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Tensor calculus is critical in the study of the vector calculus of the surface of a body.
Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents
some pitfalls of a traditional course in vector calculus in transitioning to tensor
calculus. We show how a deeper emphasis on traditional topics such as the Jacobian
can serve as a bridge for vector calculus into tensor calculus.
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1. Introduction

A typical course in vector calculus sometimes leaves some students with concepts
that appear to be scattered and unrelated. Much of this confusion results from an
inability to move away from using Cartesian coordinates as a reference point to
judge all other coordinate systems. Since high school all the way into the first year
of Mathematics, students are exposed to Cartesian coordinates. Furthermore, the
distinction between the actual physical point in space and its Cartesian coordinates
has not been emphasized. This addiction to the Cartesian coordinate system when
applied to the ubiquitous geometric concept of the gradient manifests in the form
of the algebraic formulation of the gradient (2.1). Many students perceive this as
the geometric definition of the gradient. In Section 2, we show the pitfall of this
misconception in order to break away from the addiction to Cartesian coordinates.
More precisely, we show (i) that the algebraic undergraduate definition of the gra-
dient works in exactly one coordinate system, the Cartesian coordinate system and
(ii) a case at where the algebraic formulation of the gradient (2.1) gives the wrong
gradient in a slightly modified Cartesian coordinate system. Tensor calculus is an
upgraded vector calculus with improved algebraic formulations which are not tied
down to any single coordinate system. We use the tensor calculus notation of [1].

In Section 3, we introduce the idea that that a coordinate transformation is a
dualism in the sense of seeing the same object through the different lenses of a
different coordinate systems. We present the notion of the Jacobian as a coordinate
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transformation that has been linearized by differentiation. The Jacobian is a local
linear substitute to the original coordinate transformation which needs not be linear.
This coordinate transformation approach then adds a geometric flavour to the well
drilled concept of the determinant of a Jacobian as a fudge factor which is the limit
of the ratio of the area of the image set (under the coordinate transformation) to
the area of the pre-image set. Furthermore, the Jacobian has the critical property of
preserving derivatives from one coordinate system to another. Thus, a Jacobian is
a linear dualism map between the two dual realities of coordinate systems with the
peculiar property of preserving tangents. This property of preserving of tangents
explains the fundamental role of the Jacobian in tensor calculus. In tensor calculus,
objects are treated as derivatives. In Section 4, we show that even the fundamental
objects of linear algebra, coordinate basis vectors, are derivatives. The change of
basis matrix in linear algebra is also a derivative (Proposition 3.1). So, in this sense,
calculus (differentiation) is more fundamental than linear algebra.

The power of algebra in the form of coordinate systems is undeniable. Tensor
calculus is a framework where one constructs an algebraic formulation that is inde-
pendent of the coordinate system: it works in all coordinate systems, unlike in (2.1)
of Section 2. The Jacobian is the correction factor when the same algebraic for-
mulation (which is dependent on the coordinate system) is executed mechanically
in two different coordinate systems. Tensor calculus calls objects created by such
(coordinate dependent) algebraic formulations with a Jacobian correction factor,
tensors (equation (6.1), [1]): the inadequate algebraic formulation of the gradient
(2.1) is a tensor (see (4.8) of Section 4). Thus the Jacobian is a positive step forward
to the final goal of a coordinate-free universal algebraic formulation of the gradient.

In Section 5 we introduce another dualism map called the metric tensor. Func-
tional analysts would not accept the Jacobian as a true dualism map. However the
metric tensor is what functional analysts would call a dualism map since it produces
a dual (contravariant) basis and a dual notion to the (covariant) tensor introduced
in Section 4. The covariant tensor and its dual, the contravariant tensor, together
provide a method of generating coordinate-free universal algebraic formulations or
calculus (Proposition 6.2, Section 6)

Finally in Section 7, we bring together the key vector calculus concepts such as
the Jacobian, coordinate systems, coordinate basis and gradient into an organized
platform where geometric and algebraic notion of the gradient is truely married in
the sense that the new algebraic formulation of the gradient (7.1) is independent
of the coordinate system. By nature, the geometric object (like the gradient) is
independent of any coordinate system and the algebraic formulation is independent
of the coordinate system in the sense that the algebraic formulation is universally
applicable to any coordinate system (without recourse to a correction factor like a
Jacobian).

2. Breaking the addiction to Cartesian coordinates

The geometric notion of the gradient
−→
∇F (P0) is captured by the arrow/vector in

the domain Dom(F ) ⊂ R2 of a scalar field F with the following properties: (i) the
direction points where F increases quickest from a point P0 ∈ Dom(F ) on one level
curve to another nearby level curve and (ii) the magnitude gives the actual size of



Unlearning Vector calculus 3

increase. So, the geometric notion of the gradient is independent of the Cartesian
coordinate system or any coordinate system. This geometric notion of the gradient is
a mathematical formulation of a law in nature that states that natural phenomena
(like heat) flow in the direction of least resistance or quickest increase from one
temperature level curve to a nearby temperature level curve. So the classical heat

equation which requires the geometric notion of the gradient,
−→
∇F , is formulated

independent of coordinate systems.
In our lectures, we commit the mistake of making no distinction between the

geometric notion of the gradient,
−→
∇F , and its algebraic formulation by immediately

presenting the scalar field F in its Cartesian coordinatized format F (x, y) and the
gradient as the pair of numbers:

−→
∇F (x, y) :=

(∂F
∂x
∂F
∂y

)
. (2.1)

All unsubscripted column vectors will be assumed to be in the familiar (i, j)-basis

form:

(∂F
∂x
∂F
∂y

)
=

(∂F
∂x
∂F
∂y

)
(i,j)

. We denote the induced standard Cartesian coordinate

system by Zi; all unsubscripted ordered pairs (x, y) will assume coordinatization
by the familiar standard Cartesian coordinate system Zi.

We now show how easy it is to expose the cardinal error of thinking of a vector
algebraically as a pair of numbers (which implicitly assumes a coordinate system)
instead of as a geometric arrow.

Example 2.1. Consider a simple scalar field F in Cartesian coordinatized format
F (x, y) = x+ y. Then

−→
∇F (x, y) =

(
1

1

)
= 1i + 1j

by (2.1) where (i, j) denotes the Cartesian coordinate basis vectors. Now suppose
we present F in terms of a ‘stretched’ Cartesian coordinate system Zi′ induced by
the basis vectors (i′, j′) where i′ = 2i and j′ = 2j 1. Then,

x := 2x′ y := 2y′.

and it follows that
F (x′, y′) = 2x′ + 2y′

so
−→
∇F (x′, y′) =

( ∂F
∂x′
∂F
∂y′

)
(i′,j′)

=

(
2

2

)
(i′,j′)

= 2i′ + 2j′ = 4i + 4j.

Therefore even with a slightly modified Cartesian coordinate system (i′, j′), the
algebraic formulation (2.1) gives the wrong geometric gradient:

−→
∇F (x′, y′) = 4

−→
∇F (x, y). (2.2)

1The dimensions of the unit square of the (i′, j′)-coordinate system Zi′ are twice as large as
the dimensions of the unit square of the (i, j)-coordinate system, Zi.
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The algebraic formulation (2.1) gives the correct gradient vector only in the Carte-
sian coordinate system Zi. This inadequacy should be a warning to maintain ad-
diction to Cartesian coordinate systems despite the ease of computation afforded
by (2.1).

What went wrong with the (i′, j′)-formulation of the gradient in Example 2.1?
We blurred the distinction between the geometric nature of the gradient and the
algebraic formulation of the gradient. We did not recognize the differences in the
two natures and blindly married the two notions (without respect of their individual
natures), hoping the marriage will hold.

Coordinate systems give an algebraic formulation of geometric notions such as
the gradient. Algebraic formulations are powerful in solving problems by providing
computational power, so we need coordinate systems. For a successful marriage be-
tween the geometric formulation and the algebraic formulation, we need an algebraic
formulation in one coordinate system to hold equally well in any other coordinate
system. We call such formulations coordinate-free universal algebraic formulations.
Specifically to the problem raised in Example 2.1, we shall show coordinate-free
universal algebraic formulation of the gradient vector. For this to happen, tools
need to be developed to track how one algebraic formulation in one coordinate
system gets transformed into another coordinate system.

The Jacobian is one such tool; the Jacobian will be formulated in such a way to
lay the foundation of a fundamental principle of tensor calculus that

all coordinate systems are essentially the same.

Indeed, tensor calculus always assumes some coordinate system in the background
by virtue of a universal algebraic formulation thus maintaining the power of compu-
tation. In the final analysis, tensor calculus chooses a particular coordinate system
or particular algebraic formulation most compatible with the problem at hand. So
tensor calculus delays the decision to commit to a coordinate system but at the
same time has the computational power of the coordinate system hovering over the
problem available at any time.

3. The Jacobian as a localized linear coordinate transformation

Consider the scalar field F of Example 2.1. Through the lens of the Cartesian
(i, j)-coordinate system, Zi, the object F assumed the simple linear algebraic form
F (x, y) = x + y. Through the lens of the stretched-Cartesian (i′, j′)-coordinate
system, Zi′ , the same object F assumed an equally simple simple linear algebraic
form F (x′, y′) = 2x′ + 2y′. Therefore we regard F (x′, y′) as the dual of F (x, y).

In traditional vector calculus courses, the concept of a Jacobian is introduced by
first considering the the pullback coordinate transformation T ii′ : (x′, y′) ∈ Zi′ →
(x, y) ∈ Zi (p. 184-187, [2]),

x = f(x′, y′) = 2x′; y = g(x′, y′) = 2y′. (3.1)

which has the matrix format T ii′ =

(
2 0

0 2

)
:(

x

y

)
=

(
2 0

0 2

)(
x′

y′

)
. (3.2)
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The term pullback emphasizes the point that the Cartesian Zi-coordinate system
takes centre stage and the new Zi′ -coordinate system the back stage.

We shall call the pullback coordinate transformation T ii′ a global dualism map
since T ii′ describes how for each and every point in R2, the Zi′ -lens needs to be ad-
justed to the preferred Zi-lens. For example, consider the physical point P0 which
when seen through the awkward Zi′ -lens has coordinates (1, 1)Zi′ ; the global dual-
ism map T ii′ then gives an algebraic algorithm to re-view that same physical point
P0 as (2, 2) which is now easy to visualize due to the past addiction to the standard
Cartesian coordinate system.

More often than not, the global dualism map T ii′ is highly non-linear like the
pullback polar coordinate transformation T ii′ : (x′, y′) = (r, θ) ∈ Zi′ 7→ (x, y) ∈ Zi,

x = r cos θ; y = r sin θ. (3.3)

which has the matrix format T ii′ =

(
cos θ 0

sin θ 0

)
:

(
x

y

)
=

(
cos θ 0

sin θ 0

)(
r

θ

)
. (3.4)

Differentiation comes to our rescue: differentiation linearizes non linear objects
as linear objects while preserving the type of the object. The differentiated object
is the same type of creature as the original object itself. The price to pay is local-
ization. So, the Jacobian J ii′ of the pullback coordinate system, T ii′ , is nothing but
the differentiated pullback transformation: J ii′ = DT ii′ which will act as a (linear)
substitute for the original non-linear global dualism map T ii′ at least locally. Fur-
thermore, J ii′ is also a Zi′ → Zi coordinate transformation which we define locally
at P0 = (x′0, y

′
0) as follows:

J ii′(P0) = DT ii′(P0) := lim
P→P0

‖T ii′(P )− T ii′(P0)− J ii′(P0)(P − P0)‖
‖P − P0‖

(3.5)

Differentiable objects are nothing more than objects that look like ‘straight lines’
locally at a fixed point (x0, y0) (p. vii, [3]); that is, a linear transformation that is
the same type of creature as the original object: in our case of a derivative of a
(Zi′ → Zi)-transformation T ii′ , the ‘straight line’ is nothing but a linear (Zi′ → Zi)-
transformation, that is, a 2× 2-matrix that can be shown to be

J ii′(P0 = (x′0, y
′
0)) =

(
xx′ xy′

yx′ yy′

)
(x′

0,y
′
0)

. (3.6)

So for the nonlinear polar pullback coordinate transformation T ii′ of (3.4), at each
fixed point P0 = (r0, θ0) ∈ Zi′ , the familiar polar Jacobian matrix,

J ii′(P0) =

(
cos θ0 − r0 sin θ0
sin θ0 r0 cos θ0

)
, (3.7)

is a linear (Zi′ → Zi) substitute of the non-linear T ii′ : Zi′ → Zi of (3.4) at P0.
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For the linear coordinate transformation T ii′ of (3.1), the Jacobian J ii′ is always

the change of basis matrix P(i′,j′)→(i,j) =

(
2 0

0 2

)
for every point P0. It is immediate

from (3.2), J ii′ coincides with T ii′ . For the non-linear coordinate transformation
T ii′ of (3.3), the Jacobian J will vary for different P0 but the differentiablity of T ii′
always ensures J ii′ is a well behaved matrix at every fixed point P0. Thus,

The Jacobian J i
′

i is a linear coordinate transformation that replaces the actual

coordinate transformation T i
′

i at least locally.

The special case of J ii′ coinciding with T ii′ of (3.1) holds for all pullback coordinate
transformation T ii′ : Zi′ → Zi associated with the coordinate systems induced by
the two different sets of basis vectors.

Proposition 3.1. Every change-of-basis matrix is a derivative.

Proof. Let Zi, Zi′ denote the coordinate systems induced by the basis vectors
(i, j), (i′, j′) respectively. The change in basis matrix P(i′,j′)→(i,j) is nothing but the
Jacobian or derivative of the pullback coordinate transformation T ii′ : Zi′ → Zi
associated with the coordinate system induced by the basis vectors.

Unfortunately in many traditional vector calculus courses, the emphasis has al-
ways been on the determinant of the Jacobian |J ii′ | with little regard to the actual
Jacobian J ii′ as a linear coordinate transformation which replaces the actual co-
ordinate transformation T ii′ at least locally (Chapter 4, [2]). The first immediate
drawback with this totally algebraic approach is that it prevents the student from
seeing the need of the determinant of the Jacobian |J ii′ | when one does a double
integration in the pullback space Zi′ . In the pull back space of T ii′ of (3.1), the
area of a unit square in Zi′ is 4 times the unit square in the original space Zi (see
footnote 1). So the determinant of the Jacobian |J ii′ | = 4, which is the fudge factor
when one does a double integration in Zi′ . The second drawback is that it prevents
the student from seeing that the Jacobian locally preserves tangent vectors exactly:

Example 3.1. Consider a curve R′(t) :=

(
x′(t)

y′(t)

)
in the pullback space Zi′ . The

dual curve

R(t) :=

(
x(t)

y(t)

)
= T ii′R

′(t), (3.8)

lies in the Zi-space. By the chain rule, the Jacobian J ii′(P0) exactly preserves tangent
vectors to any (position) curve at the point P0 = (x′(t0), y′(t0))Zi′ on the curve in
the Zi′-space to the corresponding (dual) tangent vector at the same physical point
P0 = (x(t0), y(t0))Zi to the dual (position) curve in the Zi-space.

V(t0) :=

(
ẋ(t0)

ẏ(t0)

)
= J ii′(P0)V′(t0), (3.9)

where V′(t) :=

(
ẋ′(t)

ẏ′(t)

)
.
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From (3.5), the Jacobian J ii′(P0) is a good approximation of a differentiable coor-
dinate transformation T ii′ when it comes to preserving dual positional vectors (see
(3.8)). But when it comes to locally preserving dual tangent vectors or derivatives,
the (local) preservation is exact by (3.9) thus replacing T ii′ perfectly.

Proposition 3.2. The Jacobian locally preserves (tangent) derivatives.

Change-of-basis matrices are derivatives (Proposition 3.1). Given that the Ja-
cobian preserves dual tangent vectors exactly (Proposition 3.2 ), it comes to no
surprise that tensor calculus expresses basis vectors (like the familiar Cartesian
basis vectors i, j) as derivatives, more precisely, tangent vectors. Therefore, in this
sense calculus is more fundamental than linear algebra.

4. Coordinate basis vectors as derivatives

Let Z denote the Cartesian coordinates (Z1, Z2) := (x, y) of a physical point P0.
Then the vector field

R : Z 7→ R(Z) :=
−−→
OP0

can be differentiated with respect to both Z1 = x and Z2 = y. The vector field
R will be called a position vector field and it is constructed by making a clear
distinction between the coordinates Z and the physical arrow R(Z). Note that the
position vector R is a geometric object independent of the coordinate system and so
we use the notation R(Z ′) should the position vector be coordinatized by another
coordinate system Z ′ (we leave the symbol R unprimed).

Fix the coordinates Z := (x, y). Then the vector ∆R(x + ∆x, y) − ∆R(x, y) is
∆xi. Hence the derivative

Z1 :=
∂R(Z)

∂Z1
=
∂R(Z)

∂x
= i, (4.1)

at all points Z = (x, y). Similarly, for the other basis vector j,

Z2 :=
∂R(Z)

∂Z2
= j, (4.2)

at all points Z = (x, y). So the rate of change of the position vector with respect
to the Cartesian coordinate is constant.

Remark 4.1. Differentiation preserves the type of object and this Z1 is a vector
field which returns the basis vector i at each point Z = (x, y). This is precisely the
notion of a vector as an equivalence class of arrows!

Fix the polar coordinates Z ′ := (x′, y′) = (r, θ). Then the vector

∆R(r + ∆r, θ)−∆R(r, θ),

shall be viewed through the lens of the Cartesian coordinate system for immediate
visualization. Here ∆R(r+ ∆r, θ)−∆R(r, θ) is ∆rr where r(r, θ) is the unit radial
vector at the point with coordinates Z ′ = (r, θ). Hence the derivative

Z1′ :=
∂R(Z ′)

∂Z1′
=
∂R(Z ′)

∂x′
= r(r, θ) (4.3)
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and thus varies for each point Z ′ = (r, θ). We therefore have a non-constant vector
field. Similarly,

|∆R(r + ∆r, θ)−∆R(r, θ)| = r2 sin
∆θ

2
.

So ‖Z2′‖ := ‖∂R(Z)

∂Z2′ ‖ = r at the point with coordinates Z ′ = (r, θ). Therefore,

Z2′ = rθ(r, θ) (4.4)

where θ(r, θ) is r(r, θ) rotated clockwise by π
2 . So (Z1′ ,Z2′) is an orthogonal basis

that varies/moves from point to point.
The Jacobian preserves time derivatives of position curves (Proposition 3.2).

The Jacobian similarly relates the ‘derivative’ basis (Z1′ ,Z2′) in the Zi′ -coordinate
system to the ‘derivative’ basis (Z1,Z2) in the Zi-coordinate system once again by
virtue of the chain rule: (

Z1′

Z2′

)
=

(
Z1

Z2

)T
J ii′ , (4.5)

or equivalently, for each fixed i′

Zi′ = ΣiZiJ
i
i′ , (4.6)

which we contract in Einstein summation as

Zi′ = ZiJ
i
i′ . (4.7)

Remark 4.2. The right hand side of (4.7), J ii′ is a Zi′ → Zi transformation
and the derivative basis vector Zi which lives in the Zi-coordinate system space.
This is in contrast to the right hand side of (3.9), Example 3.1, where J ii′ is a
Zi′ → Zi transformation acting on the derivative V′(t0) which lives in the Zi′-
coordinate system space. For this reason we shall refer to the Jacobian J ii′ in (4.7)
as locally reverse-preserving coordinate basis vectors. Only in the special case of
an orthonormal Jacobian will the operation of taking transposes ‘convert’ (3.9) to
(4.7).

Proposition 4.1. The Jacobian locally reverse-preserves coordinate basis vectors.

The common theme running behind Proposition 4.1 and Proposition 3.2 is that
the Jacobian is the correction factor when the same algebraic formulation is exe-
cuted blindly in two different coordinate systems. This is what the Einstein notation
of equation (4.7) best expresses.

Objects in one coordinate system constructed by differentiation (algebraic
formulation) differ from the corresponding object in another coordinate system

created when that algebraic formulation is blindly followed exactly by a Jacobian
which locally reverse-preserves.

These objects created algebraically are given the formal name tensors. So,

Tensors are (algebraically created) objects that can be tracked across any
coordinate system by the Jacobian which locally reverse-preserves.
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Proposition 4.2. The Cartesian coordinate basis vectors i, j are tensors. So also
are the polar coordinate basis vectors.

Proof. By Remark 4.1, i, j can be treated as (constant) vector fields Z1,Z2 con-
structed algebraically by equations (4.1)-(4.2), respectively. Similarly, the polar co-
ordinate basis vectors can be identified with (non-constant) vector fields (Z1′ ,Z2′)
of (4.3)-(4.4) where J ii′ of (3.7) locally reverse preserves as in (4.5).

Remark 4.3. From this point onwards we shall not make a distinction between a
vector space basis such as (i, j) and the derivative basis such as (Z1,Z2).

So the algebraic formulation (2.1) of the gradient is a tensor at best: applying (4.5)
to the coordinate dependent formulation (2.1),

−→
∇F (x′, y′) =

−→
∇F (x, y)TJ ii′ , (4.8)

is precisely equation (2.2) since(
2

2

)
Zi′

=

(
1

1

)T
Zi

(
2 0

0 2

)
.

The notion of a tensor is a formalization of equation (4.8). Formally,

Definition 4.1. A tensor is an algebraically constructed object Ti in some coor-
dinate system Zi that is locally reverse preserved by the Jacobian J ii′ when that
algorithm is implemented in the coordinate system Zi′ to create the (dual) object
Ti′ :

Ti′ = TiJ
i
i′ (4.9)

In light of Remark 4.3, the algebraic formulation (2.1) of the gradient in tensor
form becomes

−→
∇F (Zi) :=

( ∂F
∂Z1
∂F
∂Z2

)
Zi

(4.10)

in the coordinate system Zi.

Proposition 4.3. The gradient defined as in (4.10) is a tensor.

Proof. Set Ti :=
−→
∇F (Zi) and Ti′ :=

−→
∇F (Zi′).

The Jacobian is a positive step forward to the final goal of a coordinate-free uni-
versal algebraic formulation which would bring about a true marriage of geometry
and algebra; geometric objects are also coordinate-free!

5. Another dualism map

Most functional analysts would not call the Jacobian a dualism map. The term
duality has a specific meaning: given a basis (e1, e2) of V := R2, where e1 :=(

1

3

)
, e2 :=

(
1

1

)
, the dual basis (e∗1, e

∗
2) consists of linear functionals on V where

for each fixed j,
e∗i (ej) = δij (5.1)
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for j = 1, 2. Each fixed e∗j ∈ V ∗ can be represented by a fixed vector vj in V in the
sense that

vi • ej = δij (5.2)

for j = 1, 2. So the representation (5.2), allows us to identify V ∗ with V . For
the purpose of distinguishing the basis from the dual basis, we use subscript and
superscript notations: the dual basis of the basis (e∗1, e

∗
2) is denoted by (e1, e2) and

the map
E : ei 7→ ei (5.3)

is called the dualism map. Functional analysts would not be up in arms to call E a
dualism map. The Gram matrix formed by dotting the basis vectors

[Eij ] :=

(
e1 • e2 e1 • e2

e2 • e1 e2 • e2

)
,

plays a critical role in computing the representation vectors vi of (5.2). We can
identify its inverse Eij with the dualism map E:

ei := vi = ΣjE
ijej (5.4)

The Einstein notation once again contracts (5.4)in a more suggestive form:

ei = Eijej (5.5)

The constructs (5.1)-(5.5), carry over to the derivative basis (Z1,Z2) of tensor
calculus (Section 4). Tensor calculus calls the derivative basis (Z1,Z2) the covariant
basis and the dual basis (Z1,Z2) the contravariant basis. The matrix inverse Zij of
the Gram matrix for the covariant basis plays the role of a dualism map Z : Zi 7→ Zi:

Zi = ZijZj (5.6)

We shall use the notation Z and Zij interchangeably. Note that the dualism map
Zij is local to coordinate system of choice:

Example 5.1. Consider the Cartesian and polar derivative (covariant) basis (Z1,Z2)
and (Z1′ ,Z2′) defined by equations (4.1)-(4.2) and (4.3)-(4.4), respectively. Then

1. The dual Cartesian derivative (contravariant) basis (Z1,Z2) coincides with
the covariant basis.

2. The dual polar (contravariant) basis (Z1′ ,Z2′) is (Z1′ ,
1
r2 Z2′).

Proof. The Cartesian dualism map Zij is:

Zij =

(
1 0

0 1

)
. (5.7)

The polar dualism map Zi
′j′ is:

Zi
′j′ =

(
1 0

0 1
r2

)
. (5.8)
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For the the final goal of a coordinate-free universal algebraic formulation of the
gradient, the contravariant basis will prove essential. For this we introduce the
notion of covariant and contravariant tensors of tensor calculus that we have already
met unknowingly.

6. Coordinate-free algebraic formulations

The notion of a covariant tensor is precisely Definition 4.1. The term covariant is
suitable since we use the covariant basis in (4.10). The notion of a contravariant
tensor means transformation happens in the same direction as the Jacobian in the
sense of Remark 4.2:

Definition 6.1. A contravariant tensor is an algebraically constructed object T i in
some coordinate system Zi that is locally preserved by the Jacobian J ii′ when that
algorithm is implemented in the coordinate system Zi′ to create the (dual) object
T i

′
:

T i
′

= T iJ i
′

i (6.1)

Proposition 6.1. The dual basis (Z1,Z2) and (Z1′ ,Z2′) of Example 5.1 are con-
travariant tensors.

The dualism map Z of Section 5 created a dual to the covariant tensor in the form
of a contravariant tensor. Together they hold the key to a coordinate-free algebraic
formulation:

Proposition 6.2. The object created by the Einstein summation of a covariant
and contravariant tensor

U := SiT
i

evaluates to the same value in all coordinate systems.

7. Fixed-up gradient

The problem with the algebraic formulation of the gradient
−→
∇F (Zi) of (4.10) is that

−→
∇F (Zi) =

( ∂F
∂Z1
∂F
∂Z2

)
Zi

is only a covariant tensor (Proposition 4.3). So taking the Ein-

stein summation (dot product) with the contravariant tensor (Z1,Z2) (Proposition
6.1) we end up with the coordinate-free algebraic formulation of the gradient

−→
∇F (Zi) =

∑
i

∂F

∂Zi
Zi. (7.1)

by Proposition 6.2.

Remark 7.1. The flawed algebraic formulation (2.1) is a special case of the univer-
sal formulation (7.1) since the contravariant basis and the covariant basis coincides
with Cartesian coordinates (Example 5.1, item 1).

We end off by recommending Chapters 5, 6 of [4] as good follow up reading.
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