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Abstract: 

Objectives: Malaria in South Africa is still a problem despite existing efforts to eradicate the disease. In the 

Vhembe District Municipality (VDM) malaria prevalence is still high, with a mean incidence rate of 328.2 per 

100 0000 persons/year. This study aimed at evaluating environmental covariates, such as vegetation moisture 

and vegetation greenness, associated with malaria vector distribution for better predictability towards rapid and 

efficient disease management and control. Methods: The 2005 malaria incidence data combined with Landsat 5 

ETM were used in this study. A total of 9 remotely-sensed covariates were derived while pseudo-absences in the 

ratio of 1:2 (presence/absence) were generated at buffer distances of 0.5-20 km from known presence 

locations. A stepwise logistic regression model was applied to analyse the spatial distribution of malaria in the 

area. Results:  A buffer distance of 10 km yielded the highest classification accuracy of 82% at a threshold of 

0.9. This model was significant (ρ < 0.05) and yielded a deviance (D2) of 36%. The significantly positive 

relationship (ρ < 0.05) between the soil-adjusted vegetation index (SAVI) and malaria distribution at all buffer 

distances suggests that malaria vector (Anopheles arabiensis) prefer productive and greener vegetation. The 

significant negative relationship between water/moisture index (a1 index) and malaria distribution in buffer 

distances of 0.5 km, 10 km and 20 km suggest that malaria distribution increases with a decrease in shortwave 

reflectance signal. Conclusions: The study has shown that suitable habitats of malaria vectors are generally 

found within a radius of 10km in semi-arid environments and this insight can be useful to aid efforts aimed at 

putting in place evidence based preventative measures  against malaria infections.  Furthermore, this result is 

important in understanding malaria dynamics under the current climate and environmental changes. The study 

has also demonstrated the use of Landsat data and the ability to extract environmental conditions which favour 

the distribution of malaria vector (An. arabiensis) such as the canopy moisture content in vegetation, 

which serves as a surrogate for rainfall. 
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1. INTRODUCTION 

 

The global malaria infection rates are a public health concern, with over 210 million cases reported 

across the world in 2015. It is reported approximately 90% of all malaria deaths occur in Africa in the 
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year 2015 (WHO, 2016). Malaria cases are caused by Plasmodium falciparum pathogen, which is 

transmitted by female anopheles mosquitoes to humans as natural intermediate. Malaria is commonly 

transmitted through the bite of female Anopheles mosquitoes on humans. In South Africa, malaria is 

endemic to low-altitude areas of the northern and eastern parts of KwaZulu-Natal, Mpumalanga and 

Limpopo provinces. The high malaria transmission is invariably seasonal and is often limited to warm 

and rainy summer months (Craig et al., 1999). In Vhembe District Municipality, Limpopo province, 

high malaria cases are reported, with over 2-3 incidences per 1000 population at the district level 

(Raman et al., 2016). South Africa is one of the countries that pledged to eradicate malaria by 2020, 

and efforts are currently made to realize this intervention for a zero-malaria country.  Such efforts 

include the implementation of various measures to achieve a primary milestone that is characterized 

by four phases. These phases are: (i) controlling malaria to less than 5 positive cases per 1000 

persons, (ii) pre-elimination stage, (iii) complete elimination (no transmission) and (iv) prevention of 

re-introduction of malaria diseases (NDoH, 2010; Maharaj et al., 2012; Mendis et al., 2009). The 

ultimate goal of these efforts is to achieve zero malaria transmission in a year in malaria-prone 

countries such as South Africa. In order to achieve this, it is crucial to collect the relevant data 

regarding the occurrence of P. falciparum species in endemic areas. This will in turn, assist in efforts 

aimed at detecting, controlling, managing and eradicating malaria.  

Mapping the distribution of P. falciparum involves the knowledge of potential habitats of Anopheles 

species and records confirming malaria presence/absence in a particular area or region. This exercise 

often employs field surveys where health-care workers record areas of malaria presence, which can 

range from a single household to a regional scale. Nonetheless, this method of data collection takes 

into account the locations and the frequencies of malaria presence and seldom includes environments 

where malaria is absent. This poses inherent technical challenges when attempting to model the 

spatial distribution of malaria, since the data collected may be statistically ‘incomplete’. However, a 

number of species distribution models incorporating the presence-data only or presence-absence data 

exist as explained in the literature (Phillips et al., 2006) and have been used over the years. Moreover, 

the availability of presence-absence data is important for modelling the distribution of P. falciparum, 

depending on the statistical method applied for mapping. 

Several species distribution models (SDM’s) have been widely used in ecology and in 

epidemiological studies alike. The premise of these models is two-fold: those that use presence-only 

data, and those that require both presence and absence data (Barbet-Massin et al., 2012). Perhaps one 

of the few presence-only SDM’s is rectilinear envelope including BIOCLIM (Busby, 1991).  Some 

models, although categorised as a presence-only model such as the maximum (Maxent), require 

background pseudo-absence data to be fully functional (Phillips et al., 2006). In addition to Maxent, 

the Genetic Algorithm for Rule-Set Prediction (GARP) also requires the insertion of pseudo-absence, 

i.e. 0, to depict areas where the species is unlikely to occur (Stockwell and Peters, 1999).  On the 
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other hand, most methods for predicting malaria rely on the availability of both presence-absence 

records of malaria pathogen. The common example of such methods is logistic regression model, 

either univariate or multivariate, and boosted regression tree (Clennon et al., 2010; Kleinschmidt  et 

al., 2000; Sinka et al., 2010). To ensure accurate mapping of potential malaria distribution in instances 

where absence-data is missing, deriving pseudo-absences for use in regression and mapping can be an 

effective alternative. One of the advantages of employing presence/absence models for predicting 

malaria is that they make it possible to assess the precision of map and significance of covariates, 

while allowing for quantification of errors of estimations (Kazembe et al., 2006).   

In cases where the absence data is not readily available, generating pseudo-absences for mapping of 

malaria has been considered as an alternative by many researchers (Sinka et al., 2010; Nmor et al., 

2013; Alimi et al., 2015). Most of these studies that utilize pseudo-absences for malaria mapping are 

focused on regional scales, with minimal emphasis placed on interactions at local scales (Tonnang et 

al., 2010; Conley et al., 2014). It has been established that pseudo-absences generated very close to 

presence cases may fall on true unidentified presences, while those generated randomly very far from 

presences may result in a model defining coarser geographical differences rather than fine-scale 

variables (Chefaoui and Lobo, 2007). The coarse scale analysis is usually as a result of the objective 

to focus on efforts to control malaria epidemic on larger areas, thereby obscuring interactions of local 

environmental covariates. For example, Sinka et al. (2010) studied the distribution of malaria in the 

Americas at buffer range of 100 km-1500 km from known presence locations. The findings showed 

rather a general depiction of malaria distribution on a coarser scale, and not necessarily the local 

malaria distribution pattern.  In contrast, Nmor et al. (2013) had effectively predicted malaria vector 

breeding habitats using the pseudo-absences generated at the spatial distance of greater than 50 m 

from the presence locations. Generating the pseudo-absences for a particular study of interest partly 

depends on the scale of available data and the overall study objective. A large body of literature 

exists, in which the generation of pseudo-absences was performed along environmental and 

topographic gradients such as rainfall, roads, slopes and distance from rivers (Ahmed, 2014; Machault 

et al., 2011; Zhou et al., 2012). However, can the derivation of pseudo-absences along satellite data 

gradient shed light in describing the extent of malaria distribution? If so, how far should pseudo-

absences be generated from known presence locations, especially in semi-arid rural villages which are 

located very close to each other (<20 km radius)? 

Satellite data have been extensively used for predicting malaria vector distribution globally (Adeola 

et al., 2016; Tonnang et al., 2010; Alimi et al., 2015; Omumbo et el., 2002). The efficiency of 

mapping is achievable considering the fact that satellite/remote sensing data are available at various 

spatial (0.5 m-1000 km), temporal (daily - yearly) and spectral scales (multispectral - hyperspectral). 

In Africa, however, a few attempts were made to predict malaria vector breeding sites based on 

remote sensing, environmental and topographic datasets. For example, Clennon et al. (2010) 
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employed Landsat 5 and general linear models to characterize mosquito breeding habitats in Zambia. 

In South Africa the use of satellite data for malaria mapping is extremely limited, contributing to ≤ 

2% of total malaria research (Adeola et al., 2015). Because of this limitation, many local aspects of 

malaria-environment interactions in South Africa are not well-understood or not adequately 

quantified. These environmental aspects include vegetation cover and moisture parameters which play 

a role in malaria transmission. In addition, there is very limited application of satellite technology in 

mapping malaria especially in malaria-endemic areas of South Africa (Mpumalanga, KwaZulu-Natal 

and Limpopo provinces). To the best of the authors’ knowledge, no study was found in the literature 

that sought to assesses the efficacy of Landsat derived environmental covariates for predicting malaria 

when pseudo-absences are derived at various localized buffer distances (<50km).. In the Limpopo 

province of South Africa, malaria prevalence continues to exert pressures on health care services and 

financial investments associated with disease control and monitoring, particularly in the Vhembe 

District Municipality. This is because the area experiences high malaria prevalence, with a mean 

incidence rate of approximately 328.2 per 100 000 persons/year (Gerritsen et al., 2008).  Therefore, 

this study aimed at evaluating efficacy of Landsat-derived environmental covariates for predicting 

malaria distribution in semi-arid rural villages of Vhembe District, South Africa, at buffer distances of 

0.5 km to 20 km. This study was the first of its kind, in support of initiatives aimed at eradicating 

malaria by 2020. Landsat satellites have been in operation since 1972 and provide a desirable 

temporal, spatial and spectral coverage that are necessary to study the seasonality patterns of a malaria 

epidemic.   

2. METHODS 

 

2.1. Study area 

The rural villages of Vhembe District Municipality in Limpopo Province of South Africa are the 

ideal candidates to test the study objective. The study area is located at the center geographic 

coordinates of 23°40’ S and 30°00’ E (fig. 1). It comprises of varying topography, with diverse floral 

and faunal biodiversity. It receives annual summer rainfall of 820 mm (Mpandeli, 2014), with 

Soutpansberg Mountain modifying geographical rainfall patterns (Kabanda and Munyati, 2010). The 

north-western part of Vhembe District is characterized by semi-arid conditions, while the south-

eastern part experiences subtropical conditions. The Vhembe District Municipality has a population of 

more than 1.3million people (StatSA, 2016), who predominantly reside in rural villages. Data from 28 

villages were used for the study. The area covering these villages has recorded mean malaria 

incidence of about 328.2 between 1998-1999 and 2004-2005 (Gerritsen et al., 2008). In 2000, the 

municipality has experienced floods brought by the tropical cyclone Eline which have dramatically 

increased malaria cases in Limpopo province (Reason and Keibel, 2004). Malaria in Limpopo is 
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seasonal and it is, therefore, crucial to use seasonal data covering the entire study area to map the 

occurrence of malaria in the VDM. 

 

 

 

Fig. 1. Study area in the northern part of Limpopo. Each coloured polygon represents individual villages under 

consideration (n = 28) 

 

2.2. Epidemiological data 

 

This study used secondary data acquired from the malaria information systems (MIS) of the South 

African National Department of Health that were developed and maintained by the malaria control 

programme (MCP). Ethical approval for this study was obtained from the faculty of Natural and 

Agricultural Science Ethical Committee at the University of Pretoria.  The epidemiological data used 

for the study was obtained from the South African National Department of Health’s Malaria 

Information Systems (MIS). The dataset comprises of the presence cases of malaria agent (P. 

falciparum) in rural villages in Vhembe District, from 1998-2006. It was obtained passively from 

patients who tested positive for P. falciparum in health centres around the selected villages. A total of 

28 presence locations at village level was recorded for the year 2005. In the current study, the absence 

data was originally unavailable since the surveys conducted were designed to report on positive 

malaria cases by health-care workers. The absence (pseudo-absence) points were generated and were 

two times (2x) the number of presence points which formed part of a standard dataset to be used for 

modelling. 
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Generally, the MIS dataset comprises of additional records such as the locality, facility names where 

malaria tests were conducted and the source of infection. Because the Vhembe District Municipality 

forms the border between South Africa and Zimbabwe/Botswana, some of the cases reported in this 

area are imported from Mozambique, Zimbabwe and Botswana. For the purpose of this study, all the 

imported cases outside of the VDM were filtered so that an understanding of local environmental 

factors can be derived from conditions existing within the municipality.  

2.3. Remote sensing data  

 

The Landsat 5 Thematic Mapper (TM) imagery acquired in spring of 2005 were used for the study. 

Three multispectral images were acquired from the United States Geological Surveys website 

(http://earthexplorer.usgs.gov/). Landsat 5 comprises of 7 multispectral bands, in the visible to 

thermal infrared region (0.45-12.5 µm) at 30 meters spatial resolution. Images were acquired on path 

and rows 169/76, 170/75 and 170/76 (12 September 2005), and for paths/rows 170/75 and 170/76 (19 

September 2005). This period corresponds to the rising malaria incidences in the study area (Gerritsen 

et al., 2008). The multi-spectral bands of Landsat TM are commonly used for vegetation, bathymetric, 

and soil moisture mapping. Vegetation is one of the environmental factors, depending on climatic 

evolutions, that influences malaria vector behaviour directly or indirectly (Gomez-Elipe et al., 2007). 

Therefore computing vegetation indices that are sensitive to changes in vegetation greenness could 

enhance the understanding of malaria patterns. Various environmental covariates were generated from 

Landsat TM which relate to vegetation biogeophysical/chemical properties and moisture. Perhaps one 

of the most commonly used satellite-derived indices is the normalized difference vegetation index 

(NDVI) which is primarily used as an indicator of vegetation greenness and biomass (Jackson et al., 

1983). In addition to Landsat data, a 30 m digital elevation model (DEM) data from Shuttle Radar 

Topography Mission (SRTM) was used to derive the aspect of individual presence-absence points.  

2.4. Data pre-processing 

 

Figure 2 shows the workflow adopted in this study. The processing of epidemiological data was 

done in Microsoft Excel spreadsheet. Firstly, the presence dataset was prepared according to the 

number of villages with records of P. falciparum presence. A total of 28 villages have been extracted 

from the MIS dataset, which contains recorded malaria cases. The original MIS dataset contained the 

name of the village, local municipality, health centres, locality, death status, age and sex of the 

infected which were not employed for the study.   

The pre-processing of Landsat TM involved four (4) stages: (i) band merging, (ii) atmospheric 

correction, (iii) image mosaicking, and (iv) study area subsetting. Firstly, six Landsat TM spectral 

bands were merged to derive a 6-band multi-temporal image composite, excluding thermal bands. 

This process was applied to individual scenes with similar metadata file definition (.mtl). The 

http://earthexplorer.usgs.gov/
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subsequent merging of spectral bands was carried out in Quantum Geographic Information System 

(QGIS) software (QGIS Development Team, 2016). Secondly, in order to minimize the influence of 

atmosphere on data analysis, all of the merged multi-spectral images were subjected to atmospheric 

correction in ENVI version 4.7 through the Quick Atmospheric Correction (QUAC) module (Exelis 

Visual Information Solutions, 2016). The QUAC approach is based on the empirical finding that the 

mean spectrum of a collection of diverse material spectra, such as the end-member spectra in a scene, 

is essentially invariant from scene to scene (Bernstein et al., 2012). Thirdly, the atmospherically 

corrected images were mosaicked in ENVI 4.7 to derive a single large image that covers the entire 

study area. In total 3 images were stacked to form part of a larger multi-spectral image. And finally, 

the final image of the Vhembe District Municipality (VDM) was extracted from the image mosaic by 

use of corresponding municipal shapefile (.shp). The spatial mask was created for the high altitude 

terrain along the Soutpansberg Mountain, which comprises of forest vegetation that does inhibit 

malaria transmission through complete shading effect (Kamau et al., 2006). 

 

Fig. 2. Overview of epidemiological and remote sensing datasets and methods used for the study 
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2.5. Data processing and analysis  

 

The pseudo-absences were generated for five buffer distances from the known presence locations. 

To test for the efficacy of Landsat 5 data for malaria mapping, the buffer distances were set at 0.5 km, 

1 km, 5 km, 10 km, and 20 km (fig. 3). The choice of buffer distances was dictated by the proximity 

of one village to the neighbouring villages other so as to avoid possible duplication of occurrence 

points.  The generated pseudo-absences formed part of the standard dataset used for modelling. In 

total, 56 pseudo-absences (n = 56) were derived, making presence-absence ratio of 1:2. The standard 

P. falciparum points were equal to 84 (N = 84). The dataset was geo-referenced using World Geodetic 

System (WGS-84) and exported in GIS software in order to allocate individual location ID in the 

dataset.  

 

Fig. 3. Representation of different buffer distances across 28 villages in Vhembe District Municipality. Buffer 

distances were ranging from 0.5 to 20 km 
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2.6. Remote sensing analysis 

 

A number of remotely-sensed indices were computed in order to assess their usefulness for mapping 

malaria distribution in the study area. These indices were computed based on the environmental 

factors that are known to influence breeding patterns and survival of malaria vectors. Environmental 

factors such as vegetation moisture content, the greenness and daily temperatures of an area are 

known to have an impact on malaria spread, vector reproductive rates, and pathogen incubation period 

(Wayant et al., 2010; Baeza et al., 2011). It was upon this premise that the normalized difference 

vegetation index (NDVI), modified normalized difference water indices (MNDWI1 and MNDWI2), 

green index (GI), and soil adjusted vegetation index (SAVI) were computed from Landsat 5 data and 

tested for the study. The common NDVI is highly susceptible to errors over canopy and soil 

background in VDM, especially in September month where large parts of the land have low 

vegetation cover.  Additional to these indices, a quasi-yellowness index (p-YI) was derived due to its 

possible relationship with the habitats of An. arabiensis in the study area (Adams et al. 1999). The 

yellowness index was first introduced to estimate chlorosis, although its application may not be 

limited to plant health and stress analysis (Malahlela et al., 2014).  Its inverse correlation to NDVI 

could potentially shed light on patterns of malaria occurrence in a semi-arid environment such as the 

VDM, considering that high malaria prevalence is usually observed during high NDVI season, often 

characterized by high daily temperatures, rainfall, humidity and high chlorophyll composition in 

plants. Both NDVI and yellowness index are related to chlorophyll concentration and thus p-YI was 

incorporated in the study of malaria. Other remotely sensed indices were designed for the study based 

on the relationship between spectral bands and moisture. These indices are named moisture indices (a1 

and a2) as shown in table 2. These indices were computed by considering the reflectances in the 

shortwave infrared spectral region (1.55-2.35 μm) to malaria mapping, which may have the potential 

confounding effect to MNDWI1. The shortwave infrared (SWIR) reflectance generally decreases as 

water content in the leaves increases at 1-3µm (Gao, 1996; Hunt and Rock 1989) and in this study 

average reflectance and the spectral difference between NIR and SWIR were explored. The shortwave 

infrared bands are sensitive to soil moisture, changes in vegetation moisture and water bodies which 

are potential habitats and breeding sites for An. arabiensis species. (Bowman, 1989; Tucker, 1980).   

In addition, the aspect (direction to which the slope faces) was derived from Advanced Spaceborne 

Thermal Emission Reflection Radiometer (ASTER)’s digital elevation model (DEM), that has a 

similar spatial resolution as Landsat TM of the study area.  
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Table 1: Selected remote sensing indices that were employed for the study. All indices are derived from Landsat 

TM 

 

2.7. Statistical analysis 

 

Statistical analysis was performed on a full standard dataset comprising of presence and pseudo-

absence locations together with the environmental covariates derived from Landsat TM data acquired 

in spring 2005. To calibrate the statistical model, 60% (n = 50) of the data was used for training, while 

independent 40% (n = 34) was used for validating the predictive model. The stepwise logistic 

regression (SLR) model has been applied to training dataset derived at five (5) buffer distances in R 

software (R Core Development Team, Vienna), using a glm2 package. Both backward and forward 

SLR were used in order to select covariates with high relative importance using relaimpo package in 

R, so as to avoid multi-collinearity issues and model over-fit (Collet, 1991). The automated SLR is 

one of the common statistical methods for public health, by relating the remotely sensed data with the 

disease distribution such as malaria (Adimi et al., 2010; de Oliveira et al., 2013). The automated 

procedure for variable selection has advantages in that it reduces computation time and tedious 

manual modelling, especially in large, complex candidate models (Ripley, 2003; Calcagno and de 

Index Formulation Reference  

 

Normalized Difference Vegetation 

Index (NDVI) 
     

           

           
 

 

 

 

Jackson et al. (1983) 

Modified Normalized Difference 

Water Index (MNDWI1) 
       

            

            
 

 

Ceccato et al. (2001) 

Modified Normalized Difference 

Water Index (MNDWI2) 
       

             

             
 

 

Xu (2006) 

Moisture index (a1)    (
          

 
) 

In this study 

Moisture index (a2)               

 

In this study 

Soil adjusted vegetation index      
           

             
    ) Huete (1988) 

Green index    
    

      

 
Gitelson et al. (2003) 

 

Quasi-Yellowness Index 

p-   
                       

     
  Adams et al. (1999) 
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Mazancourt, 2010).  The choice of the stepwise logistic regression model was dictated by the binary 

nature of the response variable (presence/absence), its simplicity for embedding in GIS environment 

(Yang et al., 2006) and its popularity amongst all other predictive models. The logistic regression is 

given by the equation (1): 

   
 

     * (   ∑      

 

   
)+

     (1) 

 

where yi is the probability of malaria distribution (1 or 0), xi is the environmental covariate at the jth 

location, βi is the coefficient of xn, β0 is an intercept, and exp is the exponential function of the 

regression. The malaria distribution maps were derived from final selected models, with lowest 

Aikaike’s Information Criterion (AIC) as these represented best fit. In addition, probability maps with 

threshold values of greater than 0.7 were produced, since model performance at his threshold is 

deemed a good model (Baldwin, 2009). The bootstrap resampling was performed on the independent 

validation dataset to assess the robustness of the regression. The validation dataset was bootstrapped 

with the replacement for n = 10 000 time using the boot package in R.  The coefficient of variation 

(CV) was used as a measure of variability of the pseudo-absences of validation dataset.  

The model deviance (D
2
), which is an analogy of R

2
, was used to determine the percentage of 

variability explained by the remote sensing covariates. The D
2
 is given by the equation (2): 

 

     (
   

   
)       (2) 

where ρσ1 is the residual deviance, and τρw is the null deviance. A good model is the one with low 

AIC and high D
2
. Because logistic regression is a form of generalized linear model with binary output 

the model D
2 

is used. The D
2
 is derived from the null deviance, which measures the variability of 

dataset, compared to the residual deviance, which measures variability of the residuals after fitting the 

model. These deviances can be interpreted much like the total and residual sum of squares in a linear 

model to estimate the goodness of fit (Rossiter and Loza, 2016). In order to assess the validity of the 

model, the overall classification accuracy was determined from the independent validation dataset.  

The overall accuracy (OA) is the number of correctly classified cases (presence/absences) to the total 

number of cases in the dataset. Classification accuracy was done on probability threshold values of 

0.5-1.0. The reason for leaving out lower probability threshold values was that a model with 

probability values of < 0.5 is considered a failed model (Baldwin, 2009).  
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3. RESULTS 

 

The results of the study are presented in table 2. The table showed that SAVI was the most significant 

remotely-derived covariate in predicting the distribution of malaria in VDM, Limpopo.  

 

Table 2: Results of the logistic regression along 5 buffer distances from the known P. falciparum locations. 

Buffer distance 

(km) 

Covariates Estimates  ρ value (> | z | ) Significance 

level 

     

0.5 

β0  -36.370 0.008 ** 

NDVI 108.100 0.043 * 

SAVI 124.340 0.027 * 

a1 -46.220 0.012 * 

a2 63.250 0.017 * 

     

1.0 

β0 0.629 0.755  

SAVI 14.882 0.041 * 

NDWI1 45.984 0.078  

a2 87.529 0.094  

p-YI -7.241 0.013 * 

     

5.0 

β0 5.341 0.001 *** 

SAVI 13.659 0.012 * 

Aspect 0.007 0.061  

     

10.0 

β0 -43.551 0.053  

NDVI 131.350 0.021 * 

SAVI 159.840 0.013 * 

a1 -58.851 0.057  

a2 181.070 0.096  

NDWI1 89.790 0.049 * 

NDWI2 -36.030 0.016 * 

     

20.0 

β0 14.904 0.006 ** 

NDVI 84. 780 0.009 ** 

SAVI 90.310 0.008 ** 

a1 -20.683 0.017 * 

     

Significance codes: *** (0.001), ** (0.01), * (0.05) 

 

In all the derived models, the SAVI showed a significant positive correlation with the distribution of 

P. falciparum (malaria) (ρ <0.05).  The results also show that NDVI is significantly correlated with 

the distribution of P. falciparum at buffer distances of 0.5km, 10km, and 20km from the presence 

locations. The introduced indices which are sensitive to moisture changes (a1 index and a2 index) have 

shown to be negatively correlated with the distribution of malaria pathogen, although they are mostly 

significant at buffer distances of 0.5 km and 20 km. Predicting the distribution of P. falciparum at 10 

km distance yielded the highest classification accuracy of 82% at a threshold of 0.9 (Fig. 4), while at 5 

km low classification accuracy (54%) was found at the threshold value of ρ = 1.0.  
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Fig. 4. Logistic regression performance across threshold values of 0.5–1.0 as applied on buffer distances 

selected for the study area using validation dataset (n = 34) 

 

 

In the current study the highest variation explained by the predictive model was found to be 36% 

(D
2
 = 0.36; AIC = 57.07) 10 km away from the known presence locations, while the lowest explained 

variation (27%) was found at buffer distance of 20 km away from the known presence location (D
2
 = 

0.27; AIC = 54.73). Figure 5 shows the results of stepwise logistic regression as applied on distances 

0.5 km-20 km from the known P. falciparum presence location.  The validation dataset was 

bootstrapped and yielded the CV of 0.11, indicating the small variation of the pseudo-absences from 

the calibration dataset.  

 

Fig. 5. D
2
 and AIC of logistic regression applied on buffer distances in VDM 
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Fig. 6. Residual plots of environmental covariates of the significant SLR model 

 

The F-test performed between the measured and predicted presence/absence data yielded a statistical 

ρ value of 0.081, which is greater than the ρ = 0.05. This result indicates that there was no significant 

difference between the observed and predicted malaria occurrence in the rural villages of VDM.  The 

SLR model shows that the NDVI, SAVI, NDWI1 and NDWI2 were statistical significant variables and 

thus improved the prediction of malaria occurrence when compared to a 20 km p/a model.  Ideally, a 

model that explains greater than 50% (D
2
/R

2
 > 0.5) of the variations in the p/a occurrence of species is 
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considered a relatively good model (Lopatin et al., 2017). Although all the models tested for the 

current study yielded a D
2
 of less than 40%, the ultimate model used to create predictive maps was 

significant at ρ=0.033. The variable residual plots (Fig. 5) show the residuals, with NDVI, SAVI, and 

NDWI1 exhibiting lower residual deviance. However, randomly collecting the pseudo-absences at 

various spatial scales and at highly heterogeneous village areas such as in VDM is very challenging 

for adequately selecting environmental variables with lower residuals that best explain the distribution 

of An. arabiensis species. Ecological systems are complex, therefore multi-temporal data about the 

interactions between environmental covariates and malaria distribution are required to untangle such 

complexities.   

 

3.1. Predictive maps 

 

The results of the predicted probability maps are shown in figures 7 (a-e) below. From these results, 

it becomes apparent that the predicted malaria distribution exhibits spatial heterogeneity across 5 

buffer distances, which may be attributed to landscape configuration and environmental factors used 

for malaria modelling.   

The model calibrated from pseudo-absence dataset within 0.5 km radius produced a much narrower 

pattern in malaria distribution (fig. 7 a). In areas at the foot of Soutpansberg Mountain, the model has 

predicted a high probability of malaria distribution due to apparently high ground cover, comprising 

of moist, riparian vegetation. Conversely, the wide distribution of malaria pathogen is recognized 

when pseudo-absences within 10 km are used (fig. 7 d). This pattern, which is mapped at high 

classification accuracy, indicates that cases of malaria could potentially be detected in areas that were 

previously considered unsuitable for the survival of P. falciparum pathogen and its vector.   

Additional to malaria probability maps that range from 0 (less likely) to 1(more likely), spatial 

heterogeneity of malaria distribution was examined at threshold greater than 0.7. Figure 8 (a-e) shows 

the results of this threshold applied onto the predictive maps. In general, high probability of malaria is 

noticeable in three areas of concern: (i) at the settlements at the foot of Soutpansberg Mountain, (ii) 

along the riverine areas and (iii) closer to low-lying irrigated fields.  
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Fig. 7. Predicted potential geographic distribution of malaria produced through logistic regression and Landsat-

derived environmental covariates. Maps produced at buffer distances of 0.5 km (a), 1 km (b), 5 km (c), 10 km 

(d) and 20 km (e) 
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Fig. 8. Predicted spatial distribution of malaria in VDM at a probability threshold of ≥ 0.7. Red colour depicts 

areas of predicted P. falciparum presence, while white represents predicted P. falciparum absence and 

Soutpansberg Mountain mask (Color figure online) 

 

4. DISCUSSIONS 

 

The aim of this study was to assess the feasibility of Landsat-derived environmental covariates for 

predicting malaria distribution in the rural landscape of Vhembe District Municipality in South 
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Africa, across different buffer distances. In this study, the results have shown that intermediate buffer 

distance (10 km) yielded the highest classification accuracy (82%) at the threshold of 0.9, with a D
2
 of 

0.36. This may be an indication that the generated pseudo-absences at this distance represented areas 

of low suitability for An. arabiensis species occurrence, which is the dominant P. falciparum vector in 

VDM area. Additionally, higher classification accuracy at 10 km buffer distance may show the 

similarity between pseudo-absences and ‘true absences’ where P. falciparum vector is likely to occur 

(CV = 0.11, ρ = 0.3). These findings demonstrate the potential of medium resolution satellite data to 

predict malaria distribution at local levels (high spatial resolution), as most studies focused on 

regional and global patterns. Consequently, areas with the highest likelihood of malaria occurrence 

are located around the green vegetated environments which serve as refuges for malaria vector 

(Ricotta et al., 2014).  The lowest classification results attained at 5 km from the presence location 

may indicate the probability of pseudo-absences to have fallen on the unidentified presence location, 

particularly consideration the random nature of their derivation (Chefaoui and Lobo, 2007).  Whether 

this effect is peculiar to a medium spatial resolution dataset (30m), such as Landsat TM/ASTER or 

high spatial resolution datasets (e.g. SPOT), is a matter that requires further research.  

In all models, SAVI exhibited a statistically significant pattern as a remote sensing-derived covariate 

at ρ < 0.05.  The findings from the current study differ from those obtained by Jacob et al. (2007) who 

concluded that NDVI, SAVI and atmospherically-resistant vegetation index (ARVI) were not related 

to ecological conditions necessary for An. arabiensis habitat suitability. This difference could be 

attributed to methodology used in this study, where the pseudo-absences were utilized while Jacob et 

al. (2007) opted to use no pseudo-absences generated at 30 m spatial resolution. The fact that Jacobs 

et al. (2007) did not subject the image (Quickbird) to atmospheric correction process which reduces 

the influence of atmospheric noise, might have contributed to the subsequent correlations between 

vegetation indices and Anopheline mosquitoes habitats. In addition, there was no apparent description 

of threshold values defining vegetation range for indices used (e.g. NDVI), except for the binary land 

cover classification of paddy vegetation which might have affected variable contribution in modeling.  

In contrast, the current study is one of the first studies in a South African semi-arid environment that 

assessed the correlation of remote sensing covariates to P. falciparum distribution at a spatial 

resolution higher than 50 meters. Some authors have found NDVI to be the strongly correlated 

covariate than many other indices in malaria studies elsewhere in Africa (Machault et al., 2010). In 

contrast, this study has shown that the NDVI correlation is environment dependant and therefore in 

semi-arid environments, SAVI which takes into account effect of soil background, performs higher 

than NDVI.  The NDVI is highly susceptible to errors over canopy and soil background in VDM, 

especially in September month where large parts of land have low vegetation cover. In addition, it has 

been documented that NDVI may suffer from signal saturation especially when used in dense 

vegetation (Malahlela et al., 2014). The significantly positive correlation of SAVI with malaria 
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distribution at 0.5-20 km buffer distances shed light on environmental conditions suitable for survival 

of malaria vector (An. arabiensis).  It is generally known that SAVI values increase with an increase 

in the vegetation greenness and biomass (Huete, 1988; Araujo et al., 2000).  The abundance of healthy 

vegetation provides mosquitoes with resting sites and refuges (Ricotta et al., 2014), thereby 

intensifying foci for malaria transmission.  

One of the notable correlations is between malaria occurrence and spectral indices from shortwave-

infrared bands (a1 index and a2 index). Both the indices were firstly tested based on the assumption 

that shortwave infrared band (SWIR) is inversely correlated to vegetation water content, and 

therefore, with a probability of malaria distribution. Although each plant has its own relationship with 

chlorophyll content and vegetation water content, the first moisture index (a1) has explained the 

general relationship of vegetation water content and a probability of malaria occurrence in the study 

area (Ceccato et al., 2002). The second moisture index (a2) was a measure of vegetation water content 

that showed a positive correlation with malaria pathogen, although the statistical significance was 

only found at buffer distance of 0.5 km (ρ < 0.05; AIC = 55.33). However, the sensitivity of this index 

in other environments is subject for further research. This study has shown that in instances where 

NDVI shows no significant association with malaria distribution or risk, other indices such as SAVI 

and a2 can be used instead. On the other hand, the MNDW1 has shown to be significantly positively 

correlated to the malaria distribution at buffer radii of 0.5 km (ρ < 0.05; AIC =55.33) and 10 km (ρ < 

0.05; AIC = 57.07).  

The correlations of MNDWI1 at 0.5 km and 10 km buffer distances show that availability of water 

bodies is crucial for survival adaptations of An. arabiensis mosquitoes at the study area.  The 

correlation found in this study between MNDWI1 and malaria distribution has also been established 

elsewhere in Africa by Dambach et al. (2012). Water bodies serve as breeding sites for mosquitoes, 

although the preferences in terms of the size, compactness, depth, temperature and quality differ from 

one Anopheline species to another (Zhou et al., 2012). The correlation between P. falciparum 

pathogen with NDVI, SAVI, moisture indices (a1 and a2) and MNDWI1, may serve as an indication 

that malaria distribution is correlated to response of vegetation to rainfall and temperatures. This is 

particularly true in that vegetation index NDVI is known to be a surrogate for rainfall (Mabaso et al., 

2006). Although not statistically significant the p-YI has exhibited negative correlation with the 

distribution of malaria in the study area using 5 km model. This is an indication that indeed green 

vegetation intensifies malaria transmission in that p-YI is negatively correlated to vegetation 

greenness, and therefore malaria distribution. The use of these indices can form part of the malaria 

early warning systems in support of eradication efforts. The improved spectral and radiometric 

resolution of Landsat satellite (currently Landsat 8) could be used to detect the breeding and questing 

sites for An. arabiensis mosquitoes at village level at higher accuracies, thus reducing costs associated 

with manual surveying of environments surrounding them. 
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The findings also show that the orientation of slope (aspect) towards the north results in an increased 

probability of malaria occurrence, particularly at buffer distance of 5 km from the known presence 

locations. This is especially true, in that malaria vectors prefer warm, moist habitats and therefore, the 

inclination of the slope towards the north create optimal conditions for An. arabiensis habitation. 

Most of the villages are situated on the north-eastern slopes whose surrounding vegetation provide 

resting and refuges for mosquitoes. It is generally known that in the southern hemisphere north-facing 

slopes are warmer than south-facing slopes (Adams, 2010), and therefore integration of remote 

sensing data and temperature/rainfall data could enhance insight into malaria control and eradication. 

The information can be used by the policy-makers and the health-care professional to distribute the 

limited financial resources to the areas that are highly affected by malaria. In addition, further 

financial investments have to be allocated to the areas that were previously known to be malaria, such 

as the western and the north-western part of the VDM. This study shows that climate change may 

alter the traditional habitable environments for malaria by extending the plasticity of An. arabiensis 

across the semi-arid environments.  

The inability of the significant remotely-sensed covariates to explain high probability (D
2 

<50%) of 

occurrence of malaria distribution is likely due to the complexity of other unexplained variables 

relating to Anopheles breeding sites and human factors that were not measured in this study 

(Protopopoff et al., 2009). There is also an increasing recognition that the dynamics of infectious 

malaria transmission is as a result of the complex interplay between human, animal and environmental 

conditions (Ganser and Wisely, 2013). Assessing the interlink of variables from all key contributory 

factors in malaria transmission could effectively improve the model accuracy (Dlamini et al., 2015). 

On the other hand, the significance of SAVI, NDVI, NDWI1 and NDWI2 in the final predictive model 

is an indication that remote sensing variables are strongly correlated to the malaria occurrence 

although the variation explained is lower. In addition, a multi-temporal analysis of malaria 

transmission in VDM by use of remote sensing could potentially shed the light on effectiveness of this 

technology at district level. This is primarily due to the seasonality of malaria in South Africa and the 

neighbouring countries especially in Zimbabwe (Mabaso et al., 2005).  

The pattern of malaria distribution is highlighted by the probability maps in figure 7. These figures 

show varying degrees of the probability of malaria occurrence across the VDM. In comparison, the 

map produced from pseudo-absences that were derived from 0.5 km (fig. 7 a) shows a rather narrow 

spatial pattern than both the 1 km and 10 km map. This map is produced from low accuracy model, in 

which probability of malaria occurrence stretches up to the traditionally malaria-free southern part of 

the VDM.  In fig. 7 (b) high probability of malaria occurrence stretches from east (Mutale and 

Thulamela local municipalities) to the western part of the VDM, with high occurrences predicted at 

the low-lying areas of the Thulamela local municipality. In contrast to the 0.5 km and 1 km predictive 

maps, the 5 km buffer distance predictive map relates the high probability of malaria occurrence to the 
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aspect or slope orientation. In this map, the villages located on north facing slopes (0.0-67.5°) and the 

east facing slopes (67.5-112.5°) exhibit high likelihood of malaria transmission than both the south 

and west facing villages. Slope orientation plays a major role in the distribution of floral composition 

over a long period (Bennie et al., 2006). The map derived from 10 km pseudo-absences radius showed 

a high probability of malaria occurrence in the eastern part of the VDM, where Mutale and Thulamela 

municipalities are located, which are areas known for high malaria transmission in the Limpopo 

province of South Africa (Khosa et al., 2013; NICD-NHLS, 2017). In all the predictive maps, it 

appears that very low probabilities of malaria occurrence are found within the Makhado local 

municipality in the southwestern part of Soutpansberg Mountain.   

Although this study has successfully utilized remotely sensed data for mapping malaria distribution 

it had its own limitations. One of the limitations emanates from the routine data collection from the 

national malaria control centre. The data collection system was mainly passive, with more room left 

for possible under-diagnosis or under-reporting. This could be averted by continuous sampling and 

the improvement of the methods used for sampling, which often requires considerable monetary 

investments. There are more than 28 villages in VDM, which could otherwise be included in the 

analysis, but were excluded due to lack of data. The inclusion of cases from other villages, although 

they may be few in number, could have potentially increased the number of presence locations, and 

therefore accuracy as a large number of cases (presence-absence) and iterations have a positive impact 

on statistical ρ value (Berkson, 1938). Another limitation of the study is the manner in which the 

random pseudo-absences were generated. It is recommended that the same geographical bias adopted 

for presence points be used even for pseudo-absences (Phillips et al., 2009). The pseudo-absences’ 

geographic location could have been the unidentified presence locations for P. falciparum due to the 

sampling protocol adopted in this study. Malaria transmission in the study area is largely influenced 

by environmental factors including temperatures and rainfall (Komen et al., 2015; Komen, 2017). In 

addition, Ikeda et al. (2017) have concluded that incidences of malaria in Limpopo province are 

positively correlated to the lag in local and climatic systems (e.g. rainfall) that occur in neighbouring 

countries. The use of temperature and rainfall data could essentially assist in the improvement of 

model prediction thus enhancing the overall classification D
2
. Thus, assessing the impact of climate 

change on malaria transmission requires consideration of not only annual mean temperature changes, 

but more importantly, the extent of temperature and rainfall interannual variability (Zhou et al., 2004).  

Unfortunately, the use of optical Landsat data is largely dependent on the availability of cloud-free 

atmosphere which may serve as a limitation to time-series analysis. The integration of active remote 

sensing data with optical could increase the temporal and spatial coverage of malaria endemic areas 

thus aid in mapping the disease occurrence during the periods of high rainfalls.  
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5. CONCLUSIONS  

 

In conclusion, findings from this study show that remotely sensed data can be used for mapping 

malaria in a semi-arid environment. The study has also shown that deriving the pseudo-absences at 

the intermediate distances (approximately 10 km) from the known presence location yields high 

classification accuracies than drawing pseudo-absences at very far or very near distances. The 

remotely sensed variables such as the SAVI and NDVI serve as good indicators for the environmental 

conditions that encourage An. arabiensis reproduction, questing and malaria transmission rates. If 

South Africa is to eradicate malaria by the year 2020, there should be intensified efforts towards early 

detection of the environmental/local conditions commonly associated with malaria spread, especially 

in rural Vhembe District, which has high malaria rates. The use of the latest Landsat data coupled 

with ancillary epidemiological and climatic data should form an integral part of the malaria early-

warning system due to the frequency of data satellite data acquisition (16 days cycle) and the 

biological/ecological nature of the P. falciparum vector. The findings from this study serve as 

baseline information for developing methodology necessary to detect and model malaria pathogen, 

vector, and habitat preference through the use of earth observation techniques.  
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Acronyms 

 

AIC:  Aikaike’s Information Criterion 

ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer 

D
2
:  Deviance 

DEM:  Digital elevation model 

GARP:  Genetic Algorithm for Rule-Set Prediction 

GI:  Greenness index 

MIS:  Malaria Information System 

MNDWI: Modified normalized difference water index 

NDVI:  Normalized difference vegetation index 

p-YI:  Quasi-Yellowness Index 

SAVI:  Soil-adjusted vegetation index 

SDM:  Species Distribution Modelling 

SLR:  Stepwise logistic regression 

TM:  Thematic Mapper 

VDM:  Vhembe District Municipality 
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