

RESULTS OF AN EVALUATION OF AUGMENTED REALITY MOBILE
DEVELOPMENT FRAMEWORKS FOR ADDRESSES IN AUGMENTED

REALITY

Victoria Rautenbach1, Serena Coetzee and Danie Jooste

Centre for Geoinformation Science, Department of Geography, Geoinformatics and Meteorology, University of
Pretoria, Hatfield, Pretoria, South Africa

Email: victoria.rautenbach@up.ac.za, serena.coetzee@up.ac.za, dfjooste@yahoo.com

ABSTRACT

Addresses displayed on dwellings and buildings play a key role in society. Amongst others, they are used for
deliveries, in household surveys, to navigate, or to find friends. Sometimes, address signs are destroyed,
displaced or illegible, for example, as a result of vandalism, disasters, or poor maintenance. In augmented
reality, computer-generated information is superimposed onto a live view of the real world. When address signs
are not available, displaying the address in augmented reality could be immensely useful. The research
presented in this article is part of a larger research endeavour to investigate augmented reality for addressing.
This article presents the results of an evaluation of augmented reality mobile development frameworks for the
implementation of a mobile application that displays addresses in augmented reality. Firstly, the requirements
for addresses in augmented reality were identified. Three use cases informed these requirements: disaster relief,
e.g. address signs are destroyed by an earthquake; household surveys, e.g. locating dwellings in informal
settlements or rural areas where addresses are not assigned in any specific sequence and signs do not exist; and
address data quality management, e.g. validating digital address data against addresses displayed in the
physical world. Due to procurement challenges in the use cases, open source licensing and integration with
open source products was identified as an important requirement. The internet was searched and a list of
augmented reality mobile development frameworks was compiled. Based on the requirements, the list was
shortened to seven frameworks, which were evaluated against a set of criteria informed by the requirements.
The evaluation results can guide developers in choosing a framework best suitable for their specific needs
and/or for integration with open source products.

KEYWORDS: addressing, augmented reality, mobile applications, development frameworks, open source

1. INTRODUCTION

Addresses play a vital role in society. They are used for deliveries, in household
surveys, by utility companies, to navigate, or to find friends [1]. Sometimes, address signs,
such as street names and house numbers, are destroyed or displaced as a result of vandalism,
disasters or poor maintenance. Replacing the address signs takes time and is expensive. In
augmented reality, computer-generated information is superimposed onto a live view of the
real world. When address signs are not available, superimposing address information onto a
live view of the real world could be a viable alternative.

The research presented in this article is part of a larger research endeavour on the

display of geocoded address data in augmented reality. As part of this endeavour, a mobile

1 Corresponding author: Victoria Rautenbach; email: victoria.rautenbach@up.ac.za;
Mailing address: Geography building 3-11, University of Pretoria, Hatfield, Pretoria, South Africa, 0002;
Work no: +27 12 420 3489; Cell no: +27 72 569 8916

application will be developed. This article presents the results of an evaluation of augmented
reality mobile development frameworks.

In augmented reality a live view of the real world is superimposed with computer-

generated information, such as text or images. Azuma [2] defines augmented reality as the
real-time combination of the physical world with virtual objects. Augmented reality enhances
our understanding and interaction with the physical world [3-4]. Augmented reality has
proven to be useful in a variety of application fields, such as medicine [2, 5-6], education [7-
8], navigation [9-10] and planning [11-12].

Allbach et al. [12] evaluated augmented reality applications for urban planning and

design. They concluded that at the time it was not possible to recommend a single augmented
reality browser, but rather commented on the shortcomings of augmented reality applications,
such as limited precision of the GPS, size of the mobile device. i.e. information might be too
dense to be displayed on a small screen, and the need for internet connectivity which is not
always available. However, with the rapid development of augmented reality and mobile
technology these shortcomings are fast disappearing [7, 9]. Leebmann [13] suggested
augmented reality as a solution for disaster relief. Examples are analysing rescue routes for
collapsed buildings and performing analyses from safe distance [13-14]. A drawback is that
such applications need a large amount of data, e.g. 3D laser scans and site plans, in order to
be useful.

Amin and Govilkar [3] compared six augmented reality software development kits

(SDKs), three of them (Metaio, Wikitude and iPhone ARToolkit) are also evaluated in this
paper. They compared the license type, platform support, marker generation, tracking
functionality and overlaying capability. The choice of the SDKs was not justified. In this
paper, mobile development frameworks for augmented reality are evaluated with the specific
requirement of superimposing address information on a live view of the real world. At
present, case studies of augmented reality applications where the main focus is on
augmenting address data could not be found in literature. The remainder of this article is
structured as follows: in section 2, three use cases are described and requirements for a
mobile application based on the use cases are identified; in section 3, evaluation criteria,
derived from the requirements, are described; results are presented in section 4 and discussed
in section 5. We describe a proof of concept custom solution in section 6 and then conclude in
section 7.

2. REQUIREMENTS FOR ADDRESSING IN AUGMENTED REALITY

Three use cases informed the requirements for the display of addresses in augmented
reality: 1) disaster relief, e.g. address signs are destroyed by an earthquake; 2) household
surveys, e.g. locating dwellings in informal settlements or rural areas without any address
infrastructure; and 3) address data quality management, e.g. validating digital address data
against addresses displayed in the physical world. In this section, the three use cases are
presented and subsequently, requirements for the mobile application, based on these use
cases, are described.

2.1 Use case 1: Disaster relief

In the disaster relief use case, dwellings with the house numbers and street names signs
have been damaged or destroyed. A tsunami, an earthquake or fires could be the cause of

such a disaster. Emergency workers are informed that there may be survivors at a specific
address. Assuming that the backbone for internet (and mobile) connectivity has been
destroyed, how do the emergency workers locate the site? A backup of geocoded address data
was recovered from an off-site location. However, address maps are of little use as buildings,
streets and signs have been destroyed. Emergency workers are equipped with smartphones
connected to a satellite network, but data connectivity via satellites is expensive. Relief
efforts are coordinated from a disaster management centre where a server has been set up.

a) Damage caused by the earthquake on 4 September
2010 in Christchurch, New Zealand (Photo:

www.foxnews.com)

b) Damage caused by the tsunami on 11 March 2011
in Kesenuma, Japan (Photo:
http://www.dailymail.co.uk)

Figure 1. Damaged or destroyed street name signs and house numbers after a disaster

2.2 Use case 2: Household surveys in rural areas

In this use case, a random sample of dwellings has been selected for a survey. Using

aerial photography as a backdrop, a unique number was assigned to each dwelling without an
address. Subsequently, a random number generator was used to select the sample of
dwellings, based on the unique numbers assigned to each dwelling. Enumerators, i.e. people
doing the interviews, have to interview the household at each of the dwellings in the sample.
Some of the dwellings are in rural areas, others in an informal settlement. In both cases there
is no address infrastructure: there are no street signs, no house numbers, and an intricate web
of footpaths connects dwellings to each other. Paved roads connect one village or settlement
to another; smaller roads beyond are typically nameless dirt roads. Dwellings in the villages
or settlement are generally scattered, not necessarily arranged in a fixed pattern. In the rural
areas, dwellings are sometimes interspersed with agricultural fields. See Figures 2 and 3.
Figures 4 and 5 show dwellings in an informal settlement.

Figure 2. Dwellings in a rural village in the Eastern Cape, South Africa (Photo: Serena
Coetzee)

Figure 3. A rural village in the Eastern Cape, South Africa (Image from
maps.google.com)

Surveys are planned and coordinated from a head office with access to ample
bandwidth and internet connectivity. In the rural villages, internet connectivity is not
necessarily available. Survey responses are captured on tablets and/or smartphones. Imagine
an enumerator had to visit three dwellings on the hill displayed in Figure 2: How does the
enumerator find the dwellings without any street signs or house numbers?

Figure 4. Dwellings in an informal settlement in the City of Tshwane, Gauteng, South
Africa (Photo: Victoria Rautenbach)

Figure 5. An informal settlement in the City of Tshwane, Gauteng, South Africa (Image
from the City of Tshwane Metropolitan Municipality)

2.3 Use case 3: Address data quality management

In this use case, a field worker compares geocoded address data with address signs in
the real world. The local authority assigns house numbers to dwellings and buildings when
building plans are approved, i.e. before the buildings are constructed. Geocoded house
numbers are stored in a geospatial database. House numbers are not verified after the
buildings have been erected and when buildings are altered or extended, one does not have to
apply for a house number again. As a result, owners and occupants may put up house
numbers, which are not reflected in the geospatial database at the local authority. Ultimately,
this may lead to returned mail and service delivery interruptions, e.g. when bills by the local
authority do not reach the owner. Therefore, from time to time, the local authority needs to
compare its digital address database against address signs in the real world in order to
harmonize the digital representation with the real world.

2.4 Requirements for addresses in augmented reality

In all three use cases, superimposing digital address data onto a live view of the real
world could solve the problem at hand: to locate the address where survivors need assistance;
to visit specific dwellings in a rural village or informal settlement without an address
infrastructure; and to compare digital address data with house numbers in the real world. See
Figure 6.

a) Use case 1: Disaster relief (Photo:

www.citizen.co.za)

b) Use case 2: Household surveys in rural areas

Figure 6. An example of addresses displayed in augmented reality in a rural village
setting

55"

82"
45"

47"
37"

65"
78270%

79384%79382%

72635%

36251%
98273%

74625%

88270%

58270%

In two of the three use cases, internet connectivity is available at a coordinating centre,
but not in the field. Therefore, the display of address information in the augmented reality
application must be available, even if the device is offline.

In all three cases, geocoded address data is available. In the augmented reality view, the

address should be superimposed as close as possible to the actual location of the address and
one has to be able to distinguish an address from its neighbouring address. Appropriate
precision is therefore important; ‘appropriate’ because in rural areas dwellings are spaced
further apart, requiring less precision; whereas in densely populated informal settlements,
better precision is required. It would also be useful to know the distance between the
smartphone and the address. For example, in the household survey use case, this would allow
the enumerators to plan their route of interviews around the village.

In the disaster use case, any delay for procurement processes is not an option: as many
licenses as may be needed for the relief exercise have to be available immediately in order to
save lives. The use case of rural villages and informal settlements without an address
infrastructure is often found in developing countries with financial constraints and plagued
with corrupt and/or lengthy procurement processes. Therefore, ideally, the mobile application
should be available free of charge.

Nice-to-have requirements include navigation and/or wayfinding; a map view in
addition to the augmented reality view; and the capability to edit or update address data, or
any other information linked to the address, e.g. survey responses or notes about the
dwelling. Table 1 lists the functional and non-functional requirements for addresses in
augmented reality.

Table 1. Functional and non-functional requirements

Description Type of requirement
Download and install the app (immediate availability) Non-functional
No procurement process (to avoid corruption) Non-functional
Offline availability of address data Non-functional
Appropriate precision, depending on the density of
addresses

Non-functional

Display distance between the smartphone and address Functional
Digital address data superimposed onto a live view of
the real world

Functional

Navigation and/or wayfinding functionality Functional (nice-to-have)
Map view Functional (nice-to-have)
Functionality to edit/update the address data Functional (nice-to-have)
Functionality to edit/update information linked to an
address

Functional (nice-to-have)

3. METHODOLOGY

In this section, we describe the two-phase approach followed to evaluate the augmented

reality mobile development frameworks. They were evaluated in the context of an augmented
reality solution for addresses that meets the requirements identified in Section 2. Refer to
Figure 7 for an overview of the two-phase evaluation.

Figure 7. Overview of the two-phase evaluation

We consulted SocialCompare (http://socialcompare.com/en), a collaborative online
comparison tool, where a comparative list of augmented reality SDKs and frameworks is

actively maintained 2 . Guided by the comments posted on the SocialCompare list, two
additional development frameworks were included, namely iPhone ARToolkit and Layar
iPhone ARToolkit was added to the SocialCompare list between the time of the evaluation
and the writing of this paper. This resulted in a list of 68 SDKs and frameworks.

In the first phase of the evaluation, development frameworks were disqualified if they

did not support GPS and inertial measurement unit IMU) sensors, which are required to
locate and correctly display geocoded address data in augmented reality. Thereafter, we
reviewed the websites of each of the remaining 12 frameworks. Inactive and irrelevant
frameworks, e.g. frameworks mainly aimed towards gaming, were disqualified. This left
seven frameworks for evaluation in the second phase.

During phase two, each development framework was evaluated in more detail against a

set of evaluation criteria and also tested to ensure that it complied with the requirements for
the display of addresses in augmented reality. Table 2 describes the three categories of
evaluation criteria: general, functional and non-functional. The criteria are based on
requirements identified in Section 2.

Table 2. Evaluation criteria for the display of addresses in augmented reality
 Criteria Criteria meaning

1.
 G

en
er

al
 c

ri
te

ri
a

1.1. Platform Platforms and/or operating systems supported by the
development framework, such as Windows Mobile,
Android or iOS. Development frameworks that support
the implementation of cross-platform mobile
applications are desirable.

1.2. Programming
language

Which programming languages does the development
framework supports? The programming language and
the supported platform (1.1) are closely related. For
example, Swift is only available for iOS but Java can
be used for both Android and Windows Mobile.
Widely used programming languages are desirable.

1.3. License Refers to whether the license under which the
development framework is available, e.g. open source,
freeware or proprietary. The licensing affects the
manner in which the development framework may be
used and also how derived implementations may be
distributed. As few constraints as possible are
desirable.

1.4. Implemented
standards

The implementation of standards contributes to the
interoperability and modularity of an implementation.
Various standards may contribute to interoperability,
for example, data encoded in eXtensible Markup
Language (XML) facilitates data exchange from
different sources. Recently, the Open Geospatial
Consortium (OGC) published the Augmented Reality
Markup Language (ARML) that uses XML to describe
the location and appearance of augmented visual
objects.

2 http://socialcompare.com/en/comparison/augmented-reality-sdks, last updated 31 July 2015

 Criteria Criteria meaning
1.5. Offline availability The connectivity required by the augmented reality

application in the field. It is desirable to have all
functionality available in the field without any
connectivity.

2.
 F

un
ct

io
na

l c
ri

te
ri

a

2.1. Data source The flexibility of the development framework to allow
access to various data sources. Least desirable is a
dedicated source, e.g. via a quick response (QR) code,
hosted by a provider or organization.

2.2. Data display The capability to adjust the visual representation of the
data being superimposed on the camera feed. For
example, can the text size be altered? Flexibility in
configuring the visual representation is desirable.

2.3. Object behaviour The ability to add behaviour to the object, e.g. by
adding triggers or events to the object. For example, if
the user clicks on the object, additional information is
displayed.

2.4. Display radius The flexibility to adjust the amount of content that is
displayed in the camera feed based on the distance
between the user and objects (e.g. addresses or
dwellings). For example, specify that only addresses
that are within a 50m radius from the user are
displayed.

2.5. Visual search The ability to recognize a specific object based on
additional information, such as a photo or light
detection and ranging (LiDAR) data.

3.
 N

on
-f

un
ct

io
na

l c
ri

te
ri

a

3.1. Ease of integration
with other applications

Built-in capabilities to facilitate integration with other
applications, such as PostGIS, QuantumGIS or ArcGIS.
For example, integration with PostGIS will allow
seamless access to a database without the need for
additional code or third-party products.

3.2. Ease of extending
the framework

Refers to the effort required to add additional
functionality to the development framework and to port
the solution to different platforms.

3.3. Usability Refers to the user friendliness framework and ease of
installation of the development framework.

3.4. Documentation
and support available

The documentation and additional avenues available to
developers for support, such as forums and mailing
lists.

4. EVALUATION RESULTS

4.1. Phase 1

The list of 68 development frameworks compiled from the SocialCompare source was
reduced to 12 by disqualifying development frameworks that do not support GPS or IMU
sensors. After reviewing the websites of these 12 frameworks, the following were eliminated

as they did not meet the requirements for the use cases: ARmedia 3 , BeyondAR 4 ,
LibreGeoSocial5, Total Immersion6 (previously known as D’Fusion), and Xloudia7.

LibreGeoSocial is an open source project that looked promising initially. However on

closer inspection, it was eliminated, as it has not been updated for quite a number of years.
The LibreGeoSocial website was also recently removed after being hacked. Total Immersion
and Xloudia are more geared towards proprietary solutions and provide little flexibility. For
example, these frameworks cannot easily be customized or extended to serve a different
purpose than originally intended. Lastly, ARmedia and BeyondAR were eliminated as they
focus on superimposing 3D objects. This is useful for gaming or advertising purposes, but not
for superimposing textual information as required in the use cases. The remaining seven
development frameworks were evaluated further in phase 2.

4.2. Phase 2

The following development frameworks were included in the phase 2 evaluation:
ARLab, iPhone ARToolkit, DroidAR, Layar, Metaio, PanicAR and Wikitude. A brief
overview of each of the evaluated frameworks follows.

1. ARLab8

ARLab is developed by a commercial company that focuses on augmented reality
solutions. They have divided their products into the following modular units: the AR
Browser, image matching, 3D engine, image tracking, object tracking and virtual buttons.
The AR Browser is a SDK that allows the development of a location-based augmented
reality application for points of interests (POIs) within minutes.

2. iPhone ARToolkit9
iPhone ARToolkit is a GNU GPL v3 open source library developed for Apple iOS. iPhone
ARToolkit was not originally included, but was added to the list after being mentioned in
comments on the SocialCompare page. iPhone ARToolkit has not been updated since
2013, but there are various blog posts on how to fix errors due to deprecated functions in
newer versions of iOS. This shows that iPhone ARToolkit still has strong community
support. The framework makes use of MapKit and UIKit, two standard Apple iOS
libraries.

3. DroidAR10
DroidAR is an open source framework available under the GNU GPL v3 license. It
focuses on location and marker based augmented reality. Even though the code has not
been updated in the GitHub repository since 2013, there seems to still be an active user
community. With small adjustments in the code, DroidAR runs on the latest Android
operating systems. It is not clear why the project stagnated, as it averaged about 1500

3 http://dev.inglobetechnologies.com
4 http://beyondar.com/platform
5 http://www.libregeosocial.org
6 http://www.t-immersion.com/products/dfusion-suite
7 http://www.xloudia.com/xloudia-imerico/
8 http://www.arlab.com/arbrowser
9 https://github.com/nielswh/iPhone-AR-Toolkit
10 http://droidar.blogspot.com

website hits per month in 2013. The DroidAR website is currently out-dated and the
development status of the framework is unclear.

4. Layar11
Layar was not included in the SocialCompare list. Based on comments posted on this list,
it was included in the evaluation because it is one of the leading augmented reality
frameworks available today. Layar provides developers with an open platform to publish
and discover augmented reality layers. ‘Reality layer’ is the Layar term for data. Layar
employs representational state transfer (REST) services to serve POIs facilitating, the
integration of Layar with other Layar applications.

5. Metaio12

Metaio is a commercial company providing augmented reality solutions for a variety of
application fields. Metaio offers six products that cover all the requirements of the
augmented reality value chain, ranging from development tools to out of the box
solutions. Metaio was included in the evaluation, but was acquired by Apple Inc. in May
2015, after this evaluation had been completed. Metaio does no longer offer any
subscriptions for purchase.

6. PanicAR13
PanicAR is a SDK that is fully customizable and focused on location-based AR. PanicAR
is fully integrated with the Apple MapKit, allowing the developer to visualize POIs on a
2D map, in addition to the augmented reality view. PanicAR states that it is fully white
label, i.e. it can be completely re-branded.

7. Wikitude14
Wikitude was the first openly available location-based augmented reality application, and
it has won numerous awards, such as the Android Developers Challenge in 2008.
Wikitude provides a multifunctional framework that includes numerous features, for
example, location-based augmented reality, 3D model rendering, and image recognition
and tracking.

The Apple iOS and Android platforms are supported by most of the development

frameworks (refer to Table 3). DroidAR is the only framework that does not support Apple
iOS and iPhone ARToolkit does not support Android. Apple iOS requires high subscription
fees for iOS development and implementation of the framework on iOS requires conversion
of the code to Objective-C. Wikitude has the widest platform support: apart from Android and
iOS, Google Glasses, Blackberry and Windows Mobile are supported. As mentioned in Table
1, the supported platform and the programming language are closely related. The primary
supported programming languages are Java (used on Android) and Objective-C (used on
iOS). The majority of frameworks are available under a proprietary license, but offer a free
development framework option (freeware) with limited functionalities and a watermark.
Among the evaluated frameworks, iPhone ARToolkit and DroidAR are the only open source
frameworks.

11 https://www.layar.com
12 http://www.metaio.com
13 http://panicar.dopanic.com
14 http://www.wikitude.com

The OGC ARML 2.0 standard [15] is currently the only augmented reality standard
published in the geospatial industry. ARML is composed of XML for describing locations and
appearance of virtual objects, and of ECMAScript for dynamic access to the properties of the
objects. Layar, Metaio and Wikitude implement ARML. Other standards, such as OGC web
services, e.g. the web feature service or web processing service, and encoding standards, such
as XML and JSON, contribute to the modularity and integration of the framework with other
applications. At present, no framework implements OGC services. However, all the
frameworks rely on standard encodings.

Table 3. Overview of the results of the general criteria

A
R

L
ab

iP
ho

ne

A
R

T
oo

lk
it

D
ro

id
A

R

L
ay

ar

M
et

ai
o

Pa
ni

cA
R

W
ik

itu
de

1.
 G

en
er

al
 c

ri
te

ri
a

1.1. Platform

Android X X X X X+ X

Blackberry X

iOS X X X X X X

Other X X

1.2. Programming
languages

Java X X X X X X

Objective-C X X X X X X

Other X X X

1.3. License

Open Source X X

Freeware X X X

Proprietary X X X X X

1.4. Implemented
standards

OGC ARML X X X

OGC web services

Encoding
standards X X X X X X X

1.5. Offline availability
Yes X X

No X* X* X* X* X*

Offline availability is crucial when working in rural areas or in a disaster relief

situation where connectivity is limited. Since iPhone ARToolkit and DroidAR are open
source, users can implement the application in such a way that it reads the data from a local
source, for example from a file in comma-separated values (CSV) format or from a
JavaScript object notation (JSON) message. With the proprietary frameworks, the default
method of accessing information is via a service that requires connectivity. However, if the
format of the response is known, the developer can create a file in the same format and the
application can then read the data from this file.

In all frameworks, the primary data source is a web service. Other options are directly

from a database or through native code (refer to Table 4). Layar and Metaio access the data
through a proprietary web service that is available as a ‘black box’ to the user. With Metaio,
the user accesses the web service through a channel identifier. The channel is the entry point
to the Metaio Cloud backend from where the information is requested. The channel identifier
can be distributed in two ways: by QR code or by publishing the channel identifier. When
using Layar, the user publishes the data on the Layar service and the data is then seen as a
layer. The format of the layer is not known. The user can then only access the layers via this
Layar service. All frameworks, except Layar, allow the user to make use of native code to
acquire data from custom sources. However, with the proprietary frameworks, this is a
challenge as the data request has to be replaced with custom code. For example, with Metaio
the data can only be accessed via a channel identifier. The user has to reproduce the Metaio
service data format and inject it into the implementation.

Table 4. Overview of the results of the functional criteria

A
R

L
ab

iP
ho

ne

A
R

T
oo

lk
it

D
ro

id
A

R

L
ay

ar

M
et

ai
o

Pa
ni

cA
R

W
ik

itu
de

2.
 F

un
ct

io
na

l c
ri

te
ri

a

2.1. Data
source

Web service X X X X* X* X X*

QR code X

Database X X X X X

Native code X X X X X X

Other X

2.2. Data
display

The visual
representation can
be altered?

X X X X X X

User can swap
between which
information is
displayed?

X X X X X X X

2.3. Object
events

Does the framework
implement event
triggers?

X X X X X X X

2.4. Display
radius

The display radius
can be altered? X X X X X X X

2.5. Visual
search

Photo X+ X X

LiDAR X+ X X

Other, e.g. 3D
objects X+ X X X

Augmented reality superimposes information (data display) on a live feed, for example
a camera feed. Various types of data or information can be superimposed, such as text,

images or videos. For addressing, the display of text is important. In all frameworks, the
fields to be displayed from a table or database, can be configured. However, adjusting the
visual representation can be tricky, especially with proprietary frameworks that do not allow
rebranding. iPhone ARToolkit relies on the UIKit to adjust the visual representation of the
objects. The Metaio API specifies the access of POIs and also events (object events), but
does not document how to change the visual representation of the POIs on the live feed. This
code is hidden from the user. In contrast, PanicAR promotes itself as being a white label
software, i.e. it can be completely be rebranded by the user. All frameworks implemented
object behaviour in the form of events and/or triggers.

The display radius is a filtering mechanism based on distance from the user, for
example, one can specify that only objects within a 100m radius are displayed. All evaluated
frameworks provided the users with a method of adjusting or specifying this radius.
However, the display can still get crowded with information if there are many points within
close proximity of the user. Due to limited options for setting the visual presentation of
information in augmented reality (see previous paragraph), the way in which label overlap is
avoided (or not) cannot always be set.

Visual search provides added intelligence to the application by not only relying on the

location of the object only, but also on additional information, such as a photo, LiDAR data
or 3D model. ARLab provides modular solutions, therefore the AR Browser does not
implement these functionalities, but they are available in other packages developed by
ARLab, such as the AR image matching or 3D engine. Wikitude provides the widest range of
functionalities, including support for Google Glasses to recognize objects in the wearer’s
view based on image recognition. Metaio follows closely behind Wikitude. DroidAR does
not support image or photo recognition or LiDAR, but does support gesture recognition that
can be used to develop virtual reality applications to complement the augmented reality
applications. Visual search functionality is less important for the use cases described in this
paper.

At present, none of the frameworks have built-in integration with other products,

such as ArcGIS, QuantumGIS or PostGIS (refer to Table 5). Although this is not essential,
integration with other products would make it easier to access or exchange information. For
example, the application could directly access information from a PostGIS database and
display it in the augmented reality application.

It is generally not easy to extend proprietary frameworks, as the code is not available

and licensing constraints prohibit the user from extending the framework. iPhone ARToolkit
and DroidAR are the only applications that can easily be extended, as they are open source
frameworks. Open source frameworks encourage the modification and extension of the code
to produce higher quality frameworks, and also to add new functionalities.

All the frameworks were found to be very usable. Frameworks either used the Android

Studio with additional libraries or a stand-alone SDK that could be installed using a one-click
installer. Tools typically provided auto completion and error checking that assisted with fast
and effective coding.

All frameworks, except DroidAR, provide a variety of avenues of support. They

provide extensive, well-structured and up-to-date documentation with numerous examples
and code snippets. Additionally, instructional videos, issue trackers, forums and mailing lists

are provided. Official documentation for DroidAR is fairly limited: the majority of the
documentation is provided by the user community in the form of non-official documentation,
instructional videos, and basic examples on GitHub.

Table 5. Overview of the results of the non-functional criteria

A
R

L
ab

iP
ho

ne

A
R

T
oo

lk
it

D
ro

id
A

R

L
ay

ar

M
et

ai
o

Pa
ni

cA
R

W
ik

itu
de

3.
 N

on
-f

un
ct

io
na

l c
ri

te
ri

a

3.1. Ease of
integration with
other GIS
applications

Built-in integration
with any GIS
software product?

3.2. Ease of
extending the
framework

Can the framework
easily be extended? X X

3.3. Usability

The framework is
easy to install? X X X X X X X

The framework is
generally easy to
use?

X X X X X X X

3.4.
Documentation
and support
available

Documentation is
clear and up to
date?

X X X X X

Forums and
mailing lists are
available to
interact with
developers and
user community?

X X X X X X X

Support desk X X X X X

5. DISCUSSION OF RESULTS

Our aim was to identify and evaluate existing development frameworks that could be
used for the development of a mobile application that displays addresses in augmented
reality. The requirements are based on three use cases in disaster relief, household surveys
and address data quality management respectively. All the frameworks that were evaluated in
phase two are available on the Android platform. Android has various advantages over other
operating systems, such as iOS and Windows Mobile, primarily, because Android is an open
source Linux-based mobile operating system. Other advantages of developing Android
applications include integration with other Java based software, and also wider adoption. At
the time of writing, Android was the operating system used by the majority, more than 80%,

of mobile phones on the market15.

At the moment, only two open source frameworks (iPhone ARToolkit and DroidAR)

satisfy the requirements for the use cases (see Section 2). Other open source frameworks,
such as BeyondAR, LibreGeoSocial and Mixare16, do not meet the requirements. We also
found that the open source frameworks (including iPhone ARToolkit and DroidAR) were
generally out-dated and the developers had moved on to other things. The need for an open
source framework is apparent as proprietary frameworks do not allow extensions and could
result in vendor lock-in, forcing users to make use of their web services at additional cost. An
open source framework will also allow users to more easily integrate the application with
other products. Such integration is important as it facilitates accessing information from a
database in PostGIS or the serving of data as a feature service from GeoServer, for example.

ARML 2.0 was published in 2015 by the OGC [15]. It allows users to develop a XML

style sheet that specifies the appearance of objects and their anchors. Anchors refer to the
location or coordinates of the display item. Additionally, ARML defines ECMAScript
bindings that allow the dynamic modification of the augmented reality scene subject to user
input and behaviour. Wikitude originally developed ARML 1.0, and Metaio and Layar also
implement ARML 2.0. Currently, none of these implementations conform completely to
ARML 2.0. A likely reason is that the standard was only recently published and conformance
testing is probably still in progress.

Offline availability of the data and application is critical when working in a rural area

or a disaster relief situation where connectivity is limited. A current limitation of all the
proprietary frameworks is extensive additional programming required to bypass the data
acquisition method, for example, to bypass the data from a commercial web service in order
to read from a local file. The limitation implies that the user has to know and understand the
data format that is consumed by the application, so that native code can be written to request
data in this format from a different source, either locally or online. Publishing data on a
commercial server might also raise security or privacy concerns that might discourage the use
of the augmented reality application.

A prototype of the augmented reality solution for addresses was implemented in iPhone

ARToolkit (iOS) and Metaio (Android). iPhone ARToolkit was selected as it is an open
source application, available on Apple iOS. Metaio provided a customizable solution, namely
Junaio that could be used to test the framework. The prototypes were tested on the campus of
the University of Pretoria, and successfully displayed addresses in augmented reality, i.e. an
address could be correctly associated with a building. From a developer point of view, both
frameworks were user friendly and the prototype was easy to implement. However, some
functions in iPhone ARToolkit were deprecated and had to be fixed in the code. The iPhone
ARToolkit community is very active and users will implement fixes if they are reported.
However, such small issues might put-off beginners and cause them to rather look at
proprietary options. With Metaio, customizing the data source to something other than a
dataset or layer identified by a channel identifier is not possible. Configuring the visual
representation of addresses in Metaio was not possible, as the Metaio branding cannot be
changed through its library.

15 http://www.idc.com/prodserv/smartphone-os-market-share.jsp
16 http://www.mixare.org

Even though the frameworks provided all the tools to develop an augmented reality
application for addressing, the precision of a phone GPS might still cause challenges when
the application is used in a densely populated environment. A phone GPS can have precision
of approximately 5m horizontally. This level of precision may take about 2-5 minutes to
achieve and is sufficient for sparsely populated (rural) areas.

The results of our evaluation highlight the respective strengths and weaknesses of the
frameworks, which can guide developers to choose the framework best suited for their
specific needs and requirement. The evaluation shows that all the evaluated frameworks meet
the technical requirements for an augmented reality application for addresses identified for
use cases in disaster relief, household surveys and address data quality management.
However, restrictions on content due to the business model in the proprietary frameworks and
the lack of maintenance and support of open source frameworks prompted us to look at
alternatives.

Virtual globes or visualization frameworks, such as glob3mobile17, have been suggested

as a possible augmented reality application. Even though these applications are inherently
spatial, they do not provide the desired functionality for an augmented reality solution for the
address use cases described in this article. For example, these globes or frameworks are built
for data sets that cover a large area. In contrast, displaying addresses in augmented reality
requires pin-point precision spanning a much smaller area.

Each framework had its limitations and no framework satisfied all our requirements. A

proof of concept application was therefore developed in Java making use of the Android
SDK18 and standard libraries. See Figure 8. With this we demonstrated that the framework
limitations can be overcome. The proof of concept application reads addresses from a
comma-separated values (CSV) file stored locally on the mobile phone. This allows a
fieldworker to download the CSV file to the mobile device while connected to the internet.
The address data is then available in the field without the need for connectivity. Non-standard
functionality, such as coordinate system conversions, were performed externally for the proof
of concept. In future versions, integration of the proj.419 library will be explored. JavaScript
frameworks, such as AngularJS 20 , enable the development of cross-platform mobile
applications, e.g. for Apple iOS, Android and Windows Mobile. In future work, we plan to
explore the use of such JavaScript frameworks for the address use cases.

17 http://www.glob3mobile.com
18 http://developer.android.com/sdk/installing/index.html
19 https://github.com/OSGeo/proj.4/wiki
20 https://angularjs.org

Figure 8. Screenshot of the proof-of-concept application making use of the Android
SDK and standard Android libraries

6. CONCLUSION

In this paper, seven mobile development frameworks for augmented reality were
evaluated. The evaluation was based on requirements for three use cases: 1) disaster relief,
e.g. address signs are destroyed by an earthquake; 2) household surveys, e.g. locating
dwellings in informal settlements or rural areas without any address infrastructure; and 3)
address data quality management, e.g. validating digital address data against addresses
displayed in the physical world.

A two-phased evaluation was followed. In the first phase, development frameworks

were disqualified if they did not support GPS and IMU sensors. These are required to locate
and correctly display geocoded address data in augmented reality. During phase two, seven
development frameworks, namely ARLab, iPhone ARToolkit, DroidAR, Metaio, PanicAR
and Wikitude, were evaluated against three categories of evaluation criteria: general,
functional and non-functional.

Results show that most of the evaluated frameworks are available on Android and iOS,

with Java and Objective-C the most widely supported programming languages on the
respective platforms. Only two of the frameworks were distributed with open source licenses.
Standards, such as XML and JSON, are used for encoding; the ARML standard is not widely
implemented; and OGC web services are not implemented. Generally, the frameworks are
designed to access data sources via the internet through a web service. Two features were
available in all frameworks: specifying a radius for objects to be displayed in the augmented
reality view, and specifying the textual information to be superimposed on the live view of

the world. Manipulating the visual presentation, e.g. changing the text size or colour, is not
widely available. The evaluated frameworks were found to be very usable and most of them
provide a variety of avenues of support.

Two prototypes were implemented in iPhone ARToolkit on iOS and in Metaio on

Android. The prototypes were tested on the university campus and successfully displayed
addresses in augmented reality, i.e. an address could be correctly associated with a building.
From a developer point of view, both frameworks were user friendly and the prototype was
easy to implement after some tweaking of the code in one or two of the frameworks.

Based on the evaluation results, iPhone ARToolkit and DroidAR are most suitable for

the three addressing use cases. Both frameworks seem to have active user communities who
implement bug fixes in the case of iPhone ARToolkit and develop documentation in the case
of DroidAR. However, infrequent updates to the code base are a concern. An alternative to
using an existing development framework would be the implementation of augmented reality
functionality from scratch. This is possible, for example, with the Android SDK and libraries.
However, programming is required and this option does not follow the software engineering
good practice of software re-use. Amongst others, a developer will have to (re-)implement
functionality for the conversion between coordinate systems, for the calculation of distances
between the user and anchor and for optimization the GPS precision.

Restrictions on content due to the business model in the proprietary frameworks and the

lack of maintenance and support of open source frameworks prompted us to look at
alternatives. Instead of using a framework, a proof of concept application was developed
making use of the Android SDK and standard Android libraries. So far, results are promising
and this avenue will be further explored in future work.

At present, the Open Source Geospatial Foundation (OSGeo) does not support any

augmented reality development framework. The fact that open source frameworks exist but
are not updated frequently, could suggest that they are in need of a structured support system,
such as OSGeo, that would provide financial, organizational and legal support. An augmented
reality framework that displays objects, sourced from spatial data layers in shapefiles or
through web feature services on a server, could provide significant benefits to the free and
open source for geospatial community in a variety of use cases.

The research presented in this article is part of a larger research endeavour on the
display of geocoded address data in augmented reality. In future work, we plan to do
empirical research to evaluate the use of augmented reality for addresses in each of the three
use cases.

ACKNOWLEDGEMENTS

We would like to thank the Department of Science and Technology/National Research
Foundation (DST/NRF) intern, Linda Khoza, who worked on the development of the
augmented reality applications.

REFERENCES

1. Coetzee, S., and Cooper, A.K. (2007). What is an address in South Africa?. South African Journal
of Science, 103, 449–458.

2. Azuma, R. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual
Environments, 6(4), 355–385.

3. Amin, D., Govilkar, S. (2015). Comparative Study of Augmented Reality Sdk’s. International
Journal on Computational Science & Applications, 5(1), 11–26.

4. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., Ivkovic, M. (2011).
Augmented reality technologies, systems and applications. Multimedia Tools and Applications,
51, 341–377.

5. Kounavis, C.D., Kasimati, A.E., Zamani, E.D. (2012). Enhancing the tourism experience through
mobile augmented reality: Challenges and prospects. International Journal of Engineering
Business Management, 4, 1–6.

6. Dünser, A., Grasset, R., Billinghurst, M. (2008). A survey of evaluation techniques used in
augmented reality studies. ACM SIGGRAPH ASIA 2008 courses on - SIGGRAPH Asia ’08. New
York, USA: ACM Press, 1–27.

7. Wu, H., Lee, S.W., Chang, H., Liang, J. (2013). Current status, opportunities and challenges of
augmented reality in education. Computers & Education, 62, 41–49.

8. van Krevelen, D., Poelman, R. (2010). A survey of augmented reality technologies, applications
and limitations. The International Journal of Virtual Reality, 9(2), 1–20.

9. Wen, J., Deneka, A., Helton, W.S., Billinghurst, M. (2014). Really, it’s for your own
good...making augmented reality navigation tools harder to use. Proceedings of the extended
abstracts of the 32nd annual ACM conference on Human factors in computing systems - CHI EA
’14. New York, USA: ACM Press, 1297–1302.

10. Mulloni, A., Seichter, H., Schmalstieg, D. (2011). Handheld augmented reality indoor navigation
with activity-based instructions. Proceedings of the 13th International Conference on Human
Computer Interaction with Mobile Devices and Services - MobileHCI ’11, 211–220.

11. Anagnostou, K., Vlamos, P. (2011). Square AR: Using augmented reality for urban planning.
Proceedings - 2011 3rd International Conferenceon Games and Virtual Worlds for Serious
Applications, VS-Games 2011. 128–131.

12. Allbach, B., Memmel, M., Zeile, P., Streich, B. (2011). Mobile Augmented City – New Methods
for Urban Analysis and Urban Design Processes by using Mobile Augmented Reality Services.
Proceedings of RealCORP, 6, 633–641.

13. Leebmann, J. (2006). Application of an augmented reality system for disaster relief. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIV-
5/W10.

14. Leebmann, J. (2004). an Augmented Reality System for Earthquake Disaster Response. Virtual
Reality, 35, 909–914.

15. Open Geospatial Consortium, (2015). OGC Augmented Reality Markup Language 2.0 (ARML
2.0). http://docs.opengeospatial.org/is/12-132r4/12-132r4.html. Accessed 27 April 2016.

Option 1:

Figure Description
Figure 1. Damaged or destroyed street name
signs and house numbers after a disaster

This figure consists of two images that show examples
of street name signs and house numbers that were
destroyed during a disaster.

Figure 2. Dwellings in a rural village in the
Eastern Cape, South Africa (Photo: Serena
Coetzee)

Photo of a rural village in the Eastern Cape, South
Africa

Figure 3. A rural village in the Eastern Cape,
South Africa (Image from maps.google.com)

An aerial photograph of a rural village in the Eastern
Cape, South Africa.

Figure 4. Dwellings in an informal settlement in
the City of Tshwane, Gauteng, South Africa
(Photo: Victoria Rautenbach)

Photo of the Alaska, informal settlement in the City of
Tshwane, Gauteng, South Africa

Figure 5. An informal settlement in the City of
Tshwane, Gauteng, South Africa (Image from
the City of Tshwane Metropolitan Municipality)

An aerial photograph of the informal settlement of
Alaska in the City of Tshwane, Gauteng, South Africa.
The aerial photograph shows how densely populated
the informal settlement is.

Figure 6. An example of addresses displayed in
augmented reality in a rural village setting

Example of how address can be displayed in
augmented reality applications.

Figure 7. Overview of the two-phase evaluation Flow diagram depicting the two-phased process that
was used during the evaluation.

Figure 8. Screenshot of the proof-of-concept
application making use of the Android SDK and
standard Android libraries

A proof of concept was developed using the Android
SDK. This figure is a screen shot of when the
application was tested on the University campus.

Option 2:

Figure 1. Damaged or destroyed street name signs and house numbers after a disaster

Figure 2. Dwellings in a rural village in the Eastern Cape, South Africa (Photo: Serena Coetzee)

Figure 3. A rural village in the Eastern Cape, South Africa (Image from maps.google.com)

Figure 4. Dwellings in an informal settlement in the City of Tshwane, Gauteng, South Africa (Photo: Victoria
Rautenbach)

Figure 5. An informal settlement in the City of Tshwane, Gauteng, South Africa (Image from the City of
Tshwane Metropolitan Municipality)

Figure 6. An example of addresses displayed in augmented reality in a rural village setting

Figure 7. Overview of the two-phase evaluation

Figure 8. Screenshot of the proof-of-concept application making use of the Android SDK and standard Android
libraries

