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The traditional (frequentist) tr -chart is a Shewhart-type chart useful for monitoring times between events
(interarrival times) following an exponential distribution. This problem often arises in high-yield processes
where the defect rate is low and hence the conventional attribute charts such as the c-chart and the u-chart
are often ine↵ective. We consider this problem under the Bayesian framework and propose a Bayesian tr -
chart when the exponential rate parameter is unknown. The Bayesian tr -chart is a Shewhart-type chart that
incorporates parameter uncertainty via a prior and a posterior distribution, unlike the traditional tr -chart.
The control limits are constructed from the predictive distribution of a plotting statistic. The performance
of the proposed chart is evaluated and comparisons are made with the traditional tr -chart. The Bayesian
chart is seen to be advantageous in certain situations. An illustrative example is given and a summary and
conclusions are o↵ered.
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1. Introduction

WITH the increased use of modern technologies
in various industries, the defect rate (or the

failure rate) in many processes has been decreased
to such an extent that the conventional attributes
charts for count data are found to be ine�cient. For
instance, in high-yield processes, due to the process
improvements made, there may be many zeros plot-
ted on the traditional p-chart and, hence, the chart
becomes uninformative or not useful. In such situ-
ations, Montgomery (2012) and others have recom-
mended the use of control charts for monitoring the
observed times between consecutive failures instead
of the observed number of failures. These control
charts based on the times between consecutive fail-
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ures (interarrival times) are known as times between
events (TBE) control charts in the literature. In sit-
uations with a low failure rate, a failure can be re-
garded as a rare event and the occurrence of the event
can be modeled by a homogeneous Poisson process
with a constant failure rate. Under this assumption,
these interarrival times are independent and iden-
tically distributed (i.i.d.) exponential random vari-
ables with a rate parameter equal to the failure rate
of the homogeneous Poisson process. Many TBE con-
trol charts (both phase I and phase II charts) have
been proposed in the literature: e.g., the exponential
chart (Chan et al. (2002), Jones and Champ (2002),
Xie et al. (2002), Zhang et al. (2006, 2011), Ku-
mar and Chakraborti (2015)), the cumulative quan-
tity control (Liu et al. (2004, 2006), the exponen-
tial cumulative sum chart (CUSUM; Lucas (1985),
Vardeman and Ray (1985), Gan (1994), Borror et al.
(2003), Zhang et al. (2014), Qu et al. (2015)); the ex-
ponentially weighted moving average chart (EWMA;
Gan (1998), Ozsan et al. (2010)), and the tr-chart
(Xie et al. (2002), Kumar and Chakraborti (2016)).

Note that several of these charts have been pro-
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posed for the case when the failure rate is known.
In practice, this situation occurs rarely and the rate
parameter is often unknown. Recently, the issue of
parameter estimation and its e↵ects on various con-
trol charts have drawn much attention in the SPC
literature. The traditional approach of dealing with
parameter estimation in SPC has been to use the fre-
quentist approach (cf., Ghosh et al. (1981), Quesen-
berry (1993), Chen (1997), Saleh et al. (2013) Zhang
et al. (2014), Kumar and Chakraborti (2016)), where
a reference sample is used to estimate the unknown
parameter(s) and the control limits. Properties of the
estimated control limits (and of the resulting control
chart) are then studied in terms of the run-length dis-
tribution and associated characteristics such as the
average run length.

An alternative to the frequentist (classical) ap-
proach is to use a Bayesian approach. Here, the pa-
rameter is viewed as “a random variable” and is
assumed to follow a prior distribution with certain
parameters. There has been some work on control
charts using a Bayesian approach. A good introduc-
tion to the area is the book by Colosimo and del
Castillo (2007). Bayesian approaches to SPC and
control charts have been considered by Tsiamyrtzis
and Hawkins (2007) and Nenes and Tagaras (2007),
among others. Woodward and Neylor (1993) devel-
oped a Bayesian approach to monitor processes for
the production of a small number of items. Arnold
(1990) proposed an economic X-chart for the joint
control of the means of independent quality char-
acteristics. Other works include Menzefricke (2002)
that incorporated the uncertainty in the parameters
into the construction of the control chart limits us-
ing a prior distribution. He developed control charts
for the mean and the proportions based on the pre-
dictive distribution of a plotting statistic and eval-
uated the chart in terms of predictive average and
the predictive standard deviation of the run length.
Recently, Raubenheimer and Van der Merwe (2014)
constructed control charts for nonconformities (c-
chart) using a Je↵reys prior and evaluated chart per-
formance based on the metrics introduced by Men-
zefricke (2002).

In this paper, we consider the important problem
of monitoring the interarrival times following an ex-
ponential distribution in the unknown rate parame-
ter case. We focus on the Shewhart-type tr-chart for
this problem, originally proposed by Xie et al. (2002).
In generalizing their work to the unknown parame-
ter case, Kumar and Chakraborti (2016) studied the
e↵ects of parameter estimation on the tr-chart, as-

suming the availability of a phase I reference sample
of size m from an in-control (IC) process. As noted
earlier, this is the frequentist approach. In this pa-
per, we consider a Bayesian approach and construct
a Shewhart-type tr-chart for the unknown exponen-
tial rate parameter. This approach has the intuitive
appeal that any available knowledge about the pro-
cess gained from any past experience can be incorpo-
rated into the phase II control charting regime via an
assumed prior distribution for the parameter. Con-
trol limits can then be constructed based on what is
called the predictive distribution of a plotting statis-
tic.

Note that we consider the Shewhart-type tr-charts
here for simplicity and the ease of explaining the ba-
sic ideas; other, more sophisticated types of charts
such as the CUSUM or the EWMA will be consid-
ered elsewhere.

The outline of the paper is as follows. The fre-
quentist control limits of the tr-chart, starting with
the known parameter case, are discussed in Section 2.
Then the control limits for the unknown-parameter
case are introduced. Next, following this line of think-
ing, control limits of the Bayesian tr-chart for the
unknown-parameter case are obtained in Section 3.
An illustrative example with some real data is given
in Section 4. In Section 5, various chart-performance
metrics (measures) are introduced to evaluate chart
performance, and in Section 6, a simulation study
is carried out to examine chart performance, both
in the IC and out-of-control (OOC) cases, includ-
ing comparisons with some existing charts, in terms
of these measures. Finally, some concluding remarks
are o↵ered in Section 7.

2. Frequentist tr-Chart in
the Known-and Unknown-

Parameter Cases

Xie et al. (2002), Cheng and Chen (2011), and
others considered the Shewhart-type t-chart for mon-
itoring high-yield processes based on the interarrival
times following an exponential distribution. In order
to improve the performance of the t-chart, Xie at
al. (2002) and Zhang et al. (2007) also considered a
generalization, the tr-chart (also known as a gamma
chart), which is based on monitoring the time until
the rth failure, which uses more information in the
decision-making process. Obviously, taking r = 1, we
get the t-chart. Let Tr denote the time until the rth
failure in a homogeneous Poisson process with a fail-
ure rate �. Thus Tr, being the sum of r i.i.d exp(�)
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TABLE 1. The Chart Design Parameters A1 and A2 for the Case K Frequentist tr -Chart for a Nominal ARL0 Equal to 370.4

r = 1 r = 2 r = 3

A1 A2 A1 A2 A1 A2

0.00135 6.60773 0.05288 8.90029 0.21168 10.86962

variables, follows a gamma distribution with param-
eters r and �.

In the known-parameter case (hereafter case K),
the process is said to be IC when � = �0, where
�0 is the given (known) or specified value of the rate
parameter. The probability control limits for the case
K are given in terms of the percentiles of a chi-square
distribution as follows:

Lr =
�2

2r,↵0/2

2�0
=

A1

�0
and Ur =

�2
2r,1�↵0/2

2�0
=

A2

�0
,

(1)
where Lr and Ur are the lower and upper con-
trol limits, ↵0 denotes the nominal false-alarm rate
(FAR), and �2

2r,↵ denotes the 100↵-percentile of the
chi-square distribution with 2r degrees of freedom.
Note that the constants A1 = �2

2r,↵0/2/2 and A2 =
�2

2r,1�↵0/2/2 in Equation (1) are the chart design pa-
rameters for a specified nominal ↵0 (which is equal
to the reciprocal of the nominal ARL0 in case K)
value. These constants are provided in Table 1 for
↵0 = 0.0027 (or, ARL0 = 370.4). The center line
(CL) of the control chart is taken to be the median
of the distribution of Tr, given by CL = �2

2r,0.5/(2�0).

In practice, however, the IC value of the parameter
�, i.e., �0, is often not known, especially in the start-
up phase of a process. This situation is denoted by
case U and in this case one approach is to estimate �
using a suitable estimator, say �̂, from a phase I refer-
ence sample of size m when the process is IC. Then,
using �̂, the estimated (“plug-in”) control limits of
the tr-chart in case U are given by

L̂r =
A1

�̂
and Ûr =

A2

�̂
. (2)

Note that the control limits in Equation (2) are
random variables, being functions of the estimator
�̂ and, hence, the usual control chart performance
metrics, e.g., the average run length, the false-alarm
rate, etc., are all random variables and have their
own probability distribution. The uncertainty in the
control limits and, consequently in the performance
metrics, is introduced and described by the sampling

distribution of the estimator �̂. For more details, the
reader is referred to Kumar and Chakraborti (2016).
We refer to this approach of constructing the control
limits as the classical (frequentist) approach.

Kumar and Chakraborti (2016) showed that, in
case U, using the plug-in limits, that is, replacing
the parameters with estimates but using the same
A1 and A2 values as in case K (see Table 1), the
frequentist tr-chart leads to AARLin (the expected
value of the IC conditional ARL, defined in Section 4)
values that are less than the nominal ARL0 for small
to medium reference sample sizes. This means that
more frequent false alarms are observed than what is
nominally expected, especially when a small number
of phase I observations are available. Thus, while the
plug-in limits can be used, it is more desirable to
design the chart (i.e., find the design parameters A1

and A2) so that the AARLin of the chart is equal to
the nominal ARL0 for a given phase I sample size m
in a specific application. This is generally the notion
used in case U, that is, one finds the control limits so
that some attribute of the IC run length distribution
is controlled, such as the AARLin value being equal
to the nominal ARL0 value.

To this end, we define the modified chart design
parameters for the frequentist tr-chart as

A⇤1 =
�2

2r,↵F /2

2
and A⇤2 =

�2
2r,1�↵F /2

2
, (3)

where the constant ↵F (and hence A⇤1 and A⇤2) satisfy

AARLin = ARL0 = 370.4, (4)

say. Thus, the modified control limits of the frequen-
tist tr-chart in case U, are given by

L̂M
r =

A⇤1
�̂

and ÛM
r =

A⇤2
�̂

, (5)

where A⇤1 and A⇤2 are defined in Equation (3). The
values of ↵F and the modified chart design param-
eters are presented in Table 2 for di↵erent phase I
sample size m and a nominal ARL0 = 370.4 for the
frequentist tr-chart (r = 1, 2, 3). These were obtained
by solving Equation (4) in MATLAB R2014a. Other
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TABLE 2. The Modified Chart Design Parameters A⇤1 and A⇤2
for the Case U Frequentist tr - Chart for a Nominal ARL0 Equal to 370.4

r = 1 r = 2 r = 3

m ↵F A⇤1 A⇤2 ↵F A⇤1 A⇤2 ↵F A⇤1 A⇤2

30 0.00248 0.00124 6.69143 0.00229 0.04862 9.08410 0.00212 0.19462 11.15648
40 0.00253 0.00127 6.67326 0.00236 0.04943 9.04785 0.00222 0.19766 11.10345
50 0.00256 0.00128 6.66162 0.00242 0.04997 9.02389 0.00229 0.19974 11.06776
60 0.00258 0.00129 6.65351 0.00245 0.05037 9.00678 0.00234 0.20126 11.04189
70 0.00259 0.00130 6.64753 0.00248 0.05066 8.99392 0.00238 0.20243 11.02220
80 0.00261 0.00130 6.64294 0.00250 0.05090 8.98387 0.00241 0.20335 11.00667
90 0.00262 0.00131 6.63930 0.00252 0.05109 8.97580 0.00243 0.20410 10.99409

100 0.00262 0.00131 6.63633 0.00254 0.05124 8.96917 0.00245 0.20472 10.98367
150 0.00265 0.00132 6.62721 0.00259 0.05173 8.94823 0.00252 0.20674 10.95024
200 0.00266 0.00133 6.62250 0.00261 0.05200 8.93709 0.00256 0.20784 10.93209
250 0.00267 0.00133 6.61962 0.00263 0.05216 8.93017 0.00259 0.20854 10.92065
300 0.00267 0.00134 6.61768 0.00264 0.05228 8.92544 0.00260 0.20902 10.91277
350 0.00268 0.00134 6.61629 0.00265 0.05236 8.92201 0.00262 0.20937 10.90701
400 0.00268 0.00134 6.61524 0.00265 0.05242 8.91940 0.00263 0.20964 10.90260
450 0.00268 0.00134 6.61441 0.00266 0.05247 8.91735 0.00263 0.20986 10.89913
500 0.00268 0.00134 6.61375 0.00266 0.05251 8.91570 0.00264 0.21003 10.89633

1,000 0.00269 0.00135 6.61068 0.00268 0.05269 8.90803 0.00267 0.21084 10.88321

nominal ARL0 values, such as 500, can also be used
if desired.

From Tables 1 and 2, it can be seen that, for m �
500, the ↵F values are closer to 1/ARL0 = 0.0027
and, hence, the constants A⇤1 and A⇤2 are closer to
the values of A1 and A2 (constants for case K) and
they converge to A1 and A2, respectively, as m!1.
But for small to moderate values of m, which may
be more reasonable to occur in practice, the charting
constants A⇤1 and A⇤2 should be used to construct the
frequentist tr-charts in case U.

As noted earlier, an alternative approach to mon-
itoring in SPC is to use the Bayesian approach. This
involves accommodating the uncertainty in the esti-
mation of �, using a prior and a posterior distribution
(of �), and constructing the control limits for the tr-
chart (in case U) using the predictive distribution of
the plotting statistic for the future (phase II) sample
of observations. This is outlined now.

3. Bayesian tr-Chart in
the Unknown-Parameter Case

Menzefricke (2002) proposed a method for obtain-
ing the control limits for the normal mean in both the
standard deviation known and unknown cases, using

a Bayesian approach, based on the predictive distri-
bution of the plotting statistic from a future sample.
In this setup, he also sketched a general algorithm for
obtaining the control limits based on the predictive
density. We follow this approach for the tr-chart by
incorporating two sources of information about the
parameter �: an assumed prior distribution and the
information from a phase I reference sample obtained
from an IC process.

To fix ideas, let X denote the interarrival time
in a homogeneous Poisson process with rate �. Sup-
pose that X has a probability density function (pdf)
f(x | �). In the Bayesian approach, we assume that
we have some prior knowledge or information about
�, which can be summarized by a prior pdf. In par-
ticular, we assume a gamma family of prior distribu-
tions for �, with shape parameter a and scale param-
eter b, denoted by �(a, b). The gamma distribution is
in fact known as the “conjugate” prior for �, which is
widely used in the Bayesian literature. We further as-
sume that a phase I reference sample x1, x2, . . . , xm

of size m is available after a phase I analysis, from
an IC process, with the pdf f(x | �) having expo-
nential distribution exp(�). In this setting, it is well
known that the posterior distribution of � itself is a
gamma distribution with shape parameter (a + m)
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and scale parameter (b + y), i.e., �(a + m, b + y) (see
Gelman (2002), Colosimo and dell Castillo (2007)).
This is one advantage of using a conjugate prior dis-
tribution.

Note that the mean of the posterior distribution
of � is (a + m)/(b + y). When a! 0 and b! 0, the
limiting prior distribution becomes proportional to
1/�, which corresponds to the Je↵reys prior (which
is a noninformative prior as well as an improper prior
because the total area under the distribution is not
equal to 1). However, this does not a↵ect any of the
inferences with respect to the posterior distribution
and the predictive density. Note that Je↵reys prior is
proportional to

p
det(I(�)), where det(I(�)) is the

determinant of Fisher’s information, which is 1/�2 in
this case. However, interestingly, the posterior mean
equals m/y = 1/x̄, which is the maximum likelihood
estimator (MLE) of � in the frequentist approach.
Henceforth, this limiting prior distribution will be
denoted by �(0, 0) and will be referred to as the case
a! 0, b! 0.

The frequentist tr-chart is based on the plotting
statistic Tr, the waiting time until the rth failure,
that is the sum of the r interarrival times in a
prospective (or phase II) sample being monitored.
The Bayesian tr-chart also uses the same plotting
statistic but the control limits are found using the
predictive distribution of Tr. For a given r and a
given observed value of Y = y (obtained from the
reference sample), the predictive density function of
Tr is equal to

fTr|y(t) =
Z 1

0
fTr(t | �)p(� | y)d�

=
Z 1

0

�r

�(r)
tr�1e��t

⇥ (b + y)a+m

�(a + m)
�a+m�1e�(b+y)�d�

=
(b + y)a+m

B(a + m, r)
tr�1

(t + b + y)a+m+r
; t > 0,

(6)

where B(a, b) = �(a)�(b)/�(a + b) is the beta func-
tion. The fTr(t | �) is �(r, �), the pdf of Tr, and
p(� | y) is �(a + m, b + y), the pdf of the posterior
distribution of �.

The predictive distribution of Tr given in Equa-
tion (6) is used to calculate the control limits L⇤r
and U⇤r for the proposed Bayesian tr-chart, to mon-
itor the unknown process parameter �, in phase II.

Thus, using Equation (6), one can set

P [Tr < L⇤r | Y = y] =
↵B

2
and

P [Tr > U⇤r | Y = y] =
↵B

2
and find the upper and lower (predictive) control lim-
its of a Shewhart-type chart so that the AARLin is
equal to some nominal ARL0. It is emphasized that
basing the control chart on the predictive distribu-
tion of Tr formally incorporates the knowledge about
the parameter � through the assumed prior distribu-
tion and the available reference sample. Also, as is
typically done in the literature, in case U, we find
the control limits for a given nominal ARL0.

Further, letting

Wr = (b + y)/(Tr + b + y),

it can be shown that Wr follows a beta distribution
with parameters (a + m) and r and hence the lower
and the upper control limits L⇤r and U⇤r can be ex-
pressed in terms of the percentiles of the more famil-
iar beta distribution with parameters a + m and r,
given by

L⇤r = (b + y)
✓

1
B1�↵B/2(a + m, r)

� 1
◆

and

U⇤r = (b + y)
✓

1
B↵B/2(a + m, r)

� 1
◆

, (7)

where Bc(�1, �2) denotes the 100c-percentile of a
beta distribution with parameters �1 and �2. The
center line of the chart is taken to be the median
of the predictive density of Tr, i.e., C⇤r such that
P [Tr < C⇤r ] = 0.5, which yields

C⇤r = (b + y)
✓

1
B0.5(a + m, r)

� 1
◆

.

Hence the limits in Equation (7) can be written as

L⇤r = (b + y)B1 and U⇤r = (b + y)B2, (8)

where the chart design parameters B1 and B2 for the
Bayesian tr-chart are given by

B1 =
1

B1�↵B/2(a + m, r)
� 1

and

B2 =
1

B↵B/2(a + m, r)
� 1. (9)

The constant ↵B and hence B1 and B2 are obtained
so that the chart attains the expected value of condi-
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TABLE 3. The Chart Design Parameters ↵B, B1 and B2 for the Bayesian tr -Chart
for Di↵erent Values of r, a + m and a Nominal ARL0 = 370.4

r = 1 r = 2 r = 3

a + m ↵B B1 B2 ↵B B1 B2 ↵B B1 B2

20 0.00339 0.00008 0.37567 0.00359 0.00299 0.52076 0.00388 0.01153 0.64570
30 0.00321 0.00005 0.23925 0.00332 0.00193 0.32900 0.00347 0.00749 0.40672
40 0.00310 0.00004 0.17551 0.00318 0.00142 0.24026 0.00328 0.00555 0.29639
50 0.00304 0.00003 0.13860 0.00309 0.00112 0.18918 0.00317 0.00440 0.23302
60 0.00299 0.00002 0.11453 0.00304 0.00093 0.15601 0.00309 0.00365 0.19194
70 0.00295 0.00002 0.09759 0.00299 0.00079 0.13273 0.00304 0.00311 0.16316
80 0.00293 0.00002 0.08501 0.00296 0.00069 0.11549 0.00300 0.00271 0.14188
90 0.00290 0.00002 0.07531 0.00293 0.00061 0.10222 0.00296 0.00241 0.12550

100 0.00289 0.00001 0.06760 0.00291 0.00055 0.09168 0.00294 0.00216 0.11252
150 0.00283 0.00001 0.04471 0.00285 0.00036 0.06051 0.00286 0.00143 0.07414
200 0.00280 0.00001 0.03341 0.00281 0.00027 0.04515 0.00282 0.00107 0.05529
250 0.00278 0.00001 0.02666 0.00279 0.00021 0.03602 0.00280 0.00085 0.04408
300 0.00277 0.00000 0.02219 0.00278 0.00018 0.02995 0.00278 0.00071 0.03665
350 0.00276 0.00000 0.01900 0.00277 0.00015 0.02564 0.00277 0.00061 0.03136
400 0.00275 0.00000 0.01661 0.00276 0.00013 0.02241 0.00276 0.00053 0.02741
450 0.00275 0.00000 0.01475 0.00275 0.00012 0.01990 0.00276 0.00047 0.02434
500 0.00274 0.00000 0.01327 0.00275 0.00011 0.01790 0.00275 0.00043 0.02189

1,000 0.00272 0.00000 0.00662 0.00272 0.00005 0.00893 0.00273 0.00021 0.01091

tional average run length equal to the nominal value
of ARL0 when the process is IC.

In Appendix C, it is shown that the various per-
formance metrics depend only on ↵B and (a + m).
Hence, the chart design parameters B1 and B2 are
the functions of (a + m) for a given nominal ARL0.
Hence, the chart design parameters B1 and B2 in
Equation (9) are calculated for a given (a + m) and
a nominal ARL0. These constants are calculated and
given in Table 3 for ARL0 = 370.4.

It can be observed from Table 3 that the constant
↵B is a decreasing function of (a + m) for a given
ARL0 and converges to 1/(ARL0) = 0.0027 (the FAR
in case K) as (a + m) ! 1. Note that the design
parameters B1 and B2 are also decreasing functions
of (a+m). Table 3 can be useful in implementing the
proposed chart in practice.

Thus, operationally, for the proposed Shewhart-
type Bayesian tr-chart, for a selected value of r and
for given values of a, b (specifying the prior distri-
bution) and y (obtained from the phase I sample),
one calculates the statistic Tr from a phase II sam-
ple (that is being monitored) and plots it against
the control limits given in Equation (8). If Tr plots

outside the control limits, the process is OOC and
a search for assignable causes gets underway. Oth-
erwise, the process is declared IC and monitoring
moves on to the next sample.

To get some further insights, note that, when
a ! 1 such that the mean of the prior distribu-
tion, a/b tends to some value �0, it is shown in the
Appendix B (Theorem 1) that the predictive den-
sity of 2�0Tr converges to the chi-square distribution
with 2r degrees of freedom. Also, as a ! 1 (hence,
a + m ! 1), the ↵B converges to 1/ARL0 and,
hence, in this case, the Bayesian control limits con-
verge to the control limits for the case when the rate
parameter is known and is equal to �0 (shown in Ap-
pendix B) with FAR=1/ARL0. Also, it is shown (see
Appendix B, Theorem 2) that, as m ! 1, the pre-
dictive density of 2�Tr converges to the chi-square
distribution with 2r degrees of freedom. Because,
when m ! 1, the MLE �̂ ! �, it follows that, as
m!1, the frequentist tr-chart control limits based
on the distribution of 2�Tr (shown in Equation (5))
and the Bayesian control limits based on the predic-
tive distribution of Tr (shown in Equation (8)) both
converge to the control limits in the known param-
eter case (case K), with FAR=1/ARL0. Intuitively,
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this means that the larger the phase I (reference)
sample size, the smaller the di↵erence between the
Bayesian and frequentist control limits for �.

4. Example

In order to illustrate the proposed Bayesian tr-
chart, we consider an example with some real data
and contrast the findings with those for the frequen-
tist tr-chart. The data comprises the recorded time
intervals (in days) between coal-mining disasters in
England, from 15 March, 1851 to 22 March, 1962
and have been used in the literature for illustration
of various procedures. The slightly corrected data,
consisting of 190 observations, are provided in Jar-
rett (1979) and are shown in Table 4 for convenience.
The underlying distribution of the interarrival times
has been tested to follow an exponential distribution
and we monitor the unknown rate parameter � of
this distribution.

A prior distribution is necessary for implementing
the Bayesian chart. The choice of a prior distribution
is somewhat subjective and has been a matter of de-
bate for a long time (Berger (1985), Gelman (2002),
Bayarri (2012)). We illustrate some options here. Re-
call that, in this paper, we consider the �(a, b) family
of prior distributions, which is known to be a conju-
gate family. If the practitioner is confident that the

parameter � is close to the mean of the prior distribu-
tion, namely, a/b, then it is customary that the vari-
ance of the prior distribution, a/b2, be made small, so
that the variance of the posterior distribution of � is
small (Gelman (2002), Kass and Wasserman (1996)).
On the other hand, if the practitioner is not very con-
fident that � is close to a/b, then a di↵used or a vague
prior is preferred by taking the variance a/b2 to be
large. For large values of the prior variance, both a
and b tend to zero, in which case, as shown earlier,
the posterior mean tends to the MLE �̂ and the con-
trol limits tend to become close to the control limits
for the case of the noninformative prior.

For illustration, first consider r = 1 and the cor-
responding t1-chart. Cowles (2013) describes several
ways to choose the parameters of a prior distribu-
tion in order to express prior beliefs about an un-
known parameter. For example, suppose we use the
first three observations of the Jarrett (1979) data to
set up a �(a, b) prior distribution of �. Thus, we set
the mean of the prior gamma distribution, a/b to
be equal to 0.01064, which is the reciprocal of the
average of the first three observations (mean time
between failures). Then we consider the next 27 ob-
servations as a phase I sample of size m = 27, which
is used to summarize the current information about
the unknown �. The choice of a and b is not unique
from the equation a/b = 0.01064, however and so

TABLE 4. Time Intervals in Days Between Explosions in Mines, from March 15, 1851 to March 22, 1962
(to Be Read Down Columns), Reproduced from Jarrett (1979)

157 65 53 93 127 176 22 1,205 1,643 312
123 186 17 24 218 55 61 644 54 536

2 23 538 91 2 93 78 467 326 145
124 92 187 143 0 59 99 871 1,312 75
12 197 34 16 378 315 326 48 348 364
4 431 101 27 36 59 275 123 745 37

10 16 41 144 15 61 54 456 217 19
216 154 139 45 31 1 217 498 120 156
80 95 42 6 215 13 113 49 275 47
12 25 1 208 11 189 32 131 20 129
33 19 250 29 137 345 388 182 66 1,630
66 78 80 112 4 20 151 255 292 29

232 202 3 43 15 81 361 194 4 217
826 36 324 193 72 286 312 224 368 7
40 110 56 134 96 114 354 566 307 18
12 276 31 420 124 108 307 462 336 1,358
29 16 96 95 50 188 275 228 19 2,366

190 88 70 125 120 233 78 806 329 952
97 225 41 34 203 28 17 517 330 632
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FIGURE 1. The Graphs for (a) the Density of �(35, 3295) Prior, (b) Likelihood Function with m = 27 and y = 3286, (c)
the Density of Posterior Distribution, and (d) the Predictive Density of T1.

here, for the purpose of illustration, we select a and
b such that the posterior mean (a + m)/(b + y) lies
halfway between the prior mean (0.01064) and the
MLE of � (�̂ = 0.0082) calculated from the 27 phase
I observations. This is done so that the posterior pdf
reflects both the data (likelihood) and the prior (see
Figure 1) distributions more or less equally. It is easy
to see that these two choices, i.e., a/b = 0.01064 and
(a + m)/(b + y) = 0.00943 with y = 3286, yield, ap-
proximately, a = 35 and b = 3295, so that the prior
distribution is a �(35, 3295) distribution for the pa-
rameter �. Note that other measures of centrality,
such as the median (which is a more reasonable mea-
sure of location for a skewed distribution) may be
preferred to the mean while finding a and b. However,
the standard Bayesian analysis under the squared er-
ror loss function yields the mean as the estimator and
this is what is used here.

Figure 1 shows the graphs of (i) the pdf of the

prior distribution of �: �(35, 3295); (ii) the likelihood
function using the 27 observations taken as the phase
I reference sample, which yields y = 3286; (iii) the
pdf of the corresponding posterior distribution of �,
which is a �(35+27 = 62, 3295+3286 = 6581) distri-
bution; and (iv) the pdf of the predictive distribution
of the plotting statistic T1. Note that the variance of
the posterior distribution is equal to 1.4315 ⇥ 10�6

(= (a + m)/(b + y)2), which is smaller than both the
prior variance 3.2237 ⇥ 10�6 (= a/b2) and the esti-
mated variance of the MLE �̂, namely, 7.5719⇥10�5

(= �̂m2/[(m� 1)(m� 2)]).

The Bayesian t1-chart corresponding to the
�(35, 3295) prior and for a nominal ARL0 = 370.4 is
shown in Figure 2 with the lower and the upper con-
trol limits (solid lines; using Equations (8) and (9))
at 0.1583 and 728.4266, respectively. The center line
is the median of the predictive density, which is found
to be 73.9870. The modified control limits of the fre-

Vol. 49, No. 2, April 2017 www.asq.org



mss # 2156.tex; art. # 01; 49(2)

144 NIRPEKSH KUMAR AND SUBHA CHAKRABORTI

FIGURE 2. The Frequentist t1-Chart (Dotted Lines) and
the Bayesian t1-Chart (Solid Lines) Using a �(35, 3295)
Prior for the Last 160 Observations of the Jarrett (1979)
Data.

quentist t1-chart are also shown in the same figure
with dotted lines for which the lower and upper con-
trol limits are 0.1500 and 815.3023, respectively, for
a nominal ARL0 = 370.4 using Equation (5). It may
be noted that using Equation (2) and ↵0 = 0.0027,
as in Kumar and Chakraborti (2016), the frequentist
control limits were found to be 0.1644 and 804.1755,
respectively. Thus, the two sets of frequentist control
limits, used in case U, are slightly di↵erent. From

FIGURE 3. The Frequentist t1-Chart (Dotted Lines) and
the Bayesian t1-Chart (Solid Lines) Using the Noninforma-
tive Prior �(0, 0), for the Last 160 Observations of the
Jarrett (1979) Data.

FIGURE 4. The Frequentist t2-Chart (Dotted Lines) and
the Bayesian t2-Chart (Solid Lines) Using a �(35, 3295)
Prior for the Last 160 Observations (80 Charting Statistics)
of the Jarrett (1979) Data.

Figure 2, it can be seen that the Bayesian control
limits are narrower than the frequentist control limits
and thus the new charts are expected to be more
sensitive to a shift in �.

If no prior information is available, we may use
the noninformative (Je↵reys) prior with a = 0, b = 0,
i.e., the �(0, 0) prior. The control chart correspond-
ing to this prior is shown in Figure 3 with the lower
and upper control limits (solid lines) at 0.1980 and
882.3040, respectively. Observe that, in this case, the
Bayesian control limits are wider than those for the
frequentist t1-chart (dotted lines). This observation
is perhaps intuitive and agrees with the results of
Menzefricke (2002) and Raubenheimer and van der
Merwe (2015).

Finally, consider r = 2 and the corresponding
Bayesian t2-chart. Recall that the frequentist t2-
chart was considered to improve performance over
the t1-chart (Xie et al. (2002), Kumar and Chakra-
borti (2016)), as the T2-charting statistic is based
on the sum of two observations (two consecutive in-
terarrival times) and thus utilizes more information
in the decision-making process (than the t1-chart).
The control limits for the Bayesian t2-chart using
the �(35, 3295) prior are calculated for m = 27 and
a nominal ARL0 = 370.4 using Equation (8). The
lower and upper control limits and the center line
are 5.9050, 991.8654, and 179.1264, respectively, and
are shown in Figure 4 with solid lines. For compar-
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ison, the control limits for the frequentist t2-chart
are calculated using Equation (5) to be 5.8768 and
1107.3630, respectively, and are also shown in the
Figure 4 with dotted lines. It can be seen that the
Bayesian t2-chart using the �(35, 3295) prior has nar-
rower control limits than the frequentist t2-chart,
which again means a more sensitive chart. Also, as
might be expected, the Bayesian t2-chart using the
�(35, 3295) prior is more sensitive than the Bayesian
t1-chart using the �(35, 3295) prior to possible shifts
in the rate parameter. For example, the 61st plotting
statistic (the sum of the 121nd and the 122th obser-
vations, 644 and 467, respectively) on the chart is
outside of the control limits of the Bayesian t2-chart
using the �(35, 3295) prior. However, the Bayesian
t1-chart using the �(35, 3295) prior does not signal
on either data point and is thus unable to detect a
change in the process at this stage.

5. Chart-Performance Evaluation

The performance of the proposed Bayesian tr-
chart is of interest. We examine this aspect in this
section and compare it with the performance of
the corresponding frequentist tr-chart. Typically, the
performance of a control chart is evaluated in terms
of the first two moments of the run-length distribu-
tion. Note that we developed the control chart using
the Bayesian approach in Section 3; however, to eval-
uate the chart performance, we use the frequentist
(sampling theory) approach under various hypothet-
ical situations. To this end, suppose that observations
(interarrival times) are taken repeatedly from an ex-
ponential pdf f(x | �1), where �1 = �� and � is used
to denote a possible amount of shift in the unknown
rate parameter �. If in phase II, � = 1, the process is
IC, otherwise � 6= 1 and the process is out-of-control
(OOC). If � > 1, the process deteriorates because the
mean time to failure decreases, whereas, for � < 1,
the process improves as the mean time to failure in-
creases. Clearly, the case � > 1 deserves more serious
attention in practice.

Recall that the original plotting statistic Tr fol-
lows a gamma distribution with parameters r and
�1. Hence, the probability of a signal in phase II is
given by

�(�1) = P [Tr < L⇤r or Tr > U⇤r | �1]
= 1 + G�2

2r
(2�1L

⇤
r)�G�2

2r
(2�1U

⇤
r ).

This follows from the fact that 2�1Tr follows a chi-
square distribution with 2r degrees of freedom and
G�2

2r
(·) denotes its cumulative distribution function

(cdf). Note that the probability of a signal is a con-
ditional probability that depends on nominal ARL0,
y, a, b, m, and � for a given �1. Hence, for a given
�1, or conditionally on �1 (this is a random vari-
able in the Bayesian setting), the run length variable
R, in phase II, follows a geometric distribution with
parameter �(�1). Thus, again, note that the condi-
tional run length distribution depends on L⇤r and U⇤r
for a given �1 or, in turn, on ARL0, y, a, b, m, and
� for a given �. Hence, the first two moments of the
conditional run length distribution are

E[R | �1] = E[R | �] = CARL =
1

�(�1)
=

1
�(��)

(10)
and

E[R2 | �1] = E[R2 | �] =
2� �(��)
�2(��)

because �1 = ��. CARL=1/�(��) is the expected
value of conditional run length distribution and de-
pends on ARL0, y, a, b, m, and � for a given �.

To evaluate the chart performance, Menzefricke
(2002) used two metrics, namely, the predictive mean
and the predictive standard deviation of the run-
length distribution. These are given byZ 1

0


1

�(��)

�
p(� | y)d� (11)

p
E[E[R2 | �]]� [E[E[R | �]]]2, (12)

respectively. Note that, in expression (12), the second
expectation is over the distribution of random vari-
able conditional run length and the first expectation
is taken over the posterior distribution of �.

The metrics (11) and (12) are discussed by Menze-
fricke (2002) when � = 1, i.e., for the IC process. Note
that these are primarily unconditional performance
measures that are obtained by averaging the condi-
tional measures over the posterior distribution of �.
However, as noted in the recent literature, the con-
ditional measures have some important advantages
while developing a better understanding about the
performance of the chart in practice. Recently, in the
classical setting, Jones and Steiner (2012) proposed
a metric that is the standard deviation of the distri-
bution of the conditional ARL (CARL), to examine
the variability in the CARL distribution via the sam-
pling distribution of the estimator �̂. Later, Kumar
and Chakraborti (2016) used this metric to better
understand the practitioner-to-practitioner variabil-
ity in the CARL distribution, which varies for each
reference sample taken from an IC process. In the
Bayesian setting, we may also use the aforementioned
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concept to study the variability in CARL distribution
via the posterior distribution of �.

As noted earlier, the posterior distribution incor-
porates both the prior information and the infor-
mation supplied by the phase I sample. Thus, in
the Bayesian context, the standard deviation of the
CARL reflects both the uncertainty in � and the
phase I reference data at hand (which varies from
practitioner to practitioner). Hence, the study of the
variability in the CARL distribution, in addition to
just the mean, is important. Of course, lower vari-
ability is more desirable. Accordingly, we define the
following two measures, which are the expected value
and the standard deviation of the distribution of the
CARL, respectively. Thus,

AARL = E(CARL) =
Z 1

0

1
�(��)

p(� | y)d�

and

SDCARL =
q

E[CARL2]� [E[CARL]]2, (13)

where

E[CARL2] =
Z 1

0

1
�2(��)

p(� | y)d�.

Note that the AARL is the predictive mean pro-
posed by Menzefricke (2002). However, the predic-
tive standard deviation in Equation (12) reflects the
variability in the conditional run-length distribution,
whereas the metric in Equation (13) reflects the vari-
ability in conditional average run length distribution.
Note that, for the IC case, these measures can all be
calculated by letting � = 1 and the corresponding
values are denoted by AARLin and SDCARL:in, re-
spectively.

Next, we examine the performance of the Bayesian
tr-chart.

6. Performance Results
and Discussion

In this section, we first examine the IC perfor-
mance of the proposed Bayesian tr-chart and com-
pare it with the frequentist tr-chart for the unknown
parameter case. Then we compare the OOC perfor-
mance of both the charts for di↵erent size shifts in
the rate parameter �.

6.1. In-Control Chart-Performance
Evaluation

It is shown in Appendix C that the performance
metrics in Equations (11)–(13) do not depend on �,
the su�cient statistic Y (obtained from the reference

sample of size m) and b, the scale parameter of the
gamma prior distribution but only on the nominal
ARL0, �, and the sum (a+m). Note that the value of
� needs to be specified to indicate whether or not the
process is IC (� = 1) and, if not, the amount of the
shift in the parameter � (� 6= 1). First, we consider
the case of the noninformative prior (a = 0, b = 0)
in the context of the performance of the Bayesian tr-
chart. To this end, the values of the AARLin and the
SDCARL:in are calculated and reported, in Table 5,
in bold letters corresponding to � = 1, for di↵erent
values of m for the tr-chart, for r = 1, 2, and 3, and
for a nominal ARL0 = 370.4. The last block of rows
(denoted m ! 1) in Table 5, for each r, displays
the values of the metrics when the process parame-
ter is known. All calculations are done in MATLAB
R2014a.

Because both charts are designed for the same
nominal ARL0 value of 370.4 for each m, the dis-
cussion is focused on the examination of the metric
SDCARL:in. As we discussed earlier, the SDCARL:in

reflects the variability in the CARL when the pro-
cess is IC and, hence, it is desirable that it be low
so that the chart could be more predictable for a
practitioner. It can be observed from Table 5 that
both the charts have quite large SDCARL:in values
for smaller values of m but these converge to zero as
m increases. It is worth noting here that, for smaller
values of m, the Bayesian tr-chart has much smaller
SDCARL:in values than the frequentist tr-chart, which
implies that, for smaller values of m (which is prac-
tically important, even more so for the TBE control
chart), the Bayesian tr-chart gives more confidence
to the practitioners in their AARLin values than the
frequentist tr-chart. For example, for m = 20, the
SDCARL:in value is 112.9 for the Bayesian t1-chart,
whereas it is 170.3 for the frequentist t1-chart. Also,
it is seen that, as r increases, the SDCARL:in values in-
crease for both charts but the Bayesian charts again
have smaller SDCARL:in values. However, these val-
ues for the Bayesian tr-chart become closer to each
other for m > 100. This implies that, for m > 100,
the Bayesian tr-charts for each r provide similar IC
performance.

An important issue related to the implementation
of a control chart in case U is the size of the reference
sample m. Clearly, large values of m are preferred
(so, e.g.,, the SDCARL:in values would be small) but
one must consider practical constraints. Zhang et al
(2014) recommended that the SDCARL:in values be
below 10% of the ARL0 values in the known param-
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TABLE 5. Performance Metrics for the Bayesian and Frequentist tr -Charts (r = 1, 2, 3)
for Di↵erent m and Nominal ARL0 = 370.4

Bayesian tr-chart Frequentist tr-chart

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

a + m � AARL SDCARL AARL SDCARL AARL SDCARL AARL SDCARL AARL SDCARL AARL SDCARL

20 5 124.4 29.2 31.3 14.4 11.2 6.9 175.6 41.3 48.3 22.6 17.7 11.6
4 155.4 36.5 47.3 22.1 18.9 12.5 219.4 51.5 73.3 34.9 30.6 21.2
3 207.0 48.4 81.1 38.6 38.7 27.2 292.1 67.8 126.6 60.6 64.3 46.1
2 307.4 65.8 174.5 79.1 111.5 76.4 427.1 82.5 269.4 112.1 185.6 116.6
1 370.4 112.9 370.4 116.6 370.4 134.3 370.4 170.3 370.4 178.1 370.4 188.2
0.8 255.9 138.2 272.7 156.4 287.0 174.3 210.5 152.4 206.1 171.1 205.5 185.6
0.6 107.5 90.1 104.0 107.0 103.1 121.0 74.1 70.5 59.8 73.7 52.3 76.6
0.4 24.9 20.5 17.2 18.6 13.4 17.5 17.6 13.1 10.6 9.5 7.6 7.6
0.2 4.8 1.8 2.8 1.0 2.0 0.7 4.0 1.3 2.3 0.7 1.7 0.4

100 5 140.4 14.1 32.9 6.1 10.9 2.5 154.4 15.6 37.1 7.0 12.3 2.9
4 175.4 17.7 49.6 9.4 18.3 4.5 192.9 19.4 56.0 10.7 20.8 5.2
3 233.7 23.6 85.1 16.5 37.2 9.8 257.0 25.9 96.4 18.7 42.8 11.4
2 349.8 34.6 184.8 36.4 107.7 30.1 384.5 37.8 209.7 41.3 124.8 35.0
1 370.4 83.4 370.4 82.5 370.4 82.5 370.4 93.6 370.4 97.9 370.4 100.9
0.8 185.2 71.2 169.2 80.6 159.6 87.6 175.6 70.4 155.0 78.0 142.0 83.0
0.6 58.8 23.4 40.9 20.1 31.6 17.6 55.0 21.8 37.1 17.9 27.9 15.2
0.4 15.3 4.3 8.8 2.7 6.1 1.9 14.6 4.0 8.2 2.4 5.6 1.7
0.2 3.9 0.5 2.2 0.3 1.7 0.2 3.8 0.5 2.2 0.3 1.6 0.2

500 5 146.6 6.5 33.7 2.8 10.9 1.1 149.8 6.7 34.7 2.9 11.2 1.1
4 183.2 8.2 50.9 4.3 18.3 2.0 187.1 8.4 52.4 4.4 18.9 2.0
3 244.0 10.9 87.4 7.4 37.3 4.3 249.3 11.2 90.0 7.7 38.5 4.4
2 365.5 16.2 190.0 16.5 108.0 13.1 373.3 16.5 195.5 16.9 111.7 13.6
1 370.4 44.2 370.4 46.2 370.4 46.7 370.4 45.3 370.4 48.2 370.4 49.5
0.8 167.3 30.9 141.4 33.1 124.1 33.9 165.6 30.8 138.9 32.7 121.2 33.2
0.6 52.0 8.9 33.8 6.8 24.8 5.5 51.4 8.7 33.3 6.7 24.3 5.3
0.4 14.2 1.7 7.9 1.0 5.4 0.7 14.1 1.7 7.8 1.0 5.3 0.7
0.2 3.8 0.2 2.2 0.1 1.6 0.1 3.8 0.2 2.1 0.1 1.6 0.1

1 5 148.5 0.0 34.1 0.0 10.9 0.0 148.5 0.0 34.1 0.0 10.9 0.0
4 185.6 0.0 51.4 0.0 18.4 0.0 185.6 0.0 51.4 0.0 18.4 0.0
3 247.2 0.0 88.3 0.0 37.4 0.0 247.2 0.0 88.3 0.0 37.4 0.0
2 370.4 0.0 191.8 0.0 108.2 0.0 370.4 0.0 191.8 0.0 108.2 0.0
1 370.4 0.0 370.4 0.0 370.4 0.0 370.4 0.0 370.4 0.0 370.4 0.0
0.8 162.8 0.0 134.5 0.0 115.5 0.0 162.8 0.0 134.5 0.0 115.5 0.0
0.6 50.5 0.0 32.4 0.0 23.4 0.0 50.5 0.0 32.4 0.0 23.4 0.0
0.4 14.0 0.0 7.7 0.0 5.2 0.0 14.0 0.0 7.7 0.0 5.2 0.0
0.2 3.7 0.0 2.1 0.0 1.6 0.0 3.7 0.0 2.1 0.0 1.6 0.0

eter case (i.e., 370.4) in the classical setting. It is
observed that the SDCARL:in values of the Bayesian
tr-chart fall below 10% of the ARL0 values in the
known parameter case when m > 800. This means
that, in order to have a predictable IC performance
of the Bayesian tr-chart using, e.g., a noninforma-
tive prior, a large number of phase I observations

(approximately 800) is required. This should not be
considered as a disadvantage, however, because the
same is true for the frequentist tr-chart.

So far, we have examined the IC performance of
the Bayesian tr-chart for the noninformative prior.
Of course, the intuitive advantage of the Bayesian
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tr-chart lies in incorporating any prior information
from the past experience, along with the informa-
tion from the available phase I sample, to improve
process monitoring. We provide some observations to
this end. Note that, as mentioned at the beginning of
Section 6.1 and shown in the Appendix, the perfor-
mance metrics of the proposed Bayesian tr-chart de-
pend on (a+m) and thus the values of these metrics
shown in Table 5 may be interpreted as the metrics
corresponding to some informative priors. For exam-
ple, the performance of the Bayesian tr-chart for the
informative �(5, 95) prior, with m = 95, would be
the same as that of the Bayesian tr-chart for a �(0, 0)
prior (noninformative prior) with m = 100, because
(a + m) equals 100. In fact, each Bayesian tr-chart
having the same value of (a + m) would have the
same performance, regardless of the value of a.

One consequence of this equivalence is that, if a
practitioner has some prior knowledge/information,
the required number of phase I observations m may
be reduced to get good chart performance. Intu-
itively, this means that the more information one has
on the prior distribution, fewer phase I observations
will be needed in order to get a similar chart perfor-
mance compared with when there is no such infor-
mation. For example, for the noninformative prior
(a = 0, b = 0) and m = 20 (i.e., a + m = 20),
the SDCARL:in for the t3-chart is 134.4 whereas, for
a = 80 and m = 20 (a + m = 100), the SDCARL:in

value is 82.5.

It can also be observed from Table 5 that the per-
formance of the Bayesian tr-chart is sensitive to the
shape parameter a of the prior distribution for a fixed
phase I sample size. The stronger the belief of a prac-
titioner about his prior, the larger is the value of a,
implying better performance of the chart. It shows
that incorporating more knowledge, the Bayesian tr-
chart gives more predictable AARLin values for a
fixed number of phase I observations.

However, in practice, the practitioners might find
themselves unable to specify the prior accurately and
hence a weakly informative prior may be preferred
where the parameters a and b are chosen such that
the variance of the prior distribution is larger com-
pared to the mean, in order to reflect the uncertainty
around the prior belief about the mean a/b. Hence,
in the case of a weakly informative prior, when the
value of a is chosen to be too small, the performance
of the chart is very close to the case of a noninfor-
mative prior.

6.2. Performance Comparison with the
Frequentist tr-Chart

It is of interest to examine the performance of
the proposed Bayesian tr-chart and we do that in
this section. We first consider the case of the non-
informative prior. Then we discuss the case when
the practitioner has some prior information about
the rate parameter so that a (di↵erent; informative)
prior distribution can be used. Table 5 shows the
results for both the AARLin, AARLOOC (denoting
the AARL value when the process is OOC), and the
SDCARL:in, SDCARL:ooc (denoting the SDCARL value
when the process is OOC) values for the Bayesian
tr-chart (r = 1, 2, 3) using the noninformative prior
and the frequentist tr-chart, which are both designed
so that each chart has the AARLin value equal to the
nominal ARL0 = 370.4. We consider three di↵erent
values of m (20, 100, 500) and assume that the rate
parameter shifts, both high and low, according to �
(� = 5, 4, 3, 2, 1, 0.8, 0.6, 0.4, 0.2). As noted before,
the values in the last block for m =1 for each chart
are the corresponding values in case K. It should be
noted that, for these cases, the SDCARL values are
equal to zero because the CARL values all converge
to the corresponding values in case K, which is a con-
stant, and hence there is no variation in the CARL
distribution.

According to the results shown in Table 5, the
OOC performance of both the frequentist and the
Bayesian charts are highly a↵ected by the estima-
tion error, which is introduced through the posterior
distribution of � in the case of the Bayesian tr-chart
and through the sampling distribution of � in case
of the frequentist tr-chart. For example, for m = 20
and � = 2, the AARLOOC values of the Bayesian
t1-, t2-, and t3-charts are 307.4, 174.5, and 111.5, re-
spectively, whereas for the frequentist t1-, t2-, and
t3-charts, the corresponding AARLOOC values are
427.1, 269.4, and 185.6, respectively. On the other
hand, for case K, the OOC ARL values for these
charts when � = 2 are 370.4, 191.8, and 108.2, re-
spectively, so estimation does cause a delay in detec-
tion but the Bayesian charts have relatively better
performance. For small values of m, the Bayesian tr-
chart (for r = 1, 2, 3) with a noninformative prior
has much smaller AARLOOC and SDCARL:ooc val-
ues than the corresponding values of the frequen-
tist tr-chart for � > 1 (when the rate increases, so
that the mean time between events decreases), i.e.,
the process deteriorates, which is the more serious
and important case). For example, for m = 20, the
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AARLOOC is equal to 307.4 with SDCARL:ooc equal
to 65.8 for the Bayesian t1-chart using the noninfor-
mative prior when � = 2, whereas the correspond-
ing values for the frequentist t1-chart are 427.1 and
82.5, respectively. This implies that the Bayesian
t1-chart using a noninformative prior is more sen-
sitive to the shift in the rate parameter when the
process deteriorates than the corresponding frequen-
tist tr-chart. Even with the noninformative prior, the
Bayesian tr-chart has better performance (in terms
of AARLooc) than the case K itself when the process
deteriorates. For large m � 500, the AARLOOC and
SDCARL:ooc values for both Bayesian (with noninfor-
mative prior) and frequentist tr-charts converge to
the corresponding values in case K, still the Bayesian
tr-chart outperforms the frequentist tr-chart when
the process deteriorates. On the other hand, when
the process improves, � < 1 (which is the less se-
rious case), the Bayesian tr-chart using a noninfor-
mative prior has higher AARLOOC and SDCARL:ooc

values than the frequentist tr-chart for smaller val-
ues of m  500. However, both charts have similar
performance in terms of AARLOOC and SDCARL:ooc

values for m > 500 and � < 1.

In general, the AARL and the SDCARL evaluations
for the Bayesian chart using the noninformative prior
and the frequentist tr-charts reveal that the perfor-
mances of both charts are seriously a↵ected in case
U, especially when the phase I sample size is small.
However, the Bayesian tr-chart using the noninfor-
mative prior is preferable for two reasons: first, when
the process deteriorates, the Bayesian tr-chart gives
alarms more quickly (smaller AARLOOC values) than
the frequentist tr-chart (even more quickly in case K)
for all values of m; second, the Bayesian tr-chart has
more predictable (less variable; smaller SDCARL:in

values) in-control performance than the frequentist
tr-chart. Furthermore, note that, for smaller values
of m (< 100), the Bayesian tr-chart using the non-
informative prior has higher SDCARL:in values with
higher values of r; however, when m > 100, the
SDCARL:in values become close to each other for each
Bayesian tr-chart (r = 1, 2, 3). For example, when
m = 100, the SDCARL:in values are 83.4, 82.5, 82.5
for the Bayesian t1-, t2-, and t3-charts using nonin-
formative priors, respectively. Hence, to improve the
performance of the chart, the Bayesian tr-chart us-
ing noninformative prior with higher values of r are
recommended.

Note that we have compared the performance of
the frequentist tr-chart and the Bayesian tr-chart

using the noninformative prior in detail. Based on
these findings, a few conclusions can be drawn in
the informative prior case, which might require a
more in-depth analysis to be taken up in a future
work. As mentioned before, in Table 5, the values
corresponding to m = 20, 100, 500 for the Bayesian
tr-chart are actually the values corresponding to
(a + m) = 20, 100, and 500 when a = 0. For ex-
ample, suppose one has a = 80 and m = 20, then
the values for the Bayesian tr-chart corresponding
to m = 100 in Table 5 are comparable with the
values of the frequentist tr-chart corresponding to
m = 20. Clearly, in case with available information
about the parameter (a > 0), the Bayesian tr-charts
become better than the frequentist tr-charts in terms
of lower SDCARL:in values and even perform better
with respect to AARLOOC values. For example, when
a = 80 and m = 20, the Bayesian t1-chart has lower
AARLOOC and SDCARL:in values than the frequen-
tist t1-chart with m = 20 for all sizes of shift � 6= 1;
also, the Bayesian t1-chart has better predictable IC
performance than the frequentist t1-chart. It is also
observed from Table 5 that, similar to IC chart per-
formance, the OOC performance of the Bayesian tr-
chart is sensitive to the values of a and tends to the
chart performance in case K. The AARL values be-
come stabilized for (a+m) > 500, which shows that,
for small phase I sample size, a large value of a (so
that sum (a + m) is approximately 500) is required
to get a better performance close to the performance
in Case K.

6.3. Performance Comparison with the
Exponential CUSUM

So far, we have made comparisons between the
Bayesian and the frequentist tr-charts. There are
other charts in the literature for monitoring the times
between events with their pros and cons. Among
them, the exponential CUSUM and the exponential
EWMA charts are popular in practice for detecting
smaller shifts. A separate and detailed study is nec-
essary for a more complete comparison of the various
TBE control charts in the unknown-parameter case.
This is a topic for future research. Here, in order to
provide some insight into the discussion and further
highlight the e↵ectiveness of the proposed Bayesian
tr-chart, we provide, in Table 6, a comparison be-
tween the Bayesian tr-charts and the two-sided ex-
ponential CUSUM chart for monitoring times be-
tween events following the exponential distribution
(Lucas (1985), Liu et al. (2006)). The exponential
CUSUM chart is designed to be optimal for detecting
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TABLE 6. Performance Metrics for the Bayesian and the Exponential CUSUM Chart
for Di↵erent m and Nominal ARL0 = 370.4

Bayesian tr-chart

r = 1 r = 2 r = 3 r = 4 Exponential CUSUM

a + m � AARL SDCARL AARL SDCARL AARL SDCARL AARL SDCARL AARL SDCARL Design parameters

30 5 129.4 24.4 31.7 11.4 11.0 5.1 5.1 2.6 8.2 1.0 HL = 2.3876,
4 161.6 30.4 47.8 17.5 18.5 9.2 9.0 5.2 9.7 1.6 HU = 7.1350
3 215.3 40.5 82.0 30.6 37.8 20.1 20.5 13.5 13.7 4.3
2 321.0 56.9 177.4 65.4 109.6 59.9 74.0 52.9 39.7 32.1
1 370.4 108.8 370.4 107.3 370.4 116.3 370.4 130.0 370.0 166.7
0.8 230.4 122.4 237.0 139.8 244.5 154.8 250.9 168.6 229.8 179.4
0.6 84.7 62.8 72.8 69.2 66.3 74.4 61.7 78.6 60.1 81.5
0.4 20.0 12.0 12.6 9.2 9.2 7.5 7.2 6.4 11.6 7.5
0.2 4.3 1.2 2.5 0.7 1.9 0.4 1.5 0.3 3.7 0.8

100 5 140.4 14.1 32.9 6.1 10.9 2.5 4.9 1.2 7.9 0.5 HL = 2.2792,
4 175.4 17.7 49.6 9.4 18.3 4.5 8.6 2.4 9.2 0.8 HU = 6.7573
3 233.7 23.6 85.1 16.5 37.2 9.8 19.2 6.0 12.8 2.0
2 349.8 34.6 184.8 36.3 107.7 30.1 68.5 23.8 32.2 11.9
1 370.4 83.4 370.4 82.5 370.4 82.5 370.4 84.6 370.9 89.7
0.8 185.2 71.2 169.2 80.6 159.6 87.6 152.5 93.2 156.7 94.2
0.6 58.8 23.4 40.9 20.1 31.6 17.6 25.7 15.7 32.4 15.4
0.4 15.3 4.3 8.8 2.7 6.1 1.9 4.6 1.4 9.3 2.0
0.2 3.9 0.5 2.2 0.3 1.7 0.2 1.4 0.1 3.4 0.3

500 5 146.6 6.5 33.7 2.8 10.9 1.1 4.9 0.5 7.6 0.2 HL = 2.2211,
4 183.2 8.2 50.9 4.3 18.3 2.0 8.5 1.0 8.9 0.3 HU = 6.5544
3 244.0 10.9 87.4 7.4 37.3 4.3 18.9 2.5 12.1 0.8
2 365.5 16.2 190.0 16.5 108.0 13.1 66.9 9.9 28.5 3.9
1 370.4 44.2 370.4 46.2 370.4 46.7 370.4 47.0 369.4 32.0
0.8 167.3 30.9 141.4 33.1 124.1 33.9 111.0 33.9 126.9 36.6
0.6 52.0 8.9 33.8 6.8 24.8 5.5 19.3 4.5 28.6 5.3
0.4 14.2 1.7 7.9 1.0 5.4 0.7 4.0 0.5 8.9 0.8
0.2 3.8 0.2 2.2 0.1 1.6 0.1 1.3 0.0 3.3 0.2

the shifts 10/3 and 1/3 times the IC parameter value
respectively. These shifts for optimal design are also
used by Liu et al (2006). The lower control limit HL

and upper control limits HU are determined so that
the exponential CUSUM chart attains the AARLin

equal to the nominal ARL0 (370.4). The values of HL

and HU for m = 30, 100, and 500 are provided in Ta-
ble 6. To compute the AARL and SDCARL values for
the two-sided exponential CUSUM chart, we followed
Ozsan et al. (2010), by using Simpson’s quadrature
in MATLAB R2014a. Note that Zhang et al. (2014)
also considered the exponential CUSUM chart but in
the one-sided case.

We also calculated the AARL and SDCARL val-
ues for the t4-chart. Table 6 reveals that, for the

noninformative prior (when a = 0), the Bayesian tr-
chart may be more attractive to the practitioner be-
cause lower SDCARL:in values are found for smaller
values of m  100. For example, when the phase I
sample size is 30, the SDCARL:in value for exponen-
tial CUSUM chart is 166.7, whereas these are 108.8,
107.3, 116.3, and 130.0, respectively, for the t1, t2, t3,
and t4 Bayesian charts, respectively. For the smaller
values of m  30, the exponential CUSUM chart
outperforms only for smaller shift sizes (0.8 < � < 3)
but, of course, the exponential CUSUM charts are de-
signed to be more sensitive to the smaller shifts. How-
ever, interestingly, for larger values of m � 100, the
t4-chart outperforms the exponential CUSUM chart
for almost all values of �, except for smaller shifts
1 < �  3. On the other hand, when the prior in-
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formation about � is available, the Bayesian tr-chart
performs better than the exponential CUSUM chart
as a increases. For large values of a, the Bayesian
t3- and t4-charts become comparable with the ex-
ponential CUSUM chart except for 1 < �  2. How-
ever, note that, even though the exponential CUSUM
charts are appealing in some cases, it can be quite
complicated to implement in practice in terms of de-
sign (Liu et al. (2006)) relative to a Shewhart chart.

7. Summary and Conclusions

In this paper, we consider a Bayesian approach
to construct the control limits of a Shewhart-type
phase II tr-chart for monitoring the times between
events following an exponential distribution with an
unknown rate parameter. The uncertainty in the un-
known parameter is incorporated in the construction
of the control limits by using a gamma prior distri-
bution and utilizing the data from a fixed reference
sample. The proposed control limits are probability
limits based on the predictive distribution of a plot-
ting statistic calculated from the phase II (test) sam-
ple of observations that is being monitored. The plot-
ting statistic is taken to be the same as the one used
in the frequentist case.

For the designed Bayesian tr-chart to have the
AARLin value equal to the nominal ARL0, it was ob-
served that, in the case of the noninformative prior,
the number of phase I observations required to have
a reliable in-control chart performance was about
800. On the other hand, if one has prior information
about the unknown rate parameter, this can be in-
corporated along with the information available from
phase I observations in the Bayesian paradigm. In
this case, it has been shown that the performance of
the proposed Bayesian tr-chart improves if a more
informative (less variable) prior is used. When more
prior information is available, which corresponds to
taking a larger value of the shape parameter in the
prior distribution, the SDCARL:in values decrease so
that the practitioners have more confidence in the
AARLin values. In this case, one also requires a
smaller number of phase I observations (compared
with the case of a noninformative prior) to get the
same level of desired IC performance.

It was also observed that, for larger amounts of
phase I data (sample size), the Bayesian control
limits converge to the control limits in the known-
parameter case irrespective of the type of the gamma
prior distribution used and the di↵erence between
the performances of the Bayesian and the frequentist

tr-charts becomes insignificant. This is reassuring for
the practitioner. Furthermore, based on the perfor-
mance comparison study between the Bayesian and
frequentist tr-chart, it was found that the Bayesian
tr-chart provides much better performance than the
frequentist tr-chart in the more serious case of a
process deterioration, especially for a smaller phase
I sample size, even though it has slightly higher
AARLOOC values in the less serious case when the
process improves. The Bayesian tr-chart is recom-
mended, even when one has no prior information
about the rate parameter, over the frequentist tr-
chart when the rate parameter is unknown, espe-
cially when a relatively smaller number of phase
I observations is available. Our study also reveals
that, for smaller phase I sample sizes (less than 100),
the Bayesian tr-charts have lower SDCARL:in values
than the exponential CUSUM chart available in the
literature and, hence, gives the users more confi-
dence in their AARLin values. Thus, the Bayesian
tr-charts may be preferred as they are easy to design
and implement. On the other hand, the exponential
CUSUM chart is more e�cient especially for detect-
ing smaller shifts; however, the performance of the
Bayesian t4-chart is comparable.

Finally, several problem areas can be explored in
the future as follow-ups to this work. For example,
in this paper, we considered the conjugate prior due
to the ease in computations; however, other noncon-
jugate priors can be examined and studied. Also,
the Shewhart chart is used for simplicity and over-
all performance, but consideration of other types
of time-based charts for monitoring of interarrival
times, such as the CUSUM and the EWMA, in the
Bayesian framework, will be interesting and worth
pursuing. A more comprehensive performance com-
parison of TBE charts, including self-starting charts,
such as the Q charts (Quesenberry (1997)), will also
be worthwhile.

Appendix A

Using Equation (5), the conditional probability of
a signal for the frequentist tr-chart in phase II (Ku-
mar and Chakraborti (2016)) is given by

�F (�̂) = P [Tr < L̂M
r or Tr > ÛM

r | �1]
= 1 + G�2

2r
(2��A⇤1/�̂)�G�2

2r
(2��A⇤1/�̂),

(A.1)

where �1 = ��, � being the size of the shift in the
rate parameter �, and the constants A⇤1 and A⇤2 are
given in Equation (3).
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Letting W = 2m�/�̂, Equation (A.1) can be fur-
ther written as

�F (W ) = 1 + G�2
2r

(�A⇤1W/m)�G�2
2r

(�A⇤2W/m).

Because y =
Pm

i=1 xi is the sum of the m phase I ob-
servations, it follows the �(m,�) distribution, which
implies that W = 2m�/�̂ = 2�y follows a chi-square
distribution with 2m degrees of freedom. Thus, the
conditional probability of a signal is a function of a
chi-square random variable and hence itself is a ran-
dom variable. Further, when � = 1, the process is
IC and the conditional probability of a signal is the
conditional false alarm rate, CFAR. Thus,

CFAR = 1 + G�2
2r

(A⇤1W/m)�G�2
2r

(A⇤2W/m).

Following the line of arguments in Section 5, we
can define the metrics AARL and SDCARL for the
frequentist tr-chart as follows:

AARL

=
Z 1

0

1
�F (w)

h(w)dw

SDCARL

=

sZ 1

0

1
�2

F (w)
h(w)dw �

✓Z 1

0

1
�F (w)

h(w)dw

◆2

,

where h(w) is the density function of a chi-square
distribution with 2m degrees of freedom. It can be
easily shown that these metrics do not depend on �
but depend only on m, �, and nominal ARL0.

Appendix B

Theorem 1

When a!1 such that the mean of the prior dis-
tribution of �, i.e., a/b ! �0, the predictive density
of Tr in Equation (6) converges to a gamma distribu-
tion with parameters r and �0. Hence, under these
conditions, the distribution of 2�0Tr converges to a
chi-square distribution with 2r degrees of freedom.

Proof

The predictive density in Equation (6) can be
rewritten as

fTr|y(t) =
tr�1

�(r)
· �(a + m + r)
�(a + m)(b + y)r

· 1h
1 + t

b+y

ia+m+r ; t > 0

=
tr�1

�(r)
· �(a + m + r)

�aam+r
· �aam

�(a + m)

·
✓

a

b + y

◆r

· 1h
1 + a

b+y
t
a

ia+m+r .

Because a!1 and a/b! �0, we have a/(b + y)!
�0. Also, using the results

lim
x!1

�(x + r)
�(x)xr

= 1 and lim
n!1

⇣
1 +

x

n

⌘n
= ex,

we get

lim
a!1

fTr|y(t) =
�r

0

�(r)
tr�1e��0t; t > 0

Hence, as a ! 1 and a/b ! �0, the distribution of
2�0Tr converges to a chi-square distribution with 2r
degrees of freedom.

Theorem 2

When m!1, the predictive density in Equation
(6) converges to a gamma distribution with param-
eters r and �, for all gamma priors (i.e., for all a
and b). Hence, when m ! 1, the distribution of
2�Tr converges to a chi-square distribution with 2r
degrees of freedom.

Proof

It is well known that, when the sample size m !
1, the ML estimator converges to the parameter.
Thus m/y ! � as m ! 1. Now, the predictive
density in Equation (6) can be re-expressed as

fTr|y(t) =
tr�1

�(r)
· �(a + m + r)
�(a + m)(b + y)r

· 1h
1 + t

b+y

ia+m+r ; t > 0

=
tr�1

�(r)
· �(a + m + r)

�(m)ma+r
· �mma

�(m + a)

·
✓

m

b + y

◆r

· 1h
1 + m

b+y
t
m

ia+m+r .

Now, when m!1, m/(b+y)! �. Hence, following
the line of arguments in the previous theorem, we
have

lim
a!1

fTr|y(t) =
�r

�(r)
tr�1e��t. t > 0

Hence, as m!1, 2�Tr follows a chi-square with 2r
degrees of freedom.
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Appendix C

The metric AARL can be written using Equations
(8) and (9) as

AARL

=
Z 1

0

1
1 + G�2

2r
(2��(b + y)B1)�G�2

2r
(2��(b + y)B2)

· (b + y)a+m

�(a + m)
�a+m�1e�(b+y)�d�,

where

B1 =
✓

1
B1�↵B/2(a + m, r)

� 1
◆

and
B2 =

✓
1

B↵B/2(a + m, r)
� 1

◆
.

Making a transformation z = (b + y)� with jacobian
= 1/(b + y), the expression for AARL reduces to

AARL

=
Z 1

0

1
[1 + G�2

2r
(2�zB1)�G�2

2r
(2�zB2)]

· 1
�(a + m)

za+m�1e�zdz.

It follows that the metric AARL and likewise the
other metrics in Equations (12) and (13) do not de-
pend on �, y, and b and they are the functions of a,
m, �, and ARL0 only.
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