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Abstract 

Semantic heterogeneity hampers efforts to find, integrate, analyse and interpret ecological 

data. An application case-study is described, in which the objective was to automate the 

integration and interpretation of heterogeneous, flower-visiting ecological data. A prototype 

knowledge-based system is described and evaluated. The system‘s semantic architecture 

uses a combination of ontologies and a Bayesian network to represent and reason with 

qualitative, uncertain ecological data and knowledge. This allows the high-level context and 

causal knowledge of behavioural interactions between individual plants and insects, and 

consequent ecological interactions between plant and insect populations, to be discovered. 

The system automatically assembles ecological interactions into a semantically consistent 

interaction network (a new design of a useful, traditional domain model). We discuss the 

contribution of probabilistic reasoning to knowledge discovery, the limitations of knowledge 

discovery in the application case-study, the impact of the work and the potential to apply the 

system design to the study of ecological interaction networks in general.   
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1. Introduction 

Studies of the behavioural and community ecology of flower-visiting insects, which can be 
inferred to pollinate flowers, are relevant to theoretical ecology and have important 
applications in agriculture [1–3] and conservation [4]. Flower-visiting observations are field 
notes about living insects recorded in nature by ecologists. Many flower-visiting observations 
are associated with specimen-records of insects now preserved in natural history collections. 
The data include the names of the plant species whose flowers the insects had visited 
immediately before the insects were killed and preserved. Such data documenting the 
relationships between individual organisms (i.e. plants and insects) in a natural setting are 
considered to be unusually rich ecological data, and the fact that they are ‗vouchered‘ by 
evidence preserved in museums also means that the identities of the insect organisms can 
be verified in future. Ecological data (let alone data with rich annotations) are infrequently 
supported by such physical evidence.  

Much progress has been reported in initiatives to advance eScience techniques broadly in 
the field of biodiversity and ecosystem informatics (BDEI) [5–7]. Due to semantic 
heterogeneity, however, analysts still face significant challenges when attempting to find, 
integrate and analyse specific ecological data, including flower-visiting data, among ever 
larger and more-fragmented datasets and heterogeneous data. Semantic heterogeneity also 
hampers the interpretation of data. Ecological data typically are incomplete and exhibit 
uncertainty, and therefore usually require experts, who have implicit knowledge, to analyse 
or interpret their meaning. 

In this work our overall objective was to formalise the specific context of behavioural and 
community flower-visiting ecology, to infer from the data a network of ecological interactions 
between plant and arthropod populations, analogous to an ecological community. We 
describe an application case-study, constrained within a scope and understood by adopting 
a conceptual stance. In the application case-study, we combined ontologies and a 
probabilistic knowledge model (a Bayesian network)—a semantic architecture—in a 
prototype implementation of a knowledge-based system, the purpose of which was to 
standardise and automate the interpretation of (discovery of knowledge in) flower-visiting 
data. Standardisation in the construction of interaction networks is required because 
ecologists need to compare networks from different years or places (e.g. to study the effects 
of global change). Automation will allow non-experts to construct ecological interaction 
networks from raw data, or interpret the data without further input from expert ecologists. 
Modelling knowledge of the diverse array of concepts about interactions between plants and 
arthropods (of which pollination is but one) will therefore be useful to experts and non-
experts alike. 

In Section 2 we introduce the background to the problem of integrating and interpreting 
heterogeneous flower-visiting data. Here we also describe related work in ontology 
modelling of behaviour, and the application of ontologies to discovery and integration of 

biodiversity and ecological data. In Section 3 the application case-study is described, 

including the scope, conceptual stance and modelling approach. Section 4 describes the 
knowledge models and system architecture, and Section 5 is a system evaluation, including 
a description of the prototype implementation and results obtained. In section 6 we discuss 
the extent to which the system was able to infer an interaction network, and the potential 
impact of this work in the area of automated interpretation of ecological interaction networks 
in general.  

2. Literature review and background  

The small size of many flowers and pollinating insects means that the transfer of pollen 
between flowers, or deposition of pollen on small and inaccessible stigmas, are not readily 
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observed. This explains why observations of visits by insects to flowers typically are used to 
infer that pollination occurred. In addition, there are other insect behaviours and consequent 
ecological interactions between insects and plants, such as foraging for nectar and pollen, 
which are important in the study of flower-visiting community ecology, but are not readily 
observed.  

The interaction network is a generic modelling construct that is commonly used in the 
broader domain of ecology to visualise various kinds of relationships between interacting 
species. Different ways of inferring specific plant-animal interaction networks from data 
appear in the literature, including mathematical techniques using symbolic computation and 
algebraic combinatorics [8], statistical techniques, including correlation analysis [9], 
hierarchical Bayesian models [10] and Bayesian networks [11,12], and computational 
methods, including machine learning [13] and network theory [14]. 

Field experiments in flower-visiting ecology typically include a diversity of techniques, and 
produce data which differ from observations collected in structured field surveys or 
accumulated over time by natural history museums. There has been some reflection, within 
the field of flower-visiting ecology, on the heterogeneity of concepts and terminology (e.g. 
‗pollinator‘ and ‗visitor‘) [15], and consequent representation of specific pollination networks 
as opposed to more general flower-visiting networks [16,17]. Interaction networks compiled 
in different investigations are typically assembled using different methods of data analysis 
and interpretation, and network nodes and arcs can represent different concepts from study 
to study. All of these kinds of heterogeneity and uncertainty mean that interaction networks 
cannot easily be compared, yet explicitly making such comparisons is an important objective 
in community ecology, especially considering the current focus on global change and the 
importance of pollination in food security [18–23]. Analysts therefore need a standardised 
protocol to address semantic heterogeneity in the analysis of flower-visiting data, and 
standardised techniques to interpret data and automatically and consistently assemble 
comparable flower-visiting interaction networks.   

2.1 Ecological data and knowledge 

Traditional approaches to ecological modelling using mathematical equations are hampered 
by the qualitative nature of ecological knowledge [24]. Typical ecological data and 
knowledge are ‗incomplete, qualitative and fuzzy, often expressed verbally and 
diagrammatically‘ [25], and are not easily represented in discrete classes nor subjected to 
discrete reasoning. The sources of uncertainty in ecology and conservation biology have 
been summarised in a taxonomy of uncertainty, which lists the various kinds of epistemic 
uncertainty (e.g. measurement error and model uncertainty) and linguistic uncertainty (e.g. 
ambiguity and underspecificity), which tend to be compounded in ecological data [26]. An 
ecologist needs to be comfortable commuting a vast hierarchy of spatio-temporal granularity, 
from the gene to the ecosystem, into a practical conceptual model. Moreover, the traditions 
of natural science research do not discourage discursive presentation of knowledge, and an 
ecologist‘s conceptual model of causal knowledge may even be largely implicit. However, if 
ecological knowledge can be made ‗explicit, well-organized and computer processable, great 
predictive power could be harnessed through the integration of quantitative and qualitative 
knowledge‘ [22]. This could result in ‗more efficient ways of organizing, processing and 
analysing ecological knowledge to emphasize and facilitate the process of ecological 
reasoning rather than data reduction‘ [25,27]. 

Flower-visiting data are incomplete and uncertain ecological observations that are used to 
make assertions and express concepts that are not semantically consistent within or 
between datasets, yet ecologists are able to use implicit knowledge manually to assemble 
such data into interaction networks to interpret the data (i.e. to interpret data means to 
assemble interaction networks). The objective of the work described below, therefore, was to 
standardise and automate the analysis and interpretation of data, i.e. to formalise, 
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standardise and automate the assembly of flower-visiting interaction networks.  

2.2 Ontologies for behavioural ecology 

Ontologies have successfully been used to standardise metadata terminology for the 
discovery, integration (by semantic mediation), and re-use of biodiversity and ecological data 
[28]. Limited modelling of behavioural concepts has been undertaken e.g. in the context of 
human neurobiology [29,30]. In biodiversity and ecosystem informatics (BDEI) aspects of 
behavioural ecology have been modelled in male jumping-spider courtship behaviour, sea-
turtle nesting behaviour [31] and the behaviour of social insects [32].  

The class ‗multi-organism behaviour‘ was originally defined in the Gene Ontology (GO) [33] 
(Fig. 1) and is now imported into 8 other ontologies including the Population and Community 
Ontology [28]. This class includes ‗any process in which an organism has a behavioural 
effect on another organism of the same or a different species‘ i.e. a behavioural interaction 
between organisms. The class ‗feeding on or from other organism‘ is also defined in the 
Population and Community Ontology and the Neuro-behaviour Ontology. These classes are 
both subsumed by the class BFO:Behavior, a subclass of the class BFO:Biological_Process, 
which is a kind of BFO:Occurrent [34] (Fig. 1). 

A subsumption hierarchy of specific flower-visiting object properties appears in the Relations 
Ontology (RO) [35] viz. the object properties RO:visits_flowers_of and 
RO:has_flowers_visited_by, which are ultimately subsumed by RO:biotically_interacts_with, 
which is subsumed by RO:ecologically_related_to. These object properties were modelled 
specifically to facilitate vertical integration of ecological data in broadly defined classes [36]. 
In contrast, the purpose of the knowledge models described below is to preserve the 
specific, original context of the data as far as is possible, and enrich the data, so as to 
discover specific ecological knowledge in the data.   

Fig. 1. The definition of the class ‗multi-organism behavior‘, originally defined in the Gene Ontology 
[37]. 

Thing 
 + entity 

  O + occurrent 

   + process 
    + biological_process 
     + response to stimulus 
      + behavior 
       + reproductive behavior 
       + single-organism behavior 
       - multi-organism behavior 

 

2.3 Ontologies for community ecology 

Biodiversity and ecology are complex domains, partly due to the challenge, in knowledge 
representation and reasoning, of adequately representing spatio-structural granularity, or the 
hierarchy of levels of organization or complexity observed in biological systems (e.g. cell < 
tissue < organ in the biomedical domain, and individual < population < community in 
ecology). A more detailed explanation of the terms ‗population‘ and ‗community‘ and 
ecological complexity appears below. 

Ontologies have been created for ecological informatics, including an 'ecology ontology' as 
well as ontologies for ecological models, analysis methods and ecological networks (used 
specifically for food webs) [38]. In these ontologies there is necessarily much emphasis on 
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representation of discrete knowledge and discrete reasoning e.g. that a herbivore can be 
inferred to have eaten plants even if what it actually ingested remained unknown, which is 
useful when generating a food web (food webs are discussed in more detail below).  

In ecology a useful ontology model and system architecture will need to represent the 
complexity of relationships between organisms, as well as between organisms and the 
environment, at the various scales at which these relationships are thought to be significant. 
It has been noted that ‗there are complementary ways to conceptualise ecological systems,‘ 
e.g. as individuals, populations or communities, or as a flow—of information, a substance 
such as a pollutant or nutrient, or energy [39,40]. Depending on the scale of an observation, 
processes can be modelled as entities or entities modelled as processes e.g. a population 
can be modelled as an entity unless it is seen as being composed of individuals, in which 
case it is a changing process [40].  

2.4 Application of ontologies in biodiversity and ecosystem 
informatics 

Many ontologies in the field of BDEI describe low-level concepts about the data record itself 
(e.g. data provenance), rather than high-level context or causality. For example, ontologies 
have been used to create semantic annotations of individual records or data-processing 
steps in scientific workflow systems  [41–44]. The Extensible Observation Ontology (OBOE) 
captures the semantics of generic scientific observation and measurement, and can be used 
‗to characterize the context of an observation (e.g. space and time), and clarify inter-
observational relationships such as dependency hierarchies (e.g. nested experimental 
observations) and meaningful dimensions within the data‘ [45]. The Biological Collections 
Ontology (BCO) has a similar purpose, with classes that describe the methods employed by 
scientists to collect specimens or observations of individual organisms, or in structured 
ecological surveys or environmental samples (e.g. a bucket of seawater containing 
plankton). BCO and related ontologies have been used to link semantically annotated data 
across sub-disciplines of biodiversity science using the approach of Linked Data [46]. For 
example, a comprehensive inventory of the non-microbial life on the Pacific island of Moorea 
has been created [28]. A subset of the data was annotated with classes from BCO and 
related ontologies, demonstrating how such datasets can be queried easily despite the 
diversity of methods and sampling situations, which would ordinarily restrict data to 
discipline-specific silos (e.g. Genetics or Ecology). 

Brilhante [47] defined metadata classes for quantitative ecological data by drawing on the 
EngMath ontology. The resultant ontology was used to synthesize new conceptual 
ecological models from metadata in datasets by matching an existing model with input 
metadata concepts constrained by the ontology.  

In semantic environmental modelling, ontologies can be used to declare a semantically 
enriched model by specifying [48] : 

a) the modelled entities, by identifying the relevant concepts and properties;  

b) the underlying relationships among these entities, to capture the structure of 
causality in the system as understood by the modeller. 

There may be limitations to the application of ontologies to nuanced biodiversity and 
ecological data and knowledge, including that ontologies do not explicitly support causal 
modelling or uncertainty. 

 

2.5 Bayesian networks 
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Differential equations are often used to represent causal knowledge in environmental and 
ecological modelling. Causal knowledge has also been represented using Bayesian 
networks. A Bayesian network (BN) is a graphical model that probabilistically represents 
causal (or correlative) relationships among variables [49,50]. Nodes in the graph represent 
event variables which are connected by arcs representing causal influences between events. 
A BN node is implicitly understood to be an event which can be in one of a number of states 
at a given time. To specify the probability distribution of a BN, one ‗must give the prior 
probabilities of all root nodes (nodes with no predecessors) and the conditional probabilities 
of all nonroot nodes given all possible combinations of their direct predecessors‘ [49]. 
Bayesian networks have been used widely in ecology and natural resource management, 
e.g. to evaluate the potential effects of alternative forest management decisions, and 
represent uncertainty and variability of costs and benefits assigned to model outcomes [51]. 
Bayesian networks have also been used specifically to infer ecological interaction networks 
using only species and habitat abundance [11,13], but not from the observation of, or 
knowledge about, behavioural interactions between individual organisms, such as the work 
described below. 

While ontologies and BN models have been applied in the geospatial domain, no study could 
be found, in the domain of BDEI, which combined both of these formalisms. In the field of the 
Sensor Web (distributed instruments and data for Earth observation) an approach to 
knowledge discovery involved combining ontologies and Bayesian networks in a probabilistic 
reasoning system. Bayesian networks were used to represent uncertainty and causal 
relations between environmental variables. This ‗eases conceptual modelling and allows for 
more flexible reasoning‘ [52]. Specifications of scientific theories and system modelling were 
integrated into the Sensor Web Agent Platform (SWAP), a ‗comprehensive framework for 
representing all aspects of geospatial data (space, time, theme and uncertainty) and the 
knowledge (theories and models) to interpret and analyse the data‘, as well as software 
agents to manage and dynamically apply knowledge to the data [52]. A SWAP Bayesian 
Network has two types of nodes: observation or measurement nodes, which represent 
sensor observations, and inferred nodes, which represent natural phenomena. One of the 
novel aspects was a mapping mechanism between observations captured in ontologies and 
event (observation) variables in the Bayesian Network [52,53]. The combination of 
formalisms and semantic architecture of SWAP [52] may therefore be a promising approach 
to automated knowledge discovery in biodiversity and ecological data. 

3. Application case-study 

The scope, conceptual stance and modelling approach, which are described below, served 
to constrain the work to a specific real-world application case-study. The work was an 
exploration of the potential to combine ontologies and a Bayesian network to model the 
context of flower-visiting community ecology, automatically to infer an ecological interaction 
network from semantically heterogeneous data. Specific knowledge was elicited from 
experts to create knowledge models, which were used to design a knowledge-based system. 
The system output was evaluated by experts. 

Three data-stores of flower-visiting observations were used, namely those of the Albany 
Museum (AM) in Grahamstown, Iziko South African Museum (SAM) in Cape Town and Plant 
Protection Research Institute (SANC) in Pretoria. In previous work we had used an 
application ontology to enrich the meaning of raw data and integrate the data by semantic 
mediation [54]. In further work we combined semantically enriched records of plant-
arthropod associations with expert knowledge of the species‘ behavioural ecology in a 
semantic Bayesian network [55] to detect meaningful situations or behaviours e.g. that an 
organism was probably ‗foraging for nectar‘ on a flower. Previously our work has been 
limited to the transformation of raw data into high-level, knowledge-rich abstractions of 
individual organisms.  
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Below we describe a continuation of the previous  application case-study [54]. We 
incorporate probabilistic reasoning into the system architecture and extend the knowledge 
modelling to a higher level of abstraction to aggregate, further analyse and automatically 
interpret enriched records by assembling an interaction network, a commonly used domain 
modelling construct. Rather than attempting to produce a universal or comprehensive model 
of plant-arthropod interactions, we aimed to test a specific combination of knowledge models 
and formalisms to discover knowledge of these interactions within the constraints of the 
scope and conceptual stance, and by using the expert knowledge elicited in previous work 
[55]. 

3.1 Scope 

The behaviour of anthophilous (flower-visiting) arthropod species occurring outside of Africa 
was excluded from the scope (e.g. orchid bees, which collect fragrances from flowers to 
attract mates). We modelled three specific behaviours that distinguish the more specialised 
anthophilous African insect species, which typically pollinate flowers, from arthropod species 
that can be found on flowers but are not typical flower-visitors (i.e. they are either 
opportunistic or incidental flower-visitors). These specialised behaviours are foraging for 
nectar, foraging for pollen and foraging for oil (or foraging for a floral product or ‗reward‘), 
and they typify, but are not restricted to, the bees (Anthophila) and the wasp subfamily 
Masarinae (pollen wasps). We also modelled the passive transfer of pollen (a pre-requisite 
of pollination), which is an incidental consequence of these specialised foraging behaviours. 
This ultimately explains the evolution of the plant-pollinator mutualism. Pollination is the 
benefit received by the plant organism in return for offering the floral ‗reward‘ to pollinators. 
Whereas pollination can sometimes be caused by bees collecting floral resin and nectar, not 
for ingestion but for nest construction (behaviour that is exhibited by many species in the 
family Megachilidae), this behaviour was not explicitly included in the scope because it is not 
a foraging behaviour. 

We excluded arthropod observations that are not linked to preserved museum specimens 
because we planned to enumerate and aggregate organisms of the same species (i.e. an 
instance of ‗at least two organisms‘), and therefore needed to be certain that different 
database records represent different individual arthropod organisms, each labelled with a 
unique museum catalogue number. Knowledge modelling was limited to arthropod 
specimens collected on seedplants (gymnosperms and angiosperms) (i.e. for aggregation 
into the class ArthropodPopulation). Preservation of plant specimens, however, is not 
routinely practiced as part of arthropod field surveys, so the modelling of plant populations 
(i.e. the class PlantPopulation) was not limited to preserved specimens. 

3.2 Conceptual stance 

The conceptual stance was informed by ecological theory as well as more recent 
philosophical work in ecology, which was the source [56] of the following practical definitions 
of the most widely used ecological units. The first two concept definitions were used 
(whereas the high-level concept of an ecosystem is beyond the scope but is provided for the 
sake of completeness): 

Population:   a group of individual organisms of the same species in space and time; 
Community:   an assemblage of organisms of different types (species, life forms) in space 

and time; 
Ecosystem:   an assemblage of organisms of different types (species, life forms) together 

with their abiotic environment in space and time. 

Specifically, we mean that the behaviour of individual organisms can be observed, and the 
repeated occurrence of a particular behaviour by many individual organisms (aggregated 
behaviour) within a spatio-temporal context is meaningful at the population level—e.g. the 
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foraging behaviour exhibited by a population of bees of a particular species in an apple 
orchard during the summer of 2015-2016. This population of bees can be said to interact 
with other, co-existing organisms of a different population (and different species e.g. the 
population of apple trees), and this gives rise to a phenomenon that may be termed a 
foraging ecological interaction between organisms of the population of bees and organisms 
of the population of apple trees. The ecological interaction cannot be defined intensionally at 
any level of ecological organisation but rather emerges as a consequence of the ensemble 
of this bee population‘s individual members behaving (e.g. specifically foraging for nectar), at 
this time, in a particular way towards individuals of the population of apple trees. It will be 
seen below, however, that if space and time are removed, the picture is not lost but rather 
looks different and has a different meaning. Importantly, therefore, this conceptual stance 
allowed us to aggregate individual organisms as well as their behaviour, in instances that 
exist at a higher level of organisation (aggregated organisms and aggregated behaviour). 
The result of abstracting the salient behavioural and ecological phenomena is the 
abstraction hierarchy shown in Fig. 2. 

This conceptual stance is commensurate with that of individual-based computational 
modelling as applied to ecology, in which the individual, population and community levels of 
ecological organisation are recognised. Processes occurring at the individual level produce 
patterns at higher levels of organisation, and small individual differences can lead to 
significant effects at the population or community levels [57]. 
 
Fig. 2. The abstraction hierarchy of behavioural and ecological phenomena. 

 

 

3.3 Modelling approach 

The knowledge that was modelled included knowledge of (the organisation of) ecological 
phenomena, generally available knowledge of plant and arthropod species, and their 
occurrences (observations, i.e. data), as well as expert knowledge of the behaviour of 
flower-visiting arthropods [55]. The ontology classes formalised:  

1) the required context of the behavioural ecology of individual organisms now preserved as 
natural history specimens; 

2) the context of plant-arthropod (mutualistic) ecological interactions (at a higher level of 
abstraction) inferred from records of these individual organisms.  
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While the modelled classes were not specifically integrated with existing domain or 
foundational ontologies, their concept definitions nevertheless are aligned with concepts 
encoded in the Basic Formal Ontology (BFO) and, at the domain level, the Darwin Semantic 

Web Ontology (DSW; e.g. the class DSW:Occurrence) [58]. A specific knowledge 

engineering methodology was not followed. Rather, the modelling of ontology classes was 
informed by interviews with flower-visiting ecologists and through reading relevant literature 
(top-down approach), as well as analysing flower-visiting data (bottom-up approach). 
Modelling in OWL was executed using the Protégé tool [59] and in accordance with the 
middle-out ontology construction approach [60]. 

In accordance with the conceptual stance and modelling approach, concepts that have 
instances at the individual level of organisation (i.e. the behaviour of individual organisms, or 
the study of behavioural ecology) were separated from concepts that have instances at the 
community level of organisation (i.e. ecological interactions between populations, or the 
study of community ecology). Two ontologies were therefore developed, named respectively, 
the Individual Plant-Arthropod Associations Ontology (IPA) and the Interaction Network 
Ontology (IN).  A notional whole population, represented by the PopulationSample class, 
was included in the community level because we did not model concepts used in the study 
of population ecology, such as population size or the rate of population growth.  

Instead of using differential equations, a Bayesian network was used to capture causal 
knowledge of behavioural ecology. The combination of ontology and Bayesian network 
therefore follow an approach demonstrated in Earth Observation [52]. The causal knowledge 
model was of central importance because it was used to reason about the behaviours of 
individual organisms, and it was these behaviours that were aggregated at higher levels of 
organisation to represent the higher-level context (i.e. community ecology).   

4. System description 

The purpose of the knowledge-based system is to transform typical natural history 
occurrence data into a flower-visiting interaction network by combining the data with relevant 
(if qualitative and uncertain), generally available knowledge and expert knowledge. The 
semantic architecture (Fig. 3) consists of three layers which reflect the abstraction hierarchy 
of behavioural and ecological phenomena introduced above.  

4.1 Overview of the system architecture 

An overview of the three layers of the system architecture is given below, and each layer is 
described in more detail in the following sections. 

 

Layer 1: The Semantic Enrichment and Mediation Layer 

This layer enriches data and performs semantic mediation (see [54]) to integrate instances 

of the IPA:PlantAssociationEvent class and its subclasses. Each processed record 

is passed to Layer 2 via a mapping which sets the states of nodes in Layer 2.   

Layer 1 contains two ontologies. The IPA Mapping Ontology maps records from the data-
stores to the main ontology, viz. the Individual Plant-Arthropod Associations Ontology (IPA). 
The IPA Ontology captures knowledge of preserved specimens of plant and arthropod 
organisms and the low-level associations (events) between them in nature, as well as 
knowledge of plant and arthropod species that is relevant to flower-visiting behaviour. 

Layer 2: The Situation Detection Layer  
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This layer uses a Bayesian network knowledge model, viz. the Individual Flower-Visiting 
Behaviour Bayesian Network (IFBN). Using knowledge represented by the IPA, the IPA-
IFBN mapping sets the nodes of the IFBN to the required evidence states. The IFBN is 
executed to detect the most probable high-level situation that occurred. It infers each 
arthropod organism‘s behaviour on the flower while it was alive, given the semantically 
enriched behavioural ecology observations and prior knowledge of the plant and arthropod 
species (received from Layer 1). 

Layer 3: The Interpretation Layer  

A mapping between IFBN and IN aggregates instances of individual arthropod organism 
behaviours received from Layer 2 into aggregated behaviour instances, which are then 
assembled into a generalised flower-visiting network or a specific ecological interaction 
network (according to the spatio-temporal parameters input by the user). 

This layer uses a knowledge model, viz. the Interaction Network Ontology (IN), to represent 
aggregated behaviour (and specialised ecological interactions), aggregations of individuals 
(and specialised population samples), and structural classes of interaction networks and 
their constituent nodes.  

4.2 System input and output 

A system input query allows the user to specify spatio-temporal parameters (indicated as s 
and t in Fig. 3), and uses these to limit the spatio-temporal extent of the interaction network 
produced by the system. The user is further required to specify whether or not an ecological 
community of contemporaneously interacting populations (indicated as c in Fig. 3) can be 
expected to occur within the supplied spatio-temporal envelope. 

The system output is a semantically consistent interaction network which has been enriched 
with the general context of plant-arthropod mutualistic interactions. Each interaction network 
is either enriched with the specific context of community ecology or with the more 
generalised context of evolutionary history. This will be further explained below. 
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Fig. 3 The system architecture. 
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4.3  Layer 1: The Semantic Enrichment and Mediation Layer 

This layer receives occurrence records from the data-stores via the data-store mappings and 
enriches these by creating object properties, thereby creating associated events and 
associated species properties. The layer‘s output is enriched event instances (of the class 

IPA:PlantAssociationEvent) which are input into the situation detection layer.   

IPA Mapping Ontology 

Records received from a data-store are classified by an instance, unique to the data-store, of 
the IPA Mapping Ontology (Table 1), which has been created by an expert who has 
classified descriptions of arthropod behaviour in the Behaviour field of the data-store into 

one of the subclasses of the IPA:PlantAssociationEvent class (described below). 

The IPA Mapping Ontology also contains the IPA:ForagingBehaviour subsumption 

hierarchy (described below) because an expert is capable of asserting that a specific 
foraging behaviour was directly observed. 

Table 1. Examples of data from SAM and AM, instantiated using the IPA Mapping Ontology. 

  Data-store Value in Behaviour field in data-store IPA Class 

sam-m Collecting pollen on yellow flowers PollenForagingBehaviour 

sam -m Feeding on Brunia laevis pollen PollenForagingBehaviour 

sam -m Foraging on nectar of Euphorbia flowers NectarForagingBehaviour 

sam -m Visiting extra-floral nectaries PlantUtilizingEvent 

am-m On foliage PlantUtilizingEvent 

am -m On stem of plant PlantUtilizingEvent 

am -m Visiting flowers FlowerVisitingEvent 

am -m In flowers FlowerUtilizingEvent 

am -m On flowers FlowerUtilizingEvent 

Individual Plant-Arthropod Ontology 

The purpose of the IPA Ontology is two-fold: 

1) to identify instances of the important class of events, viz. 

IPA:PlantAssociationEvent, in which plant and arthropod organisms are 

associated with each other, by filtering data-store records ‗from the bottom up‘ via the 
data-store mappings; 

2) to enrich these event instances with the necessary background knowledge or context 
(behavioural ecology and species knowledge) to allow the events to be interpreted in 
higher system layers. 

 
The IPA Ontology therefore encodes two kinds of classes: 
i) Knowledge of occurrences of species (now preserved as specimens in museum 

collections), which originated in the data-stores and was expressed with rich semantics; 
ii) knowledge of species, or the ‗species knowledgebase‘, consisting of generally available 

ecological knowledge of plant and arthropod species, which was not included in the data-
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stores but compiled separately. This knowledge was expressed with a minimum 
ontological component. 

i) Knowledge of occurrences of species 

The definition of the IPA:PlantAssociationEvent class is shown in Fig. 4. The 

subsumption hierarchy specialising the IPA:PlantAssociationEvent class is of 

central importance in semantic mediation because heterogeneous data-store records are 
enriched with these classes, and the events are further interpreted and enriched in higher 
system layers. In this subsumption hierarchy the word ‗association‘ means that there is no 
observational evidence with which to assert that an arthropod visited (e.g. landed on) a plant 
or flower, whereas the word ‗visiting‘ means that such evidence does appear on the 
arthropod specimen label. 

Fig. 4. Definition of the  IPA:PlantAssociationEvent class. 

 

 
 

Definitions of the IPA:PlantOccurrence and IPA:ArthropodOccurrence 

classes are shown in Fig. 5a and 5b. The latter are subclasses of the DSW:Occurrence 
class, defined as ‗an organism at a time and place‘ [58]. The class definitions employ the 

classes IPA:PlantOrganism and IPA:ArthropodOrganism, and the property 

restriction:  
(occursAt some TimeAndPlace). 

 
Fig. 5a. Restriction of the  IPA:PlantOccurrence class. 
 

 
 
Fig. 5b. Restriction of the  IPA:ArthropodOccurrence class. 
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ii) The species knowledgebase 

The species knowledgebase (Table 2) in the IPA Ontology encodes classes and properties 
defining species knowledge, the choice of which was informed by knowledge representation 
and reasoning requirements elicited from expert flower-visiting ecologists [55]. The decision 
to use a probabilistic model to interpret arthropod organisms‘ behaviour, and link this to the 
IPA Ontology, therefore dictated which classes were needed in the IPA Ontology. In other 
words, the states of BN variables would need to be set from corresponding instances of 
equivalent classes in the IPA Ontology, and this informed the choice of classes needed in 
the IPA Ontology. Like the IPA Mapping Ontology, the species knowledgebase is static and 
was created prior to using the system to interpret ecological data. 

Table 2a. Examples of knowledge in the plant species knowledgebase in the IPA Ontology. 

Plant species Floral product 
combination 

Pollination 
system 

Sexual system Earliest 
flowering 
month 

Latest 
flowering 
month 

Pterygodium 
hallii 

Oil_And_Pollinaria Entomophily Hermaphroditic 8 10 

 

Table 2b. Examples of knowledge in the arthropod species knowledgebase in the IPA Ontology. 

Arthropod 
species 

Flower visitor type Family Subfamily (Required only when 
the family is Masaridae) 

Rediviva 
macgregori 

Oil_And_Nectar_And_ 

Pollen_Forager 

Mellitidae  

 

4.4  Layer 2: The Situation Detection Layer 

The specific behaviour of an arthropod organism was modelled using a Bayesian network 
because this allowed the inferencing of an expert flower-visiting ecologist (i.e. using causal 
knowledge) to be simulated. The situation detection layer receives input from the IPA 
Ontology, via the IPA-IFBN evidence mapping (described below), in the form of the requisite 
states in which to set the BN nodes. It reasons with this contextual expert knowledge of 
events, occurrences and species to interpret the most probable behaviour of an individual 
flower-visiting arthropod, and sends this behaviour instance to the layer above it in the 
semantic architecture (the Interpretation Layer).  

Individual Flower-Visiting Behaviour Bayesian Network 

The knowledge represented by the IFBN was elicited from 5 experts in the field of flower-
visiting insect behavioural ecology [55]. Specifically, the structure of the IFBN and its 
conditional probability tables were designed using the input of these experts. The 
implemented IFBN is shown in Fig. 6 and selected variables of the IFBN are explained 
below. 
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Fig. 6. The Individual Flower-Visiting Behaviour Bayesian Network (IFBN). Variables representing 

generally available knowledge have bold outlines. 

 
The posterior probability distributions over the states of the INF_ForagingBehaviour 

node and the INF_PollenTransferBehaviour node are the targets. The states of 

three nodes influence the belief of an expert that pollen will be transferred: the 

INF_ForagingBehaviour node, the EVD_SpeciesSpecialisation node (which 

is set by the IPA-IFBN evidence mapping using an inference made by the IPA Ontology 

reasoner) and the EVD_ArthropodSex_Occ node (the sex of the arthropod occurrence). 

The reason for this is that the fewer plant species an arthropod species is known to visit 
(specifically to forage for nectar i.e. the condition of oligophagy), the higher the chance that 
an organism of this species will visit the flowers of a different plant organism of the same 
plant species, and therefore transfer conspecific pollen between flowers. Female arthropods 
fly from flower to flower to collect nectar and pollen to provision their nests, and therefore 
have a higher chance than males of transferring loose pollen accidentally adhering to their 
bodies.   

Table 3 shows the prior probabilities of the states of the node 

EVD_FloralProduct_Comb, or the combinations of floral products presented by an 

African seedplant species. Grass species, for example, do not secrete nectar because they 
are wind-pollinated. Many orchid species, which have pollen sacs, or pollinaria, rather than 
granular pollen, do not secrete nectar or oil (though some orchid flowers do secrete oil). 
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Table 3. The table of prior probabilities of the EVD_FloralProduct_Comb IFBN node 

EVD_FloralProduct_Comb Prior Probability 

Oil_And_Pollinaria 0.05 

Nectar_And_Pollinaria 0.1 

Oil_And_Pollen 0.05 

Nectar_And_Pollen 0.5 

Secretion_Absent_Pollen_Present 0.15 

Secretion_Absent_Pollinaria_Present 0.15 

 

Table 4 is the table of prior probabilities of the EVD_FlowerVisitorType node. 

Females of most anthophilous insect species forage for nectar and pollen, whereas males 
forage only for nectar. A small group of bees (i.e. the genus Rediviva) are unique in that the 
females forage for floral oil on specific oil-producing plant species, though they also forage 
for nectar and granular pollen on nectar-producing plants (insects are not said to ‗forage‘ for 
pollinaria because these adhere passively to insects). Again, the males of these species only 
require nectar for energy, whereas females actively collect oil to provision their nests. 

Table 4. Table of prior probabilities of the EVD_FlowerVisitorType BN node. 

EVD_FlowerVisitorType Prior Probability 

Nectar_Forager 0.1 

Pollen_Forager 0.1 

Nectar_And_Pollen_Forager 0.7 

Oil_And_Nectar_And_Pollen_Forager 0.1 

 

IPA-IFBN Evidence Mapping 

A mechanism was needed to set the states of BN nodes from corresponding instances of 
equivalent classes in the IPA Ontology. This can be seen as linking the ontology (see Figure 
4 and Table 2) to the BN (Figure 6) for each processed record (i.e. for each associated plant 
and arthropod specimen-record). Table 5 shows how instances of four IPA classes are 
mapped to four corresponding states of IFBN target nodes, through matching the object 
property names with node names, and instance names with state names (in bold type). The 
rest of the BN nodes‘ states are set in the same way from the IPA Ontology.    
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Table 5. An extract from the IPA-IFBN evidence mapping.  

IPA Ontology (source class 
and instance name) 

IFBN (target node and state 
name) 

Description 

 
hasPlantParticipant 
hasPlantSpecies 
hasFloralProduct 
Combination 
 
Oil_And_Pollen 

 
EVD_hasPlantParticipant_ 
hasPlantSpecies_ 
hasFloralProduct_Comb 
 
 
Oil_And_Pollen 

 
Which floral product 
combination characterises 
the plant species 

 
hasArthropodParticipant  
hasArthropodSpecies 
hasFlowerVisitorType 
 
Oil_And_Nectar_And_Pollen
_Forager 
 

 
EVD_hasArthropodParticipant
_ hasArthropodSpecies_ 
hasFlowerVisitorType 
 
Oil_And_Nectar_And_Pollen
_Forager 

 
The type of flower-visiting 
behaviour exhibited by the 
arthropod species  

 
hasArthropodParticipant  
hasArthropodSpecies 
hasSpeciesSpecialisation 
 
HighSpecialisation 

 
EVD_hasArthropodParticipant
_ hasArthropodSpecies_ 
hasSpeciesSpecialisation 
 
HighSpecialisation 

 
Whether an arthropod 
species specialises (high, 
medium or low 
specialisation) in foraging 
for nectar from a small 
number of plant species. 

 
hasArthropodParticipant  
hasForagingBehaviour 
 
Oil_Foraging_Behaviour 
Pollen_Foraging_Behaviour 

 
INF_hasArthropodParticipant_ 
hasForagingBehaviour 
 
Oil_Foraging_Behaviour 
Pollen_Foraging_Behaviour 
 

 
The inferred foraging 
behaviour of the arthropod 
occurrence 

 

4.5  Layer 3: The Interpretation Layer 

IFBN-IN Mapping 

In Layer 2 the IFBN is executed for each instance (associated plant and arthropod 
specimen-record) received from the IPA, but Layer 3 aggregates these instances. The IFBN-
IN mapping performs this aggregation through a simple code routine which gives effect to 
the following logic. If, for a given pair of associated arthropod and plant species in the spatio-
temporal envelope, the number of IFBN ForagingBehaviour nodes in the TRUE state is 
greater than n, these will be aggregated (e.g. n can be set to 1). The same applies to IFBN 
PollenTransferBehaviour nodes. The result will be either an instance of the 

IN:AggregatedBehaviour class or an instance of the 

IN:EcologicalInteraction class, depending on whether the user set the ‗ecological 

community‘ criterion to False or True, respectively. 

The function of the Interpretation Layer is to receive records of aggregated 
ForagingBehaviour and PollenTransferBehaviour from the IFBN-IN mapping, and create 
instances of classes in the Interaction Network Ontology representing aggregated behaviour 
exhibited by aggregations of organisms.  
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Interaction Network Ontology 

The Interaction Network Ontology creates the high-level domain context and also contains 
classes and properties for assembling the network infrastructure. The more generalised 
classes of aggregated individual organisms and aggregated behaviours will be described 
first, followed by the more specific classes of population samples and ecological interactions, 
and finally the network infrastructure classes.  

Aggregations of Individual Organisms 

Parallel subsumption hierarchies specialise the classes 

In:AggregationOfIndividualsBySpecies and IN:PopulationSample (Fig. 

7), for both the arthropod aggregation and the plant aggregation. The class 

IN:AggregationOfIndividualsBySpecies is defined as ‗More than one 

individual organism of the same species‘, and is specialised into the class 

IN:AggregationOfArthropodIndividualsBySpecies. For example, the class 

IN:ArthropodPopulationSample is a subclass of the class 

IN:AggregationOfArthropodIndividualsBySpecies. 

Fig. 7. The IN:AggregationOfIndividualsBySpecies and 

IN:PopulationSample classes. 

 

Aggregated Behaviours 

The names of classes have been simplified for easier reading by omitting the words 
‗Aggregated‘ and ‗Behaviour‘ in specialised subclasses. The class 

IN:AggregatedBehaviour is specialised into a subsumption hierarchy (Fig. 8) which 

mirrors that of the IPA:Behaviour class. The classes are further restricted by a 

subsumption hierarchy of object properties (Fig. 9).  

 

Fig. 8. The class restriction of the IN:PlantAssociationBehaviour class. 
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Fig. 9. The subsumption hierarchy of object properties in the IN Ontology. 

 

The class IN:ForagingBehaviour (Fig. 10) is restricted by the object property 

IN:association_HasForagingArthropod, the value of which is an instance of the 

class IN:AggregationOfArthropodIndividualsBySpecies. Similarly, 

Asserting the IN:ForagingBehaviour instance's object property 

IN:association_HasForagingPlant with a plant species as its value serves to 

link the IN:ForagingBehaviour instance to an instance of 

IN:AggregationOfPlantIndividualsBySpecies (Fig. 10) 

 

Fig. 10. The class restriction of the IN:ForagingBehaviour class. 

 

 

The three classes representing aggregated foraging behaviour for specific floral products are 
similarly restricted by object properties specific to each floral product, e.g. the class 

IN:NectarForaging and the object property 

IN:association_HasNectarForaging_Arthropod. The 

IN:PollenTransfer class (Fig. 11) is restricted by object properties which are not 

subsumed by a foraging object property, because pollen transfer is incidental to foraging, i.e. 

the properties association_HasPollenTransfer_Arthropod and 

association_HasPollenTransfer_Plant. 
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Fig. 11. The class restriction of the IN:PollenTransfer class. 

 

 

Ecological Interactions 

The class IN:EcologicalInteraction  is specialised into a subsumption hierarchy 

beneath, and reflecting that of, the IN:AggregatedBehaviour class (Fig 12).  

Fig. 12. The IN:EcologicalInteraction subsumption hierarchy. 

 

Specific object properties are used to restrict the specific foraging ecological interactions, 

e.g. IN:interaction_HasNectarForaging_Arthropod. 

The class restriction of the class IN:PlantArthropodMutualisticInteraction 

requires a foraging ecological interaction (which is assumed to benefit the arthropod) as well 
as a pollen transfer ecological interaction (which is assumed to benefit the plant) (Fig. 13). 

Fig. 13. The class restriction of the IN:PlantArthropodMutualisticEcologicalInteraction 

class. 
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Ecological or evolutionary context 

An aggregation of instances of the class IPA:ForagingBehaviour either becomes an 

instance of the IN:AggregatedBehaviour class or the 

IN:EcologicalInteraction class. The specialised class 

IN:EcologicalInteraction is created if the user has specified that an ecological 

community can be expected to occur in the specified spatio-temporal envelope. In this case 

an instance of the class IN:PopulationSample will be created (i.e. for both the plant 

and arthropod species), and an instance of the class IN:EcologicalInteraction 

will link the population sample instances. If the user is not modelling an ecological 

community, an instance of the class IN:AggregationOfIndividualsBySpecies 

will be created for the plant and arthropod species, and an instance of the class 

IN:AggregatedBehaviour will link them. As discussed below, this is the context of the 

evolution of flower-visiting interactions. 

Network structure 

The classes IN:InteractionNetwork and IN:InteractionNetworkNode are 

defined (Fig. 14) to associate each node with an instance of a specific network, 

 e.g. the population sample:  

node3 IN:represents C_deflexum; 

or the aggregated foraging behaviour: 

node2 IN:represents AggNecForBehaviour10; 

and the interaction network: 

 IN1 IN:hasNode node3.  

This allows different instances of interaction networks to be created so that a user can 
visualise more than one network, to compare networks assembled within different spatio-
temporal envelopes (e.g. different places at the same time or different times at the same 
place).  

Nodes represent the class IN:AggregationOfIndividualsBySpecies  or its 

subclass, IN:PopulationSample (of either plants or arthropods), as well as the class 

IN:AggregatedBehaviour or its subclass, IN:EcologicalInteraction.  

Creating a network 

An instance of the class IN:AggregatedBehaviourNode links exactly two nodes in 

the same interaction network, through its object properties IN:from and IN:to (Fig. 14). 
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Fig. 14. Instances of the class IN:InteractionNetworkNode are related to an instance 

representing the whole interaction network (class IN:InteractionNetwork).  

 

5. Implementation and evaluation 
A prototype of each system component was implemented and executed to obtain system 
output (results) for expert verification. The Jena API was used to instantiate the ontology 
classes and execute the reasoner (HermiT), and the BN tools in Java (BNJ) suite was used 
to execute the Bayesian network (see the implementation of SWAP [52,53]). The knowledge 
models and parts of the code can be downloaded from the following URL: 
https://github.com/wcoetzer/flowervisiting. 

5.1 Execution 

Below we describe how the system functions to enrich, transform and aggregate flower-
visiting records through each system layer. 

Semantic Enrichment and Mediation Layer 

This layer receives instances of the class IPA:PlantAssociationEvent from the 

data-stores‘ IPA Ontology mappings [54], creates instances of the classes 

IPA:PlantOccurrence and IPA:ArthropodOccurrence, and asserts two object 

properties of the IPA:PlantAssociationEvent instance, viz. 

IPA:hasArthropodParticipant and IPA:hasPlantParticipant (Fig. 15).   

If a specific foraging behaviour was directly interpreted by the observer the record will be 
sent to the Situation Detection Layer but will bypass probabilistic reasoning because the 
IPA-IFBN mapping will set the probability of the corresponding state of the 

INF_ForagingBehaviour node to 1. 
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Figure 15. Event, occurrence and species instances enriched with object properties.  

 

The IPA:PlantOccurrence instance becomes enriched with an object property (Fig. 

16a) which assigns it a species name. Similarly the IPA:ArthropodOccurrence 

instance becomes enriched with object properties (Fig. 16b) which locate the instance in 
space and time, and assign it a species name, sex and catalogue number.  

 

Figure 16a. Object property of the IPA:PlantOccurrence instance. 

 
 

Figure 16b. Object properties of the IPA:ArthropodOccurrence instance. 

 
 

Instances of the IPA:PlantSpecies and IPA:ArthropodSpecies classes are then 

enriched with object properties from the IPA species knowledgebase (Fig. 17a and Fig. 17b), 
which results in the enriched species instances shown in Fig. 15.  
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Figure 17a. Object properties of the IPA:PlantSpecies instance. 

 

 
 

Figure 17b. Object properties of the IPA:ArthropodSpecies instance. 

 

 
 

The appropriate IPA:SpeciesSpecialisation subclass (e.g. 

HighSpecialisation) is inferred from the family name (or in the case of the family 

Masaridae, the subfamily name) i.e. the value of the object property IPA:hasFamily or 

IPA:hasSubfamily. Second, since the IPA:PlantSpecies object properties 

IPA:hasEarliestFloweringMonth and IPA:hasLatestFloweringMonth 

have been asserted, the values of these can be used to infer the value of the property 

IPA:isFloweringTime.  

 
Situation Detection Layer 

Corresponding object properties in the IPA ontology are identified and their values used to 
set the states of the BN evidence nodes before executing the BN to calculate the posterior 

probabilities of states of the INF_ForagingBehaviour and 

INF_PollenTransferBehaviour nodes. 

The IPA-IFBN evidence mapping uses the value of the IPA:isFloweringTime property 

to set the state of the EVD_FloweringTime IFBN node, i.e. to True or False,  to allow 

the IFBN to infer whether or not the IPA:PlantOccurrence was probably flowering 

when the IPA:ArthropodOccurrence participated in the 

IPA:PlantAssociationEvent. Similarly, discrete reasoning by the IPA Ontology 

allows the plant sexual system and the flower visitor type to be inferred, and the 
corresponding IFBN nodes to be set accordingly. 
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Interpretation layer 

The IFBN-IN mapping aggregates records received from the IFBN. For example, in the case 
that there is more than one record of nectar-foraging behaviour (interpreted by the IFBN) an 

instance of the class IN:AggregatedNectarForagingBehaviour is asserted, as 

shown in Fig 18a. In the specific case of an ecological interaction network, an instance of the 

class IN:EcologicalInteraction is asserted, as shown in Fig. 18b. 

Figure 18a. An instance of the class IN:NectarForaging is asserted. 

 

 

Figure 18b. An instance of the class IN:NectarForagingEcologicalInteraction is asserted. 

 

 
 

The ‗Ecological Community‘ criterion, received at the data input stage, determines whether 
the user has indicated that populations of plants and arthropods can co-exist in the specified 

spatio-temporal envelope. If this criterion is True, the specific case of a community of 

interacting populations applies, and the IN:PopulationSample instances therefore can 

be represented as an ecological interaction network of plant and arthropod populations (i.e. 

linked by instances of the class IN:EcologicalInteraction), or else the general 

case applies and the IN:AggregationOfIndividualsBySpecies instances must 

be represented as a generalised flower-visiting interaction network (i.e. the class 

IN:AggregatedBehaviour instead of the specialised 

IN:EcologicalInteraction).  

An instance of the class IN:EcologicalInteraction is classified as an 

IPA:PlantArthropodMutualisticInteraction if both foraging and pollen 

transfer occurred (Fig. 19). While the inferred class 

IN:PollenTransferInteraction is not displayed in Fig. 19 due to an artefact of the  

Protégé application‘s interface design, a DL query for this class does return this instance.  
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Figure 19. An instance of the class  
 

IN:PlantArthropodMutualisticInteraction is inferred. 

 

 

5.2 Results and evaluation 

Specimen-records (n=126) were spatially filtered from the database of the Iziko South 
African Museum. The filtered records had been created as part of a survey conducted in 
February and December 1986. These records were used as input into the prototype system 
implementation. Table 6 shows the resultant ecological interaction network.  

The records were deemed to represent ecologically interacting populations of plants and 
arthropods, and the ‗ecological community‘ criterion was therefore set to TRUE. The IFBN 
was therefore executed 126 times (for each specimen-record). The minimum number of 
plant or arthropod specimens/individuals in a population was 2 (IFBN-IN mapping; refer to 
Section 4.5). 

None of the records included directly observed arthropod behaviour, and were therefore all 
inferred by the IFBN to represent a particular behaviour. Whereas 15 plant-arthropod 
species pairs were present in the data, only 10 species pairs were eventually represented by 

instances of the IN:EcologicalInteraction class. There were two reasons why 

such an instance was not created: either there was not more than one of either the 
ForagingBehaviour or PollenTransfer IFBN node, or the nodes were not interpreted to be in 
a foraging behaviour state - in this case male bees visiting the flowers of an oil-producing 
plant rather than a nectar-producing plant (males cannot use floral oil). Seven species pairs 
were ultimately linked through mutualistic ecological interactions (i.e. because there was 
both foraging and pollen transfer, and each of these benefited either the plant or arthropod 
population). 

The interaction network model (system output) was visualised to enable experts to validate 
the network semantics and structure. The interaction network may be a specific ecological 
interaction network (e.g. Fig. 20) or a more generalised flower-visiting interaction network 
(with a broad spatio-temporal extent or without space and time constraints i.e. the context of 
evolution). In the case of a generalised flower-visiting interaction network, instances of the 

classes IN:AggregationOfArthropodIndividualsBySpecies and 

IN:AggregationOfPlantIndividualsBySpecies are asserted instead of their 

subclasses, viz. IN:ArthropodPopulationSample and 

IN:PlantPopulationSample. 

Examples of ecological interaction networks were submitted to five independent experts for 
verification of the network semantics and structure. All five experts agreed that the networks 
produced by the system were semantically and structurally the same as manually 
constructed interaction networks, and that the semantic consistency and objectivity of the 
automatically interpreted networks could be useful in research. Therefore the knowledge-
based system was able to infer interaction networks from flower-visiting data by formalising 
the specific contexts of behavioural and community flower-visiting ecology, and the 
evolutionary history of flower-visiting relationships.  
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Table 6. Results obtained from analysing 126 specimen records by using the prototype system. Each combination of plant and arthropod species is a potential 

ecological interaction. The sex of the arthropod is an important determinant of the kind of potential ecological interaction. 

 

 
         Layers 1 and 2 (Enrichment, Mediation and Interpretation)           Layer 3 (Aggregation) 

 

Plant Species Arthropod Species Sex ForagingBehaviour  Count Ecological Interaction 
Mutualistic 
Ecol. Int. 

Bowkeria verticillata Rediviva rufocincta female OilOrPollen (47%) 12 OilOrPollenForaging / PT (88.6%) True 

Bowkeria verticillata Rediviva rufocincta male (NotForagingForAFloralProduct) 16   

Buchenroedera lotonoides Rediviva brunnea female NectarOrPollen (47%) 1   

Diascia anastrepta Rediviva neliana female OilOrPollen (47%) 3 OilOrPollenForaging / PT (88.6%) True 

Diascia anastrepta Rediviva pallidula male (NotForagingForAFloralProduct) 1   

Diascia barberae Rediviva pallidula female OilOrPollen (47%) 25 OilOrPollenForaging / PT (88.6%) True 

Diascia cordata Rediviva neliana female OilOrPollen (47%) 6 OilOrPollenForaging / PT (88.6%) True 

Diascia cordata Rediviva neliana male (NotForagingForAFloralProduct) 2   

Diascia cordata Rediviva pallidula female OilOrPollen (47%) 1   

Diascia intergerrima Rediviva neliana female OilOrPollen (47%) 17 OilOrPollenForaging / PT (88.6%) True 

Diascia intergerrima Rediviva neliana male (NotForagingForAFloralProduct) 5   

Diascia intergerrima Rediviva pallidula female OilOrPollen (47%) 7 OilOrPollenForaging / PT (88.6%) True 

Diascia megathura Rediviva neliana female OilOrPollen (47%) 8 OilOrPollenForaging / PT (88.6%) True 

Diascia megathura Rediviva neliana male (NotForagingForAFloralProduct) 8   

Geranium drakensbergensis Rediviva neliana female NectarOrPollen (47%) 1   

Ortholobium polystictum Rediviva rufocincta female NectarOrPollen (47%) 1   

Ortholobium polystictum Rediviva rufocincta male Nectar (92%) 3 NectarForaging False 

Sandersonia aurantiaca Rediviva colorata female NectarOrPollen (47%) 1   

Wahlenbergia undulata Rediviva neliana female NectarOrPollen (47%) 1   

Wahlenbergia undulata Rediviva neliana male Nectar (92%) 4 NectarForaging False 

Wahlenbergia zeyheri Rediviva neliana male Nectar (92%) 3 NectarForaging False 
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Fig. 20. An ecological interaction network that visualises the results obtained in the system test 
described above. Green rectangles represent population samples of oil-collecting bees, blue 
rectangles represent population samples of oil-producing plants, and orange diamonds represent 
different kinds of ecological interactions. N = NectarForagingEcologicalInteraction, OP = 
OilOrPollenForagingEcologicalInteraction. A double diamond represents a 
PlantArthropodMutualisticEcologicalInteraction (meaning that a PollenTransferEcologicalInteraction 
also occurred). 

 

 

 

6. Discussion 

We reflect on the development of the knowledge-based system and discuss the extent to 
which the described implementation can infer ecological interactions and interpret these as 
an interaction network. Limitations of knowledge representation and reasoning with 
ecological data are considered and emphasis is placed on the system‘s use of probabilistic 
reasoning. As an outcome of this reflection we ask: How might ecological reasoning be 
demonstrated differently? The potential to infer more-generalised interaction networks, and 
the potential impact of the work in ecology, are discussed. We also refer to related work in 
this under-researched area.  

6.1 Development of the knowledge-based system 

Ultimately the high-level context that was formalised was that of community ecology of plant-
animal mutualistic interactions, and the way that this context was generated was through a 
specific semantic architecture that combined ontologies and a Bayesian network. The 
Bayesian network was not included in a previous version of the semantic architecture [54], in 
which records from data-stores were mapped to ontology classes which already had been 

interpreted by an expert (e.g. FV:FlowerNectarIngestingEvent). In contrast, the 

IPA Ontology in the described system uses a subsumption hierarchy of uninterpreted, low-
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level events (i.e. the class IPA:PlantAssociationEvent) for semantic enrichment 

and mediation. This is more objective because the specific foraging behaviours of 
anthophilous arthropods are mostly difficult to observe directly, either because the 
arthropods are too small or because they fly and forage too quickly. If, however, an expert 
has observed a high-level behaviour directly, the system can accommodate this evidence. 
Otherwise, the process of high-level inferencing begins with how the (now semantically 
consistent) low-level events are further enriched with specific, expert causal knowledge of 
flower-visiting behavioural ecology. The most probable specific behaviours of individual 
arthropod organisms are then inferred by the Individual Flower-Visiting Behaviour Bayesian 
Network (IFBN). This causal knowledge and probabilistic reasoning are exemplified by two 
variables—the combinations of floral products offered by plant species (e.g. some plants 
offer pollen and oil) and the types of arthropods visiting flowers (e.g. some bees specialise in 
foraging for floral oil). The system was therefore able to interpret behavioural ecology data 
automatically, as they were found in the context of a natural history museum, and at a high 
level of behavioural and ecological abstraction.  

The system architecture, and combination of knowledge models and formalisms of the 
semantic architecture, represent a first attempt to automate the interpretation of flower-
visiting ecological data. The two ontologies represented relevant knowledge of plant and 
arthropod species, and aggregated behaviour and ecological interactions. The IFBN 
addressed the uncertainty inherent in all ecological data by representing qualitative, causal 
knowledge, and therefore may represent an advance in ecological reasoning at the 
individual level of organisation. There is much potential to apply probabilistic reasoning to 
the automated interpretation of natural history data, especially when causal behavioural 
knowledge about specialised classes of organisms (such as different kinds of anthophilous 
arthropods) can be modelled e.g. in pest control (and biological control), freshwater 
biomonitoring, intertidal ecology, food webs (isotope analysis) or animal movement studies 
[55]. Further research is needed to develop a more generalised model of behavioural 
ecology. 

The conceptual stance of the described work did not require modelling the properties that 
characterise behaviour as an unfolding process. This approach may not be appropriate 
when adopting a different conceptual stance e.g. when population dynamics, per se, are 
important. A qualitative approach to population and community dynamics, named qualitative 
reasoning [24], has been used to develop a rich vocabulary describing objects, situations, 
relations and mechanisms of change as well as causal interpretations of system behaviour. 
Qualitative reasoning has been demonstrated in a causal model of predation (including 
consequent increases and decreases in population sizes) and in a model of the succession 
of a community of cerrado vegetation in Brazil. Where population dynamics of flower-visiting 
arthropods and plants are important, qualitative reasoning could therefore potentially be 
integrated into the system design. 

6.2 Limitations of knowledge modelling 

The important role of the IFBN leads to the question of whether the knowledge elicited from 
experts [55] was comprehensive enough to make the requisite inferences. An example is 
given to further characterise the particular combination of quality, complexity and uncertainty 
that is typical of ecological data, and to illustrate why the Bayesian network and probabilistic 
reasoning are well suited to ecological knowledge discovery. The sexual system of a plant 
species is generally available knowledge [61], and 90% of plants are hermaphroditic, with 
bisexual flowers containing both pollen and a floral reward (though in some species male 
and female parts mature asynchronously so as to prevent self-fertilisation). When a plant 
species has gender dimorphic populations (or is monoecious or dioecious) [62], however, a 
given plant organism, or specific flower, may either be male (and have pollen) or female (and 
have a floral reward e.g. oil or nectar), and unless this is recorded in data it cannot be 
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known. In the described application case-study the effect of this lack of knowledge probably 
was minimal.  

The difficulty of representing high-level ecological units (i.e. the concept of a population and 
that of a community) was a general limitation on knowledge representation and reasoning. 
This is a philosophical problem: ―Although there may be something that is a ‗real‘ 
supraorganismal entity of nature, there is no way for us to know these entities in their reality 
and totality. The essence of any ecological unit thus has to be defined and cannot just be 
‗found‘ ‖ [56]. Ecological units can be defined either by drawing discontinuities in space 
(topographical boundaries) or by extension of functional relationships between elements of 
the unit (functional boundaries), i.e. ‗by what means does something become an element of 
a unit? Is it by virtue of its presence in a particular area, or by virtue of functional 
relationships with other elements of the unit?‘ [56]. A dual approach to the use of ecological 

units has been proposed [56]: ‗Generic meanings of ‗population‘, ‗community‘, and 
‗ecosystem‘ can be retained only as heuristically useful perspectives, while specific and 
‗operational‘ definitions of the concepts as units should be developed, depending on specific 
purposes of their use‘. This view supports our decision to delegate the delimitation (by 
functional boundaries) of the populations and community of interest to the user. The classes 
AggregatedBehaviour and AggregationOfIndividualsBySpecies, the salient classes in the 
system, were not encapsulated entirely within any single knowledge model. Rather, these 
classes were defined as the aggregation of instances of classes defined at lower levels of 
abstraction, and creating instances of these high-level classes therefore required traversing 
the whole semantic architecture. The semantic architecture was therefore a kind of 
knowledge model of aggregated organisms and aggregated behaviours, which represented 
the most important knowledge within the scope and case-study. Traversing the levels of 
ecological organisation, represented by the whole semantic architecture, was therefore 
considered a kind of ecological reasoning.  

6.3 The choice of the combination of formalisms 

Hunter and Liu [63] surveyed the formalisms used for representing and reasoning with 
scientific knowledge, including description logics, logic programming, argumentation 
systems, uncertainty formalisms, and systems for combining knowledge. While Bayesian 
networks were considered to be useful, other uncertainty formalisms, such as probabilistic 
logic programming, also showed potential (to combine probabilistic and logical reasoning) in 
the case of making statistical assertions e.g. when conducting experimental trials. In the 
presented work, however, the behaviour of each individual organism needed to be 
interpreted, so a possible-worlds approach was appropriate. 

Ontologies and description logics offer a valuable approach for capturing meta-knowledge 
on the provenance and quality of (data as well as) knowledge in any area of science, and 
reasoning with this knowledge [63]. This knowledge is an important aspect of justifying a 
model, i.e. ‗to know where the original information comes from, how it was formalized, and 
what conflicts and uncertainties were flagged‘ [5,63]. 

The combination of formalisms was therefore chosen because it allowed both context and 
causality to be modelled. In addition to describing the context of data, the Individual Plant-
Arthropod Associations Ontology (IPA) was used to perform discrete reasoning in three 
instances, viz. to decide: the specialisation of an arthropod species, the sexual system of a 
plant species, and whether a plant species was probably flowering. For reasoning the 
semantic architecture relied more on the causal model (and probabilistic reasoning) than the 
IPA Ontology (and discrete reasoning). Ultimately this was due to the degree to which 
uncertainty pervaded the data and knowledge. It was also due to the facility of modelling 
causal knowledge using the Bayesian network formalism, compared to modelling uncertain 
ecological concepts and ecological causality using discrete ontology classes. A discrete 
model of ecological concepts would have been considerably more complex, and contained 
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more classes, than the Bayesian network. This facility came at no expense in knowledge 
representation when considering the semantic architecture as a whole, and the specific 
purpose of enrichment and knowledge discovery in the application case-study. 

6.4 Potential for broader application in ecology 

The described system was designed to discover ecological interactions between co-existing 
plant and arthropod populations, specifically foraging by arthropods for floral products and 
consequent pollen transfer. The design of the semantic architecture, however, will allow it to 
be used to model behavioural ecology in more general terms, and address the different 
scales of ecological organisation inherent in all ecological data and knowledge. The meaning 
of the system output potentially can be broadened to interpret other kinds of ecological 
interactions, e.g. parasitism and predation, from heterogeneous data (but this would require 
further, specific modelling, design and implementation work).  

In environmental science, beyond semantic annotation of data and automatic integration of 
datasets, models and analytical pipelines [42,44], semantic modelling has been applied in a 
knowledge-driven approach [48], where ‗knowledge is the key to overcoming scale and 
paradigm differences and to novel potential for model design and automated knowledge 
discovery.‘ In the context of distributed databases semantic modelling allows new techniques 
to be developed, such as model-driven query [48,64], in which a generic version of a model 
can be used as a constraint over a distributed knowledge base to discover new knowledge in 
an automated way. For example, the concept of a species-area relationship can be modelled 
and the model applied to distributed data to identify other potential instances of species-area 
relationships by finding patterns that match the model. Similarly a model of an ecological 
community, such as the model in the present work, could be used to discover among 
distributed, heterogeneous data other instances of ecological communities. 

Flower-visiting interaction networks over broader spatio-temporal scales 
 

The implemented system is already capable of distinguishing between two different contexts, 
i.e. an ecological interaction network and a more-generalised flower-visiting interaction 
network defined at a broader spatio-temporal scale. Both of these contexts have been 
verified through consultation with experts and reading the literature.  

In community ecology, flower-visiting interaction networks belong to a class of interaction 
networks (including food webs) which are explicitly constrained in space and time, so that 
the network nodes represent real-world populations which are said to interact with each 
other through emergent ecological interactions. We assigned the user two input decisions 
relevant to the spatio-temporal scale of the interaction network under construction: 

1) limiting the continuous variables of space and time that set the limits of the produced  
interaction network, and   

2) deciding whether the supplied space and time period are small and short enough not 
to preclude co-existing populations. 

 
Therefore if the user has specifically limited the input data to relate to co-existing, potentially 
interacting populations of plants and arthropods (e.g. occurring in a particular forest during 
this summer) then the interaction network produced by the system is a specific network of 
interacting populations (an ecological interaction network), which is analogous to an 
ecological community. Decisions limiting space and time ‗are based on habitat borders as 
perceived by the researcher and knowledge about the extent of the flowering season. The 
method most often used is to choose a study plot of a type of vegetation and then score 
interactions between all flowering plant and flower-visitor species through, most often, a 
season‘ [65].  
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From consulting with experts and reading the literature we found that a generalised flower-
visiting interaction network assembled from data collected through a broad spatial extent 
(including globally) and long period of time (or excluding time), which would preclude the 
existence of interacting populations or communities, is valid and has a different meaning. 
Such a flower-visiting interaction network is used to represent the evolutionary relationships 
of the flower-visiting mutualism between plants and insects, abstracted from ecology and 
studied in the light of evolutionary history. 

Including other ecological interactions 

Interaction networks are used in two ecological disciplines, viz. the study of mutualisms 
(including pollination and seed dispersal) and the study of food webs. Food webs are 
important tools in community and ecosystem ecology [36,67,68], e.g. it has been noted that 
‗several of the most ambitious theories in ecology describe food webs that document the 
structure of strong and weak trophic links, which are responsible for ecological dynamics 
among diverse assemblages of species‘ [68]. 

Within a community, a ‗food chain‘ (or feeding interaction network) links species being eaten 
(e.g. insects) with species eating them (e.g. frogs) and species eating these (e.g. large birds) 
and so on. If the taxonomic species are grouped into ‗trophic species‘ e.g. including fish as 
well as frogs, which ‗typically eat insects‘ and are ‗typically eaten by large birds and otters‘, 
the interaction network is a ‗food web‘. A food web links all the discrete food chains in a 
community and broadly depicts ‗who eats whom‘. With the exception of pollen-transfer, the 
ecological interactions included in the presented knowledge models are trophic interactions 
i.e. relevant to food or feeding, but the context of the resultant network (i.e. pollination) is not 
the same as that of a food web (i.e. the flow of energy). There is, however, much potential to 
apply the described system design to the analysis of heterogeneous data to construct more 
consistent food webs, or to integrate non-feeding interactions such as pollen transfer into 
food webs [69].  

 

7. Conclusion  

We demonstrated that by combining ontologies and a Bayesian network in a semantic 
architecture, expert knowledge could be represented and the manual inferences made by 
ecologists using implicit knowledge could be replicated and automated. Further, the results 
of automated interpretation were accepted by domain experts. Interpreting semantically 
heterogeneous flower-visiting data specifically meant inferring a standardised and consistent 
interaction network (a modelling construct already used in the domain), and further 
distinguishing between the ecological and evolutionary context of flower-visiting by 
arthropods. The combination of discrete and probabilistic reasoning was the key to 
knowledge discovery because this allowed important causal knowledge to be modelled and 
used in reasoning, functionality which may have been difficult to achieve otherwise. This 
causal knowledge was used to generate the higher-level context of community ecology. 

The approach can therefore be recommended for knowledge discovery in other kinds of 
ecological and biodiversity data, especially when there is potential to replicate existing 
domain models as a way to automate data interpretation (perform automated knowledge 
discovery). In future work the semantic architecture could be extended to accommodate 
unvouchered observations, including a way to aggregate records of individuals without the 
risk of counting the same individual more than once. Data from flower-visiting field 
experiments could also be included to allow the strength of interactions (e.g. frequency of 
visits) or pollinator effectiveness [15] to be estimated. In an evolutionary context, network 
properties may be useful additions.  

32



 
  

 

Interaction networks are used as tools to detect ecological and evolutionary patterns, and 
standardising and automating these tools could bring significant benefits to ecological 
research. Extension and refinement in the areas mentioned above could lead to new insights 
to develop techniques for ecological reasoning or ecological knowledge discovery. 
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