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Abstract: Evolution equations containing fractional deriv-
atives can provide suitable mathematical models for
describing important physical phenomena. In this paper,
we propose an accurate method for numerical solutions
of multi-dimensional time-fractional heat equations. The
proposed method is based on a fractional exponential
integrator scheme in time and the Lagrange regularized
kernel method in space. Numerical experiments show the
effectiveness of the proposed approach.
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1 Introduction
The use of fractional partial differential equations (FPDEs)
in mathematical models has become increasingly popular
in recent years. They can provide suitable mathematical
models for describing anomalous diffusion and transport
dynamics in complex systems that cannot be modeled
accurately by normal integer order equations. Recently,
researchers have found that many physical processes
exhibit fractional order behavior that varies with time or
space for the mathematical modeling of real-world phys-
ical problems [1–4] such as earthquake modeling, traffic
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flow model with fractional derivatives [5] and financial
option pricing problems [6], to name these only.

In this study, we consider the time-fractional diffu-
sion equation (TFDE) of order !, with 0 ⩽ ! ⩽ 1.
In recent years, various methods have been devised to
find the exact and approximate solutions of FPDEs [7, 8]
in order to provide more information for understanding
physical phenomena arising in numerous scientific and
engineering fields. Keskin and Oturanc [9] proposed a
semi-analytical method known as the reduced differential
transform method (RDTM) for solving fractional differ-
ential equations. Lui et al. [10] derived the solution to
the time-fractional advection-dispersion equation using
variable transformation, Mellin and Laplace transforms,
and properties of H-functions. Lin and Xu [11] combined
finite difference and spectral approximations to numer-
ically solve time-fractional diffusion equations. Recently,
Zhang et al. [12] proposed a novel implicit numerical
method for the time variable fractional order mobile–
immobile advection-dispersion models. They showed that
the implicit difference approximation is computationally
efficient. Yang et al. [13–15] studied the use of fractional
derivative for nonlinear dynamics for local fractional Bur-
gers’ equation arising in fractal flow. In addition, they
proposed a new numerical technique based on a certain
two-dimensional extended differential transform via local
fractional derivatives and derive its associated basic theor-
ems and properties. Most recently, Bhrawy et al. proposed
a family of accurate and efficient spectral methods to
study a family of fractional diffusion equations and sys-
tems of fractional KdV equations [1, 2, 16–20]. Pindza and
Owolabi [21] proposed a Fourier spectral method imple-
mentation of fractional-order derivatives for reaction dif-
fusion problems.

We propose a Lagrange regularized kernel (LRK)
method and exponential time integrators to numerically
solve time-fractional partial differential equations. The
LRK belongs to the family of local spectral methods called
discrete singular convolution (DSC) methods. They were
originally introduced by Hoffman et al. [22], and Hoffman
and Kouri [23] as a computational tool for treating a vari-
ety of problems in physics and chemistry, with particular
focus on the Schrödinger equation. Later, the DSC meth-
odswere used to solve the Fokker-Planck equation [24, 25].
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Recently, Pindza and Maré [26] proposed an accurate and
efficient DSC method for numerical solutions of the fifth
order Korteweg-De Vries equation.

The study of DSC methods indicates that these meth-
ods deliver spectral accuracy when used to solve Fokker-
Planck equation with nonlinear drift and diffusion coef-
ficients included. They are defined as a mapping that
approximates a certain set of continuous L2 functions onto
itself [25]. Their main success in various computational
practices is due to their ability to provide analytical rep-
resentations of a function and its derivatives at collocation
points. These approximations have different realizations
depending on the problem to solve. Here we limit our
study to the DSC methods of the Lagrange type. These
methods are seen as local spectral methods since they
produce exponential convergence of spectral methods
while keeping sufficient flexibility to handle complicated
boundary conditions and geometries, like finite-difference
and finite-element methods. The semi-discretization of
the FPDEs in space using the LRK method yield a system
of fractional ordinary differential equations (FODEs) that
can be solved using conventional FODE solvers.

In this work, we are concerned with exponential
time integrators. Recently, Garrappa and Popolizio [27]
proposed a generalization of exponential integrators to
differential equations of non-integer orders and estab-
lished the stability and the convergence of underlying
methods. Fractional exponential time differencing (FETD)
methods present a challenging problem that is the
computation of the family of Mittag-Leffler functions.
In the present work, we evaluate Mittag-Leffler function
arguments efficiently using a Krylov subspace with the
Arnoldi shift-and-invert method [28].

This paper is structured as follows; in Section 2 we
describe the formulation of the DSC formalism. Section 3
describes the PDEs implementation of the LRK method.
Section 4 describes fractional time integrators and their
implementations. In Section 5 we perform numerical
experiments to illustrate themerits of our scheme. Finally,
we present a brief conclusion in Section 6.

2 Discrete singular convolution
DSC is a general framework for constructing local spectral
methods. It is an effective approach for the numerical real-
ization of singular convolutions, which occur commonly
in science and engineering. Consider a distribution T and
'(t) as an element of the space of test function. A singular
convolution f can be defined as

f (t) = (T ∗ ')(t) =
∫
∞

–∞
T(t – x)'(x)dx, (1)

where T(t – x) is a singular kernel. In this paper, T will
designate the delta distribution $. The basic equation
associated with the Dirac delta function $(x) is

∫
∞

–∞
$(x)f (x) dx = f (0), (2)

where f is any function that is continuous at x = 0. The
delta function has the following properties:

∫
∞

–∞
$(x – x′)f (x) dx = f (x′), (3)

∫
∞

–∞
$′(x)f (x) dx = –f ′(0), (4)

$(x/a) = |a|$(x). (5)

As the delta distribution does not have a value every-
where, its approximation is necessary so that it can be
digitized on a computer. The discrete local spectral kernels
[29] are constructed by regularizing the Shannon kernel
[30]

$B,3(x – nB) =
sin
[ 0
B (x – nB)

]
0
B (x – nB)

exp
[
–
(x – nB)2

232
]
, (6)

and the Dirichlet kernel [31]

$B,3(x – nB) =
sin
[ 0
B (x – nB)

]
(2M′ + 1) sin

[
0
B
(x–nB)
2M′+1

] exp
[
–
(x – nB)2

232
]
,

(7)
whereM′ is a parameter and B is the grid spacing. LRK [24]
is defined by

$M′,3(x – xk) =
i=k+M′∏

i=k–M′, i≠k

x – xi
xk – xi

exp
[
–
(x – xk)2

232
]
, (8)

was constructed by regularizing the classic Lagrange poly-
nomial [32]. Many other DSC kernels are given in [29, 33].
The main advantage of the LRK is its ability to accom-
modate the use of nonuniform grids. This is essential
for efficiently solving problems with singularities in the
discretization domain.

Qian et al. [34, 35] show that the error ∥ f – fM,3 ∥∞
of the Sinc-Gauss sampling formula decreases exponen-
tially with respect to M for some function f . We state the
convergence theorem of the LRK kernel as follows:
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Theorem 2.1: Let f be a function with f ∈ L∞(R) ∩ L2(R) ∩
Cs(R) and bandlimited to B,

(
B <

0
B
)
, s ∈ Z

+, 3 = rB > 0,

j!(B)2j ≤
(
1
r

)2j
for j ≥ 1,M >

sr√
2
. Then

‖f (s) – f (s)M,3‖L∞(R) ≤ " exp
(
–
!2
2r2

)
, (9)

where

! = min{M, r2(0 – BB)}, " = e0r(s + 1)!
Bs0!

(√
2B‖f‖L2(R)

+ 2r‖f‖L∞(R)

)
. (10)

The L∞ error decays exponentially with respect to the
increase of the DSC bandwidth M.

Proof: The convergence of the Lagrange-Gauss sampling
formula is established by following Qian et al. [34, 35].

Definition 2.2: For non-negative integer s and positive
numbers r, B, we define the operators R(s)3 and f (s)M,3 approx-
imating the s-th order derivative f (s) of a function f as

R(s)3 (x) :=
∞∑

n=–∞
f (nB)

[⎛
⎝ k+M′∏
i=k–M′, i≠k

x – xi
nB – xi

⎞
⎠

exp
(
–
(x – nB)2

232
)](s)

, (11)

f (s)M,3(x) :=
n=� xB �+M∑
n=� xB �–M

f (nB)
[⎛
⎝ k+M′∏
i=k–M′, i≠k

x – xi
nB – xi

⎞
⎠

exp
(
–
(x – nB)2

232
)](s)

. (12)

The error

E(x) = f (s)(x) – f (s)M,3(x), (13)

breaks naturally into two components:

E1(x) = f (s)(x) – R(s)3 (x), (14)

and

E2(x) = R(s)3 (x) – f (s)M,3(x). (15)

where E1(x) and E2(x) are the regularization error and the
truncation error, respectively.

The total error can be written as

E(x) =
(
f (s)(x) – R(s)3 (x)

)
+
(
R(s)3 (x) – f (s)M,3(x)

)
= E1(x) + E2(x).

(16)

The corresponding error norms satisfy the triangular
inequality

‖E‖L∞(R) ≤ ‖E1‖L∞(R) + ‖E2‖L∞(R). (17)

It follows that

‖f (s) – f (s)M,3‖L∞(R) ≤ " exp
(
–
!2
2r2

)
, (18)

where

! = min{M, r2(0 – BB)}, (19)

and

" =
Bs

√
2B‖f‖L2(R)√

2s + 13( 0B – B)
+
2‖f‖L∞(R)e0(s + 1)!r2

Bs0M (20)

≤
0s

√
2B‖f‖L2(R)

Bsr(0 – BB) +
2‖f‖L∞(R)e0(s + 1)!r2

Bs0M (21)

≤
r

Bs!0
(
0s+1

√
2B‖f‖L2(R) + 2‖f‖L∞(R)e0(s + 1)!r

)
(22)

≤
e0r(s + 1)!
Bs0!

(√
2B‖f‖L2(R) + 2r‖f‖L∞(R)

)
. (23)

∎

The choice of M, 3 and B are obtained from eqs
(18) and (19). For instance, if the L2-norm error is set to
10–' (' > 0), i.e. exp

(
– !2
2r2

)
= 10–', then ! =

√
2' ln(10).

The substitution of ! in eq. (19) yields the following
inequalities

r(0 – Bh) >
√
4.6' and

M
r
>
√
4.6', (24)

where r = 3/h and B is the frequency bound of the
underlying function f .

3 Implementation of the LRK
In this section, we propose an implementation of the LRK
for numerical solutions of fractional time PDEs.

3.1 Approximation of derivatives

While solving partial differential equations, one of the
most important element is an accurate representationof
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differentiation operators. The success of LRK for linear
and nonlinear PDEs is due to their ability to represent
derivatives locally with spectral method accuracy. The s-th
derivative of the LRK is analytically expressed as

$(s)M,3(x – xk) =
s∑
t=0

s!
t!(s – t)!

( M∏
i≠k

x – xi
xk – xi

)(s)

[
exp

(
–
(x – xk)2

232
)](s–t)

. (25)

Therefore, the first two derivatives of the LRK can be
written as

$(1)M,3(x – xk) =

⎡
⎣
⎛
⎝∑

j≠k

1
x – xj

⎞
⎠ –

x – xk
32

⎤
⎦ $M,3(x – xk) (26)

and

$(2)M,3(x – xk) =

⎡
⎣
⎛
⎝ ∑
j2≠j1,k

∑
j1≠k

1
(x – xj2 )(x – xj1 )

⎞
⎠ –

2(x – xk)
32

⎛
⎝∑

j≠k

1
x – xj

⎞
⎠ –

1
34
(
32 – (x – xk)2

)
⎤
⎦

$M,3(x – xk). (27)

These two derivatives will be used in the computation of
diffusion equations.

3.2 Boundary conditions

A complete numerical algorithm has to provide a scheme
for handling boundaries. If the kernel, $(s)M,3, is fixed to
be symmetric (or antisymmetric) and invariant by trans-
lation, there must be cases where f (xk) are located outside
of the computational domain, [a, b], and their values are
undefined there. In the present algorithm, such f (xk) are
to be obtained by boundary conditions. In the Dirichlet
boundary condition, such f (xk) are taken to be f (a) or f (b).
In periodic boundary condition, such f (xk) are replaced
by their corresponding values inside the domain [a, b].
For the Neumann boundary condition, the values of f (xk)
are determined by f (a) and f ′(a) or (f (b) and f ′(b)). If f (x)
is antisymmetric around the boundary point then values
of f (xk) outside the domain [a, b] are replaced by their
corresponding –f (xk) inside the domain [a, b]. Similarly,
if f (x) is symmetric around the boundary point then val-
ues of f (xk) outside the domain [a,b] are replaced by their
corresponding f (xk) inside the domain [a, b].

3.3 One-dimensional time-fractional heat
equation

We first describe the fractional differential equation prob-
lem studied in this paper, and present some analytical
solutions which will help with the numerical experiments
of ourmethodology. Consider the time-fractional diffusion
equation of the form

∂!

∂t!
u(x, t) =

∂2

∂x2
u(x, t) + f (x, t), (x, t) ∈ (a, b)× [0,T], (28)

with the initial condition

u(x, 0) = g(x), x ∈ (a, b), (29)

and the boundary conditions

u(a, t) = hL(t) and u(b, t) = hR(t). (30)

The substitution of the spatial derivative operators by the
following LRK discretizations

∂2

∂x2
u(x, t) =

N∑
j=1

uj(t)$(2)3,M(x – xj),
∂!

∂t!
u(x, t)

=
N∑
j=1

u(!)j (t)$3,M(x – xj), (31)

leads to the linear system of fractional differential equa-
tions

D!
0U(t) = AU(t) + F(t), U(0) = U0, 0 ⩽ t ⩽ T, 0 < ! < 1,

(32)
where A is a N × N matrix of entries aij = $(2)3,M(xi – xj)
obtained from the semi-discretization of the underlying
FPDE (28) using LRK methods, F(t) is the source term
which collects the function f together with the discret-
ized boundary conditions, and D!

0U(t) is the fractional
derivative of the function U(t).

3.4 Two-dimensional time-fractional heat
equation

Consider the two-dimensional time-fractional heat equa-
tion

∂!

∂t!
u(x, y, t) =-

(
∂2

∂x2
u(x, y, t) +

∂2

∂y2
u(x, y, t)

)
, (x, y) ∈ D,

t ∈ [0,T], (33)
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where - is the diffusion coefficient. We set initial condition
as

u(x, y, 0) = h(x, y), (x, y) ∈ D, (34)

and the boundary as

u(x, y, t) = p(x, y, t), (x, y) ∈ ∂D, t ∈ [0,T], (35)

whereD = {(x, y) : a < x, y < b} and ∂D is its boundary.
The LRK can be easily generalized to an arbitrarily

high dimension by the tensorial product. For example, in
2D, one has the following spatial derivative operators

∂2

∂x2
u(x, y, t) =

Nx∑
kx=1

Ny∑
ky=1

ukxky (t)$
(2)
3x,Mx

(x – xkx )$3y,My (y – yky ),

(36)

∂2

∂y2
u(x, y, t) =

Nx∑
kx=1

Ny∑
ky=1

ukxky (t)$
(2)
3y,My

(y – yky )$3x,Mx (x – xkx ),

(37)
and

∂!

∂t!
u(x, y, t) =

Nx∑
kx=1

Ny∑
ky=1

u(!)kxky (t)$3y,My (y – yky )$3x,Mx (x – xkx ).

(38)
We obtain a linear system of fractional differential equa-
tions of the form

D!
0U(t) = AU(t) + F(t), U(0) = U0, 0 < t ≤ T, 0 < ! < 1,

(39)
where A = -(Dxx⊗ Iy + Ix⊗Dyy) is a N2

x ×N2
y matrix obtained

from the semi-discretization of the underlying FPDE (33)
using LRK methods, the symbol ⊗ is the Kronecker tensor
product [36], F(t) is the source term which collects the
function f together with the discretized boundary condi-
tions, and D!

0U(t) denotes the fractional derivatives.

4 Fractional exponential
integrators

Before we state the definitions of fractional exponential
time differencing, let us recall the definition of fractional
derivative.

4.1 Basics of fractional calculus

There are several definitions of a fractional derivative of
order ! > 0 (e.g. Riemann-Liouville [37] and Caputo [38]
fractional derivative). Recently, Yang et al. [13] introduced
a new fractional derivative without a singular kernel, with
an application to the steady heat-conduction problem.
However, we only consider the classical Caputo fractional
derivative approach.

Definition 4.1: Caputo’s definition of the fractional order
derivative is given as

D!
t f (t) =

1
A(n – !)

∫ t

a

f (n)(. )
(t – . )!+1 d. , n – 1 < ! ≤ n, n ∈ N,

0 < t ≤ T, (40)

where the parameter ! is the order of the derivative and
is allowed to be real, ! is the initial value of the function
f . In the present work only real positive values of ! are
considered. For the Caputo’s derivative we have

D!
t C = 0, C ∈ R. (41)

D!
t t# =

⎧⎪⎨
⎪⎩
0, (# ≤ ! – 1),

A(#+1)
A(# !+1) t

#–!, (# > ! – 1).
(42)

The Caputo’s fractional differentiation is expressed as a
linear operation

D!(+f (x) + 9g(x)) = +D!f (x) + 9D!g(x), (43)

where + and 9 are constants.

Definition 4.2: The Riemann-Liouville time-fractional
derivative operator of order ! > 0 is defined as

D!
t f (t) =

⎧⎪⎪⎨
⎪⎪⎩

1
A(n–!)

∂n
∂.n
(∫ t

a
f (. )

(t–. )!+1 d.
)
, n – 1 < ! < n, n ∈ N,

∂nu(x,. )
∂.n , ! = n ∈ N.

(44)

In order to establish fractional derivative properties, we
first define the Riemann-Liouville fractional integral oper-
ator.
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Definition 4.3: The Riemann-Liouville fractional integral
operator of order ! is defined as

J!t f (t) =
1

A(!)

∫ t

0
(t – . )!–1f (. )d. , ! > 0, t > 0. (45)

Property 4.4: For !, " ≥ 0 and # ≥ –1, we have the
following

J!t J
"
t f (t) = J

!+"
t f (t), J!t t#=

A(# + 1)
A(# + ! + 1)t#+! , (46)

D!
t J!t f (t) = f (t), J!t D!

t f (t) = f (t)–
m–1∑
k=0

f (k)(0+)
tk

k!
, t> 0. (47)

Definition 4.5: The Mittag-Leffler function is defined as
(Podlubny [39])

E!,"(z) =
∞∑
k=0

zk

A(" + !k) , !, " > 0, |z| < ∞. (48)

It is known from Kilbas et al. [40] that the function e!,"
is a generalization of the Mittag-Leffler (ML) function E!,"
following

e!,"(t; +) = t"–1E!,"(–t!+), (49)

where ! and " are two (possibly complex) parameters
and the function e!,"(t; +) is the inverse of the Laplace
transform s!–"/(s! + +).

Definition 4.6: The Laplace transform of f (t) is denoted by
L{f (t)} and is defined by the integral

L{f (t)} = F(s) =
∫
∞

0
e–stf (t)dt. (50)

The inverse Laplace transform is evaluated on a contour A,
known as the Bromwich contour, as

L–1{F(s)} = f (t) =
∫
A
estF(s)ds. (51)

The contour A is chosen such that it encloses all the singu-
larities of F(s).

4.1.1 Numerical fractional exponential time differencing
method

In this paper we are interested in the numerical solution
of fractional differential equations (FDEs) of the type

D!
0U(t) = AU(t) + F(t), U(0) = U0, 0 < t <= T, 0 < ! < 1,

(52)

where A ∈ R
N × R

N is a matrix obtained from the semi-
discretization of the underlying PDEs using LRK methods,
F(t) ∈ R

N is the source term which collects the discret-
ized boundary conditions andD!

0U(t) denotes the Caputo’s
fractional derivative defined as

D!
0U(t) =

1
A(1 – !)

∫ t

0

U′(s)
(t – s)!

ds. (53)

In the Laplace transform domain eq. (52) can be written as

s!Û(s) – s!–1U0 = AÛ(s) + F̂(s), (54)

which is equivalent to

Û(s) = s!–1(s!I – A)–1U0 + (s!I – A)–1F̂(s). (55)

The application of the inversion of the Laplace transform
to eq. (55) yields the following result in the time domain

U(t) = e!,1(t; –A)U0 +
∫ t

0
e!,!(t – s; –A)F(s)ds. (56)

We consider the approximation of the integral in eq. (56)
on a uniform partition of the interval I = [0,T] given by

tj = jh, j = 0, 1, . . . , n, h = T/n. (57)

We first rewrite the variation of constant formula in a
piecewise way

U(tn) = e!,1(t; –A)U0 +
n–1∑
j=0

∫ tj+1

tj
e!,!(tn–s; –A)F(s)ds. (58)

Exponential integrators can be obtained by replacing in
each subinterval [tj, tj+1], the function F(s) by a constant
F(tj). We have

Un = e!,1(tn; –A)U0 + h!
n–1∑
j=0

Wn,jF(tj), (59)

where the weightsWn,j are the matrix functions defined as

Wn,j = e!,!+1(n – j; –h!A) – e!,!+1(n – (j + 1); –h!A). (60)

In real life applications, the system of ODEs (52),
derived from spatial semi-discretization, is usually very
large according to the number of grids. Therefore, the
computation of the function e!," on a matrix argument
becomes a nontrivial task. In this article, we use the
Krylov projection algorithm [41] to improve the efficiency
of the method. The key idea behind this method is to
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approximate the product of a matrix function e!,"(A) (A
is a R

N × R
N matrix) and a vector v using projection

of the matrix and the vector onto the Krylov subspace
Km(A, v) = span{v,Av, . . . ,Am–1v}. The orthonormal basis
{v1, v2, . . . , vm} of Km(A, v) is constructed using the mod-
ified Arnoldi iteration [41, 42] which can be written in
matrix form as

AVm = VmHm + hm+1,mvm+1f Tm, (61)

where hm+1,m is an entry of the HessenbergmatrixHm, fm =
(0, . . . , 0, 1, 0, . . . , 0)T is the unit vector with 1 as the m-th
coordinate, {v1, v2, . . . , vm, vm+1} is an orthonormal basis of
Km(A, b), Vm = [v1, v2 . . . , vm] is a N ×mmatrix, and

Hm = VT
mAVm (62)

is an upper Hessenberg matrix calculated as a side
product of the iteration. The matrix P = VmVT

m is a projec-
tion onto Km(A, v), thus e!,"(A)v is approximated as a
projection

e!,"(A)b ≈ VmVT
me!,"(A)VmVT

mv. (63)

Recalling eq. (62) and observing that v1 = v/‖v‖2, we make
the final approximation

e!,"(A)v ≈ ‖v‖2Vme!,"(Hm)v1. (64)

The advantage of this formulation is that Hm is a m × m
matrix of smaller size (m ≪ N) and thus it ismuch cheaper
to evaluate e!,"(Hm) than e!,"(A).

5 Numerical validations
In this section, we apply the LRK method on two differ-
ent problems involving one and two dimensional heat
equations. In the first example, we show efficiency of the
present method by reporting the L2- norm error

L2 = ||u – ũ||2 =
[
B

N∑
i=1

(ui – ũi)2
]1/2

(65)

and L∞-norm error

L∞ = ||u – ũ||∞ = max
1⩽j⩽N

|uj – ũj|, (66)

where N is the number of computational grids, u and ũ
represent the exact and approximate solutions, respect-
ively. For the two-dimensional heat equation, we define
the L2-norm error by

L2 = ||u – ũ||2 =
⎡
⎣BxBy

Nx∑
i=1

Ny∑
j=1

(ui,j – ũi,j)2
⎤
⎦
1/2

(67)

and the L∞-norm error by

L∞ = ||u – ũ||∞ = max
i∈[1,Nx],j∈[1,Ny]

|ui,j – ũi,j)|, (68)

where Nx and Ny represent the number of grid points in
x and y directions, respectively. For numerical flexibility,
the LRK is implemented adaptively to avoid the restriction
of the bandwidth when the number of grid points is very
small. The LRK is implemented as a discrete convolution
scheme such as the s-th order derivative of a function u(x)
on a given grid point xi, and is approximated as

ũ(s)(xi) =
S2∑
j=S1

u(xk)

⎡
⎣
⎛
⎝ S2∏
j=S1, j≠k

xi – xj
xk – xj

⎞
⎠ exp

(
–
(xi – xj)2

232
)⎤⎦

(s)

.

(69)
There are two ways to choose S1 and S2 depending on the
number of grid points we want to use to approximate the
derivative at discrete point xi. For instance, if we want to
approximate the derivative at discrete point xi with 2M + 1
grid points, we choose S1 and S2 as

S1 =max{min{i–N,N–2M}, 1}, S2 =min{max{1+2M, i+M},N}.
(70)

This methodology generally produces box-banded differ-
ential matrices. If it is desired to approximate the derivat-
ive at discrete points xi withM + 1 grid points, we select S1
and S2 as

S1 = max{i –M, 1}, S2 = min{i +M,N}. (71)

This is generally known as one side approximation.
The choice of the LRK bandwidth M and the regular-
izer parameter 3 is done according to the conditions (24).
Hence, if M = 16, M = 32 and M = 64 then 3 ≈ 2.5B, 3 ≈
3.2B and 3 ≈ 6.2B, respectively. Numerical experiments
were obtained by choosing S1 and S2 as defined by
eq. (71) with M = 32 and the Hessenberg matrix size
m=min{15,N}.

Example 5.1: Consider the one-dimensional fractional-time
heat equation of the form

∂!

∂t!
u(x, t) =

∂2

∂x2
u(x, t), (72)

with the initial condition

u(x, 0) = sin(x), 0 ≤ x ≤ 0, (73)
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and homogenous boundary conditions

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1. (74)

The exact solution of this problem is given by

u(x, t) = sin(x)E!,1(–t!). (75)

We first choose ! ∈ {0.2, 0.4, 0.6, 0.8} and perform numer-
ical experiments to check their agreement with the ana-
lytical solution. Clearly, Figure 1 illustrates that the LRK
method solutions are very good estimates of the analytical
solutions as absolute errors are of magnitude 10–14.

Next, we investigate the convergence of our numer-
ical method with respect to the number of grid points N.
In Figure 2, we observe that numerical solutions of the
LRK method converge towards exact soliton solutions as
the number of grid points N increases. We remark that
LRK method converges rapidly, in fact exponentially, as
the number of mesh points increases. In the next example

we investigate the convergence of the LRK method on the
higher dimensional heat equation.

Example 5.2: Consider the two-dimensional
time-fractional heat equation

∂!

∂t!
u(x, y, t) =

∂2

∂x2
u(x, y, t) +

∂2

∂y2
u(x, y, t), (76)

on the unit domain D = {(x, y) : 0 < x, y < 0}. The initial
condition is chosen as

u(x, y, 0) = sin(x) sin(y), 0 ≤ x, y ≤ 0, (77)

together with homogeneous boundary conditions

u(0, y, t) = u(0, y, t) = u(x,0, t) = u(x,0, t) = 0,
t ∈ [0,T]. (78)
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Figure 1: Comparison of numerical and exact solutions (Left) and absolute error (Right) at t = 0.25 for ! ∈ {0.2, 0.4, 0.6, 0.8},M = 32, N = 32
and x ∈ [0,0].
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Figure 2: Errors as a function of the number of grid points N at t = 0.25, (Left) L∞ and (Right) L2 for ! ∈ {0.2, 0.4, 0.6, 0.8},M = 32 and
x ∈ [0,0].
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Figure 3: Numerical solution (Left) and absolute error (Right) at t = 0.25 for ! = 0.2,M = 32, Nx = Ny = 32 and x, y ∈ [0,0].
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Figure 4: Errors as a function of the number of grid points Nx = Ny at t = 0.25, 0.5, 0.75, 1, (Left) L∞ and (Right) L2, ! = 0.5,M = 32 and
x ∈ [0,0].

The analytical solution of the above problem is

u(x, y, t) = sin(x) sin(y)E!,1(–2t!). (79)

When t = 0.5, ! = 0.4, Nx = Ny = 32 and the LRK band-
widthM=32, we obtain very satisfactory results displayed
in Figure 3. To verify the accuracy of this approximation
we plot L∞- and L2-norm errors on the left and right part
of Figure 4, respectively. The outcome turns out to be very
satisfactory as the number ofmesh pointsN increases. The
error decays very rapidly with the increase of N and tends
to be of the same magnitude for different time t.

Note that this method is flexible and allows numerical
treatment of nonlinear PDEs since the semi-discretization
of the nonlinear PDEs using the LRK method (8) yields
a system of nonlinear ODEs that can be solved using
fractional exponential time differencing methods [27].

6 Conclusion
A numerical technique based on the LRK method has
been presented for numerical solutions of fractional-
time diffusion equations. The efficiency of the method

is tested against analytical solutions of fractional-time
heat equations in one and two dimensions. The accur-
acy is examined in terms of the L∞ and L2 error norms.
Numerical results have illustrated that our methodology
is highly accurate and converges exponentially. Moreover,
our results are a good representation of the theory.
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