. Due to
the rapid divergence, invalid fitness values (which exceeded the limitation of a
32-bit floating point value) were obtained, thereby causing Eq. (29) to fail at
producing feasible values for the related distance. Moreover, this resulted in
invalid values calculated for the average change in parameters, causing Figure
10l to be empty. As should be expected, all particles immediately exited the
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feasible region and never returned, as shown in Figure 11l. Thus, the adap-
tation mechanism of the PSO-SAIC algorithm is flawed in such an extreme
manner that the entire algorithm fails to even complete the search.

4.13 Particle swarm optimization with random acceleration coefficients

As a baseline, the particle swarm optimization with random acceleration coeffi-
cients (PSO-RAC) algorithm employs randomly-generated, convergent control
parameters. Specifically, a new set of control parameters, which explicitly ad-
here to the convergence criterion outlined in Eq. (3), is (randomly) generated
for each particle at each iteration. Thus, the PSO-RAC algorithm tunes each
of the ω, c1, and c2 parameters and requires no additional control parame-
ters. The PSO-RAC algorithm is therefore used as a control to ascertain how
the various SAPSO algorithms compare to a solely random parameter main-
tenance strategy. Note that by definition, the PSO-RAC algorithm will always
exhibit convergent behaviour but should, in theory, demonstrate relatively
large parameter changes.

Figures 8m and 9m, which plot the average particle movement and percent-
age of particles with convergent parameters over time, depict that the PSO-
RAC algorithm exhibits non-divergent behaviour. Examining Figure 10m, it
is noted that the average parameter movement is approximately 1.6 at each
iteration. Given that this strategy randomly selects the parameters each itera-
tion, a reasonable SAPSO strategy should (ideally) exhibit average parameter
movement values below 1.6. Finally, Figure 11m plots the number of particles
with a bound violation over time which demonstrates that after 5000 itera-
tions, more than 40% of the particles are infeasible. However, it can be argued
that the high proportion of particles outside the search space is a result of the
PSO-RAC algorithm making no attempt at exploitation near the end of the
search. Rather, the algorithm attempts to maintain an equal balance between
exploration and exploitation throughout the entire search. While the relatively
large number of particles outside the search space seems problematic, it should
be noted that the search space defined by Eq. (5) is highly irregular and is
largely meant to examine particle convergence by preventing complete stagna-
tion. Therefore, it is not unreasonable to assume particles will exit and remain
outside the feasible region to a larger extent than cases when a less irregular
search space is employed.

4.14 Particle swarm optimization with time-varying acceleration coefficients

The particle swarm optimization with time varying acceleration coefficients
(PSO-TVAC) algorithm (Ratnaweera et al, 2004) linearly varies the cognitive
and social coefficients over time. The cognitive coefficient is decreased while the
social coefficient is increased over time to hopefully provide a smooth transition
from exploration to exploitation as the search progresses. The cognitive and
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social coefficients at time t are linearly scaled each iteration according to

c1(t) = c1s + (c1f − c1s)
t

T
(32a)

c2(t) = c2s + (c2f − c2s)
t

T
(32b)

where the subscripts s and f represent the initial and final values, respectively.
PSO-TVAC also employs the linearly decreasing inertia weight of PSO-TVIW
described in Eq. (8). The PSO-TVAC algorithm thus tunes the values for
each of the ω, c1, and c2 parameters but introduces six additional control
parameters, namely ωi, ωf , c1s, c1f , c2s, and c2f .

Parameters for the PSO-TVAC algorithm were set at ωi = 0.9, ωf = 0.4,
c1s = 2.5, c1f = 0.5, and c2s = 0.5, c2f = 2.5. Given that c1(t) and c2(t) have
an inverse relationship, it is trivial to see that

∀t : c1(t) + c2(t) = 3.

It follows from Eq. (3) that

−0.15934 < ω(t) < 0.78436

is the necessary condition for convergent behaviour and that this condition
is satisfied when t

T = 0.23128. Thus, the PSO-TVAC algorithm will only
demonstrate convergent behaviour after approximately 23% of the search has
completed.

As Figure 8n depicts, the PSO-TVAC algorithm exhibits initial divergent
behaviour but demonstrates a rapid decrease in particle movement slightly
after 1000 iterations (20%) have passed. The rapid decrease is caused by an
immediate switch from all particles divergent parameter configurations to con-
vergent configurations, as evidenced in Figure 9n. Given the linear nature
of the parameter adaptation mechanism, the average change in parameters,
shown in Figure 10n, is constant at 5.74E-4. Finally, the percentage of par-
ticles with bound violations, presented in Figure 11n, demonstrates that the
initial explosive movements cause particles to initially exit the feasible search
space. However, after roughly 1000 iterations (and coinciding with the switch
from divergent to convergent behaviour), the PSO-TVAC algorithm depicts a
smooth decline in bound violations over the remainder of the search. After 5000
iterations, only 6.5% of the particles (i.e., 2 particles) are outside the feasible
region, on average. Thus, despite not being a truly self-adaptive algorithm,
the PSO-TVAC algorithm demonstrates relative good search behaviours in
relation to the other algorithms.

4.15 Particle swarm optimization with simulated annealing

The particle swarm optimization with simulated annealing (PSO-ICSA) algo-
rithm (Jun and Jian, 2009) adapts both the inertia weight and social accel-
eration coefficients. Firstly, the “adaptive coefficient” of particle i at time t,



SAPSO: A Review and Analysis of Convergence 29

given by

ηi(t) =
f(ŷ(t− 1))

f(xi(t− 1))
, (33)

quantifies the performance of the particle. The adaptive coefficient measures
the similarity of a particle’s fitness relative the global best fitness; ηi(t) ≈ 0
denotes that a particle’s fitness is far from the global best while ηi(t) = 1
denotes the particle’s fitness is equal to the global best fitness.

The inertia weight of a particle is then given by

ωi(t) = ωaF (ηi(t)) + ωb (34a)

with

F (ηi(t)) =



2 if ηi(t) < 0.0001

1 if 0.0001 ≤ ηi(t) < 0.01

0.3 if 0.01 ≤ ηi(t) < 0.1

−0.8 if 0.1 ≤ ηi(t) < 0.9

−5.5 if 0.9 ≤ ηi(t) ≤ 1

(34b)

where ωa and ωb are user-supplied, positive constants. Note that when ηi(t) is
low, the inertia weight is increased to enhance exploration while high values
of ηi(t) lead to decreased inertia, thereby enhancing exploitation.

The social acceleration coefficient of a particle is given by

c2i(t) = c2aG(ηi(t)) + c2b (35a)

with

G(ηi(t)) =



2.5 if ηi(t) < 0.0001

1.2 if 0.0001 ≤ ηi(t) < 0.01

0.5 if 0.01 ≤ ηi(t) < 0.1

0.2 if 0.1 ≤ ηi(t) < 0.9

0.1 if 0.9 ≤ ηi(t) ≤ 1

(35b)

where c2a and c2b are user-supplied, positive constants. When ηi(t) is low, the
social acceleration coefficient is increased as an attempt to attract the particle
towards the global best. This is an explicit attempt to increase the speed of
convergence. When ηi(t) is high, the social acceleration coefficient is decreased
to discourage crowding around the global best position. The cognitive coef-
ficient, while not truly adapted, is decreased linearly according to Eq. (32a).
The PSO-ICSA algorithm thus tunes the values for each of the ω, c1, and c2
parameters but introduces six additional control parameters, namely ωa, ωb,
c1s, c1f , c2a, and c2b. Furthermore, the function values and the corresponding
piece-wise boundaries in Eqs. (34b) and (35b) may require tuning, in which
case the PSO-ICSA algorithm introduces a further 18 parameters.

Jun and Jian (2009) used the parameters ωa = 0.9, ωb = 0.45, c2a =
0.5, c2b = 2.5, and c1s = 2.5, c1f = 0.5. From Eqs. (34b) and (35b), it is clear
that there are five distinct scenarios which can occur:
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1. ηi(t) < 0.0001 7→ ω = 2.25, c2 = 6.75
2. 0.0001 ≤ ηi(t) < 0.0100 7→ ω = 1.35, c2 = 3.50
3. 0.0100 ≤ ηi(t) < 0.1000 7→ ω = 0.72, c2 = 1.75
4. 0.1000 ≤ ηi(t) < 0.9000 7→ ω = −0.27, c2 = 1.00
5. 0.9000 ≤ ηi(t) ≤ 1.0000 7→ ω = −4.50, c2 = 0.75

Cases (1), (2), and (5) – ηi(t) < 0.01 or ηi(t) ≥ 0.9: None of the respective
inertia weight values of 2.25, 1.35, and -4.5, resulting from each of these scenar-
ios, satisfy the convergence criterion outlined in Eq. (3). Therefore, convergent
behaviour will never be exhibited.

Case (3) – 0.01 ≤ ηi(t) < 0.1: With an inertia weight value of 0.72 and
a social coefficient of 1.75, it follows from Eq. (3) that c1(t) < 1.64853 is
necessary for convergent behaviour. This can only occur when t

T = 0.42574,
i.e., after roughly 42.6% of the search is completed. Therefore, scenario (3) can
only lead to convergent behaviour after 42.6% of the search is completed.

Case (4) – 0.1 ≤ ηi(t) < 0.9: With an inertia weight value of -0.27 and a
social coefficient of 1, it follows from Eq. (3) that c1(t) < 2.08378 is necessary
for convergent behaviour. This can only occur when t

T = 0.20811, or roughly
20.8% of the search has completed. Therefore, scenario (4) can only lead to
convergent behaviour after 20.8% of the search is completed.

Summary : During the first 20.8% of the search process, the PSO-ICSA
strictly cannot satisfy the convergence criterion. Moreover, there are only two
(unlikely) scenarios which can lead to the convergence criterion to be satisfied.
The first scenario requires roughly 20.8% of the search process to be completed,
while the second scenario requires roughly 42.6% of the search to be completed.
In either scenario, all particles must have a fitness value which is neither
too close nor too far from the fitness of the global best position. Given the
extremely strict requirements for convergence, the PSO-ICSA algorithm is
expected to exhibit overall divergent behaviour.

Figure 8o presents the average particle movement over time for the PSO-
ICSA algorithm and clearly demonstrates that convergent behaviour is never
exhibited. Furthermore, the percentage of particles with convergent param-
eters shown in Figure 9o is never above 0%, indicating that the adaptation
mechanism completely fails to produce convergent parameters. Moreover, the
average change in parameters over time, shown in Figure 10o, is constant at
a value of 4.00E-4, indicating that the only change in parameters is due to
the linearly decreasing cognitive coefficient. Given the observed divergent be-
haviour, it is not unexpected that the bound violation percentage, shown in
Figure 11o, immediately reaches 100% and never decreases. Thus, the adapta-
tion mechanism of the PSO-ICSA is extremely flawed and causes immediate
divergence.

4.16 Adaptive particle swarm optimization

The adaptive particle swarm optimization (APSO-ZZLC) algorithm (Zhan
et al, 2009) adapts each of the three control parameters through the use of a
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fuzzy classification system. The classification system classifies the current be-
haviour of the algorithm into one of four states: exploration (S1), exploitation
(S2), convergence (S3), or jumping out (S4). To perform the classification, the
authors first propose an evolutionary factor4 based on the spread of particles
in the search space given by

fe(t) =
dg(t)− dmin(t)

dmax(t)− dmin(t)
(36a)

with

di(t) =
1

ns − 1

ns∑
j=1,j 6=i

√√√√ nd∑
k=1

(xik(t)− xjk(t))2 (36b)

where dg(t) is the value of Eq. (36b) for the global best position and dmin(t)
and dmax(t) are the minimum and maximum observed values of di(t). Note
that di(t) is the average Euclidean distance of particle i to all other particles
in the swarm. The fuzzy membership value for each of the four algorithmic
states, depicted in Figure 7, are thus dependent upon the value of fe given by
the piece-wise functions as follows:

Exploration

µS1
(fe(t)) =



0 if 0.0 ≤ fe(t) ≤ 0.4

5fe(t)− 2 if 0.4 < fe(t) ≤ 0.6

1 if 0.6 < fe(t) ≤ 0.7

−10fe(t) + 8 if 0.7 < fe(t) ≤ 0.8

0 if 0.8 < fe(t) ≤ 1.0

(37a)

Exploitation

µS2
(fe) =



0 if 0.0 ≤ fe(t) ≤ 0.2

10fe(t)− 2 if 0.2 < fe(t) ≤ 0.3

1 if 0.3 < fe(t) ≤ 0.4

−5fe(t) + 3 if 0.4 < fe(t) ≤ 0.6

0 if 0.6 < fe(t) ≤ 1.0

(37b)

Convergence

µS3
(fe) =


1 if 0.0 ≤ fe(t) ≤ 0.1

−5fe(t) + 1.5 if 0.1 < fe(t) ≤ 0.3

0 if 0.3 < fe(t) ≤ 1.0

(37c)

Jumping-out

µS4(fe) =


0 if 0.0 ≤ fe(t) ≤ 0.7

5fe(t)− 3.5 if 0.7 < fe(t) ≤ 0.9

1 if 0.9 < fe(t) ≤ 1.0

(37d)
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Fig. 7: The fuzzy membership functions of the APSO-ZZLC algorithm for the
four evolutionary states.

Due to the possibility of having a degree of membership to multiple states
simultaneously, a defuzzification process must be employed to provide a sin-
gular classification. Zhan et al (2009) expect that the algorithm will transition
according to the following sequence S1 → S2 → S3 → S4 → S1... and therefore
the defuzzification procedure must account for this (see Rule 2 below). The
defuzzification process consists of three rules, in decreasing order of priority,
as follows.

1. If the degree of membership to the current state is non-zero, there is no
change in state. This provides classification stability by preventing exces-
sive changes.

2. If the degree of membership to the next state in the sequence is non-zero,
the state transitions to the next state in the sequence (i.e., S1 → S2 or
S3 → S4).

3. The current state is selected as the state with the highest degree of mem-
bership.

Once the defuzzification process has determined a singular classification,
the control parameters can be calculated. The inertia weight is provided by

ω(fe) =
1

1 + 1.5e−2.6fe
∈ [0.4, 0.9] (38)

4 Again, the original terminology is retained despite the PSO algorithm not exhibiting
evolution.
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Table 2: Parameter control strategies for the cognitive and social coefficients
in the APSO-ZZLC algorithm.

Algorithmic State Cognitive Coefficient Social Coefficient
S1 – Exploration Increase Decrease
S2 – Exploitation Increase slightly Decrease slightly
S3 – Convergence Increase slightly Increase slightly
S4 – Jumping-out Decrease Increase

while the cognitive and social coefficients are either increased or decreased
based on the algorithmic state, as described in Table 2. An entry which in-
dicates an “Increase” denotes that the corresponding control parameter is
increased by δ(t) and an entry marked “Decrease” denotes the correspond-
ing parameter is reduced by δ(t), where δ(t) ∼ U(0.05, 0.1). Entries marked
as “Increase slightly” or “Decrease slightly” are incremented or decremented
by 0.5δ(t), respectively. Both the social and cognitive coefficients are clamped
to the range [1.5, 2.5]. Furthermore, if the sum of the cognitive and social
coefficients is greater than 4.0, the coefficients are each normalized to

ci = 4.0
ci

c1 + c2
, i = 1, 2

to effectively bound the range of c1 + c2 to [3.0, 4.0].
Note that, while the APSO-ZZLC algorithm can be employed without any

additional parameters, there are numerous constants which may be treated as
control parameters. Specifically, for each of the membership functions in Eq.
(37), there are a total of nine constant values (five for the function values and
four for the piece-wise boundaries), which leads to an additional 36 possible
parameters. Furthermore, Eq. (38) defines two constant values, namely 1.5 and
-2.6, which can be seen as additional control parameters. Thus, the APSO-
ZZLC can be considered to have 38 additional parameters if these values are
taken to be tunable.

Zhan et al (2009) used ω = 0.9 and c1 = c2 = 2 as initial values for the
control parameters, leading to initially divergent behaviour. Based on their
respective adaptation mechanisms, both the cognitive and social coefficients
are expected to tend towards 2 (Zhan et al, 2009), which leads to the condition
of

1

3
< ω(t) <

1

2

for convergent behaviour to be exhibited. Assuming that c1 + c2 = 4 (note
the conditions for convergence become easier to satisfy if c1 + c2 < 4), then
ω(t) will be within the convergent range when −0.11065 < fe(t) < 0.15595.
Revisiting Eq. (36), it is expected that the global best should, in general, be
near the centre of the swarm, thereby causing dg(t) ' dmin(t). When dg(t) '
dmin(t), the value of fe(t) should tend towards 0. Given that in the strictest
case, fe(t) < 0.15595 is necessary for convergent behaviour, the APSO-ZZLC
algorithm should exhibit convergent behaviour. However, given that c1 + c2
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will tend towards 4, the particle movement sizes are expected to be rather
large (Cleghorn and Engelbrecht, 2014b).

Directly in line with the theoretical expectations, Figure 8p depicts an av-
erage particle movement which is just slightly below ∆max over the entirety of
the search. Furthermore, Figure 9p depicts that the generated parameter con-
figurations always adhere to the convergence criterion of Poli. As Figure 10p
depicts, the parameter configurations are extremely stable and after 5000 iter-
ations, are only changing by an average of 4.51E-5. As such, the APSO-ZZLC
algorithm could be naively classified as convergent. However, as Figure 11p
depicts, nearly all particles exit the feasible region and never return. Thus, de-
spite having theoretically convergent parameters at all times, the APSO-ZZLC
algorithm exhibits such large particle movement values that it is incapable of
retaining particles within the feasible search space.

4.17 Adventurous unified particle swarm optimization

The adventurous unified adaptive particle swarm optimization (UAPSO-A)
algorithm (Hashemi and Meybodi, 2009, 2011) adapts each control parameter
using an independent learning automaton. Using a set of learning automata,
the UAPSO-A algorithm takes the performance of the current parameters as
feedback to control their probability of selection in the future.

Learning automata are a type of machine learning algorithm used to prob-
abilistically select an action from a set. At each step, an action is selected and
applied to the given environment. Immediately after the application of the ac-
tion, the environment evaluates the action and returns a reinforcement signal
back to the automaton, which then interprets this signal and uses it to im-
prove the selection probabilities. When an action was successful, the learning
automaton will increase the probability of selecting this action again, while an
unsuccessful action will have the selection probability decreased.

In the context of parameter selection, the UAPSO-A algorithm employs
three learning automata – one for each of the PSO control parameters. The
set of actions (i.e., parameter values) in each automaton are given by a user-
supplied number of discrete values from the allowable range, namely nω equidis-
tant values from [ωmin, ωmax] are used for the inertia automaton while the
cognitive and social automata are both provided nc independent, equidistant
values from the range [cmin, cmax]. At each iteration, one control parameter
value is selected from each automaton, thereby providing values for each of
ω, c1, and c2. Use of the selected parameters constitutes applying the action
to the environment and their performance is used as the reinforcement signal.
Initially, the probability of selection is equal for all parameter values. The suc-
cess of the selected parameters is then determined based on the proportion
of particles which have improved their fitness during the current iteration. If
the proportion of particles which improved their fitness is greater than τ , the
parameters are considered to be successful and each of the automata must be
updated accordingly.
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If a successful iteration was observed employing the parameter at index i,
the probabilities are updated according to

pj(t+ 1) =

{
pj(t) + a(1− pj(t)) if i = j

pj(t)(1− a) otherwise
(39)

where a is the reward step size. Note that the probability of selection is in-
creased for the parameter which was successfully employed while the remainder
of the parameters have their probabilities decreased slightly. Conversely, for
an unsuccessful iteration employing parameter i, the probabilities are updated
according to

pj(t+ 1) =

{
pj(t)(1− b) if i = j
b

|A|−1 + pj(t)(1− b) otherwise
(40)

where b is the penalty step size and |A| is the number of actions in the au-
tomaton. Thus, the probability of selecting the unsuccessful parameter value is
decreased after an unsuccessful iteration is observed. The UAPSO-A algorithm
thus tunes the values for each of the ω, c1, and c2 parameters but introduces
nine additional control parameters, namely nω, ωmin, ωmax, nc, cmin, cmax, a, b,
and τ .

Hashemi and Meybodi (2009, 2011) used ωmin = 0, ωmax = 1, nω = 20,
cmin = 0, cmax = 2, nc = 10, a = b = 0.01, and τ = 0.5. Through the use of
Eqs. (39) and (40), the respective automata will learn the values of each pa-
rameter which lead to successful behaviours, thereby improving the selection
of parameters over time. Note that, while the UAPSO-A algorithm will guide
the swarm towards successful parameters, there is no guarantee of conver-
gent behaviour given that each parameter is selected independently. However,
parameters which exhibit divergent behaviour will likely not demonstrate suc-
cessful behaviour and thus will eventually be given smaller probabilities of
selection, thereby promoting convergent behaviour. Thus, the UAPSO-A is
expected to exhibit convergent behaviour.

Figure 8q shows the average particle movement over time for the UAPSO-
A algorithm. This figure depicts relatively small initial movement values of
approximately 500 which gradually decrease over time. The average percent-
age of particles with convergent parameter configurations, as shown in Figure
9q, fluctuates wildly between 60% and 80%. These results indicate that the
UAPSO-A algorithm is able to retain overall convergent behaviour despite
having between 20% and 40% of the particles exhibiting divergent tendencies
at any given iteration. This suggests that even when particles do exhibit diver-
gent behaviour, parameter configurations are subsequently adapted such that
the divergent behaviour does not persist for an extended period of time. How-
ever, the significant portion of particles with divergent behaviours at any given
time suggests that the divergent parameter configurations are never completely
eliminated from consideration. Given the probabilistic nature of parameter se-
lection, the relatively high average change in parameters, shown in Figure 10q,
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is to be expected. Finally, the average percentage of bound violations is pre-
sented in Figure 11q, where the UAPSO-A demonstrates a smooth decrease in
violations over time. After 5000 iterations, the UAPSO-A algorithm has only
38.1% of the particles outside the search space, on average, which is relatively
low compared to the other examined algorithms.

4.18 Grey particle swarm optimization

The GPSO algorithm (Leu and Yeh, 2012) uses a measure of similarity for
finite sequences under incomplete information, namely grey relational analysis
(Ju-Long, 1982), to aid with control parameter adaptation. The grey relational
analysis is used to modify the inertia weight and social coefficient based on
the grey relational grade. To calculate the grey relational grade, the relational
coefficient of particle i is first calculated according to

rij(t) =
∆min(t) + ξ∆max(t)

∆ij(t) + ξ∆max(t)
(41a)

with
∆ij(t) = |ŷj(t)− xij(t)| (41b)

where j is the current dimension, ∆min(t) and ∆max(t) are the minimum and
maximum values of ∆ij(t), respectively, and ξ ∈ (0, 1] controls the resolution
between ∆max and ∆min. The grey relational coefficient of particle i is then
given by

gi(t) =

nd∑
j=1

(αjrij(t)) (42a)

such that
nd∑
j=1

αj = 1 (42b)

where αj is the weighting factor of the relational coefficient for dimension j
and nd is the number of dimensions. In general, it is acceptable to set αj = 1

nd

for all dimensions j (Leu and Yeh, 2012). However, the values of αj can be
taken as an additional nd control parameters.

The relational grade is then used to adapt the inertia weight of each particle
according to

ωi(t) =
ωmin − ωmax

gmax(t)− gmin(t)
gi(t) +

ωmaxgmax(t)− ωmingmin(t)

gmax(t)− gmin(t)
(43)

where gmin(t) and gmax(t) are the minimum and maximum relational grades
at time t and ωmin and ωmax are the minimum and maximum inertia weights,
respectively. Furthermore, the relational grade controls the social control pa-
rameter according to

c2i(t) =
cmax(t)− cmin(t)

gmax(t)− gmin(t)
gi(t) +

cmin(t)gmax(t)− cmax(t)gmin(t)

gmax(t)− gmin(t)
(44)
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where cmin(t) and cmax(t) are the linearly-varying minimum and maximum
values for the social coefficient at time t governed by

cmin(t) = (Cfinal − Cmin)
t

T
+ Cmin (45a)

cmax(t) = (Cfinal − Cmax)
t

T
+ Cmax (45b)

where Cmin, Cmax, and Cfinal are user-supplied parameters such that

Cmin ≤ Cfinal ≤ Cmax.

Finally, the cognitive control parameter is given by

c1i = 4.0− c2i (46)

such that ∀i : c1i + c2i = 4.0. Note that, while the GPSO algorithm adapts
all three control parameters, the cognitive coefficient is based solely on the
social coefficient and therefore is not truly an adaptive parameter in itself. The
GPSO algorithm thus tunes the values for each of the ω, c1, and c2 parameters
but introduces six additional control parameters, namely ωmin, ωmax, Cmin,
Cmax, Cfinal, and ξ = 1.0. Additionally, the values for αj can also be viewed
as control parameters, leading to an additional nd parameters.

Leu and Yeh (2012) employed parameters of ωmin = 0.4, ωmax = 0.9, Cmin =
1.5, Cmax = Cfinal = 2.5, and ξ = 1.0. Note that the sum of the cognitive and
social coefficients will always be 4.0, which leaves a very slim window for the
inertia weight, specifically 1

3 ≤ ωi(t) ≤ 1
2 , to lead to convergent behaviour.

By substituting the aforementioned parameters into Eq. (43) the condition for
convergent behaviour simplifies to

1

3
≤ 0.9gmax(t)− 0.4gmin(t)− 0.5gi(t)

gmax(t)− gmin(t)
≤ 1

2
,

which will always lead to ωi(t) = 0.9, and thereby divergent behaviour in at
least one particle, namely the particle which exhibits gi(t) = gmin(t). More-
over, note that the only convergent inertia values that can be produced by
Eq. (43) are those within the range [0.4, 0.5] and that this range accounts for
only 20% of the possible inertia values that Eq. (43) can produce. Thus, if the
inertia weights calculated by Eq. (43) follow a uniform distribution over the
range of [0.4, 0.9], it is expected that only approximately 20% of the particles
will exhibit convergent behaviour during each iteration. Therefore, the GPSO
algorithm is expected to exhibit purely divergent behaviour.

Figure 8r presents the average particle movement over time for the GPSO
algorithm and empirically confirms that the algorithm demonstrates purely
divergent behaviour. Considering Figure 9r, it is observed that slightly fewer
than 20% of the particles exhibit convergent behaviour during each iteration,
which is directly in line with the theoretical expectation under the assumption
that Eq. (43) uniformly distributes the inertia value. As Figure 10r depicts,
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the average change in parameters is approximately 0.25 initially, but gradu-
ally decreases over time to a value of 0.835E-2, which is still relatively large
in comparison to the other algorithms. Nonetheless, the parameter changes
demonstrated by the GPSO are continually decreasing and therefore may lead
to a stable set of parameters if given a greater number of iterations. However,
a stable set of parameters will likely not be of benefit to the algorithm given
that the entire swarm exits the feasible region and never returns, as evidenced
by Figure 11r.

4.19 Summary of empirical results

This section provides a summary of the empirical results. Table 3 summarizes
the algorithmic parameters employed while Table 4 provides an overview of
the final measure values obtained by the examined algorithms in contrast to
the canonical PSO. Examining Table 4, 10 of the 18 examined algorithms (not
accounting for the canonical PSO) attained average particle movements at the
maximum, capped value of 2000 suggesting that the true average movement
values were even larger. A further two algorithms, namely SAPSO-DWCY and
APSO-ZZLC, had average movement values within 10% of ∆max, suggesting
that these two algorithms are unlikely to result in a stabilizing swarm within
a reasonable amount of time.

Of the 18 examined algorithms, five contained no particles with conver-
gent parameters, indicating a complete failure of their respective adaptation
mechanisms. Furthermore, only an additional two algorithms had fewer than
50% of the particles with convergent parameters. Of the 18 algorithms, only
eight managed to result in convergent parameters being employed by all par-
ticles. Regarding the average parameter movement, eight of the algorithms
depicted no change in parameters during the final iteration, while a major-
ity depicted relatively small changes. With the exception of two algorithms,
namely DAPSO and PSO-SAIC, which resulted in invalid parameter move-
ment sizes, all algorithms exhibited parameter movement sizes below that of
the baseline PSO-RAC. This suggests that, despite their respective failures,
the adaptation mechanisms did achieve overall stability with respect to the
resulting parameters. Finally, when considering the average percentage of par-
ticles which are outside the feasible search space, nine of the algorithms had
greater than 95% of the particles outside the feasible region. However, due to
the chaotic nature of the search space, it is not unreasonable for the algorithms
to struggle with retaining particles within the search space, as evidenced by
the canonical PSO having approximately 70% of the particles outside the fea-
sible region after 5000 iterations. Nonetheless, five of the algorithms were able
to retain greater than 90% of the particles within the search space, although
none of which attained 100% feasibility.

A further noteworthy observation was that care must be taken with regards
to the classification of algorithms as convergent or divergent based solely upon
the particle movement sizes. As evidenced by the SAPSO-DWCY algorithm in
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Fig. 8: Average particle movement over time.



40 Kyle Robert Harrison et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(a) PSO-TVIW

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(b) PSO-AIWF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(c) DAPSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(d) IPSO-LT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(e) SAPSO-LFZ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(f) SAPSO-DWCY

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(g) PSO-RBI

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(h) IPSO-CLL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(i) AIWPSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(j) APSO-VI

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(k) SRPSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(l) PSO-SAIC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(m) PSO-RAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(n) PSO-TVAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(o) PSO-ICSA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(p) APSO-ZZLC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(q) UAPSO-A

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000

C
o

n
v

er
g

en
t 

P
ar

am
et

er
s

t

(r) GPSO

Fig. 9: Percentage of particles with convergent control parameters.
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Fig. 10: Average parameter movement over time.
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Fig. 11: Percentage of particles with a bound violation in at least one dimen-
sion.
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Table 3: Control parameter values employed by the SAPSO algorithms.

Algorithm Parameters
PSO ω = 0.729844, c1 = c2 = 1.496180
PSO-TVIW ωs = 0.9, ωf = 0.4, c1 = c2 = 1.496180
PSO-AIWF ωmin = 0.2, ωmax = 1.2, c1 = c2 = 2.0
DAPSO α = 1.0, β = 0.1, ωs = 1.0, c1 = c2 = 1.496180
IPSO-LT α = 0.5, β = 0.5, c1 = c2 = 2.0
SAPSO-LFZ c1 = c2 = 1.496180
SAPSO-DWCY α = 3, β = 200, γ = 8, c1 = c2 = 2.0
PSO-RBI ωmin = 0.4, ωmax = 0.9, c1 = c2 = 1.496180
IPSO-CLL c1 = c2 = 2.0
AIWPSO ωmin = 0.0, ωmax = 1.0, c1 = c2 = 1.496180
APSO-VI ωmin = 0.3, ωmax = 0.9,∆ω = 0.1, c1 = c2 = 1.496180
SRPSO ∆ω = 0.00011, η = 1, λ = 0.5, ωs = 1.05, ωf = 0.5, c1 = c2 = 1.49445
PSO-SAIC ωa = 0.9, ωb = 0.45, c2a = 0.5, c2b = 2.5, c1 = 2.05
PSO-RAC –
PSO-TVAC ωs = 0.9, ωf = 0.4, c1s = 2.5, c1f = 0.5, c2s = 0.5, c2f = 2.5
PSO-ICSA ωa = 0.9, ωb = 0.45, c1s = 2.5, c1f = 0.5, c2a = 0.5, c2b = 2.5
APSO-ZZLC –
UAPSO-A nω = 20, nc = 10, ωmin = 0, ωmax = 1, Cmin = 0, Cmax = 2, τ =

0.5, a = b = 0.01
GPSO ωmin = 0.4, ωmax = 0.9, Cmin = 1.5, Cmax = Cfinal = 2.5, ξ = 1.0

Section 4.6, simply maintaining particle movement sizes below ∆max does not
guarantee that good search behaviour will be exhibited. This is further sup-
ported by the findings of Cleghorn and Engelbrecht (2014b), which indicated
that parameters which lie near the boundaries of the region defined by Eq. (3)
may exhibit large particle movement values coupled with unreasonably slow
convergence despite being classified as convergent.

5 Conclusions

The primary purpose of this study was to provide a critical analysis of the cur-
rent state of self-adaptive particle swarm optimization algorithms with a focus
on whether these algorithms will exhibit convergent behaviour. The analysis
was performed from both a theoretical and empirical standpoint and encom-
passed 18 algorithms. Firstly, the theoretical aspect was focused on deter-
mining the algorithmic conditions necessary for convergent behaviour to be
exhibited according to the best-known convergence criterion. The empirical
aspect employed a specially-formulated benchmark designed to isolate conver-
gence behaviour as a means to examine whether the theoretical results held in
practice. Furthermore, the empirical experiments examined the ability of the
adaptation mechanisms to generate convergent parameter configurations, the
ability to continually modify the values of their control parameters, and the
ability to retain particles within the feasible region. All of the examined al-
gorithms employed the parameters suggested by their respective authors and,
therefore, no attempt was made to tune the parameters.
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Table 4: Average measure values after 5000 iterations. ∆ = average particle
movement, CP = convergent parameters, ∆p = average parameter movement,
IP = invalid particles.

Algorithm ∆ CP ∆p IP
PSO 415.125 100% 0.0 70.7%
PSO-TVIW 56.489 100% 1.00e-4 9.6%
PSO-AIWF 2000.000 0% 0.0 96.7%
DAPSO 2000.000 0% NaN 96.9%
IPSO-LT 2000.000 0% 0.0 96.7%
SAPSO-LFZ 2000.000 47.2% 0.0 53.5%
SAPSO-DWCY 1324.322 100% 0.0 96.2%
PSO-RBI 2000.000 76.7% 6.01e-2 41.5%
IPSO-CLL 2000.000 100% 0.0 100%
AIWPSO 45.521 100% 0.0 3.3%
APSO-VI 55.940 100% 0.0 6.1%
SRPSO 2000.000 96.7% 0.0 3.3%
PSO-SAIC 2000.000 0% NaN 96.7%
PSO-RAC 165.544 100% 1.60e+0 44.2%
PSO-TVAC 32.354 100% 5.74e-4 6.5%
PSO-ICSA 2000.000 0% 4.00e-4 96.7%
APSO-ZZLC 1318.307 100% 4.51e-5 96.1%
UAPSO-A 124.467 70% 8.47e-1 38.1%
GPSO 2000.000 16.7% 8.35e-2 96.7%

The results depicted were rather underwhelming and depicted a grim state
for the study of SAPSO algorithms. A majority of the examined algorithms
demonstrated immediate divergence, whereby nearly all particles exited the
feasible region and never returned. Of the non-divergent algorithms, a signifi-
cant portion exhibited premature convergence. Similarly, a significant portion
of the algorithms were incapable of even generating parameter configurations
which adhered to the convergence criterion, thereby causing their search efforts
to be wasted on infeasible solutions. However, there were a few self-adaptive al-
gorithms which demonstrated exemplary search behaviour, namely the APSO-
VI and UAPSO-A algorithms. Additionally, the purely random parameter
selection (PSO-RAC) and the linearly-varying algorithms (PSO-TVIW and
PSO-TVAC) depicted relatively good search behaviour. Therefore, it can be
concluded that a vast majority of the SAPSO algorithms examined have fun-
damental flaws which hinder their ability to perform an effective search.

Given that this study only examined the search behaviour on a specially-
formulated benchmark, an immediate avenue of future work is to analyse the
performance on a wide variety of benchmark functions. However, given that
many of the algorithms fail to converge on a benchmark specifically designed
to examine convergence, performance is expected to be underwhelming for
a majority of the algorithms. Furthermore, this study made no attempt to
tune the parameters of the algorithms. It is entirely possible that the conver-
gence behaviour of the examined algorithms will change when the parameters
are appropriately tuned, thus future work will examine the sensitivity of the
examined algorithms to their respective control parameters. Finally, further re-
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search should investigate whether the values of the control parameters adopted
at various phases of the search are well-suited for the current environment.
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