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The road most travelled: The impact of urban road
infrastructure on supply chain network vulnerability?.

Nadia M. Viljoen · Johan W. Joubert

Abstract Making a supply chain more resilient and making it more efficient are often di-
ametrically opposed objectives. Managers have to make informed trade-offs when designing
their supply chain networks. There are many methods available to quantify and optimise effi-
ciency. Unfortunately the same cannot be said for vulnerability and resilience. We propose a
method to quantify the impact that a supply chain’s dependence on the underlying transport
infrastructure has on its vulnerability. The dependence relationship is modelled using multi-
layered complex network theory. We develop two metrics relating to the unique collection of
shortest path sets namely redundancy and overlap. To test the relationships between these
metrics and supply chain vulnerability we simulate progressive random link disruption of the
urban road network and assess the impact this has on Fully Connected, Single Hub and Dou-
ble Hub network archetypes. The results show that redundancy and overlap of the collection
of shortest paths are significantly related to supply chain resilience, however under a purely
random disturbance regime they hold no predictive power. This paper builds a foundation for
a new field of inquiry into supply chain vulnerability by presenting a flexible mathematical
formulation of the multilayered network and defining and testing two novel metrics that could
be incorporated into supply chain network design decisions.

Keywords supply chain vulnerability · urban road network · multilayer complex network ·
shortest paths · link betweenness

1 Introduction

Ask any operations manager on the warehouse floor, in the distribution centre’s
cross-dock or at the receiving bay of the retail store and they will confirm that
disruptions in supply chain activities are far less exceptional and far more costly
than commonly believed. It is not only the natural disasters and terrorist attacks
that cost supply chains billions in turnover, the less extraordinary realities of traf-
fic congestion, power outages, internet network failure and even industrial action
can be just as harmful. The impact of these disruptions could range from missed
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delivery time windows to stock-outs or unplanned overtime. Although these im-
pacts are of a smaller scale, over time they could lead to death by a thousand cuts
for the supply chain.

Supply chain risk is “anything that (disrupts or impedes) the information, ma-
terial or product flows from original suppliers to the final delivery of the final
product to the ultimate end-user” (emphasis ours)(Peck, 2006). To define supply
chain vulnerability, we start with the notion that it is the susceptibility of a sup-
ply chain to such disruptions (Wagner and Bode, 2006). Four pertinent trends are
driving increased supply chain vulnerability: an increase in natural and man-made
disasters, a rise in supply chain complexity, heightened financial pressure on sup-
ply chain operations and fiercer global competition (Wagner and Neshat, 2010).
Therefore both the internal characteristics of a supply chain (e.g. network design,
supplier relations, quality control procedures) and the external circumstances (e.g.
political climate, condition of infrastructure and the weather) make a supply chain
vulnerable. In this paper we define supply chain vulnerability as “the degree to
which supply chain configuration and external circumstances make a supply chain
susceptible to the damaging effects of a disruption.”

More than 90% of CEO’s surveyed by the World Economic Forum confirmed
that Supply Chain Risk Management (SCRM) has been elevated to a top-level
priority (Chacon et al., 2012). These days executives are not only tasked to mitigate
the negative consequences of risk, but to proactively build resilience into their
supply chains. Building resilience requires that one prioritises the basic function
of customer service (efficacy) over the conservation of resources (efficiency) in the
ongoing quest for financial sustainability (Bhatia et al., 2013). This demands a
precarious balancing act. “How vulnerable is our current network design in City
A? By what margin could we lessen this vulnerability by changing our facility
locations? What impact would such a change have on our bottom line in the short,
medium and long term?” Answering such questions requires a deep and quantified
understanding of the supply chain’s vulnerability — herein lies the SCRM research
gap.

While there is an abundance of qualitative definitions, frameworks and tax-
onomies on the topic of supply chain risk, very few quantitative methodologies
and metrics have been developed (Chacon et al., 2012; Heckmann et al., 2015).
Furthermore, the majority of literature fixates on the what and the when of a dis-
ruption and how to mitigate the resulting consequences (Heckmann et al., 2015)
instead of delving deeper to understand what drives the vulnerability in the first
place (Rao and Goldsby, 2009). This paper proposes a quantitative approach to
assessing the dependence of a supply chain on the underlying transport infrastruc-
ture and how that dependence makes it more, or less vulnerable to disruptions.

Quantifying the dependence of a supply chain on the underlying transport
infrastructure it utilises is not trivial. Infrastructure is physical, measurable and
definitive. Supply chains are a conglomeration of interconnected business relation-
ships that cannot be easily defined or measured and are subject to change. Initially,
researchers modelled supply chains as “sequential dyadic relationships”, but this
simplistic view has recently been replaced by a complex network approach that
better captures the reality of a supply chain’s relations (Bellamy and Basole, 2013;
Choi et al., 2001; Choi and Wu, 2009; Hearnshaw and Wilson, 2013; Pathak et al.,
2007; Thadakamalla et al., 2004). Although the cited authors use different termi-
nology, the discerning quality of a complex network approach is that the whole
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is greater than the sum of its parts. In other words, one cannot fully distill the
properties of a supply chain by merely dividing up and studying its functions in
isolation. Rather, one should model how these functions interact as they do in
reality to appreciate emergent trends and behaviours. However, a supply chain
also interacts with its environment, for example the transport infrastructure it
uses when freight moves between facilities. Although the application of complex
network theory in transportation systems has been quite prolific (see Section 2),
modelling the interaction between a supply chain and the transport infrastruc-
ture is rather novel. We borrow concepts from the erupting field of multilayered
complex networks to capture this interaction.

The scope of our study focusses on supply chain networks within urban areas
where supply chain facilities are usually concentrated (Holl and Mariotti, 2017).
These areas predominantly exhibit the grid-like structure reminiscent of urban cen-
tres. These networks often face volatile demand with short notice periods, tight
transport lead times, fierce competition and fickle customers. Urban centres also
frequently experience traffic congestion and disruptions due to roadworks or acci-
dents, infrastructure or equipment failure. The reality and impact of the supply
chain’s daily dependence on urban transport infrastructure warrants a targeted
investigation.

Within a metropolitan area there is a range of supply chain facilities includ-
ing factories, warehouses, distribution centres, and retail outlets. These facilities
seldom belong to the same organisations, but rather to different supply chain part-
ners. How freight moves between these facilities is the art and science of supply
chain network design. The inter-firm relations and intra-firm business rules pre-
scribe, for example, whether retail stores can reallocate stock amongst themselves
or whether stock first has to be channeled through some central distribution centre.
The supply chain network design that emerges from these relations and business
rules we capture as the logical layer of our multilayered network. In practice there
are common archetypes of such network designs of which we study three in this
paper.

The logical layer of the the multilayered network is placed on the physical layer,
which represents the urban road network. This physical layer is modelled as a reg-
ular, directed grid network — a typical approximation of the general topology of
cities around the world (Ortigosa and Menendez, 2014). Through a set of progres-
sive disruptions we then investigate how the different network design archetypes
are impacted as the physical layer degrades.

This work is a novel application of complex network concepts to the study
of supply chain vulnerability in an urban setting. The modelling approach and
metrics presented here build the foundation for a new field of inquiry.

This paper is structured as follows: Section 2 presents the definition of multilay-
ered complex networks and especially discusses applications of single and multilay-
ered networks to transportation and supply chain problems. Further it describes
the status quo in measuring vulnerability in single and multilayered networks.
Section 3 describes the formulation of our multilayered network, the definition of
metrics related to redundancy, overlap and efficiency and the progressive random
link removal strategy used to degrade the grid network. Section 4 describes the
specific datasets used. The results are presented in Section 5 with an exploration
of the predictive power of specific metrics in Section 6. The paper is concluded
with a description of follow-up research questions in Section 7.
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2 Related work

2.1 Multilayered network definition

Natural and engineered systems most often have multiple layers of interaction
among heterogenous actors/nodes. Take for example the relationships between
colleagues all working together in a department. Some may be no more than work
acquaintances, others may work together on projects and therefore have a closer
relationship, and then there are those who have become friends outside of work
and compete together in the volleyball league. This scenario describes one type of
layered interaction where different layers present different types of relationships.
Consider now the same group of colleagues but focus only on the project team
relationships. As time goes by project teams change, giving rise to a unique set
of relationships at each point in time. The second type of layered interaction can
thus be temporal. To better capture the interdependent intricacies of such lay-
ered interactions, network scientists have rapidly developed multilayered methods
stemming from complex network theory. The definitive shift of focus from single
layer networks to the multilayer concept is evident in the slew of papers published
by leading authors between 2014 and 2016. The network science community re-
gard the study of multilayered networks as a new frontier in many areas of science
and a rapidly expanding movement that will stimulate interdisciplinary research
(Boccaletti et al., 2014; Tsiostas and Polyzos, 2017).

Multilayered networks behave very differently to single layer networks. Re-
searchers have shown, both analytically and empirically, that we can’t simply
deduce multilayered characteristics by studying the single layer components in
isolation. This is particularly true for the topics of resilience (how long a network
can remain functional under attack/error) and spreading processes (how quickly
information/disease/innovation spreads to network nodes) (Boccaletti et al., 2014).
Therefore, in our study, apart from the fact that a single layer perspective does
not adequately capture the dependency between a supply chain and the transport
network it uses, insights drawn regarding the vulnerability of the supply chain
may simply be untrue when considering only a single layer.

With multilayered research exploding simultaneously amongst different groups
of network scientists, a diverse cloud of definitions and mathematical formulations
has mushroomed around the topic. Although there has been effort to cement a
common vernacular, scientists have not yet reached a point of consensus and one
is faced with many different alternatives to describe and formulate multilayered
networks. Scientists have also sought to define unifying frameworks that relate
the many different types of multilayered networks such as multiplex, interdepen-
dent, multilevel, hypergraphs, temporal etc. The interested reader is specifically
referred to Kivelä et al. (2014) for a comprehensive description and categorisation
of recent studies and Boccaletti et al. (2014) for detailed structural descriptions
of multilayered networks, their metrics and dynamics. Other more concise reviews
include that of Lee et al. (2015) and Danziger et al. (2014) who focus on resilience
and percolation, and Salehi et al. (2015) who focus on spreading processes. In
this paper we adopt the formulation of Boccaletti et al. (2014) as we find it most
intuitive and relevant to the application at hand.
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The multilayer network is a pairM = (G, C) where G = {Gm;m ∈ {1, 2, . . . ,M}}
is a family of M individual graphs Gm = (Xm, Em) which each represent a layer
of M.

In this generic formulation, α and β refer to layers of G such that α, β ∈
{1, 2, . . . ,M} and α 6= β. The set of nodes in a layer Gα are denoted by Xα ={
xα1 , . . . , x

α
Nα

}
and Eα ⊆ Xα ×Xα. The set of interconnections between nodes in

Gα and Gβ with α 6= β are defined by

C = {Eα,β ⊆ Xα ×Xβ ;α, β ∈ {1, . . . ,M}, α 6= β} (1)

Therefore the elements of Eα,β , α 6= β are interlayer connections while elements
of Eα are the intralayer connections.

In Section 3 we start from the foundation of this simple generic formulation
to define our multilayered network and extend the concepts to define the metrics
tracked throughout our experiments.

2.2 Complex network applications in supply chains and transportation

Complex network applications have bred useful and relevant fields of inquiry in
an impressive array of different fields: neural networks, social networks, ecologi-
cal systems, information technology, citation networks, power grids, water supply,
internet networks, financial systems and, of course, transport systems and sup-
ply chains. However, there is still a bridge to be built to link the work done in
multilayered transport systems to single layered supply chain models. This section
describes the most relevant studies and status quo of applications in these two
fields.

2.2.1 Supply chain applications

Hearnshaw and Wilson (2013) have set a standard in applying complex network
theory to supply chains. Taking great care to capture the different supply chain
facets in their modelling approach, they propose that an efficient supply chain
adheres to a hub-and-spoke network design. Such a network has a heterogenous
degree distribution and is labelled “scale-free”. Their proposition states that effi-
cient supply chains have short average path lengths between nodes and reasonably
well-connected clusters as indicated by high clustering coefficients. This work ex-
clusively considers an efficiency-based view and does not consider the vulnerability
of the supply chain. In fact, scale-free networks are known to be highly vulnerable
to targeted attacks (O’Kelly, 2015).

The first work to tie supply chain vulnerability concepts to network metrics is
by Thadakamalla et al. (2004) and actually precedes the thorough treatment of
Hearnshaw and Wilson (2013). The authors set out to identify what supply chain
network design would be most resilient by remaining functional after repeated
errors or attacks. According to them a resilient supply chain

“maintains connectivity between the majority of its nodes; does not suffer
a significant increase in the average shortest path length between nodes;
has well-defined clusters that offer many alternative shortest paths and
can automatically re-wire itself after disruption to establish functionality”
(Thadakamalla et al., 2004).
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They empirically investigate three complex network alternatives namely random
graphs, small-world models and scale-free networks to ascertain which resilience
properties are inherent in which designs. Their results show that no single network
design satisfies all components but that a hybrid design is probably most resilient.
Although closer to our goal of studying supply chain vulnerability, this study still
presents the supply chain network as a single layer of relational connections.

We have not found any complex network applications that study the depen-
dence between supply chain network design and spatial networks such as trans-
portation, power grid or communication networks. The insights from such studies
would add great value to strategic decision making in supply chain network design.

2.2.2 Transportation applications

Single layer studies on transportation systems are extensive covering air transport
(Lordan et al., 2016, 2015; Lordan, 2014; Lordan et al., 2014b; Sun et al., 2017;
Zanin et al., 2009; Zanin and Lillo, 2013), maritime networks (Bartholdi and Jaru-
maneeroj, 2014; Ducruet et al., 2010a,b; Ducruet and Notteboom, 2012; Ducruet,
2016; González Laxe et al., 2012; Hu and Zhu, 2009; Fraser et al., 2014; Mohamed-
Chérif and Ducruet, 2016; Pais Montes et al., 2012; Tsiostas and Polyzos, 2015;
Viljoen and Joubert, 2016), train, bus, tram and subway systems (Criado et al.,
2007; Kurant and Thiran, 2006a; Mouronte and Benito, 2012; Ouyang et al., 2014;
Sen et al., 2003), and the structural properties and vulnerability of road networks
(Crucitti et al., 2006; Duan and Lu, 2014; Gudmundsson and Mohajeri, 2013;
Háznagy et al., 2015; Jiang, 2007; Jiang and Claramunt, 2004; Porta et al., 2012;
Reggiani et al., 2011; Rupi et al., 2015; Strano et al., 2009; Zadeh and Rajabi,
2013).

The vulnerability of passenger transport systems, particularly within the ur-
ban environment, has also been a topic of ardent study amongst network scien-
tists ((Mattsson and Jenelius, 2015) and references therein) and (Bóta et al., 2017;
Taylor and Susilawati, 2012; Rodŕıguez-Núñez and Garćıa-Palomares, 2014; Rupi
et al., 2015). However, we found that very few studies explicitly consider the impact
of urban transport vulnerability on the movement of freight using a complex net-
work approach. The underrepresentation of freight systems in transport planning
in general is a recognised fact (Joubert and Axhausen, 2013) and the situation
is no different in network vulnerability studies. Darayi et al. (2017) weighted a
multi-modal freight transport network with commodity flows calculated by a typi-
cal four-step model. The purpose of their study was to evaluate the multi-industry
impacts of transport network disruptions. While insightful, their study did not
focus exclusively on the urban reality. It also used gravity modelling as a proxy for
freight movement instead of actual freight activity. Joubert and Axhausen (2013)
were the first to explicitly address freight movement using complex networks. The
authors constructed a network from real-life commercial vehicle activity chains,
illustrating how centrality measures can be used to identify key logistics facilities
in Gauteng, South Africa. However, their work also only considers the single layer
of relationships between logistics facilities.

Multilayered network studies in transportation have been more recent and
mostly present a network M where the individual layers (Gα) are different trans-
port modes. The global air transport and maritime networks offer rich examples
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of multilayered networks where the layers present different airline or airline al-
liance networks (Cardillo et al., 2015; Tsiotas and Polyzos, 2015), different mar-
itime cargo types (Ducruet, 2013; Kaluza et al., 2010) and even multimodal layers
(Parshani et al., 2011). Of particular interest to this study are the metropolitan
transport applications motivated by the importance of multimodal transport as
the mainstay of urban mobility. A context familiar to many is the multimodal
interaction between the street network and subway systems of New York and Lon-
don. Strano et al. (2015) use a multilayered approach to study the impact that
subway speeds and design have on congestion and balanced accessibility. Broad-
ening the scope to all modes within the British public transport system, Gallotti
and Barthelemy (2014, 2015) quantify the impact of intermodal waiting times
on the network’s efficiency and compare the anatomy of multimodal trips across
cities. Adding socioeconomic considerations, Lotero et al. (2016) construct six
multiplex representations of urban mobility in Bogotá and Medelĺın for different
socioeconomic stratas, proving that such factors have an extraordinary impact on
the structure of the networks. Another study provides equations to predict the
onset of congestion in multimodal networks and shows that the efficiency offered
by multimodal systems can actually unbalance transportation loads and result in
unexpected congestion (Solé-Ribalta et al., 2016).

In all these models, each layer Gα represents a physical layer along which goods
or people can be transported. This is in contrast to the multilayered network we will
develop. In our network the supply chain layer represents a logical layer defined by
the supply chain network design. These links represent inter-firm relations or intra-
firm business rules. Freight cannot travel along these ethereal links but instead
travels along the urban road network which represents the physical layer of the
network. Notably two other multilayer transportation studies also place a logical

layer on a physical layer. Kurant and Thiran (2006b) investigate the centrality
metrics of public transport systems in three European geographies by defining
M where Gα = (Xα, Eα) as the transport infrastructure and Gβ = (Xβ , Eβ) as
transport intensity, extracted from timetables with Xα ≡ Xβ . Zhuo et al. (2011)
study congestion vulnerability on a selection of experimental networks definingM
with Gα = (Xα, Eα) as the transport infrastructure and Gβ = (Xβ , Eβ) as traffic
profiles generated by their algorithm.

Our study thus draws insights from a wealth of multilayered applications in
transportation systems, keeping in mind that our context and formulation ofM is
somewhat unique. Because it is unique, we must evaluate the applicability of the
typical approaches to multilayered vulnerability.

2.3 Vulnerability of multilayered networks

Before diving into a discussion of vulnerability studies, let’s define three prevalent
network characteristics used to measure vulnerability. Robustness always refers
to the overall connectedness of a network post disturbance. In other words, can
messages (or people or freight) still flow from one node to any other (or most
other) nodes? Efficiency determines how quickly a message can travel from one
node to another and is generally expressed in terms of the average shortest path
of the network (Crucitti et al., 2004; Thadakamalla et al., 2004). Flexibility refers
to the network’s inherent ability to find alternative paths if the shortest paths are
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destroyed. Measuring flexibility is slightly more tricky, but most typically authors
have used the clustering coefficient, arguing that well-connected neighbourhoods
offer more rerouting options (Thadakamalla et al., 2004; Viljoen and Joubert,
2016).

In multilayered networks, robustness takes centre stage with percolation theory
and cascading failure being the preferred methods used to assess it. The following
two sections describe these methods and evaluate their applicability to this study.

2.3.1 Percolation theory and the critical point

The connectedness of a network is defined by its connected components which are
subsets of nodes such that a path exists between all node pairs in each component.
The Largest Connected Component (LCC) is the connected component that con-
tains the largest fraction of the entire network’s nodes. The LCC is also referred
to as the Giant Connected Component. Essentially when the fraction of the net-
work in the LCC is close to one, messages from any node have a high probability of
reaching any other node of the network. When this fraction reduces, nodes become
disconnected and can no longer be reached by other network nodes. If the fraction
drops below some threshold value, the network would become non-functional due
to increasing disconnectedness. The fraction of nodes in the LCC of a network
(or the size of the LCC) has thus become a convenient way of measuring the ro-
bustness of a network (Danziger et al., 2014). The threshold value below which
the LCC would become disconnected is, however, instance-specific and depends
greatly on the field of application (social systems, transportation, neural networks
etc.).

From the discipline of percolation theory we learn that in many cases the
fraction of nodes that needs to be removed before the LCC becomes disconnected
can be analytically determined. This fraction is denoted by 1 − pc where pc is
referred to as the critical point. In other words, when the fraction of nodes removed
from a network is 1− p and p > pc, then the size of the LCC remains greater than
zero. As p → pc the size of the LCC also approaches zero until finally the LCC
becomes completely disconnected when p ≤ pc (Danziger et al., 2014; Stauffer and
Aharony, 1991).

It has been shown, in single layer networks, that pc ∼ 0 for scale-free networks,
meaning that in cases of random failures, nearly all of the nodes have to be re-
moved before the LCC becomes disconnected (Cohen et al., 2001). Thus scale-free
networks are highly robust to random failures. Random (Erdös-Rényi) networks,
on the other hand, are highly vulnerable with pc inversely related to average of
the network degree (Cohen et al., 2000).

A significant caveat is that percolation (and the determination of pc) refers to
random failures and not targeted attacks. Cohen et al. (2001) showed that under
targeted attack scale-free networks disintegrate long before the calculated pc is
reached. In fact, Pastoras-Satorras and Vespignani (2001) prove that a pc that
takes into account targeted attack cannot be analytically determined.

Despite the fact that pc is not always a relevant indicator, measuring the size
of the LCC remains the most popular robustness metric (Lordan et al., 2014a,
2016; Thadakamalla et al., 2004; Viljoen and Joubert, 2016). However, the impact
on the network skeleton — a concept emerging recently from the study of core-
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periphery structure (Shekhtman et al., 2014) — could also be a valid interpretation
of robustness.

2.3.2 Cascading failures on multilayered networks

Cascading failures is the foremost phenomenon studied in multilayered network
vulnerability. If a network M is interdependent then the intralayer connections
Eα,β are actually called dependency links. By removing any node xαi ∈ Eα all
nodes in other layers that were connected to xαi via dependency links are also
removed. This removal process “cascades” back and forth between layers until
all dependent nodes are removed. The calculation of the Mutually Connected Giant

Component (MCGC) and the critical percolation properties of cascading failures on
a variety of interdependent networks have been studied extensively ((Boccaletti
et al., 2014; Kivelä et al., 2014), and references therein).

Studies that use the concepts of cascading failures and percolation to investi-
gate vulnerability make three a priori assumptions:

1. M is interdependent resulting in cascading phenomena;
2. Nodes are removed during failures or attacks; and
3. A network is considered robust when the size of its MCGC is larger than some

fraction.

These a priori assumptions are not present in our representation of the prob-
lem. Firstly, there is no interdependence, only one-way dependence of the supply
chain network on the road network. Removing one or more supply chain facilities
has no impact on the integrity of the road network and therefore the cascading
phenomenon does not occur. Secondly, to model typical urban road disruptions
like traffic jams, road works or accidents, one would remove one or more road
links, not necessarily intersections (nodes). Removing a node would remove links
that are not affected by the disruption. The mechanism of failure or attack is thus
focussed on link removal, not node removal, drawing into question the established
equations for evaluating percolation. Lastly, in this study we consider a supply
chain functional when all nodes remain connected to all other nodes. The context
of our application and the highly conservative definition of supply chain func-
tionality requires us to broaden our view of multilayered vulnerability and find a
different way to quantify it.

3 Vulnerability of the multilayered urban supply chain network

In this section we present the mathematical formulation of our multilayered net-
work. We then zoom in on the characteristics of the shortest path sets to define
our metrics for efficiency, overlap and redundancy. We conclude the section by de-
scribing the progressive random link removal strategy that will be used to assess
the vulnerability of M.

3.1 Defining the multilayered network

We adapted the generic formulation slightly for better readability. The indices
that name the different network layers (α and β in the generic formulation) are
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superscripts in the customised formulation instead of subscripts. This prevents
confusion with node indices which are indicated as subscripts.

Let M = (G, C) be the multilayered network where G = (G1K , G2). G1K repre-
sents the logical layer with K denoting the type of network design archetype and
G2 represents the road network.

Similar to the representation in Ortigosa and Menendez (2014), the directed,
unweighted grid network has m rows and n columns, and the nodes are numbered
sequentially from 1 to m×n as shown in Figure 1a. In this paper we use an example
network with 100 nodes organised in a 10×10 configuration (Figure 1b). Nodes are
connected with two directed, opposite links, �, instead of one undirected link, ↔.
The assumption is that when a road segment in one direction fails, the associated
lane in the opposite direction is not necessarily affected as well. This occurs, for
example, when the two opposing lanes of a road are separated by a median strip.
Therefore we have G2 = (X2, E2) where:

N2 = m× n = 100 (2)

X2 = {x21, x22, . . . , x2N2} (3)

E2 = {e2st} ∀s, t ∈ {1, 2, . . . , N2}|s 6= t (4)

where

e2st =

{
1 if x2s was connected to x2t
0 otherwise.

(5)

(a) Generic. (b) The 10×10 instance used as G2 in this
paper.

Fig. 1: Unweighted, directed grid layouts to approximate the urban road infras-
tructure.

Our three network design archetypes are called the Fully Connected (G1F ),
Single Hub (G1S) and Double Hub (G1D) archetypes. The nodes represent logistics
facilities and the links represent a relationship between two facilities such that
these facilities can ship freight directly to each other. Links between networks
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are bi-directional, as in G2. We therefore have G1K = (X1K , E1K),K ∈ {F, S,D}
where:

N1K = 12 ∀K ∈ {F, S,D} (6)

X1K = {x1K1 , x1K2 , . . . , x1KN1K} ∀K ∈ {F, S,D} (7)

E1K = {e1Kij } ∀i, j ∈ {1, 2, . . . , N
1K}|i 6= j, ∀K ∈ {F, S,D} (8)

where

e1Kij =

{
1 if x1Ki was connected to x1Kj ∀K ∈ {F, S,D}
0 otherwise.

(9)

In G1F all the facilities can ship directly to all other facilities. G1S and G1D

are hub networks with G1S essentially being a star-network channeling all freight
flows through a hub node while G1D is the combination of two star-networks with
a single connecting link between the hubs. Figure 2 shows conceptual examples of
the three archetypes. For the sake of generality we do not presume the function
of the facilities and therefore assume that connection between every node-pair in
the respective networks K ∈ {F, S,D} is important.

(a) Fully Connected
archetype.

(b) Single Hub archetype. (c) Double Hub archetype.

Fig. 2: Conceptual representation of the three supply chain network design
archetypes.

Defining the interlayer connections, E1K,2, requires that we associate the sup-
ply chain nodes, X1K , with the grid nodes, X2. Simplifying assumptions are that
the logistics facilities correspond with their nearest intersections on the grid and
that at most one logistics facility is associated with each intersection.

3.2 Shortest path sets

With G2 a regular grid network and G1K a predefined network archetype there is
little mystery regarding the metrics of the individual layers. However, each distinct
instance of E1K,2 generates a unique set of shortest paths which characterises both
the efficiency and vulnerability of M.
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Figure 3 shows the example of a Double Hub network placed on the grid
with nodes 5 and 8 identified as origin and destination, respectively. If only the
logical relationships of G1D were to be considered, the shortest path between 5
and 8 would consist of three segments: 5–1; 1–2; 2–8 (Figure 3b). However, the
physical constraints of G2 must also be regarded. Figure 3c presents the three
alternative shortest paths between 5 and 1, each of length three. Similarly there
are 20 alternative shortest paths between 1 and 2, each of length six (Figure 3d)
and two alternative shortest paths between 2 and 8, each of length two (Figure 3e).
The length of the shortest paths between node 5 and 8 is thus 11 and there are
120 alternatives.
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(d) Segment 2: shortest paths.
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(e) Segment 3: shortest paths.

Shortest Path Statistics

Length

Segment 1 (5 to 1) : 3

Segment 2 (1 to 2) : 6

Segment 3 (2 to 8) : 2

Total (2 to 8): 3 + 6 + 2 = 11

Set Size

Segment 1 (5 to 1) : 3

Segment 2 (1 to 2) : 20

Segment 3 (2 to 8) : 2

Total (2 to 8): 3 x 20 x 2 = 120

(f) Calculations.

Fig. 3: Calculating the length and number of shortest paths on M by adhering to
both G1K and G2 constraints.

All metrics pertaining to shortest paths refer to a specific realisation of M,
therefore in the definitions that follow we drop the subscripts relating to the layers
and network archetype for simplicity’s sake. Generally we define:

Sij = {SDij , SIij} (10)

where SDij is the subset of all shortest path sets between node-pairs (x1Ki , x1Kj )

that are directly connected in G1K :

SDij = {s1, s2, . . . , sPij} ∀e1Kij ∈ E
1K (11)
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and SIij is the subset of all shortest path sets between node-pairs that are indi-
rectly connected in G1K :

SIij = {s1, s2, . . . , sPij} ∀e1Kij /∈ E1K (12)

There were two statistics of interest namely the length of a shortest path and the
number of alternative shortest paths between two nodes. Therefore:

Lij ≡ length of a shortest path between node x1Ki and x1Kj (13)

∀i, j ∈ {1, 2, . . . , N1K}, i 6= j

Pij ≡ number of alternative shortest paths between node x1Ki and x1Kj (14)

∀i, j ∈ {1, 2, . . . , N1K}, i 6= j

We then define the collection of shortest paths as

C(Sij) =
⋃
i,j

Sij ∀i, j ∈ {1, 2, . . . , N1K}, i 6= j (15)

C(Sij) is the unique fingerprint of each realisation of M and therein lies the
key to comparing vulnerability across different network archetypes.

3.3 Efficiency, resilience and robustness

Earlier we defined vulnerability as ‘the degree to which supply chain configuration

and external circumstances make a supply chain susceptible to the damaging effects of

a disruption’.

In this specific study the supply chain configurations we are testing are the three
network archetypes, the external circumstance is the urban road network and the
disruption is the iterative removal of links from the grid.

One damaging effect could be that after a disruption, the length of the shortest
paths (Lij) between two nodes becomes longer, that is the network becomes less
efficient. We measure the efficiency of M as the average shortest path length:

L̄ =
Σi,j,i 6=jLij

N1K(N1K − 1)
where i, j ∈ {1, 2, . . . , N1K} (16)

where N1K was the number of nodes in G1K .
We thus define resilience as:

The ability to maintain a level of efficiency in M despite the removal of links

from G2.

The other damaging effect could be that one or more facilities become discon-
nected from the rest. As already mentioned, this study holds a very conservative
view of supply chain functionality. All nodes must be connected to all other nodes,
directly or indirectly, for the network to be considered functional. Thus Sij 6= ∅
for all x1Ki , x1Kj ∈ X1K ;x1Ki 6= x1Kj , where ∅ denotes an empty set. We thus define
robustness as:

The degree to which destruction of G2 can be endured before connection is lost

between one or more node-pairs in G1K .

The hypothesis is that there is a relationship between characteristics of C(Sij)
and the resilience and robustness of M. By means of deductive reasoning, two
characteristics of C(Sij) are identified as potential indicators of the relationship.



14 Nadia M. Viljoen, Johan W. Joubert

3.3.1 Redundancy of C(Sij)

The more alternative shortest paths there are between a node-pair (x1Ki , x1Kj ), the
less likely it would be that a random removal of links could destroy all the shortest
paths in Sij . (Recall that the number of alternative shortest paths is measured by
Pij .) As long as there remains one of the alternative shortest paths in Sij the Lij
will be the same as it was before the removal of the links. Therefore it is deduced
that there must be a relationship between the Pij and the resilience of M.

The distribution of
∑
Pij is greatly skewed with a long tail (see Section 5.1.2).

This is because Pij increases exponentially with the diagonal distance between two
nodes on G2 and for indirectly connected connected node-pairs Pij is the product
of the set sizes of the underlying directly connected node-pairs. The median of
Pij is therefore a better estimator of the distribution’s centrality than the mean.
The number of sets in C(Sij) will always be even and therefore the formula for the
median is:

P̃ = (Pmid + Pmid+1)/2 (17)

where PPP is the ordered set of Pij , so that Pmid ∈ PPP , and

mid = (N1K(N1K − 1) + 1)/2− 0.5 (18)

with N1K the number of nodes in G1K .

3.3.2 Overlap within C(Sij)

Consider a shortest path set with Pij = 20, where all 20 shortest paths share
one specific link. If that link were removed it would matter very little that there
had been 20 initial paths as all would have been broken simultaneously. Imagine
another scenario where two different shortest path sets share common links, the
destruction of those links would affect multiple paths in both sets. While greater
redundancy in C(Sij) could imply better resilience, it doesn’t take into considera-
tion the overlap within C(Sij).

In the few studies that also consider link removal strategies, link betweenness
is used to identify overlap (Viljoen and Joubert, 2016). Link betweenness considers
all the shortest paths in a network and then calculates the fraction of those paths
that contain a specific link to obtain that link’s betweenness score. In effect one is
measuring the network’s dependence on that one link in maintaining its current
collection of shortest paths. A similar approach is used to calculate overlap.

Every shortest path set SIij between indirectly connected node-pairs in G1K

is a combinatorial product of the sets SDij of those directly connected node-
pairs that comprise the logical path between the indirectly connected pair. In the
example of Figure 3:

SI58 = SD51 × SD12 × SD28 = 3× 20× 2 = 120

Therefore, when calculating the overlap within C(Sij) we only consider the
subsets SDij as these are the building blocks of the subsets SIij and every SIij
will, by definition, overlap 100% with the subsets SDij that it is comprised of.
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To calculate the overlap we first define the network Gγ which is the subset of
all the nodes and links in G2 that are included in the shortest paths of all the
directly connected node-pairs in G1K . Therefore Gγ = (Xγ , Eγ), where the node
set is defined by:

Xγ ⊆ X2 | xγu ∈ SDij (19)

and the links by:

Eγ ⊆ E2 | eγuv ∈ SDij (20)

with u, v ∈ {1, 2, . . . , Nγ}.
The weight of each link wγuv is thus the sum of the shortest paths that use that

link. But the absolute value of wγuv alone is not representative of the overlap. A
higher value of wγuv could merely indicate that there are many more shortest paths
in total and not that C(Sij) critically depends on that link.

A better indication would be the heterogeneity of the distribution of wγuv. High
heterogeneity would imply that a few links have comparatively high weights and
are pivotal to the integrity of the shortest path sets. Therefore, the kurtosis1 of
the distribution of wγuv is used as an indication of the critical dependence of C(Sij)
on a few links. We use κ(wγuv) to denote the kurtosis of the distribution of wγuv.

To test the hypothesis that there is a relationship between the characteristics of
C(Sij) and the vulnerability ofM we monitor κ(wγuv), P̃ and L̄ as we progressively
destroy G2.

3.4 Progressive random link removal strategy

The urban road network is frequently disturbed by congestion, roadworks, acci-
dents, and infrastructure failure. Removing links from G2 instead of nodes, as
most other vulnerability studies do, is a better representation of these disruptions.
Furthermore, the way in which an urban road network is disturbed can be de-
scribed as a combination of random failures and targeted attacks. Streets that are
more central could be more likely to experience congestion or higher traffic loads
could increase the likelihood of accidents (targeted attacks). However, accidents,
equipment failure and roadworks could really happen anywhere on the grid at any
time (random failure). To first create a baseline for this field of inquiry, this study
regards the impact of the random removal of links from G2. Ongoing studies are
considering the impact of targeted link removal and comparing that to the results
in this paper.

The random link removal strategy is progressive, meaning that multiple itera-
tions are performed during which a set number of links are randomly selected and
removed. The metrics described in Section 3.3 are measured after each iteration
and the process repeated until M becomes disconnected.

1 In this article kurtosis refers to Pearson’s measure of kurtosis which is the unadjusted
fourth standardised moment of a distribution. This is not to be confused with excess kurtosis.
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4 Datasets and simulation

4.1 Generating samples of M

(The algorithms used to generate the datasets described in this section are detailed
in Viljoen and Joubert (2017) and the datasets themselves are publicly available
on Mendeley (Joubert and Viljoen, 2017))

For each of the three network archetypes G1K ,K ∈ {F, S,D}, we generate 500
instances ofM with N1K = 12 for all three archetypes and G2 a 10×10 square grid
as shown in Figure 1b. The difference between the instances of M is the random
association of X1K to nodes in X2. Therefore the interlayer connections, E1K,2

are unique for each instance.

4.2 Progressive link removal simulation

Each network M undergoes a progressive random link simulation that performs
a series of successive link removals until G1K becomes disconnected. Algorithm 1
describes how links are randomly removed from G2.

If a node in X2 has only incoming links and no outgoing links it is called a
sink as no paths can go out from the node, whereas if the node has only outgoing
links it is called a source. If a node is completely disconnected with no incoming
or outgoing links it is called an isolate. If a node in X2 is associated to a node in
X1K and becomes a sink, source or isolate, that instance of M is broken as G1K

becomes disconnected. We extend the longevity of the instances by first evaluating
if a random selection of links would render any nodes in X1K sinks, sources or
isolates. If it does we repeat the random selection up to a maximum of five times.
If five random selections all have a similar result, the last selection of links is
removed from G2 and that instance of M is broken.

Algorithm 1: Link removal from G2

Input : G2, X1K , A[1K,2]

1 //Grid network, node set of SC network and adjacency matrix of the interlayer
connections
Output: G2′

2 //Grid network after link removal

3 repeat← TRUE
4 count← 0
5 while repeat and count ≤ 5 do
6 Randomly select 18 links from G2; //5% of the original 360 links in G2

7 G2′′ ← G2 with 18 links removed;

8 Use A[1K,2] to determine if any nodes in X1K are sources, sinks or isolates in G2′′ ;
9 count = count+ 1;

10 if no sources, sinks or isolates in X1K then

11 G2′ ← G2′′ ;
12 repeat← FALSE;

13 Return G2′
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5 Results

The progressive link removal simulation is executed on all 500 instances for each
network archetype. The simulation is continued until all of the 500 instances are
broken. Therefore, the results in this section plot the distributions of the various
metrics as measured from a sample of 500 instances for each network archetype.

First we describe the initial characteristics of C(Sij) by assessing the distri-
butions of L̄ and P̃ for the three network archetypes. Thereafter we determine
the relationship between C(Sij) and the resilience of M throughout the simula-
tion. Lastly, we test whether the characteristics of C(Sij) could be predictors of
robustness and resilience.
C(Sij) is calculated throughout the simulation by a combination of author-

defined Java classes and classes from the JUNG library. These processes were per-
formed on a single core of a Dell PowerEdge 910 running Linux (Ubuntu 16.04LTS),
with an Intel Xeon E7540 processor.

The calculation of κ(wγuv), P̃ and L̄ and all other statistical analyses were
performed in R version 3.2.4 (R Core Team, 2013) on a Macbook Pro with 8 GB
1867 MHz DDR3 memory and a 2,7 GHz Intel Core i5 processor running OS X El
Capitan version 10.11.6.

5.1 Initial characteristics of C(Sij)

The initial characteristics of C(Sij) depend greatly on the network archetype. Here
we compare specifically the distributions of the initial shortest path lengths and
the set sizes.

5.1.1 Initial distributions of the shortest path lengths

Figure 4a plots the distributions of L̄, showing that the Fully Connected network
has significantly shorter paths than the other two archetypes. This directly results
from the fact that all node-pairs are directly connected, not requiring rerouting
through a hub node. A Kolmogorov-Smirnov test (KS-test) comparing the distri-
butions of L̄ for the Single Hub and Double Hub archetypes rejects the H0 that
the distributions are similar with p = 0.0047. The lower mean and wider spread
in both tails of the Double Hub is explained by the structure of G1D. Intra-hub
paths (paths between nodes that share a common hub node) in the Double Hub
are generally shorter than the paths of the Single Hub because in the former the
placement of the two hubs on the grid effectively splits the grid and therefore the
intra-hub nodes are closer to their respective hubs (Viljoen and Joubert, 2017). On
the other hand, the inter-hub movements are longer as they have to be rerouted
through two hubs. Intra-hub paths account for 45% of the network, inter-hub for
38% and the remainder of the paths are links between one hub and a node assigned
to the other hub and vice versa. This last group of paths are not distinctly longer
or shorter between the two archetypes. As the majority of the links in the Double
Hub will have shorter lengths, L̄ is lower.

The diameter of a network is the length of its longest shortest path denoted
by max (L). Figure 4b plots the distributions of max (L), where once again the
Fully Connected archetype shows far shorter paths than the others. This time, the
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KS-test fails to reject the H0 that the distributions of max (L) for Double Hub
and Single Hub are similar with p = 0.29.

The Fully Connected archetype is most efficient by a large margin, whereas
the clear winner between the two hub archetypes would be instance-specific, with
a slight prejudice in favour of the Double Hub.

0 5 10 15 20 25

L

D
en

si
ty

Fully connected
Single hub
Double hub

Archetype Min Mean Max

Fully connected 4.58 6.82 8.41
Single hub 6.50 12.17 18.83
Double hub 6.38 11.77 19.48

(a) Average shortest path length, L̄.
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Archetype Min Mean Max

Fully connected 9 14.48 18
Single hub 12 21.79 34
Double hub 11 22.33 34

(b) Diameter, max (L).

Fig. 4: Distributions of the diameter and average shortest path lengths for each of
the three archetypes.

5.1.2 Initial distributions of the shortest path set sizes

The distributions of the sum of the shortest path set size P̃ are very different
to that of L̄ and max (L). Figure 5a plots the distribution of the sum of P̃ for
all directly connected node-pairs (SDij). The distributions have very long tails
as confirmed by the high kurtosis values. A kurtosis value of 3 indicates that the
distribution is mesokurtic, being no more likely to produce outliers than a normal
distribution. A value greater than three indicates a leptokurtic distribution that
has a greater degree of “tailedness” than the normal distribution and kurtosis
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less than 3 indicates a platykurtic distribution with a smaller likelihood than the
normal distribution to produce outliers.

For the Fully Connected archetype all nodes are directly connected thus the
distributions in the two graphs are the same. For the hub archetypes the distri-
butions in Figure 5b are disproportionately wider due to the fact that 83.3% of
the node-pairs are indirectly linked in these archetypes and each of these sets SIij
is the product of the set sizes of its component sets SDij . The Double Hub has
the smallest set sizes for directly connected node-pairs, owing to the fact that its
directly connected nodes are closer together on the grid. Interestingly, the kurto-
sis the Double Hub in Figure 5a also shows that it is far more likely to produce
outliers than the other two archetypes.
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Fig. 5: Analysis of the distributions of the sum of the shortest path set sizes for
direct paths (SDij) and the full network (Sij)

When regarding only shortest path lengths one can conclude that there isn’t
great variance between the different instances of a single archetype, nor is there
really a pronounced difference between the two hub archetypes. This is definitely
not true when considering the shortest path sets. One randomly generated instance
ofM can have vastly different set sizes than the next randomly generated instance.

5.2 Relationship between C(Sij) and the resilience of M

This section investigates the relationship between C(Sij) and the resilience of M
in the initial instances ofM and as the simulation progresses. Specifically we seek
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correlations between the redundancy of C(Sij) and the efficiency L̄ as well as the
overlap of C(Sij) and the efficiency L̄.

5.2.1 Redundancy of C(Sij)

In the initial networks, the logarithm of P̃ is significantly, linearly correlated with
L̄ as shown in Figure 6 and Table 1. This result is intuitive as both Lij and Pij
are functions of the diagonal distance between two nodes.

0 5 10 15 20

100

101

102

103

104

Center of mass: (6.7,10.6)

P

Fully connected

high
flexibility

low
flexibility

high
efficiency

low
efficiency

0 5 10 15 20

Center of mass: (12.2,434.6)

Single hub

high
flexibility

low
flexibility

high
efficiency

low
efficiency

L
0 5 10 15 20

Center of mass: (11.8,583)

100

101

102

103

104

Double hub

P

high
flexibility

low
flexibility

high
efficiency

low
efficiency

Fig. 6: Shortest set path size versus length in the initial networks.

Table 1: Linear regression of P̃ to L̄.

log ŷF = −0.420 + 0.405xF log ŷS = −1.800 + 0.540xS log ŷD = −3.170 + 0.629xD

std. error 0.115 0.017 0.148 0.012 0.234 0.019
t-value -3.64 23.59 -12.13 45.27 -13.56 32.30
Pr(|t|) 2.96e−4 < 2e−16 < 2e−16 < 2e−16 < 2e−16 < 2e−16

Next we compare the average values of P̃ and L̄ taken over all the instances
that remain unbroken after a specific link removal iteration. Figure 7a shows that
for all three archetypes, the average of L̄ increases monotonically as more grid
links are removed while the average of P̃ decreases monotonically. Interestingly,
the average of P̃ decreases sharply for the hub archetypes, converging with that of
the Fully Connected archetype after 30% of grid links are removed. The average of
L̄, however, does not converge. The changeover between the hub archetypes when
25% of the links are removed is also notable.

The Spearman test is used to test the correlation between P̃ and L̄ after each
iteration. After each iteration, the sample consisted of all the instances that had
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not yet broken. If the sample contained more than five instances, P̃ and L̄ was
calculated for each instance and the correlation tested. Figure 7b plots the value
of Spearman’s ρ for each archetype after each iteration and distinguishes between
significant (p-value < 0.05) and insignificant (p-value ≥ 0.05) results.

Throughout the simulation there is a significant correlation between these two
parameters. Initially the correlation is strongly positive for all three networks but
decreases in strength as the networks degrade. The decreasing trend is intuitive.
Initially, when the grid is complete, a longer shorter path length automatically
implies more alternatives. As the grid becomes more sparse, this is no longer the
case.

Index

0% 10
%

20
%

30
%

40
%

50
%

0

100

200

300

400

500

600

●● ● ● ● ● ●
●

●
●

●
10

15

20

25
● Fully Connected

Single Hub
Double Hub

% of grid links removed

M
ea

n(
P

)

M
ea

n(
L

)

(a) Change in Mean(P̃ ) and Mean(L̄).

% grid links removed

S
pe

ar
m

an
's

 ρ

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

0.
2

0.
4

0.
6

0.
8

1

●

●
●

●

●

●
●

●

●

●

● ●Fully Connected
Single Hub
Double Hub

p < 0.05
p < 0.05
p < 0.05

p ≥ 0.05
p ≥ 0.05
p ≥ 0.05

(b) Correlation between P̃ and L̄.

Fig. 7: Relationship between P̃ and L̄ throughout the link removal iterations.

5.2.2 Overlap within C(Sij)

To compare the overlap in C(Sij) to resilience in M we plot the initial values of
κ(wγuv) against L̄ (Figure 8). The Fully Connected archetype has the least overlap
in C(Sij) with its distribution of κ(wγuv) tightly clustered around a kurtosis value of
3.6. The presence of hub nodes actually induces overlap in the shortest path sets,
thus the links surrounding the hub nodes are bound to feature on many shortest
paths. The Single Hub archetype has only one hub that all other nodes share and
thus has more induced overlap than the Double Hub archetype, as evidenced in
the higher values for κ(wγuv).

The Spearman test was repeated to test correlation between κ(wγuv) and L̄.
The correlation results were not as definitive (Figure 9b). Fewer correlations were
significant and those that were significant were weak. Furthermore the fact that
there were both weakly positive and weakly negative correlation results merits
discussion. The Fully Connected archetype is primarily positively correlated. Ini-
tially these networks have low overlap which increases as fewer alternatives on the
grid force the shortest paths to use common links. The hub networks, on the other
hand, start off with a higher degree of overlap induced by the hubs. As shortest
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Fig. 8: κ(wγuv) versus L̄ in the initial networks.

paths become longer it actually offers opportunities for diversification in terms
of the links. Therefore these correlations are initially negative. However, as the
simulation continues, the sparsity of the grid again forces overlap in the shortest
paths and thus the correlations become positive.

Figure 9a illustrates how the overlap first increases for all archetypes and then
decreasing (sharply in the case of the hub archetypes).
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The characteristics of the shortest path sets for different instances of a specific
archetype and between the three archetypes is definitely non-trivial. Furthermore,
there are significant relationships between the redundancy and overlap in C(Sij)
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and its resilience to progressive random link disturbance. The next question is
whether these relationships could be predictors of future resilience and robustness
of networks.

6 C(Sij) as predictor of robustness and resilience

6.1 Aggregate statistics

Figure 10a shows the cumulative percentage of instances that had broken after
each iteration of the simulation. The distribution is very similar across the three
archetypes with the Fully Connected archetype breaking faster in the mid-range
of the simulation. All instances of the Fully Connected archetype were broken
after 50% of the links were removed with the final surviving instances of the
hub archetypes breaking after 55% link removal. Counter-intuitively, robustness is
indifferent to the type of archetype, despite the broadly varying shortest path set
characteristics.
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Fig. 10: Comparing efficiency and robustness of instances across link removal it-
eration.

In terms of resilience, which is the ability to maintain a certain path length
despite disruption, we consider the change in the average of L̄ from its initial value
in Figure 10b. The Double Hub archetype loses its efficiency far more rapidly than
the other archetypes but in the end it is the Fully Connected archetype that has
degraded the most while the Single Hub archetype degraded the least.

While it seems unlikely that the broadly varying shortest path statistics of
the initial archetypes held any predictive capability regarding overall resilience or
robustness, it is worthwhile digging deeper to find out if any significant patterns
precede a step change in efficiency or break in an instance.
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6.2 Pattern-finding in individual instance trajectories

After each progressive link removal iteration, more instances have broken. We seek
to identify patterns relating to P̃ , κ(wγuv) or L̄ that distinguish those instances that
are known to have broken in the next iteration from those that are known to have
survived. We do this by defining a distribution of values, X, for those instances
that would break and another distribution of values, Y , for the surviving instances.
Using a KS-test we determine whether there is any significant difference between
these two distributions.

Using the KS-test we test nine sets of distributions:

– P̃ : Initial values, terminal values and % change from initial value;
– κ(wγuv): Initial values, terminal values and % change from initial value; and
– L̄: Initial values, terminal values and % change from initial value.

The comparison was made after each iteration between 10% to 50% grid link
removal. Overwhelmingly, in 92% of the cases, the KS-test showed that H0, which
states that X and Y are from the same distribution, could not be rejected, meaning
that there is no distinguishable difference between the values for those instances
that are about to break and those that will survive. Of the 20 cases that yielded
p-value < 0.05 and could thus reject H0, 11 related to L̄ for the Fully Connected
archetype.

The test was then expanded to include in X those instances whose efficiency
would decrease in the next iteration and not just those that would break. The
sample sizes of Y only allowed for tests up to 20%, 35% and 40% for the Fully
Connected, Single Hub and Double Hub archetypes, respectively. Only 3% of these
tests succeeded in rejecting H0 that X and Y were from different distributions.

Therefore it can be concluded that neither the initial values, the values mea-
sured before the final link removal iteration or the rate of change from the initial
value for any of the metrics can be used as predictors of which instances would be
resilient and/or robust to the next random link disruption.

These results pertain to the context of progressive random link disruption
which, by definition, cannot easily be predicted. Even though the observed metrics
may in many cases have quantified vulnerability in networks, such as a critical de-
pendency or the absence of alternatives, these vulnerabilities may not have been
exploited by the next round of link disruptions.

7 Conclusion

The risks facing supply chains and their inherent vulnerability to these risks are
increasing, so much so that industry has elevated Supply Chain Risk Management
as a top priority. Nonetheless, the quantitative tools required to better capture the
trade-offs between supply chain efficiency and supply chain resilience are scant.
This paper specifically addressed this gap. We presented a multilayered complex
network formulation of three paradigmatic supply chain archetypes on a directed
grid network emulating the urban road network. This formulation allowed us to
identify three metrics related to the unique collection of shortest path sets C(Sij)
of the multilayered network M namely the average length of the shortest paths
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(L̄), the median of the size of the shortest path sets (P̃ ) and the kurtosis of the
link weight of the link betweenness network (κ(wγuv)).

The initial distributions of these metrics showed that the type of supply chain
archetype and the specific randomly generated instance of M produce very broad
ranges of metric values. It also showed a significant relationship between P̃ and L̄

and κ(wγuv) and L̄, proving the hypothesis that there is a relationship between the
characteristics of C(Sij) and the resilience of M. However, the robustness of M
(i.e. how quickly the supply chain network became disconnected) is indifferent to
these metrics. In addition, the metrics held no predictive power regarding which
instances would break or lose efficiency in successive link removal iterations.

In the case of redundancy the lack of predictive power could be due to two
reasons:

1. By using the centrality of the distribution of Pij it is possible to overlook
the fact that some shortest path sets have very little or no redundancy (i.e.
underestimating the left tail of the distribution).

2. Redundancy by itself overlooks the impact of overlap. Thus a highly redundant
network could still be critically dependent on one link.

In the case of overlap there are also two potential reasons for the lack in
predictive power:

1. Kurtosis may not be the most appropriate measure to capture the character-
istics of the right tail of the distribution of wγuv.

2. The random link removal does not prioritise the removal of these high priority
links. Therefore even though there are critically important links, they have an
equal probability of removal than any other link.

Ongoing research is investigating additional metrics and refinements to the
metrics of this study. In addition simulations are being expanded to include tar-
geted attack strategies.

Although this paper has developed a baseline formulation and initial results
for investigating the impact of the dependency of a supply chain on the urban
transport network, the following research questions must be addressed before the
results can be used in industry boardrooms:

– How close are real-life supply chain networks and urban road networks to the
network archetypes presented in this paper and can these results be generalised
to these hybrids?

– How does weighting the different layers of M influence the results and does
this provide more valid results?

– What kind of link removal scheme best describes the routine disturbances of
urban road networks and how could these be better incorporated?
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multiplexes in the same city: The role of socioeconomic differences in urban mobility,
chapter 9, pages 149–168. Springer International Publishing.

Mattsson, L.-G. and Jenelius, E. (2015). Vulnerability and resilience of transport
systems — a discussion of recent research. Transportation, 81:16 – 34.
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