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Abstract 

This paper provides a novel perspective to the oil-stock market nexus by examining the 

predictive ability of mergers and acquisitions (M&A) over West Texas Intermediate (WTI) 

oil returns and volatility using a nonparametric quantile-based methodology. Our findings 

suggest that M&A activity carries significant predictive power over oil return and volatility, 

while predictability displays remarkably distinct patterns across various quantiles 

representing normal, bull and bear market states. We also observe that M&A activity by oil 

firms, i.e. both the acquiring and target firms considered active in the oil and gas (O&G) 

industry, generally carries greater predictive power over both oil returns and volatility 

compared to M&A activity by non-oil acquirers, i.e. acquirers that have entered the O&G 

industry by buying an oil company. Our findings imply that M&A activity in the O&G 

industry carries valuable fundamental information regarding future expectations on oil price 

dynamics and should be taken into account in forecasting exercises. 

Keywords: Oil Returns and Volatility; Mergers and Acquisitions; Oil & Gas Industry; 

Nonparametric Quantile Causality. 

JEL Codes: C22, C58, Q31.  

 

1. Introduction 

Crude oil is regarded as the most important commodity, given its influential role in the 

world economy relative to other commodities, particularly in terms of its causal effects on 

economic downturns (Hamilton, 1983, 2008, 2009, 2013; Elder and Serletis, 2010) and 

inflation (Stock and Watson, 2003). Considering the real economy, oil is indispensable for 

many sectors including industrials, transportation and agriculture, whether used as feedstock 
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in production or as a surface fuel in consumption (Mensi, et al., 2014a). Moreover, oil market 

fluctuations are widely known to spill over to other commodity markets (see for example, 

Kang and Yoon, 2013; Kang et al., 2016, 2017; Mensi, et al., 2013, 2014b, 2015a) as well as 

financial markets (see for example, Balcilar and Ozdemir, 2013; Balcilar et al., 2015, 2017b; 

Kang et al., 2016; Mensi et al., 2015b; Narayan and Gupta, 2015; Gupta and Wohar, 2017). 

Recent evidence also suggests that oil returns and volatility even have predictive power over 

stock market anomalies driven by informational inefficiencies (Chen et al., 2017). Given 

these considerations, the factors that drive return and volatility dynamics of crude oil are of 

paramount importance to investors, policymakers as well as academics. Naturally, there is a 

large literature dealing with possible macroeconomic, financial and policy-related variables 

that predict returns and volatility in the crude oil market (see for example, Baumeister and 

Kilian, 2014, 2015; Baumeister et al., 2014, 2015; Bekiros et al., 2015; Balcilar et al., 2017a; 

Bonaccolto et al., forthcoming).  

This paper examines the predictability of oil return and volatility from a novel 

perspective by exploring the role of mergers and acquisitions (M&A) activity in the oil and 

gas industry as a potential predictor. The strand of the finance literature on M&A offers 

ample evidence on the effect of mergers on subsequent returns and volatility experienced by 

both the acquiring and target firms. While earlier findings in Jensen and Ruback (1983) and 

Jarrell et al. (1988) show that mergers seem to create value for shareholders overall, 

numerous studies including Agrawal et al. (1992), Loughran and Vijh (1997) and Rau and 

Vermaelen (1998) document evidence of a post-merger drift in which stock of acquiring 

firms generally underperform following acquisitions, suggesting some degree of return 

predictability following M&A activity.
1
  

Examining the role of M&A activity on return volatility, the evidence in Langetieg et 
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 See Andrade et al. (2001) for a review of the literature on mergers. 
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al. (1980), Jayaraman et al. (1991), Levy and Yoder (1993), Smith et al. (1997), Bharath and 

Wu (2005) and Gero and Kamerschen (2008) generally points to a statistically significant 

increase in return volatility due to M&A activity, while Gero and Kamerschen (2008) relate 

the increase in return volatility to integration risk and uncertainty about the extent to which 

efficiency gains are realized via mergers.  All of these studies, however, have focused on the 

effect of M&A activity on the stock return dynamics for the target and the acquiring firms, 

without exploring its effect on the underlying product (or commodity) that drives profits in 

these firms’ operations. To that end, the oil and gas (O&G) industry presents a unique setup 

to explore the interaction between M&A activity in this industry and price dynamics in the 

underlying commodity, i.e. crude oil.  

In a recent study that focuses on the M&A activity in the O&G industry in the U.S., 

Hsu et al. (2017) argue that M&A activities in the O&G industry has momentum building 

periods, i.e. occur in waves, and show that M&A is largely driven by industry-specific factors 

than general economic conditions. Given this finding by Hsu et al. (2017) coupled with the 

empirical features of M&A activity and the evidence on its effect on stock return and 

volatility, one can argue that a similar link exists between M&A activity in the O&G industry 

and oil price dynamics. Motivated by these empirical findings, this paper provides a novel 

perspective to the oil-stock market nexus by analysing, for the first time, the role of M&A 

activity in the oil industry in predicting returns and volatility of the West Texas Intermediate 

(WTI) oil price over the monthly period of 1978:01 to 2016:12.  

Intuitively, drawing on the empirical evidence from the literature on M&A and stock 

market movements, a possible link between M&A activity in the O&G industry and oil return 

and volatility can be established via several possible channel(s). If, as Mitchell and Mulherin 

(1996) suggest, mergers occur in waves reflecting cyclicality in industry fundamentals, then 

one can argue that M&A activity reflects expansionary (or recessionary) expectations in the 
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O&G industry, which can also affect the return dynamics in oil as the underlying commodity. 

Furthermore, if M&A activity leads to productivity gains when demand is high and cost 

reductions during periods of low demand, as Dimopoulos and Sacchetto (2017) argue, then 

one can argue that merger options stabilize the price of the underlying product while it 

reduces productions costs, thus creating a new channel of impact on oil return and volatility. 

Finally, considering M&A activity as a type of investment driven by real options faced by 

firms, greater expected volatility in oil returns increase the value of the real options 

associated with M&As, linking the growth in the M&A activity to expectations of volatility 

in the oil market from a real option perspective. To that end, M&A activity dynamics can be 

linked to oil price dynamics via various channels and this paper provides the initial empirical 

evidence in that regard.  

 In our empirical application, we conduct the predictability analysis based on the k-th 

order nonparametric causality-in-quantiles test recently developed by Balcilar et al. (2017a). 

This test studies higher order causality over the entire conditional distribution and is 

inherently based on a nonlinear dependence structure between the variables of interest, as 

captured by data-driven nonparametric functions.
2
 It must be noted that the predictability 

analysis employed in our empirical application relies on a causality-based framework rather 

than a predictive regression approach to avoid the possible endogeneity of M&A, given the 

recent findings by Monge et al., (2016, 2017), and Bos (2016) that M&A activities are 

affected by both oil prices and volatility. Our findings suggest that M&A activity carries 

significant predictive power over oil return and volatility, while predictability displays 

remarkably distinct patterns across various quantiles representing normal, bull and bear 

market states. We also observe that M&A activity by oil firms, i.e. both the acquiring and 

                                                           
2
 As indicated by Balcilar et al. (2017a), the causality-in-quantile approach has the following novelties: Firstly, 

it is robust to misspecification errors as it detects the underlying dependence structure between the examined 

time series based on a nonparametric approach. Secondly, via this methodology, we are able to test for not only 

causality-in-mean (1
st
 moment), but also causality that may exist in the tails of the distribution of the variables. 

Finally, we are also able to investigate causality-in-variance, thus, study higher-order dependency. 
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target firms considered active in the O&G industry, generally carries greater predictive power 

over both oil returns and volatility compared to M&A activity by non-oil acquirers, i.e. 

acquirers that have entered the O&G industry by buying an oil company. Nevertheless, our 

findings suggest that M&A activity in the O&G industry carries significant information 

related to future expectations on oil price dynamics. 

The rest of this paper is organized as follows: Section 2 describes the econometric 

framework involving the higher-moment nonparametric causality-in-quantiles test. Section 3 

presents the data while Section 4 discusses the empirical results. Finally, Section 5 concludes. 

 

2. Econometric Framework 

 

In this section, we briefly present the methodology for the detection of nonlinear causality 

via a hybrid approach as developed by Balcilar et al. (2017a), which in turn is based on the 

frameworks of Nishiyama et al. (2011) and Jeong et al. (2012).
 
We start by denoting oil 

returns by yt and the predictor variable (in our case, measure of M&A activity - discussed in 

detail in the next section) as xt. Defining ),...,( 11 pttt yyY   , ),...,( 11 pttt xxX    and 

),( ttt YXZ  , let ),( 1| 1  ttZy ZyF
tt  

and ),( 1| 1  ttYy YyF
tt

 denote the conditional distribution 

functions of ty  given 1tZ  and 1tY , respectively. If we denote )|()( 11   ttt ZyQZQ   
and 

)|()( 11   ttt YyQYQ  , we obtain  
}|)({ 11| 1 ttZy ZZQF

tt
 with probability one. As a 

result, the (non)causality in the q -th quantile hypotheses to be tested are defined as: 

                                H0 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}=1,    (1) 

                                H1 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}<1.   (2) 

Jeong et al. (2012) use the distance measure )}()|({ 11  tzttt ZfZEJ  , where t  is the 

regression error term and )( 1tz Zf  is the marginal density function of 1tZ . The regression 
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error t  emerges based on the null hypothesis in (1), which can only be true if and only if 

   }]|)({1[ 11 ttt ZYQyE  or, expressed in a different way, ttt YQy    )}({1 1 , where 

1{×}  is the indicator function. Jeong et al. (2012) show that the feasible kernel-based sample 

analogue of J  has the following format: 

                                Ĵ
T

=
1

T (T -1)h2 p
K
Z
t-1

-Z
s-1

h

æ

è
ç

ö

ø
÷

s=p+1,s¹t

T

å
t=p+1

T

å ê
t
ê
s
.   (3) 

where )(K  is the kernel function with bandwidth h ,   is the sample size,   is the lag order, 

and ê
t
is the estimate of the unknown regression error, which is given by 

                                                êt =1{yt £Qq (Yt-1)}-q .   (4) 

In this specification, )(ˆ
1tYQ  is an estimate of the 

th
 conditional quantile of ty  given 1tY , 

and we estimate  )(ˆ
1tYQ  using the nonparametric kernel method as 

                                                )|(ˆ)(ˆ
1

1

|1 1 



 
 tYyt YFYQ

tt
 ,   (5) 

where )|(ˆ
1| 1  ttYy YyF

tt
 is the Nadarya-Watson kernel estimator given by 

                F̂
y
t
|Y
t-1

(y
t
|Y
t-1

) =
L (Y

t-1
-Y

s-1
) h( )1(ys £ y

t
)

s=p+1,s¹t

T

å

L (Y
t-1

-Y
s-1

) h( )
s=p+1,s¹t

T

å
,       (6) 

with )(L  denoting the kernel function and h  the bandwidth.  

As an extension of Jeong et al. (2012)'s framework, Balcilar et al. (2017a) develop a 

test for the second moment which allows us to test the causality between M&A activity and 

oil return volatility. Adapting the approach in Nishiyama et al. (2011), higher order quantile 

causality can be specified in terms of the following hypotheses formulated as: 

  H0 : P{F
yt
k |Zt-1

{Qq (Yt-1) | Zt-1} =q} =1       for Kk ,...,2,1             (7) 

  H1 : P{F
yt
k |Zt-1

{Qq (Yt-1) | Zt-1} =q} <1       for Kk ,...,2,1             (8) 



7 

 

We integrate the entire framework and test whether tx  Granger causes ty  in quantile 

  up to the k
th

 moment using Eq. (7) to construct the test statistic in Eq. (6) for each k . The 

causality-in-variance test is then calculated by replacing yt in Eqs. (3) and (4) with yt
2
- 

measuring the volatility of oil returns. However, one can show that it is difficult to combine 

the different statistics for each Kk ,...,2,1  into one statistic for the joint null in Eq. (7) 

because the statistics are mutually correlated (Nishiyama et al., 2011). To overcome this 

issue, Balcilar et al. (2017a) propose a sequential-testing method as described in Nishiyama 

et al. (2011). First, we test for nonparametric Granger causality in the first moment (i.e., 

k=1). Nevertheless, failure to reject the null for 1k  does not automatically lead to non-

causality in the second moment. Thus, we can still construct the test for 2k , as discussed in 

detail in Balcilar et al. (2017a).  

The empirical implementation of causality testing via quantiles entails specifying three 

key parameters: the bandwidth (h), the lag order (p), and the kernel type for (K(  ) and L(  )) 

K(  ) and L(  ). We use a lag order of p= 3, based on the Schwarz information criterion (SIC), 

which is known to select a parsimonious model as compared with other lag-length selection 

criteria. The SIC criterion helps to overcome the issue of over-parameterization that typically 

arises in studies using nonparametric frameworks.
3
 For each quantile, we determine the 

bandwidth parameter (h) by using the leave-one-out least-squares cross validation method.
4
 

Finally, for K(  ) and L(  ), we use Gaussian kernels. 

  

 

 

                                                           
3
 Hurvich and Tsai (1989) examine the Akaike information criterion (AIC) and show that it is biased towards 

selecting an over-parameterized model, whereas the SIC is asymptotically consistent.  
4
 For each quantile, we determine the bandwidth   using the leave-one-out least-squares cross validation method 

of Racine and Li (2004) and Li and Racine (2004). 
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3. Data 

The empirical analysis utilizes monthly data for WTI oil prices and M&A activity over 

the period of 1978:01 to 2016:12, i.e., 468 observations. The start and end dates are governed 

purely by the availability of data on M&A activity. Oil price data is sourced from the Global 

Financial Database, with returns computed as the monthly logarithmic change of oil prices 

multiplied by 100 to convert the returns into percentages (RETURNS). Since WTI oil price 

data is available from 1859:09, we do not lose the first observation (month) while computing 

oil returns. WTI returns are plotted in Figure 1(a). 

In the case of M&A activity, two alternative measures have been proposed (Bos, 2016): 

(i) the sum of the transaction values associated with the takeovers in a given period; and (ii) 

the number of deals in a given period. In this paper, we choose the second measure as the 

transaction value of the merger deal is not always communicated and this measure is likely to 

be sensitive to large deals. The data for the number of deals (DEALS) was collected from the 

SDC Platinum database of Thomson Reuters. Deals were allocated to the period in which 

they were announced. It must, however, be noted that, between the announcement and the 

effective date, (i) a deal could be completed; (ii) a deal could be completed but with adjusted 

conditions; or (iii) a deal could be cancelled. In this paper, we only consider completed deals 

to measure M&A activity. Since we do not consider transaction value, it is not important 

whether the deal was completed or completed after some adjustments to the conditions. 

Therefore, M&A activity is measured by the number of completed M&A transactions each 

month between 1978 and 2016 that involved an oil company and executed by an acquirer 

headquartered in the U.S.   
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Figure 1(a). Monthly WTI Oil Returns. 

 

 

Figure 1(b). M&A Activities. 

 
Notes: The figure plots the number of completed M&A transactions each month 

(DEALS) between 1978:01 and 2016:12. DEALS_OIL represents M&A activity by an 

oil acquirer, i.e., both the acquiring and target firms considered are active in the O&G 

industry. DEALS_NONOIL represents the M&A activity by a non-oil acquirer, which 

involves deals of acquirers that have entered the O&G industry by buying an oil 

company.  

 

Figure 1(b) provides a plot of the completed deals each month. As mentioned earlier, the 

M&A literature provides ample evidence that takeovers cluster over time, termed as merger 
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waves, and we see in Figure 1(b) that this also holds for the U.S. O&G industry as well, with 

a peak in takeovers observed in 1996 and 1998. Interestingly, the number of deals has stayed 

at a relatively high level since the financial crisis despite the slump in the oil market driven 

by economic slowdown observed globally. Dimopoulos and Sacchetto (2017) argue that 

mergers represent an alternative to exit for poor performers in an industry and thus firms 

merge in bad times to reduce costs and avoid exiting. Therefore, the relatively high level of 

M&A activity observed since the financial crisis can be explained by firms’ executing merger 

options as an alternative to exit decisions. 

Besides total deals, we also analyse the role of M&A activity by an oil acquirer 

(DEALS_OIL), i.e., in this case, both the acquiring and target firms considered are active in 

the O&G industry. In the same vein, we also performed our tests using the M&A activity by a 

non-oil acquirer (DEALS_NONOIL) as a predictor, which involves deals of acquirers that 

have entered the O&G industry by buying an oil company. This could be a firm from other 

industries such as private equity, business service or the chemical industry. DEALS_OIL and 

DEALS_NONOIL have also been plotted in Figure 1(b) for easy comparison. We observe 

that the patterns of movements of these two variables are, in general, similar. Note that, over 

the period of the study, there were a total of 6,949 deals, with 5,179 of them (about 75%) 

acquired by oil companies, and the remaining 1,770 acquired by non-oil companies. 

Table 1 provides the summary statistics for RETURNS, DEALS_OIL and 

DEALS_NONOIL. We observe that oil returns are skewed to the left with excess kurtosis, 

while the data on the three M&A activity measures are skewed to the right, but with excess 

kurtosis, which in turn, results in the null of normality under the Jarque-Bera test to be 

overwhelmingly rejected at the highest level of significance for RETURNS, DEALS_OIL 

and DEALS_NONOIL. The non-normal distributions, in turn, provide preliminary 

motivation for relying on a quantiles-based approach adopted in our empirical analysis.  
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Table 1. Summary Statistics 

 

Variable 

Statistic RETURNS DEAL OIL NONOIL 

 Mean 0.2677 14.8483 11.0662 3.7821 

 Median 0.1183 15.0000 11.0000 4.0000 

 Maximum 39.2189 41.0000 37.0000 16.0000 

 Minimum -39.4190 0.0000 0.0000 0.0000 

 Std. Dev. 8.1363 9.1042 7.2026 2.8177 

 Skewness -0.3879 0.2241 0.4666 0.8387 

 Kurtosis 6.3647 2.5283 3.0008 4.0653 

 Jarque-Bera 232.5017 8.2558 16.9822 77.0002 

 p-value 0.0000 0.0161 0.0002 0.0000 

Observations 468 
Notes: Std. Dev. stands for standard deviation.  -value corresponds to the 

Jarque-Bera test with the null of normality. 

 

4. Empirical Findings 

4.1 Tests of non-linearity and structural breaks 

Before we begin our discussion of the findings from the causality-in-quantiles tests, for 

the sake of completeness and comparability, we first provide the findings from the standard 

linear Granger causality tests with the null hypothesis that the various M&A activity 

variables do not affect oil returns. As shown in Table 1, the standard linear Granger causality 

tests yield no evidence of causality that emanates from any of the M&A related variables 

(DEALS, DEALS_OIL, and DEALS_NONOIL) to oil returns. Therefore, standard linear 

tests imply no significant causal relationships between M&A activity and oil returns.
5
 

Table 2. Linear Granger Causality Test for WTI Returns. 

Predictor Variable 2
(3)-stat p-value 

DEALS 2.6350 0.4514 

DEALS_OIL 3.5489 0.3145 

DEALS_NONOIL 4.2772 0.2330 
Note: The null hypothesis is that a specific M&A activity does not affect WTI returns. 

                                                           
5
 Interestingly, the null that RETURNS does not cause DEALS (2

(3)=8.0855, p-value=0.0443) and 

DEALS_OIL (2
(3)=10.6600, p-value=0.0137) could be rejected at the 5 percent level, while the null that 

RETURNS does not cause DEALS_NONOIL (2
(3)=2.7766, p-value=0.4274) could not be rejected even at the 

10 percent level of significance. These results highlight the endogeneity of DEALS and DEALS_OIL especially 

and hence, motivates the use of causality-based framework rather than a predictive regression model. Complete 

details of these results are available upon request from the authors.    
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Given the insignificant results obtained from linear causality tests, next we statistically 

examine the presence of nonlinearity in the relationship between oil returns and the predictor 

variables representing M&A activities. For this purpose, we apply the Brock et al. (1996, 

BDS) test on the residuals from the various return equations used in the linear causality tests 

involving DEALS, DEALS_OIL and DEALS_NONOIL. The results of the BDS test of 

nonlinearity presented in Table 3 provide strong evidence of rejection of the null hypothesis 

of i.i.d. residuals at various embedded dimensions (m). Thus, we conclude that there exists 

nonlinearity in the relationship between oil returns and the various measures of M&A 

activity. This evidence also indicates that the findings based on the linear Granger causality 

test as presented in Table 2 cannot be deemed robust and reliable. 

 

Table 3. Brock et al. (1996) (BDS) Test of Nonlinearity. 

 

Predictor Variable 

Dimension 

2 3 4 5 6 

DEALS 5.7181*** 6.9965*** 7.7814*** 8.6308*** 9.8322*** 

DEALS_OIL 5.6812*** 7.0153*** 7.7713*** 8.5808*** 9.8228*** 

DEALS_NONOIL 6.1894*** 7.6519*** 8.5285*** 9.3964*** 10.5699*** 
Notes: The table reports the z-statistic of the BDS test corresponding to the null of i.i.d. residuals, with the test 

applied to the residuals recovered from the oil returns equation used to test linear Granger causality. *** 

indicates rejection of the null hypothesis at the 1 per cent level of significance. 

 

 In addition to the BDS test, we also apply the Bai and Perron (2003) tests of multiple 

structural breaks on the oil return equations that are used to test linear Granger causality 

based on the various types of M&A activity measures. Using the powerful UDmax and/or 

WDmax tests, and allowing for a maximum of five breaks with fifteen percent endpoint 

trimming as well as heterogeneous error distributions across breaks, we detect four (1984:01, 

1991:01, 2002:06, 2008:05), two (1986:04, 2007:11), and four (1985:05, 1991:03, 2002:02, 

2008:03) breaks in the relationship of RETURNS with DEALS, DEALS_OIL and 
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DEALS_NONOIL respectively.
6
 The presence of these breaks further confirms our earlier 

findings, based on nonlinearity tests, that the linear model is misspecified.  

4.2 Nonlinear causality tests 

Given the strong evidence of nonlinearity and regime changes in the relationship 

between oil returns and M&A related measures, we now turn our attention to the causality-in-

quantiles test, which is robust to possible misspecification due to nonlinearity and structural 

breaks given its nonparametric (i.e. data-driven) structure.  

Figure 2(a) and Figure 2(b) respectively, present the findings from the causality-in-

quantiles tests (with the null that M&A activities do not Granger cause oil returns and 

volatility) estimated over the range of quantiles from 0.05 to 0.95 for RETURNS and 

volatility, i.e., squared RETURNS. Note that we standardize the three M&A measures by 

dividing them by their respective standard deviation estimates so that we can compare the 

strength of predictability by the estimated test statistics across the three M&A measures. 

Unlike the insignificant findings from the linear tests reported in Table 2, we observe in 

Figure 2(a) that the null of no-causality emanating from the M&A activities is consistently 

rejected (with a peak at the quantile of 0.45), except at the highest quantile of 0.95 for 

DEALS and DEALS_OIL, and over the quantile range of 0.85 to 0.95 for DEALS_NONOIL. 

This suggests that all three measures of M&A activity have significant predictive power over 

oil returns, with the predictive power relatively weaker during periods of extreme bullish 

periods represented by the highest quantiles of the conditional distribution of oil returns. 

As far as the strength of predictability is concerned, we observe that DEALS is in 

general the strongest predictor of oil returns except for the quantile 0.10 and 0.90, for which 

DEALS_OIL has the highest test statistics. DEALS_NONOIL is clearly the weakest 

predictor, implying that M&A activity by an oil acquirer carries greater informational value  

                                                           
6
 Complete details of the Bai and Perron (2003) tests of structural breaks are available upon request from the 

authors. 
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Figure 2(a). Causality-in-Quantiles Test Results for Oil Returns 

 

Figure 2(b). Causality-in-Quantiles Test Results for Oil Volatility (Squared Returns)  

 
Notes: CV is the 5 percent critical value of 1.96. The horizontal axis measures the various quantiles while the 

vertical axis captures the tests statistic value. The lines corresponding to DEALS, DEALS_OIL and 

DEALS_NONOIL show the rejection (non-rejection) of the null of no Granger causality from the various 

measures of M&A activity measures to oil returns or volatility at the 5 percent level, if the lines are above 

(below) 1.96 for a specific quantile. 

 

compared to that of a non-oil acquirer when it comes to predicting oil returns. The lack of 

predictability at the higher quantiles representing bullish market states may be due to the 
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presence of informational inefficiencies during extreme market conditions, possibly driven by 

herd behaviour, such that fundamental information reflected by M&A activity is not fully 

reflected in oil price dynamics. On the other hand, strong causality observed during normal 

market conditions, i.e. around the median of the conditional distribution, reflects a level of 

efficient processing of fundamental industry information by market participants during 

normal market states. Similarly, significant causality during bearish market states, i.e. lower 

quantiles, reflect firms’ utilization of merger options during industry downturns as an 

alternative to exit decisions, thus establishing a causal link between M&A activity and future 

oil returns during bearish states. 

Next, we turn our attention to the impact of M&A activities on oil return volatility, 

reported in Figure 2(b). Consistent with the findings for oil returns reported in Figure 2(a), 

barring the highest quantile of 0.95, all three M&A measures are found to have predictive 

power over oil return volatility over the remainder of the conditional distribution. 

Interestingly and unlike the case for oil returns, we observe the strongest predictability at the 

lowest quantile of 0.05 with the strength of the predictability displaying a downward trend in 

general across the quantile range of 0.05 to 0.95. This finding suggests that oil volatility is 

most strongly predicted by M&A activities when it is low. Considering that mergers improve 

productive efficiency via reallocation and synergies, it is possible that M&A activity has a 

positive effect on price stability in the oil market as new entrants’ average productivity 

exceeds that of incumbents. This argument is further supported by the observation that the 

strongest predictor of volatility over the quantile range of 0.05 to 0.15 happens to be 

DEALS_NONOIL, representing deals of non-oil acquirers like private equity or firms from 

other industries that have entered the O&G industry by buying an oil company. To that end, 

the strong predictive power of non-oil acquisition deals over oil return volatility at the 

extreme low quantiles reflects improved productive efficiencies offered by non-oil firms 
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entering into the O&G industry. In the case of the remaining quantiles, however, we observe 

that M&A activity by an oil acquirer (DEAL_OIL) serves as the strongest predictor of oil 

return volatility, consistent with the evidence for oil returns in Figure 2(a). Overall, our 

findings suggest that M&A activity carries significant predictive power over oil return and 

volatility, while predictability displays remarkably distinct patterns across various quantiles 

representing normal, bull and bear market states and also depending on the nature of the 

acquiring firm involved in the transaction.  

At this point, it must be noted that despite the robust inferences derived from the 

causality-in-quantiles tests, it would also be interesting to estimate the magnitude and 

direction of the effects of M&A on oil market movements at various quantiles. However, in a 

nonparametric framework, this is not straightforward. To do so, one will need to employ the 

first-order partial derivative. Estimation of the partial derivatives for nonparametric models 

can experience complications because nonparametric methods exhibit slow convergence 

rates, which can depend on the dimensionality and smoothness of the underlying conditional 

expectation function. What one could however do is to look at a statistic that summarizes the 

overall effect or the global curvature (i.e., the global sign and magnitude), but not the entire 

derivative curve. In this regard, a natural measure of the global curvature is the average 

derivative (AD). One could use the conditional pivotal quantile, based on approximation or 

the coupling approach of Belloni et al., (2017), to estimate the partial ADs. The pivotal 

coupling approach additionally can approximate the distribution of AD using Monte Carlo 

simulation. Given that in our case, the focus is on predictability of the oil market movements, 

and not necessarily on the sign (direction) of the effect at this stage, we leave this for future 

research.
7
  

                                                           
7
 However, even though we cannot draw one-to-one correspondence between standard quantile regressions and 

our nonparametric causality-in-quantiles test, preliminary evidence tends to suggest that M&A activities is 

associated with lower oil returns and greater return volatility. Complete details of these results are available 

upon request from the authors. 
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4.3 Additional results 

In this subsection, based on the suggestions of an anonymous referee, we conduct three 

additional analysis and report results in the Appendix of the paper.
8
 

(1) First, in Table A1 we present the results from a GARCH(1,1) model, with the first lag 

of DEALS, DEALS_OIL, and DEALS_NONOIL included in both the mean and 

variance equation. We observe, while these variables are significantly positive in the 

variance equation, they have no predictability for oil returns. However note that the 

impact of DEALS_OIL is only significant at the 10 percent level of significance; 

(2) Second, we derive the conditional volatility of oil returns from a GARCH(1,1) model 

and then use the derived variance to run the causality-in-quantiles test for volatility. As 

can be seen from Figure A1, there is no evidence of predictability at any quantile for 

volatility as derived from DEALS, DEALS_OIL, and DEALS_NONOIL, unlike to 

what was observed for squared returns; 

(3) Finally, we also obtain a model-free based measure of volatility, namely realized 

volatility (RV), which in turn is derived via daily data obtained from the Global 

Financial Database. Following the extant literature, RV is computed as the sum of 

daily squared returns over a specific month. In Figure A2, we present the causality-in -

quantiles results for the predictability of RV derived from DEALS, DEALS_OIL, and 

DEALS_NONOIL. As can be seen, predictability is observed for DEALS and 

DEALS_OIL over the quantile range of 0.20 to 0.75, while that of DEALS_NONOIL 

is only restricted to the quantile range of 0.30-0.35. The peak of predictability is 

achieved at the quantile 0.30. 

                                                           
8
 We thank an anonymous referee for these suggestions. 
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When we compare the results obtained from the causality-in-quantiles test with that of the 

conditional mean-based GARCH(1,1) model, we clearly see the advantage of using a 

quantiles based approach, especially in the case of returns, for which the GARCH(1,1) 

model shows no predictability. Examining the causality-in-quantiles test results with 

measures of conditional volatility derived from a GARCH(1,1) model and RV, we observe 

marked differences in results compared to those obtained under squared returns. We see 

that the conditional volatility with the GARCH(1,1) model shows no predictability, while 

under RV, the same is restricted to quantiles barring the extreme one. Recall that we 

obtained strong evidence of predictability for squared returns, barring the upper-most 

quantile of 0.95, with the peak at the lowest quantile considered, i.e., 0.05. Note that the 

test developed by Balcilar et al., (2017a) is k-th moment test of the dependent variable. So 

when the dependent variable is returns, the second moment captured by the squared returns 

is what is traditionally defined as volatility in the extant literature. In other words, with 

returns as the dependent variable, the test of volatility (squared returns) follows naturally 

the framework developed by Balcilar et al., (2017a), i.e., the estimate of volatility used is 

model-free.  

Volatility being a latent variable, there are large number of models that aim to capture the 

behaviour of volatility, which in the first place is measured by squared returns. In this 

regard, the GARCH-family models of conditional volatility are most well-known. An open 

question is, however, which GARCH model to use, as different models are aimed to 

capture different features of squared returns. Given this challenge, one option is to use 

realized volatility when high frequency data is available, which is a model free estimate of 

volatility. The use of realized volatility is in some sense in line with the test, which uses 

squared returns to capture volatility, which in turn, follows obviously from the second 

moment of the dependent variable (without having to estimate a specific GARCH-type 
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model of conditional volatility), which in our case is oil returns. As pointed out by Balcilar 

et al., (2016), given what the k-th moment test aims to achieve, if any measure of volatility 

should be used besides squared returns, statistically it should be a model-free estimate, like 

the realized-volatility that we utilize in our analysis. Nevertheless, in terms of the 

robustness of the inferences, one should consider those obtained under squared returns as a 

measure of volatility. Given this line of reasoning, we have presented these additional 

results, but included them in the Appendix instead of the main text. 

5. Conclusion 

This paper provides a novel perspective to the oil-stock market nexus by examining the 

predictive power of mergers and acquisitions (M&A) over returns and volatility in the WTI 

oil market using a k-th order nonparametric quantile-based methodology that allows to 

capture nonlinear causal effects. Using monthly data on oil returns and M&A activities 

covering oil and non-oil acquirers in the oil and gas industry over the period of 1978:01 to 

2016:12, we first show that standard linear causality tests yield insignificant results in terms 

of the predictive power of M&A activity over WTI returns. However, additional tests reveal 

strong evidence of nonlinearity and regime changes in the relationship between oil returns 

and the various measures of M&A activity, implying that the linear Granger causality test is 

misspecified, thus the results cannot be relied on.  

Applying the nonparametric quantile-causality test, which is robust to misspecification due 

to nonlinearity and structural breaks, we show that M&A activities possess significant 

predictive power over oil return and volatility, while predictability displays remarkably 

distinct patterns across various quantiles representing normal, bull and bear market states. 

Barring the highest quantiles of the conditional distribution of oil returns and volatility, we 

observe strong causal effects particularly at the median and lowest quantiles of the respective 
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conditional distributions of returns and volatility. We also observe that M&A activity by oil 

firms, i.e. both the acquiring and target firms considered active in the oil and gas (O&G) 

industry, generally carries greater predictive power over both oil returns and volatility 

compared to M&A activity by non-oil acquirers, i.e. acquirers that have entered the O&G 

industry by buying an oil company. Overall, our findings imply that M&A activity in the 

O&G industry carries valuable fundamental information regarding future expectations on oil 

price dynamics. 

From the perspective of an academic, our results tend to suggest that the WTI market 

cannot be categorized as weakly efficient based on the information content of M&A 

activities, barring the higher quantiles. From an investor’s perspective, with the exception of 

bullish oil market state with high level of volatility, measures of M&A activity can be used 

for forecasting and/or portfolio allocation purposes in order to improve risk/return tradeoffs. 

Finally, from a policy making perspective, the evidence of strong predictive power of M&A 

activities over crude oil return and volatility suggests that policy makers who are worried 

about the potential negative impact of oil price fluctuations on the real economy should take 

into account measures of M&A activity in their oil forecasting models. However, it must be 

noted that nonlinearity and possible structural breaks must be taken into account in order to 

correctly capture the effect of M&A activity on oil returns, as our results show that using a 

linear model is likely to lead to incorrect inferences. Hence, in general, our results highlight 

the importance of testing for nonlinearity and structural changes, and if it exists, use a data-

driven nonlinear approach to analyze causal relationships. The results also highlight the 

importance of having a nonlinear pricing framework that integrates M&A activities in the 

pricing model, perhaps via models that utilize higher order moments.  

As part of future research, it would be interesting to extend our analysis to a forecasting 

exercise, as in Bonaccolto et al., (forthcoming), since in-sample predictability does not 
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guarantee the same over- and out-of-sample. Also, as pointed out by an anonymous referee, 

our approach is bivariate, similar to those of Nishiyama et al. (2011) and Jeong et al. (2012) 

upon which we build our econometric model. However, as discussed in the related literature 

cited in the introduction, considering that both the oil market and M&A movements could 

also be affected by other possible factors, we would ideally need a multivariate model. 

Therefore, extending the bivariate analysis presented in this paper to a multivariate 

framework is also an important area of future research, which in turn, would require us to 

validate our finding after controlling for additional common predictors that potentially affect 

both M&A activity and the oil market. However, it must be noted that, nonlinear causality 

tests are in general bivariate (see for example, Hiemstra and Jones (1994), and Diks and 

Panchenko (2005, 2006)). In recent papers, Bai et al., (2010, 2011) have developed a 

multivariate version of the nonlinear causality test, but the framework is restricted to a 

conditional mean-based model and analyses only causality in the first-moment, leaving out 

the volatility analysis.     
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Appendix 
 

Table A1. GARCH-based Results of Predictability 
 

Panel A: DEALS 

Dependent Variable: RETURNS  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

     
     

  

Mean 

Equation   

     

Variable Coefficient Std. Error z-Statistic Prob.   

     
     RETURNS(-1) 0.2432 0.0525 4.6325 0.0000 

DEALS(-1) -0.0041 0.0270 -0.1845 0.8536 

C 0.0986 0.3431 0.2873 0.7739 

     
      Variance Equation   

     
     C 1.4303 0.3837 3.7274 0.0002 

RESID(-1)^2 0.3082 0.0442 6.9675 0.0000 

GARCH(-1) 0.6599 0.0561 11.773 0.0000 

DEALS(-1) 0.2201 0.1091 2.0007 0.0454 

     
     R-squared 0.09024     Mean dependent var 0.2682 

Adjusted R-squared 0.0863     S.D. dependent var 8.1451 

S.E. of regression 7.7856     Akaike info criterion 6.6991 

Sum squared resid 28125.66     Schwarz criterion 6.7621 

Log likelihood -1557.442     Hannan-Quinn criter. 6.7244 

Durbin-Watson stat 1.8553    

     
      

Panel B: OIL DEALS 

     
     

  

Mean 

Equation   

     

Variable Coefficient Std. Error z-Statistic Prob.   

     
     RETURNS(-1) 0.24438 0.0521 4.6877 0.0000 

DEALS_OIL(-1) -0.0097 0.0341 -0.2767 0.7820 

C 0.1206 0.3379 0.3571 0.7211 

     
      Variance Equation   

     
     C 1.4954 0.4000 3.7383 0.0002 

RESID(-1)^2 0.3065 0.0436 7.0258 0.0000 

GARCH(-1) 0.6642 0.0554 11.988 0.0000 

DEALS_OIL(-1) 0.2732 0.1439 1.8989 0.0576 

     
     R-squared 0.0908     Mean dependent var 0.2682 

Adjusted R-squared 0.0868     S.D. dependent var 8.1451 

S.E. of regression 7.7834     Akaike info criterion 6.7011 

Sum squared resid 28109.65     Schwarz criterion 6.7632 

Log likelihood -1557.700     Hannan-Quinn criter. 6.7255 

Durbin-Watson stat 1.8574    

     
      

Panel C: NONOIL DEALS 
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Mean 

Equation   

Variable Coefficient Std. Error z-Statistic Prob.   

     
     RETURNS(-1) 0.2411 0.0529 4.5558 0.0000 

DEALS_NONOIL(-1) 0.0139 0.0972 0.1430 0.8863 

C 0.0128 0.3174 0.0403 0.9679 

     
      Variance Equation   

     
     C 1.1875 0.3203 3.7073 0.0002 

RESID(-1)^2 0.3119 0.0444 7.0218 0.0000 

GARCH(-1) 0.6568 0.0536 12.262 0.0000 

DEALS_NONOIL(-1) 0.9705 0.4366 2.2229 0.0262 

     
     R-squared 0.0895     Mean dependent var 0.2682 

Adjusted R-squared 0.0855     S.D. dependent var 8.1451 

S.E. of regression 7.7881     Akaike info criterion 6.6980 

Sum squared resid 28149.96     Schwarz criterion 6.7602 

Log likelihood -1556.986     Hannan-Quinn criter. 6.7225 

Durbin-Watson stat 1.8506    
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Figure A1. Causality-in-Quantiles Test Results for Oil Volatility (GARCH(1,1) Model) 

 

Notes: CV is the 5 percent critical value of 1.96. The horizontal axis measures the 

various quantiles while the vertical axis captures the tests statistic value. The lines 

corresponding to DEALS, DEALS_OIL and DEALS_NONOIL show the rejection (non-

rejection) of the null of no Granger causality from the various measures of M&A activity 

measures to oil volatility derived from a GARCH(1,1) model at the 5 percent level, if the 

lines are above (below) 1.96 for a specific quantile. 
 

Figure A2. Causality-in-Quantiles Test Results for Oil Volatility (Realized Volatility)  

 

Notes: CV is the 5 percent critical value of 1.96. The horizontal axis measures the 

various quantiles while the vertical axis captures the tests statistic value. The lines 

corresponding to DEALS, DEALS_OIL and DEALS_NONOIL show the rejection (non-

rejection) of the null of no Granger causality from the various measures of M&A activity 

measures to realized volatility of oil at the 5 percent level, if the lines are above (below) 

1.96 for a specific quantile. 
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