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Abstract 
The application of remote sensing in biodiversity estimation has largely relied on the 

Normalized Difference Vegetation Index (NDVI). The NDVI exploits spectral information 

from red and near infrared bands of Landsat images and it does not consider canopy 

background conditions hence it is affected by soil brightness which lowers its sensitivity to 

vegetation. As such NDVI may be insufficient in explaining tree species diversity. Meanwhile, 

the Landsat program also collects essential spectral information in the shortwave infrared 

(SWIR) region which is related to plant properties. The study was intended to: i) explore the 

utility of spectral information across Landsat-8 spectrum using the Principal Component 

Analysis (PCA) and estimate alpha diversity (α-diversity) in the savannah woodland in 

southern Africa, and ii) define the species diversity index (Shannon (H’), Simpson (D2) and 

species richness (S) – defined as number of species in a community) that best relates to 

spectral variability on the Landsat-8 Operational Land Imager dataset. We designed 90m X 

90m field plots (n=71) and identified all trees with a diameter at breast height (DbH) above 

10cm. H’, D2 and S were used to quantify tree species diversity within each plot and the 

corresponding spectral information on all Landsat-8 bands were extracted from each field 

plot. A stepwise linear regression was applied to determine the relationship between 

species diversity indices (H’, D2 and S) and Principal Components (PCs), vegetation indices 

and Gray Level Co-occurrence Matrix (GLCM) texture layers with calibration (n=46) and test 

(n=23) datasets. The results of regression analysis showed that the Simple Ratio Index 

derivative had a higher relationship with H’, D2 and S (r2=0.36; r2=0.41; r2=0.24 respectively) 
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compared to NDVI, EVI, SAVI or their derivatives. Moreover the Landsat-8 derived PCs also 

had a higher relationship with H’ and D2 (r2 of 0.36 and 0.35 respectively) than the 

frequently used NDVI, and this was attributed to the utilization of the entire spectral 

content of Landsat-8 data. Our results indicate that: i) the measurement scales of vegetation 

indices impact their sensitivity to vegetation characteristics and their ability to explain tree 

species diversity; ii) principal components enhance the utility of Landsat-8 spectral data for 

estimating tree species diversity and iii) species diversity indices that consider both species 

richness and abundance (H’ and D2) relates better with Landsat-8 spectral variables.  

1. Introduction 
The savannah biome is characterized by the co-existence of trees and herbaceous 

vegetation (Scholes and Archer, 1997) and it hosts a large number of floral and faunal 

diversity (du Toit et al., 2003). Importantly, tree diversity serves many ecological functions in 

the savannah, e.g. providing habitats and nesting sites to diverse avifaunal species (Dean et 

al., 1999; Seymour and Dean, 2010); facilitating grass growth and improving grass quality 

beneath their canopies (Ludwig et al., 2004; Treydte et al., 2007); and serving as food 

resources to many browsing faunal species (Hempson et al., 2015). Nonetheless, the 

diversity, abundance and distribution of savannah tree species are impacted by disturbances 

e.g. the effect of elephants in protected areas (Druce et al., 2008), harvesting for fuelwood 

(Madubansi and Shackleton, 2006; Matsika et al., 2012) and land use conversion 

(Schlesinger et al., 2015). Therefore, monitoring the distribution patterns and diversity of 

tree species remains essential to ensure that disturbances are within the resilience capacity 

of the ecosystem (Druce et al., 2008). However, the absence of large scale information on 

tree species distribution upon which management decisions can be based in the African 

savannah presents a challenge (Asner et al. 2009). The success of any biodiversity 

monitoring effort depends on the availability of up-to-date and spatially detailed 

assessments of species richness and distribution at a regional scale (Turner et al., 2003). 

Space-borne remote sensing meet these needs as it covers large geographical areas on a 

regular interval and at varying levels of spatial details (Jetz et al., 2016; Kerr and Ostrovsky, 

2003). More interestingly, ecologists are recognizing the need to move beyond traditional 

field-based ecology and embrace remote sensing science in order to prepare conservation 
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responses that are commensurate with the scale of conservation (Jetz et al., 2016; Pereira 

et al., 2013). 

The success of remote sensing applications in biodiversity research hinges more on the 

spectral resolution of data than spatial resolution (Rocchini et al., 2007; Nagendra et al. 

2010). Thenkabail et al. (2003) observed that differences in forest characteristics are better 

explained by the six bands of Landsat Enhanced Thematic Mapper plus than the four bands 

of IKONOS data. They attributed 20% of the variability explained by Landsat to two 

shortwave infrared bands not present in IKONOS. Essentially, the Landsat program collects 

essential spectral information in the visible, near infrared (NIR) and shortwave infrared 

(SWIR) regions which relates to plant properties including leaf pigment, water content and 

plant internal structure (Hernandez-Stefanoni et al., 2012; Nagendra et al., 2010). As a 

result, Landsat data performed higher than the high resolution multispectral IKONOS data 

when estimating forest characteristics. 

Nonetheless, most studies have only exploited the red and NIR bands by using normalized 

difference vegetation index to study species diversity. For instance, Gould (2000) extracted 

variability from the NDVI image to estimate species richness in the Hood River, central 

Canadian Arctic. This study excluded non-positive values in the NDVI image to eliminate 

outliers in the analysis and observed positive correlation between variation on the NDVI 

image and the species richness. Fairbanks and McGwire (2004) used multi-temporal NDVI to 

estimate plant species richness in California, USA. They also observed positive relationship 

with species richness, and attributed it to NDVI sensitivity to abiotic factors impacting 

species richness. However, Oindo and Skidmore (2002) observed a negative correlation 

between maximum average NDVI and species richness in Kenya, while NDVI variability had a 

positive correlation. Meanwhile Parviainen et al., (2010) concluded that using NDVI along 

with its derivatives produced the best models for estimating species richness in the boreal 

landscapes. The use of spectral vegetation indices such as NDVI ensures that spectral 

variability extracted from each plot is mainly due to vegetation characteristics (Viña et al., 

2011). It is therefore not surprising that variation in NDVI has been positively related to 

species diversity. 
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Whilst the aforementioned studies using NDVI have reported a positive relationship with 

species diversity, the limitations of NDVI might have suppressed the full extent of landscape 

variability. NDVI does not consider canopy background conditions hence it is affected by soil 

brightness which lowers its sensitivity to vegetation (Huete and Jackson, 1988). Moreover, 

NDVI often shows scaling problem and it saturates in areas of high biomass (Huete et al., 

2002; Gitelson, 2004; Main et al., 2011) and may therefore not be sufficient as a means to 

explain spatial variation in tree species diversity. Meanwhile, enhanced vegetation index 

(EVI) and simple ratio index (SRI) are not limited to a scale of 0 to 1, and EVI in particular 

considers canopy background conditions (Huete et al., 2002). This generates the assumption 

that they might be useful for estimating tree species diversity in semi-arid biome such as 

savannah. In addition, the mere 30% variation in woody species richness explained by NDVI 

in Hawaiian dry forests (Pau et al., 2012) bears evidence to the need to move beyond red 

and NIR bands and explore the utility of the entire spectrum (visible, NIR and SWIR) for 

estimating tree species diversity. 

 

Moreover, research on the application of remote sensing in biodiversity estimation has 

frequently relied on univariate regression analysis with limited input variables in terms of 

predictors (Gould, 2000; Oindo and Skidmore, 2002). Univariate analysis does not fully 

explore the utility of spectral information content of the remotely sensed image. Despite 

the limitations of univariate analysis, little has been done to explore the capabilities of 

multivariate regression models particularly in the African savannah. Multivariate regression 

analysis presents an opportunity to benefit from the entire spectrum of remote sensing data 

as more information is analysed simultaneously. Unlike the Landsat derived NDVI which 

uses only the red and NIR bands, multivariate techniques extract spectral information across 

the entire spectral regions (the visible, NIR and SWIR) and produce few, uncorrelated 

principal components which contains all the variability from the original dataset (Jongman 

et al., 1995; Bro and Smilde, 2014). It is therefore expected that multivariate analysis will 

demonstrate the utility of satellite remote sensing as a source of information for estimating 

tree species diversity.   

 

Whilst remote sensing applications in biodiversity estimation has been increasing, minimal 

attention has been directed to the sensitivity of diversity indices to species distributional 
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patterns. Several studies including Pau et al., (2012); Parviainen et al., (2010) and Gould, 

(2000) used species richness as a measure of tree species diversity. Species richness only 

conveys information about the total number of species in a community without due regard 

to species evenness and abundance (Colwell, 2009). Evenness and abundance relay 

information regarding the distributional patterns of tree species and thus better reflect the 

spatial heterogeneity of the landscape (Colwell, 2009). Oldeland et al., (2010) have shown 

that species abundance has a bearing on the spectral signal captured by the sensor. It is 

therefore essential that the diversity index used is sensitive to aspects of diversity that 

impact on the spectral reflectance captured by the remote sensing device. Shannon and 

Simpson diversity indices both consider richness and evenness (Colwell, 2009; Nagendra, 

2002), yet their application with remote sensing data in the African savannah have only 

been limited to a study by Oldeland et al., (2010). 

 

The two indices have different response to species richness and abundance. The Simpson 

index is generally influenced by the abundance in the distribution of tree species, while the 

Shannon index is equally sensitive to both species abundance and rarity of species (Morris 

et al., 2014). Nonetheless the two indices convey structural information regarding landscape 

species diversity in terms of dominance and distribution patterns (Morris et al., 2014). The 

fundamental research question is how does spectral reflectance captured by the Landsat 

sensor relate to species richness and abundance? The question is of ecological significance 

as it seeks to advance our ability to estimate spatial patterns of tree species diversity 

through remote sensing. The aim of the study was to: i) test the assumption that SRI and EVI 

- which considers canopy background conditions and have a linear relationship with 

biophysical characteristics of vegetation - might explain tree species diversity better than 

NDVI; ii) explore the utility of spectral information across Landsat-8 spectrum using PCA and 

estimate α-diversity in the savannah woodland in southern Africa; and iii) determine the 

diversity index (H’, D2 and S) that best relates with spectral information on the Landsat-8 

dataset.  

2. Study area 
The study area stretches across the KwaZulu-Natal (KZN), Mpumalanga and Limpopo 

provinces of South Africa, covering the savannah woodland belt (Figure 1). The area is 
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divided into two land management regimes i.e. communal areas and protected areas 

(Kruger National Park, Hluhluwe-Imfolozi Park and other private nature reserves) with 

differing land use practices. High tree species diversity has been noted in both areas (du Toit 

et al. 2003; Shackleton, 2000). The savannah woodland is characterized by varying edaphic 

properties as a result of differential geological substrates and a mountainous terrain, 

particularly in the KZN region. Topography, rainfall and geology are amongst the key 

environmental factors that dictate the pattern of tree species diversity (Makhado et al., 

2014; Shackleton, 2000).  

 

The northern part of the study area receives low to moderate rainfall and supports the 

predominance of Colophospermum mopane (Makhado et al., 2014). The central part of the 

study area is dominated by members of the Combretaceae (Terminalia sericea, Combretum 

collinum, Combretum apiculatum, Combretum zeyheri) and Mimosaceae families (Acacia 

nigrescens, Acacia gerradii and Dichrostachys cinerea), with distribution being controlled by 

granite and gabbro geological substrates. Other important taxa include Sclerocarya birrea, 

which is widely distributed throughout the region (Eckhardt et al., 2000; du Toit et al., 2003; 

Shackleton, 2000). The mean annual precipitation ranges from 440mm in the north to 

750mm in the south with annual variations around the mean (Makhado et al., 2014; 

Eckhardt et al., 2000). The month of March marks the end of the wet season while April to 

November has been described as the dry season in the southern African savannah (Grant 

and Scholes, 2006; Archibald and Scholes, 2007). Typical of a savannah setting, the 

vegetation is characterized by a continuous herbaceous layer interspersed by a woody tree 

cover of varying density depending on the geological substrate. The woody vegetation is 

characterized by trees of varying heights and crown dimensions (Wessels et al., 2011). 
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Figure 1 Study area stretching across three provinces of South Africa. Dots on the Landsat imagery 
are the sampling plots. 

3. Material and methods 

3.1 Remote sensing data 

The two Landsat-8 Operational Land Imager (Landsat-8 OLI) satellite images were acquired 

on the 28th and 30th of March 2016. One image covers the KZN portion of the study area 

while the other images cover the Mpumalanga and Limpopo regions. The month of March 

marks the end of the wet season and is characterized as a peak productivity period (Grant 

and Scholes, 2006; Madonsela et al., 2017). The study intends to extract vegetation indices 

for use as predictor variables and it was appropriate to collect the Landsat image when 

vegetation was still green.  

Landsat-8 OLI delivers multi-spectral data with eight bands in the visible, near infrared and 

shortwave infrared regions of the electromagnetic spectrum. Landsat-8 OLI records data at 

a moderate spatial resolution of 30m and has a revisit capacity of 16 days.  Landsat-8 with 

its 12-bit quantization of data has improved on the signal-to-noise radiometric performance 

of the sensor thus increasing its utility for landcover mapping (Pervez et al., 2016). The 
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images were downloaded from the United States Geological Surveys (USGS) download 

portal (https://earthexplorer.usgs.gov/) with geometric correction already implemented. In 

addition, a 30m Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) 

was acquired from USGS EarthExplorer and used in the atmospheric correction of the KZN 

Landsat scene. All Landsat images and DEM were projected to the Universal Transverse 

Mercator (UTM) coordinate system zone 36 south. The Landsat image covering the 

Mpumalanga and Limpopo regions were atmospherically corrected using ATCOR-2 software 

since the regions exhibit gentle undulating slopes (Richter and Schläpfer, 2012). The KZN 

Landsat scene necessitated the use of ATCOR-3 software since the region is mountainous. 

ATCOR-3 allows for integration of DEM which is useful for the correction of shadow effect 

on the image depicting mountainous areas (Richter and Schläpfer, 2012).  

3.2 Field data collection 

The study carried out two field campaigns from the 2nd - 27th of November 2015 in KZN 

and again on the 1st - 19th of March 2016 across Kruger National Park extending over the 

Mpumalanga and Limpopo provinces. The primary objectives of the field campaigns were to 

identify tree species within randomly placed sampling plots and quantify the level of 

diversity in the region using common measures of diversity (H’, D2 and S). Prior to field 

excursion, we defined the size of field sampling plots using the semi-variogram analysis in 

ENVI 4.8 software. Essentially, the semi-variogram quantifies the spatial variability of natural 

phenomena occurring in space (Fu et al. 2014; Gringarten and Deutsch, 2001). It is 

computed as follows: 

Equation 1: 

𝑦(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖)

𝑁(ℎ)

𝑖=1

− 𝑧(𝑥𝑖 + ℎ)]2 

where y(h) is the semi-variance at a given distance h; z(xi) is the value of the variable Z at location xi, 

h is the lag distance and N (h) is the number of pairs of sample points separated by h. 

Semi-variance gradually increases as the distance from one location to the next increases 

until it reaches the range where it starts to level off (Jongman et al., 1995; Gringarten and 

Deutsch, 2001). A semi-variogram plot is generated by computing variance at different lag 

https://earthexplorer.usgs.gov/
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distances and a theoretical model such as a spherical or exponential model that is fitted to 

provide information about spatial structure (Fu et al. 2014). Our study applied semi-

variogram analysis to WorldView-2 derived NDVI image to define the scale of spatial 

variability in tree species richness. The choice to use NDVI was based on an observation that 

variability in NDVI corresponds to species diversity (Gould, 2000). It was important to use 

NDVI because it suppresses spectral content from non-vegetated pixels (Viña et al., 2011), 

and was therefore a viable option to determine pixel variability related to vegetation.   

In our analysis, the Worldview-2 image was firstly degraded to a 10m spatial resolution to 

be compatible with the average tree canopy size in the savannah (Cho et al., 2012) and the 

generated NDVI image. In ENVI software v4.8, the semi-variogram analysis computed the 

squared difference between neighbouring pixel values in order to quantify variability. The 

analysis conducted on Worldview-2 derived NDVI image showed that the scale for tree 

species variability in the savannah woodland lies at lag distances of 90m to 100m (Figure 2). 

Although semi-variance would seem to be increasing beyond the lag distance of 90m, the 

increase was not consistent and the lag distance of 90m resulted in plot sizes that are 

feasible to work on within limited resources. Moreover, the study intended to use Landsat-8 

data with 30m pixel resolution hence the plot size of 90m X 90m was opted to ascertain 

correspondence between field data and pixel spectral content.  

The plot size of 90m X 90m was therefore chosen to capture spatial variation in tree species 

diversity. Stratified random sampling was used to define the placement of sampling plots. 

The stratification of sampling plots followed four dominant geological formations (granite; 

siliciclastic; gabbros; granulite) that were observed to have marked influence over 

vegetation patterns in the study area (du Toit et al., 2003). Plots of 90m x 90m were 

designed and all trees within the plots with a diameter at breast height (DBH) above 10cm 

were recorded with the Global Positioning System and species identified. The study 

collected 5 859 trees belonging to 106 tree species. The field campaigns visited 50 plots 

distributed across the study area to collect tree species data. A further 26 plots collected 

under similar conditions in the previous study (Naidoo et al., 2015) were added to our field 

data. However, five of the total field plots were located on clouded parts of the image and 

therefore not usable. A total of 71 field plots were used in the analysis.   
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Figure 2 Semi-variogram analysis showing the scale of tree species variability in the savannah woodland. 

 

3.3 Data analysis 

The quantification of tree species diversity within each sample plot was calculated using the 

three common measures of local diversity i.e. species richness (S), Shannon’s diversity (H’) 

and Simpson’s dominance (D2) (see Table 1). These indices are frequently cited in ecological 

literature (Lande, 1996; Colwell, 2009; Morris et al., 2014) and were chosen to ensure that 

the results were comparable with other studies. In addition, H’ and D2 considers both 

species richness (i.e. number of different species) and abundance (i.e. number of individual 

trees within species) (Colwell, 2009; Morris et al. 2014) and these aspects of diversity have 

been verified to have a bearing on the spectral signal captured by the remote sensing device 

(Oldeland, 2010).  

Table 1 Alpha diversity indices used in the study and their equations 

Species diversity index Equation Reference 

Species richness                         S=N Morris et al. (2014) 

Shannon index 
𝐻′ = − ∑ 𝑝𝑖In(𝑝𝑖)

𝑠

𝑖=1

 
Shannon, (1948); Morris 

et al., (2014) 

Simpson index 
𝐷2 = 1/ ∑ 𝑝𝑖

2

𝑠

𝑖=1

 
Simpson, (1949); Morris 

et al. (2014) 

where 𝑁 is the total number of tree species in a sample;  𝑝𝑖 is the proportional abundance of species 𝑖 

relative to the total abundance of all species S in a plot; In(𝑝𝑖) is the natural logarithm of this proportion. 
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The nine Landsat pixels falling within sampling plots were identified and the spectral 

reflectance from all Landsat-8 bands was extracted (Table 2). Firstly, the mean, standard 

deviation and the range statistics within 3x3 pixels were computed from vegetation indices 

and used as predictor variables. Vegetation indices (VI’s) were computed from the blue 

(452.02 - 512.06 nm), red (635.85 - 673.32 nm) and NIR (850.54 - 878.79 nm) regions of 

Landsat-8 image (Table 2). The range and standard deviation were used as surrogate 

measures of variability in vegetation characteristics (Viña et al., 2011) and were expected to 

relate better with tree species diversity. We also computed coefficient of variation (CV) to 

quantify in percentage the amount of variability captured by each vegetation index. CV was 

computed as follows:- 

Equation 2 

𝐶𝑉 =  
𝜎
𝜇

∗ 100  

where 𝜎 represents the standard deviation of from all samples; 𝜇 represents the mean value of 
vegetation index from all samples. 

Further information on spatial variability was extracted in the form of texture using Gray 

Level Co-occurrence Matrix (GLCM) in ENVI 4.8. Textural properties are indicative of spatial 

variability (Haralick et al., 1973) and such variability is presumed to reflect greater 

environmental heterogeneity associated with high assemblage of species diversity 

(Hernández-Stefanoni et al., 2012). The study used second-order texture measures simply 

because they account for spatial relations amongst neighbouring pixels and they are 

therefore more consistent with the aim of the study. We used a 3x3 window size in order to 

detect fine scale variability (Kelsey and Neff, 2014) consistent with variability defined by 

semi-variogram analysis. There are three categories within which GLCM texture is 

computed: i) based on the level of contrast between pixels, we chose dissimilarity; ii) based 

on pixel organization within a window, we chose entropy; and iii) based pixel statistics, we 

chose variance (Haralick et al., 1973; Hernández-Stefanoni et al., 2012) (Table 2). 

Table 2 List of spectral dataset used as predictor variables in the models 

Vegetation indices  Equation / Spectral bands  Reference 

Normalized Difference Vegetation 
Index (NDVI) 

= (NIR - RED) / (NIR + RED) Rouse et al., (1973) 
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where L represents a constant soil adjustment factor; G represents number of gray levels used; N 
represents the number of distinct gray levels in the quantized image; µ represents the mean value of 
𝑃; 𝑃(𝑖, 𝑗)represent (𝑖, 𝑗)𝑡ℎ entry in normalized gray-tone spatial-dependence matrix, = 𝑃(𝑖, 𝑗)/R; R 
represents a normalizing factor.  

Moreover, multivariate analysis particularly PCA, was tested as a way of exploring the utility 

of spectral information from the entire Landsat-8 spectrum (visible, NIR and SWIR) for 

estimating α-diversity. PCA is a technique that decomposes the original data through linear 

combination of original variables and produces few principal components (PCs) that best 

explain the variability in the original data (Bro and Smilde, 2014). To compute PCA, data are 

prepared in a matrix X with 𝐼 rows (𝑖 = 1,…,𝑙) and 𝐽 columns and the size will be 𝐼 x 𝐽. The 

characteristic variables of matrix X are represented by 𝑥𝑗 (𝑗 = 1, … , 𝑗) and are all vectors in 

the 𝐼-dimensional space. A linear model of these 𝑥 variables can be expressed as 𝑡 = 𝑤1  ×

𝑥1+. . . +𝑤𝑗 × 𝑥𝑗, where 𝑡 represents the new vector in the same space as the 𝑥 variables. 𝑡 

is the first principal component that explains the most variation in 𝑥 variables (Bro and 

Enhanced Vegetation Index (EVI)  =2.5*(NIR-RED)/(NIR+6.0*RED-
7.5*BLUE+1.0) 
 

Huete (1999) 

Simple Ratio Index (SRI)   = NIR / RED 
 

Tucker, (1979) 

Soil Adjusted Vegetation index 
(SAVI) 

  = (NIR - RED) / (NIR + RED + L ) * (1 + L) Huete (1988) 

Landsat Spectral bands     

Coastal band 434.97 - 450.95 nm Landsat-8 Data User Handbook (2016) 

Blue band 452.02 - 512.06 nm Landsat-8 Data User Handbook (2016) 

Green band 532.74 - 590.07 nm Landsat-8 Data User Handbook (2016) 

Red band 635.85 - 673.32 nm Landsat-8 Data User Handbook (2016) 

Near Infrared band 850.54 - 878.79 nm Landsat-8 Data User Handbook (2016) 

Cirrus band 1363.24 -1383.63 nm Landsat-8 Data User Handbook (2016) 

Shortwave Infrared band-1 1566.5 -1651.22 nm  Landsat-8 Data User Handbook (2016) 

Shortwave Infrared band-2 2107.4 - 2294.06 nm Landsat-8 Data User Handbook (2016) 

Gray-Level Co-occurrence 
Matrix textural layers 

    

 
 
Variance = ∑ ∑(𝑖 − 𝜇)²𝑃(𝑖, 𝑗)

𝐺−1

𝑖=0

𝐺−1

𝑖=0

 

     
Haralick et al., (1973); 
Albregtsen, (2008) 

 
 
Dissimilarity = ∑ 𝑃𝑖, 𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 

    
 
Haralick et al., (1973); 
Beliakov et al., 2008 

 
 
Entropy = − ∑ ∑ 𝑃(𝑖, 𝑗) × log (𝑃(𝑖, 𝑗))

𝐺−1

𝑖=0

𝐺−1

𝑖=0

 

    
 
Haralick et al., (1973); 
Albregtsen, (2008) 
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Smilde, 2014). The optimal number of PCs is normally defined by PCs that explain over 95% 

of variability in the original dataset (Thenkabail et al., 2004). 

In our application of PCA we firstly normalized the data using autoscaling based on 

dispersion in ParLes software v3.1 (Rossel, 2008) to cater for differences in scales between 

variables. Secondly, we plotted the first and the second PCs to detect outliers in the PCs 

which are defined as samples that behave strangely and have the potential to upset the 

subsequent analysis if not corrected or removed (Bro and Smilde, 2014). Prior to final 

removal of outliers, it is recommended to compare the effect on the model before and after 

removal (Bro and Smilde, 2014). In this study, we only removed outliers in the PCs derived 

from Landsat-8 spectral bands because they negatively affected the ability of regression 

model to predict tree species diversity. In order to test different scenarios, principal 

components were extracted from: i) vegetation indices, ii) Landsat-8 spectral bands, iii) 

GLCM texture layers and iv) different combinations of all our spectral variables. The PCs 

were produced using ParLes software v3.1 and then imported into MATLAB software v7.8.0 

(R2009a, MathWorks) where bootstrap regression was conducted, and the PCs were used as 

predictor variables in the stepwise linear regression model. The optimal number of PCs was 

defined by PCs that explain over 95% of variability in the datasets as reported in the 

literature (Thenkabail et al., 2004).   

In order to assess the precision and the accuracy of the models, the bootstrapping approach 

was applied in modelling the relationship between spectral variability and species diversity. 

Firstly, we completed 1000 random permutations of the original data and then split two-

thirds of the data for training the models and used the remainder for evaluating the 

predictive ability of the models. Modelling results are presented in table format in the 

subsequent section. Two modelling approaches i.e. univariate and multivariate analyses 

were tested and then followed by comparative analysis of the results. A simple linear 

regression model was used to investigate the relationship between spectral data as 

predictor variables and species diversity indices as response variables. The strength of the 

relationship was assessed using the coefficient of determination (R2), the p-value statistics 

and the model performance was evaluated using the root mean square error (RMSE).  
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4. Results 

4.1 Univariate analysis: The relationship between diversity measures and 

vegetation indices, GLCM layers and Landsat-8 bands 

The results of bootstrapped regression analysis demonstrated a significant positive 

relationship (p < 0.05) between vegetation indices and measures of tree species diversity 

(Table 3). In particular, H’ and D2 have demonstrated a higher relationship to vegetation 

indices (r2 ranging from 0.26 to 0.29) compared to S (r2 ranging from 0.21 to 0.23). However, 

the relationship declined significantly (p < 0.05) when derivatives (standard deviation and 

the range) from NDVI, EVI and SAVI were used as predictors. S had the lowest relationship 

with derivatives from NDVI, EVI and SAVI (r2 ranging from 0.0 to 0.03) compared with H’ and 

D2 (r2 ranging from 0.10 to 0.20). However derivatives from SRI were an exception and in 

fact the relationship was significantly improved (p < 0.05) when they were used as 

predictors. SRI derivatives (standard deviation and the range) had the highest relationship 

with H’ (r2 of 0.36 and 0.34 respectively), D2 (r2 of 0.41 and 0.38 respectively) and S (r2 of 

0.24 and 0.22) compared to NDVI, EVI, SAVI and their derivatives. In essence the best model 

for estimating tree species diversity was derived from the SRI derivative (standard deviation) 

(Figure 3). The SRI standard deviation had the highest relationship with H’, D2 and S 

confirming its sensitivity to the diversity of tree species in the savannah woodland.  

Moreover, H’ and D2 equally showed a higher relationship with vegetation indices (NDVI, 

EVI, SRI and SAVI) compared to S (Table 3). However it was D2 that had the highest 

relationship with the high performing SRI derivative (standard deviation) with an r2 of 0.41. 

Furthermore, SRI had a higher coefficient of variation (46.6%) compared to NDVI (24%), EVI 

(33.1%) and SAVI (24.1%). Bootstrapping produced r2 histograms which verified the 

precision of our regression models and the robustness of the relationships between 

vegetation indices and H’, D2 and S with mean r2 ranging from 0.21 to 0.41 (Figures 4, 5 and 

6). However, regression analysis showed that GLCM texture measures had no relationship 

with measures of tree species diversity (Table 4). In most instances GLCM texture measures 

maintained the r2 of less than 0.06 indicating the lack of relationship with either H’, D2 or S. 

It was only entropy derived from NIR and SWIR-2 that had a significant relationship with S 

(r2 of 0.04; p < 0.05) and H’ (r2 of 0.05; p < 0.05) respectively.  
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Meanwhile Landsat-8 spectral bands showed a significant negative relationship with 

measures of tree species diversity (Table 5). There was no single Landsat-8 band that 

consistently outperformed other spectral bands when modelling tree species diversity as 

measured by H’, D2 and S. Noteworthy though, H’ and D2 showed a higher relationship with 

Landsat-8 red band (with r2 of 0.18 and 0.19 respectively) compared to S (with r2 of 0.14). S 

had a higher relationship with the Landsat-8 coastal band (r2 of 0.16) compared to other 

spectral bands. However, the Landsat-8 NIR and cirrus bands were the only spectral bands 

that did not show a relationship with either H’, D2 or S. All the Landsat-8 bands, except the 

NIR and Cirrus bands, showed a negative relationship with H’, D2 and S (Figure 7) suggesting 

a possibility that low diversity areas have low vegetation cover resulting in high signal 

reflectance across all Landsat-8 spectral bands.  

The overall results show that the best models for estimating tree species diversity using 

Landsat-8 were derived from vegetation indices (SRI derivatives, NDVI, EVI and SAVI). 

However, it was SRI derivatives models that had significantly lower RMSE (p < 0.05) when 

predicting H’ and D2 compared to the regression models from NDVI, EVI and SAVI. While the 

SRI derivative (standard deviation) had a lower RMSE when predicting S than NDVI, EVI and 

SAVI, the difference was not statistically significant (p > 0.05).   

Table 3 Relationship observed between three common measures of tree species diversity (H’, D2 
and S) and spectral variables. The spectral variable statistics were extracted from Landsat derived 
vegetation index images within 90m X 90m field plot. All computations were drawn from 1000 
bootstrapped iterations. 

Diversity index Spectral 

variable 

Average R2 Confidence 
interval 95% 

P-value RMSE 

H’ NDVI (Mean) 0.29 ±0.003 0.0005 0.4861 

 NDVI (St dev) 0.10 ±0.003 0.0167 0.5586 

 NDVI (Range) 0.11 ±0.003 0.0114 0.5524 

 EVI (Mean) 0.29 ±0.003 0.0008 0.4869 

 EVI (St dev) 0.17 ±0.003 0.0063 0.5302 

 EVI (Range) 0.17 ±0.003 0.0073 0.5286 

 SRI (Mean) 0.26 ±0.003 0.0006 0.4985 

 SRI(St dev) 0.36 ±0.003 0.0000 0.4613 

 SRI (Range) 0.34 ±0.003 0.0000 0.4688 

 SAVI (Mean) 0.29 ±0.003 0.0007 0.4894 

 SAVI (St dev) 0.10 ±0.003 0.0118 0.5554 

 SAVI (Range) 0.11 ±0.003 0.0113 0.5536 

      

D2 NDVI (Mean) 0.29 ±0.003 0.0003 1.8048 

 NDVI (St dev) 0.12 ±0.004 0.0132 2.0724 
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 NDVI (Range) 0.11 ±0.004 0.0144 2.0761 

 EVI (Mean) 0.29 ±0.003 0.0003 1.8203 

 EVI (St dev) 0.20 ±0.003 0.0037 1.9493 

 EVI (Range) 0.17 ±0.003 0.0061 1.9599 

 SRI (Mean) 0.27 ±0.003 0.0005 1.8545 

 SRI(St dev) 0.41 ±0.003 0.0000 1.6668 

 SRI (Range) 0.38 ±0.003 0.0006 1.7232 

 SAVI (Mean) 0.29 ±0.003 0.0003 1.8250 

 SAVI (St dev) 0.12 ±0.004 0.0142 2.0605 

 SAVI (Range) 0.11 ±0.004 0.0145 2.0569 

      

S NDVI (Mean) 0.23 ±0.003 0.0020 3.4913 

 NDVI (St dev) 0.00 ±0.001 0.5392 3.9684 

 NDVI (Range) 0.00 ±0.001 0.4461 3.9580 

 EVI (Mean) 0.21 ±0.003 0.0027 3.5516 

 EVI (St dev) 0.03 ±0.003 0.1791 3.9535 

 EVI (Range) 0.01 ±0.002 0.2128 3.9861 

 SRI (Mean) 0.23 ±0.003 0.0024 3.5513 

 SRI(St dev) 0.24 ±0.003 0.0017 3.4732 

 SRI (Range) 0.22 ±0.003 0.0025 3.5494 

 SAVI (Mean) 0.23 ±0.003 0.0073 3.5263 

 SAVI (St dev) 0.00 ±0.001 0.4458 3.9171 

 SAVI (Range) 0.00 ±0.001 0.4756 3.9552 

 
Table 4 Relationship observed between three common measures of tree species diversity and GLCM texture 
measures. Texture measures were extracted from Landsat-8 spectral bands within 90m X 90m field plot. All 
computations were drawn from 1000 bootstrapped iterations. 

     Diversity index 

 Shannon index Simpson index Species richness 

Landsat band GLCM Texture  R2 P-value R2  P-value  R2 P-value 

Coastal band Variance 0.00 0.4840 0.00 0.8435 0.00 0.6140 

 Entropy 0.00 0.6761 0.00 0.5548 0.00 0.8204 

 Dissimilarity 0.00 0.6859 0.00 0.8539 0.01 0.3971 

        

Blue band Variance 0.01 0.3345 0.00 0.9080 0.01 0.2834 

 Entropy 0.00 0.5339 0.00 0.4646 0.00 0.8969 

 Dissimilarity 0.00 0.9567 0.00 0.7771 0.00 0.4579 

        

Green band Variance 0.01 0.3053 0.00 0.6648 0.00 0.6996 

 Entropy 0.00 0.5105 0.00 0.7120 0.00 0.4399 

 Dissimilarity 0.00 0.6218 0.00 0.7749 0.03 0.1018 

        

Red band Variance 0.00 0.5944 0.00 0.5518 0.00 0.5016 

 Entropy 0.00 0.8027 0.00 0.8025 0.00 0.6244 

 Dissimilarity 0.01 0.3683 0.01 0.6399 0.00 0.9025 

        

NIR band Variance 0.01 0.4782 0.00 0.4717 0.04 0.0898 
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 Entropy 0.03 0.1371 0.01 0.3299 0.04 0.0331 

 Dissimilarity 0.03 0.1265 0.00 0.7328 0.02 0.2139 

        

Cirrus band Variance 0.00 0.5135 0.00 0.5334 0.00 0.7506 

 Entropy 0.01 0.3044 0.00 0.4709 0.00 0.4826 

 Dissimilarity 0.01 0.3534 0.00 0.5385 0.00 0.6906 

        

SWIR-1 band Variance 0.02 0.1930 0.01 0.3497 0.00 0.9641 

 Entropy 0.05 0.0231 0.03 0.1441 0.02 0.1502 

 Dissimilarity 0.04 0.0826 0.01 0.2420 0.00 0.4168 

        

SWIR-2 band Variance 0.00 0.4870 0.00 0.6627 0.00 0.8568 

 Entropy 0.02 0.1733 0.00 0.6432 0.00 0.4388 

 Dissimilarity 0.00 0.4694 0.00 0.8398 0.00 0.8321 
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Table 5 Relationship observed between three common measures of tree species diversity and Landsat-8 spectral bands. The mean spectral reflectance was from 
Landsat bands within 90m X 90m field plot. All computations were drawn from 1000 bootstrapped iterations. 

     Diversity index 

 Shannon index Simpson index Species richness 

Landsat band  
mean reflectance 

 R2 CI 95% P-value RMSE R2  CI 95% P-value RMSE   R2 CI 95%  P-value RMSE 

Coastal band 0.17 ±0.003 0.0071 0.5280 0.17 ±0.002 0.0060 1.961  0.16 ±0.003  0.0079 3.6878 

Blue band 0.13 ±0.004 0.0127 0.5431 0.14 ±0.003 0.0105 1.996  0.13 ±0.004  0.0117 3.7537 

Green band 0.10 ±0.004 0.0173 0.5564 0.11 ±0.003 0.0159 2.063  0.09 ±0.004  0.0172 3.8579 

Red band 0.18 ±0.003 0.0060 0.5246 0.19 ±0.002 0.0042 1.934  0.14 ±0.003  0.0105 3.7192 

NIR 0.02 ±0.002 0.9999 0.5728 0.02 ±0.002 0.9999 2.158  0.00 ±0.001  0.9999 3.940 

Cirrus 0.01 ±0.002 0.9999 0.5767 0.01 ±0.002 0.9999 2.134  0.00 ±0.001  0.9999 3.991 

SWIR-1 band 0.09 ±0.004 0.0180 0.5623 0.09 ±0.005 0.0193 2.097  0.07 ±0.004  0.0212 3.9201 

SWIR-2 band 0.12 ±0.004 0.0146 0.5489 0.14 ±0.003 0.0111 2.019  0.09 ±0.004  0.0176 3.8834 

CI- Confidence interval 
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Figure 3 Relationship between Simple Ration Index derivative and on the left) Shannon index; middle) Simpson index; right) Species richness. SRI standard deviation 
had shown higher positive relationship with tree species diversity and we selected the best model (maximum r2 with the lowest RMSE from 1000 bootstrapped 
iterations) to plot the relationship. 

 

Figure 4 Histograms of bootstrapped r2 for models involving Shannon index and on the left) mean NDVI; second from left) mean EVI; third from left) SRI standard 
deviation; fourth from left) mean SAVI. 
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Figure 5 Histograms of bootstrapped r2 for models involving Simpson index and on the left) mean NDVI; second from left) mean EVI; third from left) SRI standard 
deviation; fourth from left) mean SAVI. 

 

 

Figure 6 Histograms of bootstrapped r2 for models involving Species richness and on the left) mean NDVI; second from left) mean EVI; third from left) SRI standard 
deviation; fourth from left) mean SAVI. 
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Figure 7 Relationship between red band reflectance and on the left) Shannon index; middle) Simpson index; right) species richness. Red band had shown higher 
negative relationship tree species diversity than other spectral bands and we selected one best model (maximum r2 with the lowest RMSE from 1000 bootstrapped 
iterations) to plot the relationship. 
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4.2 Multivariate analysis 

The results of the stepwise linear regression showed that PCs had a significant relationship 

with all measures of tree species diversity (p < 0.05) (Table 6). In particular PCs derived from 

a combination of vegetation indices and Landsat-8 spectral bands had a higher relationship 

with H’ (r2 of 0.41; p < 0.05) and D2 (r2 of 0.42; p < 0.05) compared to PCs extracted from 

vegetation indices, Landsat-8 bands, GLCM texture measures separately or any combination 

of these variables. S had a higher relationship with PCs derived from a combination of 

Landsat-8 bands and GLCM texture measures (r2 of 0.27; p < 0.05). Moreover the Principal 

Component Analysis had improved the utility of GLCM texture measures for estimating tree 

species diversity. PCs derived from GLCM texture measures showed a significant 

relationship with all measures of tree species diversity (p < 0.05) (Table 6) and this was a 

major improvement compared to univariate analysis of GLCM texture measures (Table 4). In 

addition, transforming Landsat-8 spectral bands into PCs improved the explanatory power 

of Landsat-8 spectral bands. In fact PCs derived from Landsat-8 spectral bands had a higher 

relationship with H’ and D2 (r2 of 0.36 and 0.35, respectively) compared to mean NDVI, 

mean EVI, mean SRI or mean SAVI (r2 ranging from 0.26 to 0.29).   

Comparisons between univariate and multivariate analysis showed that PCs derived from a 

combination of vegetation indices and Landsat-8 bands predicted H’ with significantly lower 

RMSE (p = 0.0363) than the high performing univariate model (SRI standard deviation). 

However, the same PCs failed to significantly improve the prediction of D2 and S compared 

to univariate model derived from SRI standard deviation. SRI model predicted D2 and S with 

significantly lower RMSE (p < 0.05) compared to PCs. These results suggest that H’ is better 

related to PCs while D2 relates more with SRI.    

Table 6 Relationship observed between PCs and three common measures of tree species diversity (H’, D2 
and S). The RMSE indicates predictive performance of stepwise regression models. All computation were 
drawn from 1000 bootstrap iterations 

Predictor 
variables 

Response 
variables 

PCs 
explaining 
over 95% 

   Average 
         R2 

 

Confidence 
interval 

95% 

P-value RMSE 
 

VIs H' 2 0.37 ±0.003 0.0000 0.459 

 D2 2 0.38 ±0.003 0.0000 1.699 

 S 2 0.22 ±0.003 0.0027 3.627 

       

Landsat 
bands 

H' 3 0.36 ±0.003 0.0002 0.480 
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 D2 3 0.35 ±0.003 0.0002 1.822 

 S 3 0.19 ±0.004 0.0075 3.826 

       

GLCM texture 
measures 

H' 7 0.21 ±0.003 0.0059 0.55`9 

 D2 7 0.20 ±0.004 0.0069 2.093 

 S 7 0.22 ±0.006 0.0063 3.890 

       

VIs + Landsat H' 2 0.41 ±0.003 0.0001 0.456 

 D2 2 0.42 ±0.003 0.0000 1.663 

 S 2 0.22 ±0.005 0.0035 3.657 

       

VIs + GLCM H' 6 0.35 ±0.006 0.0009 0.523 

 D2 6 0.32 ±0.006 0.0017 1.984 

 S 6 0.21 ±0.004 0.0040 3.647 

       

Landsat + 
GLCM 

H' 6 0.32 ±0.004 0.0005 0.516 

 D2 6 0.26 ±0.004 0.0012 1.950 

 S 6 0.27 ±0.005 0.0014 3.523 

       

VIs + Landsat 
+ GLCM layers 

H' 5 0.40 ±0.005 0.0004 0.487 

 D2 5 0.40 ±0.004 0.0004 1.823 

 S 5 0.26 ±0.005 0.0030 3.655 

 

5. Discussion  
The significant relationship observed between vegetation indices (NDVI, EVI, SRI and SAVI) 

and measures of local diversity (H’, D2 and S) suggest that satellite images would be useful 

for estimating tree species diversity in the savannah woodland. Vegetation indices suppress 

spectral reflectance from non-vegetative features while enhancing the spectral content 

from vegetation. Therefore, variability in vegetation indices emanates from a variety of 

vegetation characteristics, e.g. canopy structure, leaf area index, tree canopy cover and 

green biomass (Viña et al., 2011; Huete et al., 2002). Furthermore, vegetation indices have 

been shown to be sensitive to abiotic factors, e.g. rainfall, that impact on tree species 

diversity (Pau et al., 2012; Oindo and Skidmore, 2002). It is therefore not surprising that 

mean NDVI, mean EVI, mean SRI and mean EVI had a significant relationship with tree 

species diversity as measured by H’, D2 and S. The positive linear relationship between 

vegetation indices and tree species diversity further confirms their sensitivity to abiotic 
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factors impacting tree species diversity in the savannah woodland. Shackleton (2000) 

observed that plant species richness increase with increasing average annual precipitation in 

the savannah woodland. For instance, the northern part of the study area with its low to 

moderate annual rainfall (which is around 440mm per annum), has a low diversity of tree 

species. The northern part of the study area supports mainly the distribution of 

Colophospermum mopane which has adapted to that environment and this was also 

observed by Makhado et al., (2014). The diversity of tree species increases with rising 

annual rainfall towards the southern part of the study area. In essence the linear 

relationship between vegetation indices and tree species diversity supports the positive 

productivity-diversity postulation, which states that the relationship between productivity 

and species diversity follows an environmental gradient (Kirkman et al., 2001; Bai et al., 

2007). 

Moreover, derivatives from vegetation indices, which were used as a surrogate measure of 

spatial variability in vegetation characteristics (Viña et al., 2011) also, had a significant 

positive relationship with tree species diversity. The positive relationship implies that 

variability in vegetation characteristics is the outcome of high tree species diversity. 

However, the sensitivity of vegetation indices to variability in vegetation characteristics 

differs between indices (NDVI, EVI, SRI and SAVI). It was only SRI derivatives that had a 

higher relationship with tree species diversity compared to mean SRI. Derivatives from 

NDVI, EVI and SAVI had lower relationship with tree species diversity compared to mean 

NDVI, mean EVI and mean SAVI respectively. Other studies (Parviainen et al., 2010; Wood et 

al., 2013) have also made similar observations with derivatives from NDVI. One possible 

explanation for these differences in sensitivity to vegetation characteristics could be 

different measurement scales of vegetation indices. SRI has a measurement scale which 

ranges from 0 to far beyond 1 and this is assumed to enable derivatives from SRI to capture 

variability much better than NDVI, SAVI and EVI. In this study, SRI had a higher coefficient of 

variation of 46.6 % compared to NDVI, EVI and SAVI with coefficient of variation of 24.0%, 

33.1% and 24.1% respectively. As result, SRI derivatives explained tree species diversity 

better than NDVI, EVI and SAVI. However, EVI, which also has a measurement scale which 

ranges from 0 to far beyond 1, had the second highest coefficient of variation (33.1%). 

Furthermore EVI derivatives also had higher relationship with H’ and D2 (r2 ranging from 
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0.17 to 0.20) compared to NDVI or SAVI derivatives (r2 ranging between 0.10 and 0.11). 

These results from SRI and EVI confirm our assertion that measurement scale of vegetation 

indices impacts their ability to explain tree species diversity. 

The significant relationship between VIs and diversity indices confirms the utility of Landsat 

imagery for practical application in conservation, particularly as a screening tool to identify 

biodiversity hotspots. However, the success of biodiversity estimation through remotely 

sensed data would depend largely on the use of spectral variables suited for capturing tree 

species diversity on the particular landscape. Contrary to observations by Hernández-

Stefanoni et al., (2012), the use of GLCM textural measures as a proxy for spatial variability 

did not show any relationship with tree species diversity measures in the savannah 

woodlands. In cases where there was a significant relationship it was very low (r2 of less 

than 0.06) and cannot be suggested for practical application. The GLCM textural measures 

quantify variability in reflectance signal between neighbouring pixels (Hernández-Stefanoni 

et al., 2012) and in the savannah woodlands such variability would always be high due to the 

heterogeneous structure of vegetation coupled with bare surface ground contribution to 

reflectance spectra. The small window size (3x3), within which texture measures were 

computed is sensitive to fine scale variations (Kelsey and Neff, 2014). Unlike vegetation 

indices which suppress contribution from non-vegetated features, textural properties 

captures total variation on the image and was not useful for estimating tree species 

diversity in the savannah. Wood et al., (2013) also observed a very weak correlation 

between species diversity and image texture in the savannah environment in Fort McCoy 

Military Installation, USA. The weak correlation was attributed to sparse tree cover in the 

savannah environment resulting in high textural variability which did not correspond to the 

tree species diversity of the area.   

Meanwhile the untransformed Landsat-8 spectral bands, except the cirrus and NIR bands 

had shown a significant negative relationship with tree species diversity. Although the 

relationship was lower compared to that observed with vegetation indices, the results 

raised an ecological research question. The negative relationship generates an assumption 

that: i) low diversity plots have low vegetation cover resulting in high spectral signal 

reflectance; and ii) high diversity plots have high vegetation cover hence low signal 

reflectance. For instance, Patel et al., (2007) observed that dry vegetation cover has positive 
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correlation with spectral bands in the visible region of electromagnetic spectrum and poor 

correlation with NIR bands. Positive correlation in the visible region indicates high spectral 

signal reflectance across all bands and this is typical of dry vegetation due to the background 

effect as it had dropped its foliage cover (Todd and Hoffer, 1998). The question that arises 

from this observation, and which will be attended to in future research, is whether 

vegetation cover is proportionally related to tree species diversity.      

Moreover, our study demonstrated that univariate analysis does not fully exploit the 

information content of remotely sensed data. The application of a multivariate technique, 

PCA, enabled the utilization of the entire spectral information in the visible, NIR and SWIR 

regions of Landsat-8 for purpose of estimating tree species diversity. Consequently, the 

resulting PCs were better than the mean NDVI, mean EVI, mean SRI or mean SAVI in 

explaining tree species diversity. The Landsat derived PCs contain essential spectral 

information from the SWIR region which is also related to vegetation properties (Thenkabail 

et al., 2003; Hernández-Stefanoni et al., 2012). Therefore, the higher explanatory power of 

PCs over mean NDVI, mean EVI, mean SRI and mean SAVI was attributed to the utilization of 

the entire spectral content of Landsat-8 data. Consistent with this assertion is the 

observation by Jakubauskas and Price (1997) that biophysical properties of forest canopy 

are best explained by a combination of spectral information in the visible and SWIR regions 

of Landsat-7 Enhanced Thematic Mapper plus image. The observation by Jakubauskas and 

Price (1997) justifies our assertion that SWIR has essential spectral information useful for 

characterization of vegetation. However it was the PCs derived from the combination of 

Landsat spectral bands and vegetation indices that explained H’ better than any predictor 

variable (r2 of 0.41; p < 0.05). The same PCs also had an equally high relationship with D2 (r2 

of 0.42; p < 0.05). The obvious implication is that combining Landsat-8 spectral bands with 

vegetation indices increase the explanatory power of PCs.    

Furthermore, multivariate analysis transformed the GLCM texture measures into useful PCs 

for explaining tree species diversity. The PCs derived from GLCM texture measures had a 

significant relationship with tree species diversity although this was not comparable to other 

predictor variables. However, combining Landsat-8 spectral bands with GLCM textures did 

not improve the explanatory power of PCs. Overall the results suggest that transforming 

spectral variables into principal components enhances the utility of Landsat data for tree 
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species diversity estimation. The PCs derived from the combination of Landsat spectral 

bands and vegetation indices explained 41% of the variability in H’, which is comparable to 

the observation made by Oldeland et al., (2010) using hyperspectral data in the Central 

Namibian savannah. However, our study only considered tree species diversity whilst the 

savannah is characterized by the co-existence of trees and grass. Therefore the overall 

spectral signal captured by Landsat-8 image relates to the total vegetation cover and this is 

assumed to have contributed to prediction errors observed in the study. Areas with high 

ratio of grass cover would be susceptible to over prediction. Nonetheless, the fact that H’ 

and D2 had a significant relationship with PCs (r2 of 0.41 and 0.42; p < 0.05) comparable to 

Oldeland et al., (2010) suggest that the effect of herbaceous vegetation on the spectral 

signal captured by the Landsat sensor was not dominant.  

Moreover, the high performing regression models in this study explained only 41 - 42% 

variability in tree species diversity. This can be improved with the incorporation of 

environmental variables known to impact tree species diversity in the savannah. Combining 

remotely sensed variables with environmental variables have been shown to increase the 

predictive ability of regression models (Zimmermann et al., 2007; Malahlela et al., 2015). In 

the southern African savannah, rainfall (Shackleton, 2000) and geology (du Toit et al., 2003) 

are some of the environmental factors known to impact tree species diversity. Furthermore, 

our general observation was that species diversity measures that consider both species 

richness and abundance relate better with vegetation indices and PCs. This is consistent 

with observations in the literature (Oldeland et al., 2010; Rocchini et al., 2010), which state 

that abundant tree species make a meaningful contribution in the overall spectral 

reflectance captured by a remote sensing device and therefore shows a better relationship 

with vegetation indices and PCs. In addition, this study benefited from ensuring that field 

plots match Landsat pixel size. Maintaining pixel-field plot correspondence facilitates the 

extraction of useful spectral information from remotely sensed image which is relevant to 

field data (Foody and Cutler, 2006).  

6. Conclusion 
The study demonstrated the utility of Landsast-8 spectral data for tree species estimation in 

the savannah woodland. The application of multivariate technique, PCA, facilitated the use 
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of the entire spectral bands in Landsat-8 and produced PCs which explained H’ (r2 of 0.36; p 

< 0.05) and D2 (r2 of 0.35; p < 0.05) better than NDVI or its derivatives (r2 ranges from 0.10 to 

0.29; p < 0.05) which had been used frequently for estimating species diversity (Gould, 

2000; Parviainen et al., 2010; Pau et al., 2012). Utilizing the entire spectral information in 

the Landsat-8 data enhanced our ability to estimate tree species diversity better than NDVI, 

which is limited to red and NIR regions of Landsat data. Furthermore, deriving PCs from a 

combination of Landsat-8 spectral data and vegetation improved the estimation of tree 

species diversity and this confirmed that multivariate techniques facilitate maximum 

exploitation of remotely sensed data for the purpose of biodiversity research. Moreover, 

the study confirmed our assumption that SRI may useful for estimating tree species 

diversity. SRI regression models produced results that were comparable to those obtained 

with PCA variables. Whilst NDVI and its derivatives had a significant relationship with tree 

species diversity, it was lower compared to SRI derivatives and this was attributed to scale 

differences between these indices. SRI has measurement scale which ranges from 0 to far 

beyond 1 and such an open scale facilitated its ability to explain tree species diversity. The 

NDVI scale problem has long been recognized as limiting in its ability to sense forest canopy 

variation (Huete et al., 2002) and therefore it is not surprising that NDVI had a lower 

explanatory power than SRI. The study also showed that H’ and D2 are compatible with 

Landsat spectral variables. H’ and D2 consider both species richness and abundance and 

these aspects of biodiversity have been shown to relate well with remotely sensed spectral 

signal. 

In light of the results from the present study, further research on the utility of Landsat-8 for 

estimating tree species diversity should incorporate environmental variables which are 

known to impact tree species distribution. Integrated modelling involving remote sensing 

variables and environmental variables have improved the prediction of invasive species in 

other studies (Malahlela et al., 2015). Overall, the significant relationship observed between 

remotely sensed variables and tree species diversity measures confirms the utility of 

Landsat image for practical application in conservation, particularly as a screening tool to 

identify biodiversity hotspots. The Landsat imagery covers large geographical areas on 

regular intervals and may provide useful information that is commensurate with the scale of 

conservation. 
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