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Abstract

In this paper we present a systematic study of a stochastic PDE with multiplicative noise modeling
the motion of viscous and inviscid grade-two fluids on a bounded domain O of R2. We aim to
identify the minimal conditions on the boundary smoothness of the domain for the well-posedness
and time regularity of the solution. In particular, we found out that the existence of a H1pOq weak
martingale solution holds for any bounded Lipschitz domain O . When O is a convex polygon the
solution u lives in the Sobolev space W2,rpOq for some r ą 2 and rotpu´ α∆uq is continuous in L2pOq

with respect to the time variable. Moreover, pathwise uniqueness of solution holds. The existence
result is new for the stochastic inviscid model and improves previous results for the viscous one.
The time continuity result is new, even for the deterministic case when the domain O is a convex
polygon.
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1. Introduction

1.1. General introduction

In general, the constitutive law for a homogeneous incompressible fluid satisfies

T “ ´p1` T̂pEpuqq,

where T is the Cauchy stress tensor, u is the velocity of the fluid, and p is the undetermined pressure
due to the incompressibility condition, 1 is the identity tensor. The argument tensor Epuq of the
symmetric-valued function T̂ is defined through

Epuq “ 1
2

´

L` LT
¯

, L “ ∇u,

where the T superscript denotes the matrix transpose. If the extra tensor T̂ is a linear function of
Epuq then we have a Newtonian fluid and the system of Partial Differential Equation obtained for
the fluid dynamic is the Navier-Stokes equations. When the extra-tensor T̂ is a nonlinear function of
Epuq, then we have a non-Newtonian fluid. In the monograph [1] Noll and Truesdell introduced the
theory of fluids of differential type to which belong a grade-two or second grade fluid. The stress
tensor of this particular non-Newtonian fluid is given by

T̂ “ νA1 ` α1A2 ` α2A2
1. (1.1)
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Here ν is the kinematic viscosity, A1 and A2 are the first two Rivlin-Ericksen tensors defined by

A1 “ 2Epuq and A2 “
DA1

Dt
`A1L` LTA1,

where D{Dt denotes the material derivative. The constants α1 and α2 represent the normal stress
moduli. For the grade-two fluid to be compatible with the theory of thermodynamic, it was shown
in [2] that

α1 ` α2 “ 0 and α1 ě 0, (1.2)

must hold. On the basis of the analysis done in Sections 4, 6, 7, 8, and 9 of [2], this condition ensures
the unique existence and boundedness of the flow of grade-two fluids. We also refer to [3] and [4]
for more recent work concerning these conditions.

Throughout this work we assume that α1 “ α ą 0 and ν ě 0. Taking these conditions into account
and assuming that the fluid is homogeneous with density ρ “ 1, the system of Partial Differential
Equations (PDEs) describing the motion of an incompressible grade-two fluid excited by an external
force f takes the form

#

B
Bt pu´ α∆uq ´ ν∆u` rotpu´ α∆uq ˆ u`∇p̃ “ f,

div u “ 0,
(1.3)

where
p̃ “ p´ αpu ¨ ∆u`

1
4
|A1|q `

1
2
|u|2

is the modified pressure and div u “ 0 is considered due to the incompressibility constraint.
The system (1.3) is frequently used to describe fluid models in petroleum industry, polymer tech-

nology and suspensions of liquid crystals. It was also used in [5] to study the connection of Turbu-
lence Theory to Non-Newtonian fluids, especially fluids of differential type. When ν “ 0, the system
(1.3) reduces to what is know the Lagrangian averaged Euler equations (LAEs) which appeared for
the first time in the context of averaged fluid models in [6] and [7]. The derivation of LAEs used
averaging and asymptotic methods in the variational formulation. The LAEs are also closely related
to the following equation

ut ´ uxxt ` 2κux ´ 3uux “ 2uxuxx ` uxuxxx,

where ux, uxy, etc, denote partial derivatives with respect to the variable x, x and then y, etc. This
equation was proposed by Camassa and Holm in [8] to describe a special model of shallow water. As
in the case of the grade-two fluid this new model of shallow water also reduces to LAEs when κ “ 0
and in this case it was shown in [9] that it is the geodesic spray of the weak Riemannian metric on
the diffeomorphism group of the line or the circle. The works [10] and [11] also contain interesting
discussions concerning the grade-two fluids and the LAEs.

1.2. Our basic model and results
In this paper we are interested in a stochastic version of the system (1.3). More precisely, we

assume that a finite time horizon r0, Ts, and an initial value u0 are given. The motion of a grade-two
fluid filling a bounded Lipschitz domain O of R2 with initial condition u0 driven by a multiplicative
random forcing Gpuq dW

dt is governed by the following system of stochastic PDEs

dpu´ α∆uq ` p´ν∆u` rotpu´ α∆uq ˆ u`∇p̃qdt “ GpuqdW in O ˆ r0, Ts, (1.4a)

div u “ 0 on O ˆ r0, Ts, (1.4b)

u “ 0 in BO ˆ r0, Ts, (1.4c)

up0q “ u0 in O , (1.4d)

where u “ pu1, u2q and p̃ represent the random velocity, the modified pressure, respectively. The
stochastic process tWptq; t P r0, Tsu is a Wiener process taking values in a given separable Hilbert
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space H . Hereafter we understand that in R2 the rotational of a vector u “ pup1q, up2qq is a scalar
function defined by

rot u “
Bup1q

Bx2
´
Bup2q

Bx1
,

and for any vector and scalar functions v “ pvp1q, vp2qq and z

rot uˆ v “ p´vp1q rot u, vp2q rot uq,

rotpzˆ vq “ v ¨∇z :“ vp1q
Bz
Bx1

` vp1q
Bz
Bx2

.

In order to describe the main results of the paper, let us denote by V the subspace of the Sobolev
space H1pOq consisting of divergence free functions that vanish on the boundary of O , and by W a
subspace of V consisting of functions v P V such rotpv´ α∆vq P L2pOq. Roughly speaking, the main
results in this paper can be summarized in the following theorem.

Theorem.

(a) Let O be a bounded Lipschitz domain of R2, Q : H Ñ H is a trace class operator and G : V Ñ

L pH , Hq is globally Lipschitz with respect to the L2-norm. Then, for any α ą 0, ν ě 0, u0 P W the
problem (1.4) has at least a weak martingale solution which consists of a complete filtered probability
system pΩ,F , F, Pq, a H -valued Q-Wiener process W and a F-adapted stochastic process u such that
the integral version of (1.4) holds almost surely for any t P p0, Tq in the weak sense.

(b) If, in addition to the above conditions, O is a convex polygon, then there exists a real number r0 ą 2
such that for any r P p2, r0q,

u P Lp
´

Ω; L8p0, T; W2,rpOqq
¯

.

Furthermore, u P Lp pΩ; Cpr0, Ts; Wqq and any two processes u1 and u2 satisfying (1.4) with the same
Wiener process W and starting with the same initial datum u0 coincide with probability 1.

This theorem improves the existing results, which will be reviewed in the next paragraph, in several
respects. First, to the best of our knowledge the existence of weak martingale solution for the La-
grangian Averaged Euler equations (LAEs) driven by multiplicative noise is established for the first
time in this paper. Second, while previous results concerning the existence of weak martingale solu-
tion of grade-two fluids driven by state-dependent external random perturbation was proved under
the assumption the bounded domain O is simply connected and its boundary is of class C3, in the
present work we only require that O is a Lipschitz domain. Third, even in the deterministic case, it is
not known whether the solution u is strongly continuous in W when the domain is a convex polygon.
Thus, in the present paper we are able to settle this standing open problem for the stochastic system
(1.4) under minimal assumption on O . Although, we proved the time continuity for the stochastic
and Lipschitz domain cases, our result is also valid for the deterministic and smooth domain cases.
The proofs of all the above results are non-trivial, but the arguments are elementary in that they only
need the fine properties of Sobolev spaces, regularity of solutions to elliptic problems on non-smooth
domain, some estimates and convergence results from the theory of (semi)martingale.

Before proceeding to the literature review, we should note that while it is difficult to give a partic-
ular practical motivation for considering the grade-two fluids on Lipschitz domain, it seems natural,
as pointed out in [12], to consider fluid flow in Lipschitz domain as most of partial differential equa-
tions which arise in practice are in non-smooth domains with simple geometry. An example of prac-
tical motivation we can mention is a fluid past a polygonal obstacle contained in a bounded domain.
This produces the vortex shedding phenomenon which finds its application in electrical transmission
lines, chimneys, towers, antennae, bridge decks of bluff cross-section. We refer, for instance, to [13]
for a detailed and well explained exposition of the vortex shedding phenomenon.
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1.3. Literature review
Before we proceed to the outline of the proofs of our results we give a sketchy account of existing

mathematical literature related to the grade-two models and the LAEs. Since the beginning of the
80s, the equations for the viscous and non-viscous grade-two fluids have been the object of intensive
mathematical studies, but by far the best method for proving the existence of weak solution is due
to Cioranescu and Ouazar and can be found in Ouazar’s thesis and in [14] and [15]. The method of
Cioranescu and Ouazar consists of the blending of compactness method and Galerkin approximation
based on a special basis formed by the eigenfunctions of the operator rot rotpv´ α∆vq. By using the
very method Cioranescu and Girault [16], Bernard [17] proved the global existence of a unique weak
solution of three-dimensional grade-two fluids. This result is obtained under some restrictions on the
data. In 2002, the author of [18] shows that the NSE can be approximated by the grade-two fluids.
More precisely, the author of [18] showed that there exists a subsequence of weak solutions of grade-
two fluids which converges weakly in some topology to the weak solution of the NSE. Amongst
the important results obtained so far are the existence of global attractor, the regularity of the global
attractor and finite-dimensional behavior for the grade-two fluid equations which were proved in
[19] and [20]. Most of these results were established under the conditions that the boundary of O

is sufficiently smooth, of class C3 for example. Unfortunately, for a technical reason that we shall
explain at the end of the results review, the method of Cioranescu and Ouazar is not applicable
for the grade-two fluids flowing in a Lipschitz domain. Girault and Scott [21] came out with the
idea of splitting the equations for the grade-two fluids into a steady Stokes-like and a transport
systems to establish the existence of weak solution. This decomposition approach along with a time
discretization based on backward Euler scheme was used by Girault and Saadouni in [22] to prove
the existence of weak solution of the time-dependent problem in any arbitrary Lipschitz domain.
The solution of either the steady or the time-dependent problem is unique as long as O is a convex
polygon. In contrast to the mathematical literature devoted to the study of grade-two models, there
are only few mathematical results for the LAEs. Cioranescu-Ouazar’s methods was used in [23] to
prove simultaneously the existence and uniqueness of solution to the LAEs and the grade-two fluids
with Navier-slip boundary conditions. The convergence of the solution of grade-two fluid to the
solution of LAEs is studied in [24]. Several local existence and global existence criterion in Besov
and Triebel-Lizorkin spaces for the three dimensional LAEs can be found in [25], [26], [27] and [28].
The convergence of the grade two fluids or Lagrangian Averaged Euler to the Euler system has been
also the subject of intense investigation and has generated several interesting and important result,
see, for instance, [29], [30], [31], [32] and references therein. Of course, there are other results related
to the mathematical theory of the deterministic LAEs and the grade-two fluids, and for a detailed of
past and recent results related to the deterministic grade-two fluid and the LAEs we refer to [33] and
[34]. Despite all these results, the continuity of the solution in W was left as an open question when
O is a Lipschitz domain.

As far as the stochastic versions of the LAEs and grade-two fluids are concerned, there are only
few works related to the problem (1.4). By using Cioranescu-Ouazar’s method the global existence
of both martingale and strong (in the stochastic calculus sense) solutions were proved in [35] and
[36]. When the noise is additive, then the convergence of the solution of (1.4) to the weak martingale
solution of the two dimensional stochastic Navier-Stokes equations was established in [37]. Existence
of a global weak martingale solution for the grade-two fluids driven by external forcing of Lévy noise
type is shown in [38]. Two important results related to the problem (1.4) have been recently posted on
Arxiv, see [39] and [40]. The large deviation estimates for the solution to (1.4) was established in [39]
by the weak convergence method of Budhiraja and Dupuis [41]. By Odasso’s exponential mixing
criterion [42] it was shown in [40] that the problem (1.4) has a unique invariant measure which is
exponentially mixing. When the viscous term ´ν∆u is replaced with the stronger regularizing term
´ν∆pu ´ α∆uq, then the problem (1.4) becomes the Lagrangian-Navier-Stokes-α (LANS-α) which
were derived in [43] to describe mathematical model capturing the phenomenon of turbulence at
a low computational resolution. In contrast to the system for grade-two fluids, the LANS-α is a
parabolic semilinear system and is much easier to solve than the former model. The stochastic LANS-
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α has been extensively studied and has generated several important results, see ,for instance, [44],
[45] and references therein. Note also that the Lagrangian Averaged Euler equations is different to
the inviscid Leray-α models in which the nonlinear term is u ¨∇pu´ α∆uq, see, amongst other, [46].
In contrast to the Lagrangian Averaged Euler equations the Leray-α Euler equation, either in two or
three dimensional cases, admits a global weak solution. The uniqueness of solution of the Leray-
α Euler equations is an open problem for the deterministic case, however when adding a special
multiplicative noise it was proved in the interesting paper [47] that the solution of the stochastic
Euler-α is unique in law.

To end this literature review, we note that the results in [38], [37], [36], [35], [40] and [39] are valid
only when the bounded domain O is simply-connected and its boundary is of class C3. This regu-
larity of the boundary ensures that the eigenfunctions of rot rotpv´ α∆vq exist and form a subset of
H4pOq. In fact, in the initial proof of Cioranescu and Ouazar it is shown that the eigenfunctions sat-
isfy a steady biharmonic-like system with a H2pOq-valued external force, and well-known regularity
result for elliptic problem in smooth domain yields the desired regularity of the eigenfunctions. This
smoothness of the eigenfunctions plays an essential role for the derivation of a priori estimates for
rotpum´ α∆umq in L2pOqwhere um is the Galerkin solution of (1.4). Since, even with a H2pOq-valued
external forcing, we cannot expect a H4pOq-regularity of the eigenfunctions of rot rotpv´ α∆vqwhen
the domain O is only Lipschitz, the method of Cioranescu-Ouazar is no longer applicable to the case
of non-smooth domain.

1.4. Sketch of the approaches and proofs of the main results
Now, we continue the present introduction with the sketch of the approaches used to derive our

main results. We will start with an outline of the proof of the existence of weak martingale solu-
tion. Albeit, the existence of solution is a basic question in (stochastic) Partial Differential equations,
these turn to be rather challenging for the system (1.4). The structure of the problem is one of the
main source of difficulties. In fact, (1.4) is fully nonlinear and behaves as an hyperbolic problem
in that while the linear term is only the Laplacian its nonlinear term involves a third-order deriva-
tive. Besides this fact, as we have explained above the celebrated method of Cioranescu and Ouazar,
thus the approach in [36] and [36], is no longer applicable to our framework. For this reason, we
will follow closely the approach used in [22] to establish the existence of a weak martingale solu-
tion which, roughly speaking, is consisting of a complete filtered space pΩ, F , F, Pq on which is
defined a pair pu, Wq such that W is a H -valued Wiener process and with probability 1 u belongs
to Cpr0, Ts; Vq X L8p0, T; Wq and satisfies (1.4). The method in [22] consists in splitting (1.4) into a
linearized system of stochastic Stokes-like and transport systems and using a time discretization to
construct approximating solution of the latter systems. The idea of the decomposition can be briefly
described as follows. We set z “ rotpu ´ α∆uq, where u is a solution to (1.4), and apply the rot
operator to (1.4a) in the sense of distribution to obtain that z solves

dz`
´ν

α
z` u ¨∇z

¯

dt “
ν

α
rot u dt` rot GpuqdW.

This short discussion motivates us to introduce the following coupled SPDEs with multiplicative
noise

dpu´ α∆uq ` pzˆ u`∇P ´ ν∆uq dt “ GpuqdW, in r0, Ts ˆO , (1.5a)

dz` p
ν

α
z` u ¨∇zqdt “

ν

α
rot u dt` rot GpuqdW, in r0, Ts ˆO , (1.5b)

div u “ 0 in r0, Ts ˆO , (1.5c)

u “ 0 on r0, Ts ˆ BO , (1.5d)

zp0q “ z0 :“ rotpu0 ´ α∆u0q in O , (1.5e)

up0q “ u0 in O . (1.5f)

Even though, the relation z “ rotpu´ α∆uq was discarded, we will, as in the deterministic case, see
later on that the two problems (1.4) and (1.5) are equivalent. Thus, in order to prove the existence
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of weak martingale solution of (1.4) it is sufficient to establish an existence result for the auxiliary
stochastic problem (1.5). For this purpose, we will use a combination of time discretization and com-
pactness method. The semi-discrete discretization is based on backward Euler scheme and the result-
ing equations are basically a coupling of a steady Stokes-like and transport equations. At each time
step, the numerical algorithm is shown to have a a unique adapted solution, and the sequence formed
by these solutions are unconditionally stable. We exploit this stability result to show the tightness of
the laws family of the interpolants of the discrete solutions. This laws tightness combined with the
Prokhorov and Skorokhod theorems enables us to construct a new complete filtered probability along
with a sequence of processes pun, zn, Wnq converging in laws and almost surely to a limiting process
pu, z, Wq which, upon to passage to the limit in the equation for the interpolants, is shown to solve
(1.4). Note that the solution pu, zq of (1.5) belongs to Cpr0, Ts; HˆW´1, 4

3 pOqq X L8p0, T; Vˆ L2pOqq

with probability 1. We also note that while the papers [48], [49], [50], [51] and [52] motivated us to
use time discretization, our problem does not fit their framework.

Regarding to the other results, the uniqueness mainly relies on the space regularity solution.
The former results require that the solution u belongs at least to W1,8pOq a regularity that cannot be
produced by the estimate in H1pOq of solution of (1.5a) alone. In order to get a regularity in W1,8pOq,
we need that the solution u belongs at least to W2,rpOq, a result that will be obtained by exploiting
that z :“ rotpu ´ α∆uq P L2pOq. In fact, since z P L2pOq is already the rot of u ´ α∆u and O is a
simply-connected domain, one can construct a vector stream-function z P H1pOq, which depends
continuously in z, such that u “ pId` αAq´1z, where A is basically the Stokes operator. The latter
identity along with the regularity of the solution of elliptic problems on non-smooth domain implies
that there exists a number r0 ą 2 depending only on the inner angle of O such that u P W2,rpOq for
any r P r2, r0q. Thanks to this spatial regularity the uniqueness follows easily from a careful estimate
of the nonlinear term, the application of Itô formula and a trick due to Schmalfuß [53].

The idea of the continuity proof of u in W is quite simple. In fact, since pu, zq, where z :“ rotpu´
α∆uq, is a solution of (1.5), then z P Cpr0, Ts; W´1, 4

3 pOqq X L8p0, T; L2pOqq with probability 1, hence
it is weakly continuous in L2pOq. Since the process u belongs to Cpr0, Ts; Vq already, in order to
prove the strong continuity in W it suffices to show that the L2pOq-norm |zp¨q| : r0, Ts Ñ r0,8q is
continuous. This amounts to show that the process z satisfies an energy equality in L2pOq. For the
deterministic grade-two fluids, this idea appears for the first time in [19] and other proof methods
appeared in [20] and [34]. In all these literature, the domain O was assumed to be either simply-
connected and of class C3 or a two-dimensional torus. In contrast to [19] which used a Galerkin
approximation, we will use a spatial regularization argument based on some ideas from [54] and
[55]. Observe also that this regularization by convolution was used in [56] and references therein to
derive that any L8-weak solution of a fairly general stochastic transport equations is a renormalized
solution. The first step of the proof is to regularize the process z in the space variable by convolution
with a special family of mollifiers indexed by a number k P N and derive the stochastic equation
satisfied by the sequence of the regularized processes zk, k P N. The second and final step is the
derivation of the energy equation for |zkp¨q|

2 from which we will get the energy equation for |zp¨q|2

upon passing to the limit. In order to be able to pass to the limit in good topology we need the space
regularity stated in the above theorem, in particular we need that u P L2pΩ, L2p0, T; W1,8pOqqq. The
steps we outlined above are crucial, since a crude application of Itô formula to |zp¨q|2 or }up¨q}2W is
doomed to fail. The main reason is that neither the process u nor z satisfies the general criteria for
the application of the Itô formula or for continuity in W and L2pOq, see [57, Chapter I, Theorem 3.2]
or [58, Chapter 1, Lemma 1.2]. Indeed, u is W-valued and can be written in a formal way into the
form

uptq “ u0 `

ż t

0
Fpsqds` pId` αAq´1

ż t

0
GpupsqqdWpsq, @t P r0, Ts,

where F P L2pΩ, L2p0, T; Vqq, but, because of the loss of regularity due to the lack of smoothness
of the boundary of O , it is not known whether pId` αAq´1 şt

0 GpupsqqdWpsq is a W-valued martin-
gale. Thus, both the criteria for continuity in W and the application of the Itô formula to }up¨q}2W
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is not satisfied. For z, owing to the definition of the solution, it can be easily checked that the pro-
cess u ¨∇z P L2pΩ, L2p0, T; W´1, 4

3 pOqqq and that the martingale
şt

0 rot GpupsqqdWpsq is L2pOq-valued.
However, the process z is not W1,4pOq-valued, hence, as in the case for u, all the requirements for the
application of [57, Chapter I, Theorem 3.2] or [58, Chapter 1, Lemma 1.2] are not met.

1.5. Structure of the paper

Let us now close this introduction with the layout of the paper. In Section 2 we introduce several
notations and all the assumptions we need in this paper. Amongst the main results that we stated in
the next section is the existence of a weak martingale of (1.5); the proof of this results is postponed
to Section 4. Thanks to this and the equivalence of (1.4) and (1.5), the existence of weak martingale
solution to (1.4) is proved in Section 2. Section 3 is a prelude to the proof of existence of weak
martingale solution to the auxiliary problem (1.5). There we introduce and analyze the algorithm
used to construct a sequence of discrete random variables which, in turn, will be used to construct
the continuous approximating solutions (interpolants) to (1.5). Several key estimates, which will be
used to prove the tightness of the interpolants, are also established in section 3. We prove the space
regularity and uniqueness results alluded in the description of our main results in Section 5. The
continuity in W of the solution is proved in the last section.

2. Notations, hypotheses and the main results

2.1. Notations

We introduce necessary definitions of functional spaces frequently used in this work. Let O be
a bounded Lipschitz domain of R2. We denote by LppOq and Wm,ppOq, p P r1,8s, m P N, the
well-known Lebesgue and Sobolev spaces. In particular, W1,p

0 pOq is the Sobolev spaces of functions
vanishing (in the sense of trace) on the boundary BO of O . We simply write HmpOq when p “ 2. We
refer to the monograph [59] for more detailed information about Sobolev spaces.

In what follows we denote by X the space of R2-valued functions such that each component
belongs to X. We introduce the spaces

V “
!

u P rC8c pOqs2 such that div u “ 0
)

V “ closure of V in H1pOq

H “ closure of V in L2pOq,

where rC8c pOqs2 :“ C8c pO , R2q denotes the spaces of all infinitely differentiable functions with com-
pact support in O . We denote by p¨, ¨q and | ¨ | the inner product and the norm induced by the inner
product and the norm in L2pOq on H, respectively. The inner product and the norm induced by that
of H1

0pOq on V are denoted respectively by pp¨, ¨qq and || ¨ ||. Let Π : L2pOq Ñ H be the Helmholtz-
Leray projection, and A “ ´Π∆ be the Stokes operator with the domain DpAq “ H2pOq2 XH. It
is well-known that A is a self-adjoint positive operator with compact inverse, see for instance [60,
Chapter 1, Section 2.6]. Hence, it has an orthonormal sequence of eigenvectors tej; j P Nu with
corresponding eigenvalues 0 ă λ1 ă λ2 ă ....

Observe that in the space V, the norm ‖¨‖ is equivalent to the norm generated by the following
scalar product

ppu, wqqα “ pu, wq ` αppu, wqq, for any u w P V, andα ą 0. (2.1)

More precisely, we have

α||u||2 ď ‖u‖2
α ď

ˆ

1
λ1
` α

˙

||u||2,@u P V, (2.2)

where λ1 is the least of the eigenvalues of the Stokes operator A. From now on, we will equip V with
the norm ‖u‖α generated by the inner product defined in (2.1).
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We also introduce the following space

W “

!

u P V; rotpu´ α∆uq P L2pOq
)

,

which is a Hilbert space equipped with the norm generated by the following scalar product

ppu, vqqW “ppu, vqqα ` protpu´ α∆uq, rotpv´ α∆vqq, @u, v P W.

Note that for v P V, α rot ∆v P L2pOq is understood in its weak sense.
For any Banach space B we denote its dual by B˚ and by xf, vy the action of any element f of B˚

on an element v P B. By identifying H with its dual space H˚ via the Riesz representation, we have
the Gelfand-Lions triple

V Ă H Ă V‹,

where each space is dense in the next one and the inclusions are continuous. It follows from the
above identification that we can write

ppv, wqqα “ xv, wy, (2.3)

for any v P H, w P V.
For a fixed v P H1pOq, we set

Lv :“ t f P L2pOq; v ¨∇ f P L2pOqu,

which defines a Hilbert space when endowed with the graph norm

} f }Lv :“ | f | ` |v ¨∇ f |, @ f P Lv.

As in the definition of W, for f P L2pOq and v P H1pOq v ¨∇ f P L2pOq is understood in the weak
sense.

Now, we will fix the assumption on the noise entering the system. Let U :“ pΩ, F , F, Pq be a
complete filtered probability space where the filtration F “ tFt; t P r0, Tsu satisfies the usual con-
dition. Let tβ j; j P Nu be a sequence of mutually independent and identically distributed standard
Brownian motions on U . Let H be a separable Hilbert space and L1pH q be the space of all trace
class operators on H . Let Q P L1pH q be a symmetric, nonnegative operator and thj; j P Nu be an
orthonormal basis of H consisting of eigenvectors of Q. Let tqj; j P Nu be the eigenvalues of Q and
W the process defined by

Wptq “
8
ÿ

j“1

a

qjβ jptqhj, t P r0, Ts.

It is well-known, see [61, Theorem 4.5], that the above series converges in L2pΩ; Cpr0, Ts; H qq and
it defines a H -valued Wiener process with covariance operator Q. Furthermore, for any positive
integer ` ą 0 there exists a constant C` ą 0 such that

E}Wptq ´Wpsq}2`H ď C`|t´ s|` pTr Qq` , (2.4)

for any t, s ě 0 with t ‰ 0.
Let K be a separable Banach space, L pH , Kq be the space of all bounded linear K-valued op-

erators defined on H , M 2
TpKq :“ M 2pΩ ˆ r0, Ts; Kq be the space of all equivalence classes of F-

progressively measurable processes Ψ : Ωˆ r0, Ts Ñ K satisfying

E

ż T

0
}Ψpsq}2Kds ă 8.

If Q P L1pH q is a symmetric, nonnegative and trace class operator then Q
1
2 P L2pH q and for any

Ψ P L pH , Kq we have Ψ ˝ Q
1
2 P L2pH , Kq, where L2pH , Kq is the Hilbert space of all operators

Ψ P L pH , Kq satisfying

}Ψ}2L2pH ,Kq “

8
ÿ

j“1

}Ψhj}
2
K ă 8.
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Furthermore, from the theory of stochastic integration on infinite dimensional Hilbert space, see [62,
Chapter 5, Section 26 ] and [61, Chapter 4], for any Ψ P M 2

TpL pH , Kqq the process M defined by

Mptq “
ż t

0
ΨpsqdWpsq, t P r0, Ts,

is a K-valued martingale. Moreover, we have the following Itô isometry

E

ˆ
›

›

›

›

ż t

0
ΨpsqdWpsq

›

›

›

›

2

K

˙

“ E

ˆ
ż t

0
}ΨpsqQ

1
2 }2L2pH ,Kqds

˙

,@t P r0, Ts, (2.5)

and the Burkholder-Davis-Gundy inequality

E

ˆ

sup
0ďsďt

›

›

›

›

ż s

0
ΨpsqdWpsq

›

›

›

›

q˙

ď CqE

ˆ
ż t

0
}ΨpsqQ

1
2 }2L2pH ,Kqds

˙

q
2
,@t P r0, Ts,@q P p1,8q. (2.6)

2.2. The standing hypotheses and main results

Now, we impose the following set of conditions on the nonlinear term Gp¨q and the Wiener process
W.

(N) Let H be a separable Hilbert space. We assume that we are given a nonnegative and symmetric
covariance operator Q P L1pH q.

(G) We assume that we are given a nonlinear function G from V into L pH , Vq such that there
exists a constant C1 ą 0 for which the following hold

}Gpuq ´ Gpvq}L pH ,Vq ď C1|u´ v|,

}Gpuq ´ Gpvq}L pH ,Vq ď C1}u´ v}α,

for any u P V, v P V.

Remark 2.1.

(a) Note that the above assumption implies that there exists a constant C2 ą 0 such that

}Gpuq ´ Gpvq}L pH ,Hq ď C2}u´ v}α,

}Gpuq}L pH ,Hq ď C2p1` }u}αq,

for any u, v P V.

(b) There exists also a number C3 ą 0 such that

} rotrGpuq ´ Gpvqs}L pH ,L2pOqq ď C3}u´ v}α,

} rot Gpuq}L pH ,L2pOqq ď C3p1` }u}αq,

for any u, v P V.

(c) Owing to item (b) of the present remark, if u P M2
TpVq, then rot Gpuq belongs to M2

TpL pH , L2pOqqq

and the stochastic integral
şt

0 rot GpupsqqdWpsq is a well defined L2pOq-valued martingale.

To alleviate notation we introduce the concept of stochastic basis.

Definition 2.2. A stochastic basis U :“ pΩ,F , P, F, Wq consists of

(a) a complete filtered probability space pΩ,F , F, Pq such that the filtration F “ tFt; t P r0, Tsu
satisfies the usual condition.

9



(b) a H -valued Q-Wiener process W defined on pΩ,F , F, Pq.

We now formulate several definitions.

Definition 2.3. By a solution of the system (1.4), we mean a pair pU , uq such that

(a) U :“ pΩ,F , P, F, Wq is a stochastic basis,

(b) u is an F-adapted stochastic process and

u P L8pΩ; Cpr0, Ts; Vq X L8p0, T; Wqq,

(c) the following integral equation of Itô type holds with probability 1

ppuptq, vqqα `
ż t

0
rνppupsq, vqq ` protpupsq ´ α∆upsqq ˆ upsq, vqs ds

“ ppu0, vqqα `
ż t

0
pGpupsqq, vqdWpsq

(2.7)

for any t P p0, Ts and v P V.

In the next proposition we will show that the systems (1.5) and (1.4) are equivalent, but for now
let us proceed to the definition of weak martingale to the former system.

Definition 2.4. By a solution of the system (1.5), we mean a system

pΩ, F , P, F, W, u, zq,

where

(a) pΩ, F , F, P, Wq is a stochastic basis,

(b) the process pu, zq is F-adapted and

pu, zq P L8pΩ; Cpr0, Ts; Vqq ˆ LppΩ; Cpr0, Ts; W´1, 4
3 pOqq X L8p0, T; L2pOqqq.

(c) the following integral equation of Itô type holds with probability 1

ppuptq, vqqα `
ż t

0
rνppupsq, vqq ` pzpsq ˆ upsq, vqs ds “ ppu0, vqqα `

ż t

0
pGpupsqq, vqdWpsq

pzptq, φq `

ż t

0

´ν

α
rzpsq ´ rot upsqs ` upsq ¨∇zpsq, φ

¯

ds “ pz0, φq `

ż t

0
prot Gpupsqq, φqdWpsq,

(2.8)

for any t P p0, Ts, v P V and φ P W1,4
0 pOq.

We shall prove the following proposition which will play an important role in our analysis.

Proposition 2.5. If pU , uq, where U is a stochastic basis, is a weak martingale solution of (1.4) then
pU , u, zq, with z “ rotpu ´ α∆uq, is a weak martingale solution to (1.5). Conversely, if pU , u, zq is a
weak martingale solution to (1.5), then pU , uq is a weak martingale solution to (1.4) and z “ rotpu´ α∆uq.

Proof. It is not difficult to show that if pU , uq is a solution to (1.4) in the sense of Definition 2.3,
then z “ rotpu ´ α∆uq solves (1.5a) on the same stochastic basis U (see also the discussion in the
introduction). That is, pU , u, rotpu´ α∆uqq is a weak martingale solution to (1.5). This proves the
first part of the proposition. Now, assume that we have found a weak martingale solution pU , u, zq
to (1.5). Then taking the rot of (1.4a) (in the sense of distribution) we obtain that

dz̃` p
ν

α
z̃` u ¨∇z̃qdt “

ν

α
rot u dt` rot GpuqdW,

10



where z̃ :“ rotpu´ α∆uq. Setting y “ z̃´ z and subtracting the last identity and (1.4b) yields

By
Bt
`

ν

α
y “ 0.

This means that y solves the following random ordinary differential equations in the Hilbert H´2pOq

dϕ

dt
`

ν

α
ϕ “ 0, ϕp0q “ y0.

The above ODEs admits a unique solution ϕ with

ϕp¨q “ e´
ν
α Idp¨qy0 P Cpr0, Ts; H´2q, a.s. ,

where te´
ν
α Idt; t P r0, Tsu is the semigroup generated by the identity operator Id on H´2pOq. Since

y0 “ 0, we have y “ 0 and

z “ rotpu´ α∆uq P Cpr0, Ts; H´2pOqq, a.s. ,

from which we easily conclude the proof of the second part.

Theorem 2.6. Let O be a bounded Lipschitz domain of R2 and assume that Q P L1pH q and G satisfy (N)
and (G), respectively. Then, for any α ą 0, ν ě 0, u0 P W the problem (1.5) has a solution in the sense of
Definition 2.4.

Proof. The proof of this theorem will be given in Section 4.

Theorem 2.7. Let O be a bounded Lipschitz domain of R2 and assume that Q P L1pH q and G satisfy (N)
and (G), respectively. Then, for any α ą 0, ν ě 0, u0 P W the problem (1.4) has at least a weak martingale
solution.

Proof. The proof of this theorem follows from Proposition 2.5 and Theorem 2.6 given above.

Before proceeding further we make the following remark.

Remark 2.8. In the framework of this paper we are not given a priori a probability space, thus we
are not allowed to take stochastic or random initial data. In fact the filtered probability space along
with the Wiener process is a part of our solution. However, it is possible to take the initial data as
a probability distribution µ0 on W. In this case we have to modify the definition of our solution by
requiring that the initial value up0q of the solution process u has a probability distribution equal to
µ0. Some steps of the proofs also need to be modified, but this is too complicated to be described in
this remark. We instead refer, for instance, to [52] for the possible modifications (either in the concept
of solution or proofs steps) that need to be carried out.

Now we turn our attention to the space and time regularities of the solution. We first prove
the space regularity by using tools from the theory of deterministic elliptic differential equations on
non-smooth domain. We then use this space regularity result to prove the time smoothness and the
uniqueness of solution. The space-time regularity is stated in the following theorem.

Theorem 2.9. In addition to the assumptions of Theorem 2.7, suppose that O is a convex polygon. Let pu, U q

be a weak martingale solution of (1.4) given by Theorem 2.7.

(a) Then, there exist a real number r0 ą 2 such that for any r P p2, r0q,

u P L8
´

Ω; L8p0, T; W2,rpOqq
¯

.

(b) Furthermore,
u P L8 pΩ; Cpr0, Ts; Wqq .
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Proof. The proof of item (a) of this theorem is given in Subsection 5.1. That of item (b) will be carried
out in Subsection 6.2.

As mentioned above we use the result from the last theorem to prove the pathwise uniqueness of
solution to (1.4).

Theorem 2.10. In addition to the assumptions of Theorem 2.7, suppose that O is a convex polygon. Then, for
any α ą 0, ν ě 0, u0 P W the weak martingale solution to problem (1.4) is pathwise unique, i.e., any two
processes u1 and u2 satisfying (1.4) on the same stochastic basis U “ pΩ, F , F, P, Wq and starting with the
same initial datum u0 are equal with probability 1.

Proof. The proof of this theorem will be carried out in Subsection 5.2.

3. Description of the algorithm and Energy estimates

This section 3 serves as a prelude to the proof of existence of weak martingale solution to the
auxiliary problem (1.5). As we mentioned earlier in the introduction we will use a time discretization
and compactness method to establish Theorem 2.6. Thus, in this section we introduce and analyze
the algorithm used to construct a sequence of discrete random variables which, in turn, will be used
to construct the continuous approximating solutions (interpolants) to (1.5). Several key estimates,
which will be used to prove the tightness of the interpolants, are also established.

3.1. Description of the algorithm

We set N0 :“ NY t0u and for any real numbers a and b with a ď b we put Ja, bK :“ ra, bs XN0.
We fix an integer n ě 0, set k “ T{n as the time step, and Πn :“ t0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ Tu is a
partition of r0, Ts where the grid points are t` “ `k, k P J0, nK. We first consider the system (1.5) on a
fixed stochastic basis U :“ pΩ,F, F, P, ηq, i.e, we study (1.5) with the Wiener noise W replaced by η on
pΩ,F, F, Pq. We assume that η is H -valued Wiener process with covariance Q satisfying Assumption
(N). For any i P J0, n´ 1K, we define a H -valued Gaussian random variable ∆iη by

∆iη “ ηpti`1q ´ ηptiq.

With all these in mind, the time-discrete problem associated to (1.5) is given in the following algo-
rithm.

Algorithm 1

Let n P N, u0 :“ u0 P W, z0 “ rotpu0 ´ α∆u0q and a H -valued Wiener process η with
covariance Q satisfying (N) be given.

Then, construct two sequences tu`; ` P J1, nKu Ă V and tz`; ` P J1, nKu Ă L2pOq such that for
each ` P J0, n´ 1K and for all v P V,

ppu``1 ´ u`, vqqα ` νkppu``1, vqq ` kpz` ˆ u``1, vq “ pGpu`q∆`η, vq, (3.1)

z``1 ´ z` ` kp
ν

α
z``1 ` u``1 ¨∇z``1 ´

ν

α
rot u``1q “ G̃pu`q∆`η, (3.2)

where G̃p¨q :“ rot Gp¨q.

The formula (3.1) and (3.2) are respectively the weak formulation of a time-discrete version of a
generalized Stokes equation and a transport equation. We will show that for each ` P J1, nK Algorithm
(1) admits a unique weak solution pu`, z`q P Vˆ L2pOq. To this end, we will first state and prove the
following two lemmata.

Lemma 3.1.
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(a) Let ψ P L2pOq, and γ ą 0 and δ ě 0 be two real numbers. Then, for any f P V˚, there exists a unique
u P V such that for all v P V,

pu, vq ` γppu, vqq ` δpψˆ u, vq “ xf, vy. (3.3)

(b) Moreover, the map

S : VˆH ˆ L2pOq ÑV

pw, β, ψq ÞÑu,

where u is the weak unique solution of (3.3) with right hand side f “ Gpwqβ, is continuous.

Proof. The identity (3.3) is the weak formulation of a generalized Stokes problem with Dirichlet
boundary condition. The existence of a weak solution of its version with a tangential boundary con-
dition was established in [21, Proposition 2.2] and the argument therein can be easily adapted to our
framework, thus we omit the proof of the part (a) of the lemma. Now let w1, w2 P V, ψ1, ψ2 P L2pOq,
β1, β2 P H , and set

w “ w1 ´w2, β “ β1 ´ β2, ψ “ ψ1 ´ ψ2.

We also put

u “S pw1, β1, ψ1q ´S pw2, β2, ψ2q

“u1 ´ u2.

The function u satisfies

apu, vq ` δ pcpψ, u1, vq ` cpψ2, u, vqq “
`

rGpw1q ´ Gpw2qsβ1 ` Gpw2qβ, v
˘

,

where
apu, vq :“ pu, vq ` γppu, vqq and cpψ, u, vq :“ δpψˆ u, vq,

are bilinear and trilinear forms defined on VˆV and L2pOqˆVˆV, respectively. By taking v “ u in
the above equation, using the Hölder and Poincaré inequalities, the Sobolev embedding V Ă L4pOq,
and the Assumption (G) in the resulting equation we infer that there exists a constant θ ą 0, such
that

}u}2α ď θ
`

|ψ|}u1}α}u}α ` }w}α}β1}H ` }w2}α}β}H
˘

.

Owing to the Cauchy inequality with ε “ 1
2θ , there exists C ą 0 such that

1
2
}u}2α ď C

´

|ψ|2}u1}
2
α ` }w}α}β1}H ` }w2}α}β}H

¯

,

from which we readily conclude the continuity of the map S and the proof of part (b) .

Before proceeding further we state the following remark.

Remark 3.2. It follows from the Hölder inequality and the Sobolev embedding V Ă L4pOq that

|pψˆ u, vq| ď|ψ|}v}L4}v}L4

ď C|ψ|}v}α}v}α, @ψ P L2pOq, u, v P V. (3.4)

Lemma 3.3.

(a) Let λ ą 0, u P V and f P L2pOq. Then, the transport equation

λz` u ¨∇z “ f , (3.5)

has a unique solution z P Lu such that
|z| ď | f |.

Moreover, the following Green’s formula hold

pu ¨∇z, yq “ ´pu ¨∇y, zq, (3.6)

for any z, y P Lu.
13



(b) The map

T : VˆVˆH ˆ L2pOq ÑV

pu, v, β, ψq ÞÑz,

where z is the unique solution of (3.5) with right hand side f “ ψ` rot Gpvqβ has a closed graph.

Proof. We refer to [21, Theorem 2.5] for the proof of part (a) .
Let tpz`, u`, f`q; ` P Nu Ă L2 ˆ V ˆ L2 be a sequence such that for each ` ě 1 z` denotes the

unique solution of (3.5) with u and f replaced by u` and f` , respectively. If tv`, β`, ψ`; ` P Nu Ă

V ˆH ˆ L2pOq is a sequence converging to pv, β, ψq in V ˆH ˆ L2pOq, then it is not difficult to
check that as `Ñ8

ψ` ` rot Gpv`qβ` Ñ ψ` rot Gpvqβ in L2pOq.

Thus, in order to prove part (b) , it is sufficient to show that if the sequence tpz`, u`, f`q; ` P Nu

converge in L2 ˆVˆ L2 to pz, u, f q then z is a solution to (3.5). To this end, we first notice that for
each ` we have

λpz` ´ z, φq ` λpz, φq ´ pu` ¨∇φ, z` ´ zq ´ pu` ¨∇φ, zq ´ p f`, φq “ 0,

for any φ P W1,4
0 pOq. Letting `Ñ8 in the above identity implies that

λpz, φq ´ pu ¨∇φ, zq ´ p f , φq “ 0,

i.e., we have proved that z is a solution of (3.5). This completes the proof of the lemma.

Proposition 3.4. Let n P N, u0 :“ u0 P W, z0 “ rotpu0 ´ α∆u0q and a H -valued Wiener process η with
covariance Q satisfying (N) be given. Then, with probability one we can find two sequences tu`; ` P J1, nKu Ă
V and tz`; ` P J1, nKu Ă L2pOq such that for each ` P J0, n´ 1K and for all v P V and φ P W1,4

0 pOq, u`

and z` satisfies (3.1) and (3.2), respectively. Moreover, if all spaces are equipped with their respective Borel
σ-algebra, then for each ` P J1, nK u` and z` are Ft` -measurable.

Proof. We prove the proposition by induction and we start with the proof of the existence of solution.
In what follows, we consider a sequence of events tΩ`; ` P J0, nKu Ă Ω defined by

Ω` “ tω; }ηpω, t`q}H ă 8u.

Since η is a H -valued Wiener process, we have PpΩ`q “ 1 and Pp
Şn

`“1 Ω`q “ 1. Throughout this
proof, the arguments below will hold on Ωn “

Şn
`“1 Ω`. Since u0 P W, z0 P L2pOq and Gpu0q∆0η P

H are given, then using Lemma 3.1 we can find u1 P V such that (3.1) holds for any v P V. Having
found u1 P V we invoke Lemma 3.3 to infer the existence of z1 satisfying (3.3). Now, assuming that
u` P V and z` P L2pOq are given, we can argue as above to infer the existence of u``1 P V and
z``1 P L2pOq. This completes the proof of the existence.

Observe that for any ` P J0, n´ 1K, u``1 “ S pu`, ∆`, z`q and z``1 “ T pu``1, u`, ∆`η, z`q. Thus,
arguing by induction and using the continuity of S and the closedness of the graph of T one can
show easily that for each ` P J1, nK u` and z` are Ft` -measurable. This completes the proof of our
proposition.

3.2. Energy estimates

In this subsection we will derive several energy estimates for the solution of the Algorithm 1.
These estimates are of the essence in the remaining part of the proof of our main result. Before we
embark on the statements and proofs of these results let us recall identities and inequalities that are
relevant for our analysis. First recall that for any Hilbert space K we have

ppψ1 ´ ψ2, 2ψ1qqK “ }ψ1}
2
K ´ }ψ2}

2
K ` }ψ1 ´ ψ2}

2
K,@ψ1, ψ2 P K. (3.7)
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We also need the following inequalities: for any p P N, there exists a constant Cp ą 0 such that

3
ÿ

i“1

ap
i ď Cp

˜

3
ÿ

i“1

ai

¸p

ď Cp

3
ÿ

i“1

ap
i , (3.8)

for any non-negative numbers ai, i P J1, 3K.
In what follows we will use the following lemma, which is taken from [33] and known as the (dis-
crete) Gronwall lemma, without further notice.

Lemma 3.5. Let tan; n P N0u, tbn; n P N0u and tcn; n P N0u be three sequences of non-negative real
numbers such that tcn; n P Nu is monotonic increasing, a0 ` b0 ď c0, and there exists a real number κ ą 0
such that

an ` bn ď cn ` κ
n´1
ÿ

j“0

an,

for any n P N. Then, for any n P N0
an ` bn ď cnenκ .

We also need the following lemma.

Lemma 3.6. Let ` P N, R P tG, G̃u, and x` be a Ft` -measurable L2-valued random variable. Then, for any
integer r ě 1, and real number q ě 0, there exists a constants C ą 0 such that

E
„

|Rpu`q∆`η|2r|x`|2q


ď CkrE
„

p1` ‖u`‖2r
α q|x`|2q



, (3.9)

provided that the term in the right-hand side is finite. With the above conditions, we also have

E
´

|x`|2r
´

Rpu`q∆`η, x`
¯¯

“ 0. (3.10)

Proof. From the Ft` -measurability of x`, the tower property of the conditional mathematical expec-
tation, the independence of the increments of the Wiener process η, the inequality (2.4) we derive the
following chain of equalities/inequalities

E
„

|Rpu`q∆`η|2r|x`|2q


“ E
„

E
ˆ

‖Rpu`q‖2r
L pH ,Hq‖∆`η‖2r

H |x`|2q‖Ft`

˙

,

“ E
„

‖Rpu`q‖2r
L pH ,Hq|x

`|2q


E
´

‖∆`η‖2r
H

¯

ď CpTr QqrkrE
„

‖Rpu`q‖2r
L pH ,Hq|x

`|2q


.

From the last line and Remark (2.1) we easily derive the sought estimate in Lemma 3.6.
Thanks to the Ft` -measurability of x` and u` the second part of the lemma easily follows from

the fact that ∆`η is a Gaussian random variable with zero mean.

Now, we proceed to one of the main topics of this section.

Proposition 3.7. Let u0 P W and η be an H -valued Wiener process with covariance satisfying Assumption
(N). Then, for any α ą 0, T ą 0 and p P J1, 3K there exists a constant C ą 0 such that for any fixed n P N

and ν ě 0

E
ˆ

max
0ďďn

}u`}2
p

α

˙

` E
n´1
ÿ

`“0

}u``1 ´ u`}2α ` kνE
n
ÿ

`“1

}u`}2 ď Cp1` ‖u0‖2p

α q (3.11)

E
ˆ

max
0ďďn

|z`|2
p
˙

` E
n´1
ÿ

`“0

|z``1 ´ z`|2 `
ν

α
kE

n
ÿ

`“1

|z`|2 ď Cp1` |z0|2p
` ‖u0‖2p

α q. (3.12)
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Proof. Since the proofs of (3.11) and (3.12) are very similar, we will only give the proof of (3.12). We
will closely follow [48, Proof of Lemma 3.1(iii)].

In order to prove (3.12) for p “ 1 we fix ` P J0, nK. Given zi P L2pOq and ui`1 P V, we infer
from Lemma 3.3(a) that the random variable zi`1 solving Algorithm 1 satisfies zi`1 P Lui`1 for any
i P J0, n´ 1K. Thus for any i P J0, `K and φ P Lui`1 , we have

pzi`1 ´ zi, φq `
kν

α
pzi`1, φq ´ pzi`1, ui`1 ¨∇φq “

kν

α
prot ui`1, φq ` pG̃puiq∆iη, φq, (3.13)

where, here and throughout, we set G̃p¨q “ rot Gp¨q. Thus, every term in the identity (3.13) makes
sense when taking φ “ 2zi`1. By doing so and invoking (3.6) and (3.7) we derive that

|zi`1|2 ´ |zi|2 ` |zi`1 ´ zi|2 `
2kν

α
|zi`1|2 “

2kν

α
prot ui`1, zi`1 ´ ziq `

2kν

α
prot ui`1, ziq

`2pG̃puiq∆iη, zi`1 ´ ziq ` 2pG̃puiq∆iη, ziq.
(3.14)

By using the Cauchy-Young inequality and summing from i “ 0 to i “ `´ 1, it is not difficult to show
that

|z`|2 `
1
2

`´1
ÿ

i“0

|zi`1 ´ zi|2 `
2kν

α

ÿ̀

i“1

|zi|2 ď |z0|2 `
4ν2pk2 ` kq

α2

`´1
ÿ

i“0

| rot ui`1|2 `
k
4

`´1
ÿ

i“0

|zi|2

`4
`´1
ÿ

i“0

|G̃puiq∆iη|
2 ` 2

`´1
ÿ

i“0

pG̃puiq∆iη, ziq.

(3.15)

After taking the mathematical expectation, using the second part of Lemma (3.6) to get rid of the last
term and taking the max over ` P J0, nK in the last estimate we derive that

max
`PJ0,nK

E|z`|2 `
1
2

E
n´1
ÿ

i“0

|zi`1 ´ zi|2 `
2kν

α
E

n
ÿ

i“1

|zi|2 ď |z0|2 `
4ν2pk` 1qT

α2 E max
`PJ0,nK

| rot ui`1|2

`
k
4

n´1
ÿ

`“0

max
iPJ0,`K

E|zi|2 ` 4 Tr QkE
n´1
ÿ

i“0

}G̃puiq}2L pH ,Hq,

(3.16)

from which along with the application of Assumption (G) and Remark 2.1, the fact that | rot ¨| and
} ¨ }α are equivalent on V, the estimate (3.11) and finally the discrete Gronwall lemma we infer that
there exists a constant C ą 0 depending only on T, Tr Q and α such that

max
`PJ0,nK

E|z`|2 ď Cp1` |z0|2 ` |u0|2q, (3.17)

which altogether with (3.16) implies that

E
n´1
ÿ

i“0

|zi`1 ´ zi|2 `
2kν

α
E

n
ÿ

i“1

|zi|2 ď Cp1` |z0|2 ` ‖u0‖2
αq. (3.18)

Now dropping out all but |z`|2 positive terms in the LHS of (3.15), taking the maximum over ` P J0, nK
and the mathematical expectation yields

E max
`PJ0,nK

|z`|2 ď|z0|2 `
4ν2pk` 1qT

α2 E max
`PJ0,nK

| rot ui`1|2 `
k
4

n´1
ÿ

`“0

E|z`|2

` 4 Tr QkE
n´1
ÿ

i“0

}G̃puiq}2L pH ,Hq ` 2E max
`J0,nK

`´1
ÿ

i“0

pG̃puiq∆iη, ziq.

(3.19)

Note that by using the equivalence of the norms |rotp¨q| and ‖¨‖α on V, Lemma 3.6 and the esti-
mates (3.11) and (3.17) the sum of the first four terms of the above inequality can be bounded from
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above by Cp1` ‖u0‖2
α ` |z0|2q. Thus, we derive by considering the last term as a stochastic integral

with piecewise constant integrand, applying the Burkholder-Davis-Gundy inequality, the Cauchy
inequality and applying Lemma 3.6 and the estimate (3.7) that

I ď Cp1` ‖u0‖2
α ` |z0|2q ` CE

ˆn´1
ÿ

`“0

|G̃pu`q∆`||z`|2
˙

1
2

ď Cp1` ‖u0‖2
α ` |z0|2q ` 1

2
E max

`PJ0,nK
|z`|2 ` CkE

n´1
ÿ

`“0

p1` ‖u`‖2q

ď Cp1` ‖u0‖2
α ` |z0|2q ` 1

2
E max

`PJ0,nK
|z`|2,

where we denoted by I the RHS of (3.19). Now, absorbing the term 1
2 E max`PJ0,nK|z`|2 in the LHS of

(3.19) implies
E max

`PJ0,nK
|z`|2 ď Cp1` |u0|2 ` |z0|2q,

from which along with (3.18) follows (3.12) for p “ 1.
To treat the case p “ 2 we first multiply (3.14) by 2|zi`1|2, then apply (3.7) to obtain

|zi`1|4 ´ |zi|4 `
ˇ

ˇ

ˇ
|zi`1|2 ´ |zi|2

ˇ

ˇ

ˇ

2
` 2|zi`1|2|zi`1 ´ zi|2 ` 4

ν

α
k|zi`1|4 “

4
ÿ

m“1

Jm,i, (3.20)

where the summands Jm,i are defined as follows

J1,i :“
4kν

α
|zi`1|2

´

rot ui`1, zi`1 ´ zi
¯

J2,i :“
4kν

α
|zi`1|2

´

rot ui`1, zi
¯

J3,i :“ 2|zi`1|2
´

G̃puiq∆iη, zi`1 ´ zi
¯

J4,i :“ 2|zi`1|2
´

G̃puiq∆iη, zi
¯

.

using well-known and elementary inequalities such as the Cauchy-Schwarz and Cauchy inequalities
we can show that they satisfy

J1,i ď
1
2
|zi`1|2|zi`1 ´ zi|2 ` 1

8

ˇ

ˇ

ˇ
|zi`1|2 ´ |zi|2

ˇ

ˇ

ˇ

2
` Cpk4 ` k2q|rot ui`1|4 ` ck2|zi|4,

J2,i ď
1
8

ˇ

ˇ

ˇ
|zi`1|2 ´ |zi|2

ˇ

ˇ

ˇ

2
` Cpk2 ` kq

´

|ui`1|4 ` |zi|4
¯

,

J3,i ď
1
2
|zi`1|2|zi`1 ´ zi|2 ` 1

8

ˇ

ˇ

ˇ
|zi`1|2 ´ |zi|2

ˇ

ˇ

ˇ

2
` C|G̃puiq∆iη|4 ` |G̃puiq∆iη|2|zi|2,

J4,i ď
1
8

ˇ

ˇ

ˇ
|zi`1|2 ´ |zi|2

ˇ

ˇ

ˇ

2
` C|G̃puiq∆iη|

2|zi|2 ` C|zi|2
´

G̃puiq∆iη, zi
¯

.

After plugging these inequalities in (3.20), absorbing some terms in LHS, and summing from i “ 0
to i “ `´ 1 we deduce that

|z`|4 ` 1
2

`´1
ÿ

i“0

ˇ

ˇ

ˇ
|zi`1|2 ´ |zi|2

ˇ

ˇ

ˇ

2
`

`´1
ÿ

i“0

|zi`1|2|zi`1 ´ zi|2 ` 4
ν

α
k
ÿ̀

i“1

|zi|4

ď |z0|4 ` Cpk2 ` kq

˜

ÿ̀

i“1

‖ui‖4 `

`´1
ÿ

i“0

|zi|4
¸

` C
`´1
ÿ

i“0

|G̃puiq∆iη|4

`C
`´1
ÿ

i“0

|G̃puiq∆iη|2|zi|2 ` C
`´1
ÿ

i“0

|zi|2
´

G̃puiq∆iη, zi
¯

.

(3.21)
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Now, by taking the mathematical expectation, using Lemma (3.6) to get rid of the last term in the
above inequality and to estimate the terms containing G̃puiq, and taking the maximum over ` P J0, nK
we infer that

max
`PJ0,nK

E|z`|4 ` 1
2

E
n´1
ÿ

`“0

ˇ

ˇ

ˇ
|z``1|2 ´ |z`|2

ˇ

ˇ

ˇ

2
` E

n´1
ÿ

`“0

|z``1|2|z``1 ´ z`|2 ` 4
ν

α
kE

n
ÿ

`“1

|z`|4

ď |z0|4`Cpk2 ` kq
n
ÿ

`“1

E‖u`‖4
α ` Cpk2 ` kqE

n´1
ÿ

`“0

|z`|4 ` Ck
n´1
ÿ

`“0

E
´

r1` ‖u`‖2
αs|z`|2

¯

,

ď |z0|4`Cpk2 ` kq
n
ÿ

`“1

E‖u`‖4
α ` Cpk2 ` kqE

n´1
ÿ

`“0

|z`|4 ` CTE max
`PJ0,nK

r1` ‖z`‖4
αs,

(3.22)

which, after applying (3.11) and the discrete Gronwall inequality, implies

max
`PJ0,nK

E|z`|4 ď Cp1` ‖u0‖4
α ` |z0|4q. (3.23)

As in the case p “ 1, after dropping all, except the first term, positive terms in the LHS of (3.21),
taking the maximum over ` P J0, nK and the mathematical expectation, and utilizing Lemma 3.6 to
estimate the term containing |G̃puiq∆iη| we obtain

E max
`PJ0,nK

|z`|4 ď |z0|4`Cpk2 ` kq
n
ÿ

`“1

E‖u`‖4
α ` Cpk2 ` kqE

n´1
ÿ

`“0

|z`|4

`E max
`PJ0,nK

`´1
ÿ

i“0

|zi|2
´

G̃puiq∆iη, ui
¯

ď Cp1` ‖uo‖4 ` |z0|4q ` E max
`PJ0,nK

`´1
ÿ

i“0

|zi|2
´

G̃puiq∆iη, ui
¯

(3.24)

Here we used (3.11) and (3.23) to derive the last line. The last term in the last line is estimated by
means of the Burkholder-Davis-Gundy inequality after considering the sum as a stochastic integral
with piecewise constant integrand:

E max
`PJ0,nK

`´1
ÿ

i“0

|zi|2
´

G̃puiq∆iη, ui
¯

ď CE

˜

n´1
ÿ

`“0

|z`|4|G̃pu`q∆lη|2|z`|2
¸

1
2

(3.25)

ď
1
2

E max
`PJ0nK

|z`|4 ` CkE
n´1
ÿ

`“0

´

E‖u`‖4
α ` |z`|4

¯

(3.26)

ď
1
2

E max
`PJ0nK

|z`|4 ` Cp1` ‖u0‖4
α ` |z0|4q, (3.27)

where the Cauchy inequality, Lemma 3.6 and the estimates (3.11) and (3.23) was used to obtain the
second and third line of the above chain of inequalities. With these last two chains of estimates we
derive that

E max
`PJ0,nK

|z`|4 ď Cp1` ‖u0|4α ` |z0|4q, (3.28)

which ends the proof of (3.12) for the case p “ 2.
As above, the beginning of the proof for the case p “ 3 consists in establishing an identity for

|zi`1|8. For this aim we infer from multiplying (3.20) by 2|zi`1|4, then applying (3.7) that

|zi`1|8 ´ |zi`1|8 `
∣∣∣|zi`1|4 ´ |zi|4

∣∣∣2 ` 2|zi`1|4
∣∣∣|zi`1|2 ´ |zi|2|2

∣∣∣2
“ ´4|zi`1|6|zi`1 ´ zi|2 ´ 8

ν

α
k|zi`1|8 ` 2

4
ÿ

m“1

Jm,i|zi`1|4.
(3.29)
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With this identity at hand we can use similar arguments as in the proof of the case p “ 2 to first derive
a uniform estimate for max`PJ0,nK E|z`|8, and then a uniform estimate for E max`PJ0,nK|z`|8 which with
(3.18) yields (3.12). We omit the detail and remaining part of the proof since the calculations, although
long and tedious, are quite similar to the case p “ 2.

We also need the following results.

Proposition 3.8. There exists a constant C ą 0 such that for any ` P J0, n´ 1K, we have

kE
n´
ÿ̀

j“0

}uj`` ´ uj}4α ď Ct2
`

ˆ

ν4

α4 ` 1
˙

, (3.30)

kE
n´
ÿ̀

j“0

}zj`` ´ zj}4

W´1, 4
3 pOq

ď Ct2
`

ˆ

ν4

α4 ` 1
˙

k2. (3.31)

Proof. As in the statement of the proposition, the proof will be divided in two parts.

(i) To start with the proof of (3.30) we recall that for any v P V, ui`1 satisfies

ppui`1 ´ ui, vqqα ` νkppui`1, vqq ` kpzi ˆ ui`1, vq “ pGpuiq∆iη, vq. (3.32)

Summing (3.32) from i “ j to i “ j` `´ 1 gives

1
k
ppuj`` ´ uj, vqqα ´ ν

j``´1
ÿ

i“j

”

ppui`1, vqq ` pzi ˆ ui`1, vq
ı

“
1
k

j``´1
ÿ

i“j

pGpuiq∆iη, vq.

By taking v “ uj`` ´ uj in the above identity, then raising to the power 2 the resulting equation and
summing from j “ 0 to j “ n´ `, and using (3.8) we obtain

k
n´
ÿ̀

j“0

}uj`` ´ uj}4α ď Ck3
n´
ÿ̀

j“0

»

—

–

∣∣∣∣∣∣
j``´1
ÿ

i“j

νppui`1, uj`` ´ ujqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

`

∣∣∣∣∣∣
j``´1
ÿ

i“j

pzi ˆ ui`1, uj`` ´ ujq

∣∣∣∣∣∣
2
fi

ffi

fl

`Ck
n´
ÿ̀

j“0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j``´1
ÿ

i“j

pGpuiq∆iη, uj`` ´ ujq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď Cpk3
n´
ÿ̀

j“0

pIj,1 ` Ij,2q ` Cpk
n´
ÿ̀

j“0

Ij,3.

(3.33)

Thus, in order to prove (3.30) we will successively estimate the terms in the right hand side of (3.33).
From the Cauchy-Schwarz, the inequality (2.2), the Hölder inequalities along with the Cauchy-Young
inequality with ε ą 0 we obtain

k3E
n´
ÿ̀

j“0

Ij,1 ďk3`
ν2

α2 E
n´
ÿ̀

j“0

j``´1
ÿ

i“j

}ui`1}2α}u
j`` ´ uj}2α (3.34)

ďk4`2Cε
ν4

α4 E
n´
ÿ̀

j“0

j``´1
ÿ

i“j

}ui`1}4α ` k2`εE
n´
ÿ̀

j“0

}uj`` ´ uj}4α,

ďt3
`CεT

ν4

α4 E max
jPJ0,nK

}uj}4α ` εTkE
n´
ÿ̀

j“0

}uj`` ´ uj}4α. (3.35)
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To estimate the second term involving the cross-product of zi and ui`1, we use the Hölder inequality,
the Sobolev embedding V Ă L4pOq, and the Cauchy inequality with ε ą 0, and we obtain

k3E
n´
ÿ̀

j“0

Ij,2 ďk3`E

¨

˝

n´
ÿ̀

j“0

}ui`1}2L4pOq}u
j`` ´ uj}2L4pOq|z

i|2
˛

‚

ďCk3`E

¨

˝

n´
ÿ̀

j“0

}ui`1}2α}u
j`` ´ uj}2α|z

i|2
˛

‚

ďCεk4`2E
n´
ÿ̀

j“0

j``´1
ÿ

i“j

}ui`1}4α|z
i|4 ` εk2`

n´
ÿ̀

j“0

}uj`` ´ uj}4α (3.36)

ďCεt3
`TE

˜

max
iPJ0,nK

r|zi|4}ui}4αs

¸

` εTkE
n´
ÿ̀

j“0

}uj`` ´ uj}4α. (3.37)

The following chain of inequalities can be checked using the Cauchy-Schwarz and the Hölder in-
equalities along with Remark 2.1(a), (2.4) and the Cauchy-Young inequality with ε ą 0:

kE
n´
ÿ̀

j“0

Ij,3 ďCk
n´
ÿ̀

j“0

¨

˚

˝

E|uj`` ´ uj|4E

»

–

j``´1
ÿ

i“j

}Gpuiq}L pH ,Hq}∆iη}H

fi

fl

4
˛

‹

‚

1
2

ďCk
n´
ÿ̀

j“0

´

E|uj`` ´ uj|4
¯

1
2

¨

˝`E
j``´1
ÿ

i“j

p1` }ui}4αq}∆iη}
4
H

˛

‚

1
2

ď

˜

C`2 max
iPJ0,nK

”

Ep1` }ui}4αq
2E}∆iη}

8
H

ı
1
2

¸
1
2

k
n´
ÿ̀

j“0

´

E|uj`` ´ uj|4
¯

1
2

ďCεCk2`2 max
iPJ0,nK

”

Ep1` }ui}4αq
2
ı

1
2
` εkTE

n´
ÿ̀

j“0

}uj`` ´ uj}4α.

From the last line we readily derive that

kE
n´
ÿ̀

j“0

Ij,3 ď Cεt2
`p1` E max

iPJ0,nK
}ui}8αq ` εkTE

n´
ÿ̀

j“0

}uj`` ´ uj}4α (3.38)

Summing up, we can derive from the estimates (3.33), (3.35), (3.37) and (3.38) that

p1´ 4εTqkE
n´
ÿ̀

j“0

}uj`` ´ uj}4α ď Ct2
`

ˆ

ν4

α4 ` 1
˙

˜

E max
iPJ0,nK

}ui}8 ` E max
iPJ0,nK

|zi|8

¸

. (3.39)

Substituting ε “ 1
8T in the above inequality and plugging (3.11) and (3.12) in the resulting equations

yields (3.30).

(ii) Now, we proceed to the proof of (3.31). Summing (3.13) from i “ j to i “ j` `´ 1 implies that for
any φ P W1,4

0 pOq

pz``j ´ zj, φq “ ´k
j``´1
ÿ

i“j

”ν

α
pzi`1 ´ rot ui`1, φq ´ pui`1 ¨∇φ, zi`1q

ı

`

j``´1
ÿ

i“j

pG̃puiq∆iη, φq,
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where, as in the proof of (3.12), we have set G̃p¨q “ rot Gp¨q. From this identity and (3.8) we readily
infer that

kE
n´
ÿ̀

j“0

}z``j ´ zj}4X˚ ď Cpk5E
n´
ÿ̀

j“0

sup
φPX;}φ}Xď1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j``´1
ÿ

i“j

”ν

α
pzi`1 ´ rot ui`1, φq ` pui`1 ¨∇zi`1, φq

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4

`kE
n´
ÿ̀

j“0

sup
φPX;}φ}Xď1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j``´1
ÿ

i“j

pG̃puiq∆iη, φq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4

,

(3.40)

where X :“ W1,4
0 pOq. We easily infer from the Cauchy-Schwarz inequality, the Hölder inequality for

counting measure and the Sobolev embedding W1,4
0 pOq Ă L2pOq that

k5E sup
φPX;}φ}Xď1

n´
ÿ̀

j“0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j``´1
ÿ

i“j

”ν

α
pzi`1 ´ rot ui`1, φq

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4

ď
ν4

α4 k5`E sup
φPX;}φ}Xď1

n´
ÿ̀

j“0

j``´1
ÿ

i“j

p|zi`1|4 ` | rot ui`1|4q|φ|4X

ď
ν4

α4 t2
`Tk2Ermax

iPJ0,nK
p|zi|4 ` }ui}4αqs. (3.41)

A successive applications of Hölder’s inequality yields

k5E
n´
ÿ̀

j“0

sup
φPX;}φ}Xď1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j``´1
ÿ

i“j

pui`1 ¨∇zi`1, φq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4

ď Ck4t`E sup
φPX;}φ}Xď1

n´
ÿ̀

j“0

j``´1
ÿ

i“j

}ui`1}4L4pOq}∇φ}4L4pOq|z
i`1|4

ď CTk2t2
`

˜

E max
iPJ0,nK

|zi|8E max
iPJ0,nK

}ui}8α

¸
1
2

. (3.42)

For the stochastic perturbation we have

kE
n´
ÿ̀

j“0

sup
φPX;}φ}Xď1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j``´1
ÿ

i“j

pG̃puiq∆iη, φq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4

(3.43)

ď Ct`E sup
φPX;}φ}Xď1

n´
ÿ̀

j“0

j``´1
ÿ

i“j

‖G̃puiq}4L pH ,L2pOqq}∆iη}
4
H |φ|4

ď Ct`
n´
ÿ̀

j“0

j``´1
ÿ

i“j

´

E‖G̃puiq}8L pH ,L2pOqqE}∆iη}
8
H

¯
1
2

ď Ct2
`T

˜

E max
iPJ0,nK

}ui}8α

¸
1
2

. (3.44)

Thus, by substituting (3.41), (3.42) and (3.44) into (3.40) we obtain

kE
n´
ÿ̀

j“0

}z``j ´ zj}4X˚ ď Ct2
`k2

ˆ

ν4

α4 ` 1
˙

˜

E max
iPJ0,nK

|zi|16 ` E max
iPJ0,nK

}ui}16
α

¸

,

which along with (3.11) and (3.12) implies (3.31).
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3.3. Construction of the approximating solution and tightness
In this subsection we will study the compactness of some interpolants of the sequences tu`; ` P

J0, nKu and tz`; ` P J0, nKu. More precisely, associated to tu`; ` P J0, nKu we define the piecewise
affine, globally continuous un : r0, Ts Ñ V by

unptq “
n´1
ÿ

`“0

˜

u` `
u``1 ´ u`

k
pt´ t`q

¸

1rt`,t``1s
ptq, t P r0, Ts.

We also introduce

ǔnptq “
n´1
ÿ

`“0

u`1rt`,t``1q
ptq, t P r0, Ts,

and

ûnptq “
n´1
ÿ

`“0

u``11pt`,t``1s
ptq, t P r0, Ts.

Analogously, we define

ynptq “
n´1
ÿ

`“0

˜

z` `
z``1 ´ z`

k
pt´ t`q

¸

1rt`,t``1s
ptq, t P r0, Ts,

y̌nptq “
n´1
ÿ

`“0

z`1rt`,t``1q
ptq, t P r0, Ts,

ŷnptq “
n´1
ÿ

`“0

z``11pt`,t``1s
ptq, t P r0, Ts,

where z0 :“ z0 “ rotpu0 ´ α∆u0q. Observe that un, ûn, yn and ŷn are not F-adapted, but ǔn, y̌n are.
We formulate several estimates for un, ûn, yn and ŷn in the following proposition.

Proposition 3.9. For any p P J1, 3K and α ą 0 there exists a constant C ą 0 such that for any fixed ν ě 0,

sup
nPN

E sup
tPr0,Ts

r}unptq}2
p

α ` }ûnptq}2
p

α ` }ǔnptq}2
p

α s ď Cp}u0}
2p
` 1q, (3.45)

sup
nPN

E sup
tPr0,Ts

r}ynptq}2
p

α ` }ŷnptq}2
p

α ` }y̌nptq}2
p

α s ď Cp|z0|2
p
` ‖u0‖2p

α ` 1q. (3.46)

Proof. The present proposition is a corollary of Proposition 3.7

Proposition 3.10. In this proposition we extend the functions un and yn, n P N, by zero outside r0, Ts. Then,
for any α ą 0 there exists a constant C ą 0 such that for any ν ě 0 and δ ą 0,

sup
nPN

E
ż T´δ

0
}unpt` δq ´ unptq}4V ď Cδ2, (3.47)

sup
nPN

E
ż T´δ

0
}ynpt` δq ´ ynptq}4

W´1, 4
3 pOq

ď Cδ2. (3.48)

Proof. Noticing that, for any θ ą 0, kθ ă Tθ , the estimates in the present proposition follows from
(3.30) and (3.31) and [49, Lemma 3.2].

The following convergences will also play a central role in the remaining part of our paper.

Proposition 3.11. We have

lim
nÑ8

E
ż T

0
}unptq ´ ǔnptq}2αdt` lim

nÑ8
E
ż T

0
}unptq ´ ûnptq}2αdt “ 0, (3.49)

lim
nÑ8

E
ż T

0
|ynptq ´ y̌nptq|2dt` lim

nÑ8
E
ż T

0
}ynptq ´ ŷnptq|2αdt “ 0. (3.50)
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Proof. The convergences (3.49) and (3.50) can be proved in the same fashion and we only prove the
first one. Also, notice that the arguments of the proof for the convergences of the two terms in (3.49)
are very similar. Hence, to fix the idea we will only establish

lim
nÑ8

E
ż T

0
}unptq ´ ûptq}2αdt “ 0. (3.51)

To this end, we use the definition of un and ûn to derive that

E
ż T

0
}unptq ´ ûnptq}2αdt “E

n´1
ÿ

`“0

ż t``1

t`
}unptq ´ ûnptq}2αdt

ď
C
k2 E

n´1
ÿ

`“1

ż t``1

t`
pt´ t`q2}u` ´ u``1}2α

` CE
n´1
ÿ

`“1

ż t``1

t`
}u` ´ u``1}2αdt.

From the last line and (3.11) we infer that

E
ż T

0
}unptq ´ ûptq}2αdt ď C

T
n

,

which, upon passing to the limit, implies (3.51).

We close this subsection by showing that un and yn is in fact a solution of the integral form of the
system (1.5) up to some small error terms. We mainly prove the following proposition.

Proposition 3.12. Let n P N, t P r0, Ts, `n “ mint` P J0, nK; t P rt`, t``1su and τn “ `nk. For each n P N,
the functions un and yn satisfies

ppunptq, vqqα `
ż t

0
rppûnpsq, vqq ` py̌npsq ˆ ûnpsq, vqsds “

ż t

0
pGpǔnpsqqdWpsq, vq

`ppu0, vqqα ` pEnptq, vq,
(3.52)

pynptq, φq `
ν

α

ż t

0
pŷnpsq ´ ûnpsq ¨∇ŷnpsq, φqds “pz0, φq `

ν

α

ż t

0
prot ûnpsq, φqds

`

ż t

0
pG̃pǔnpsqqdWpsq, φq ` pẼnptq, φq,

(3.53)

for any t P r0, Ts, v P V and φ P W1,4
0 pOq. Here, we have put G̃p¨q :“ rot Gp¨q and

Enp¨q :“
ż τn`1

t
GpǔnpsqqdWpsq ´

k^ t
k

ż k

0
GpǔnpsqqdWpsq

´

ż t

0
1r0,kspsq r∆ûnpsq ` y̌npsq ˆ ûnpsqs ds,

Ẽnp¨q :“´
ż t

0
1r0,kspsqr

ν

α
prot ûnpsq ´ ŷnpsqq ´ ûnpsq ¨∇ŷnpsqsds

`

ż τn`1

t
G̃pǔnpsqqdWpsq ´

k^ t
k

ż k

0
G̃pǔnpsqqdWpsq.

Proof. The proof of this proposition is quite easy and in following the spirit of [52] will just give a
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rather sketchy proof of it. Using the definition of un and (3.1) we have

ppunptq, vqqα “ppu0, vqqα `
ż t

0
pp
Bun

Bt
psq, vqqαds,

“ppu0, vqq ´
n´1
ÿ

`“0

ż t

0
rνppu``1, vqq ` pz` ˆ u``1, vqs1rt`,t``1s

psqds

`
1
k

n´1
ÿ

`“1

ż t

0
pGpu`q∆`η1rt`,t``1s

, vqds`
ż t

0
rνppu1, vqq ` pz0 ˆ u1, vqs1r0,kspsqds.

Thanks to the definition of ûn, y̌n, we obtain

ppunptq, vqqα “ ´
ż t

0
rppûnpsq, vqq ` py̌npsq ˆ ûnpsq, vqsds`

1
k

n´1
ÿ

`“1

ż t

0
pGpu`q∆`η1rt`,t``1s

, vqds

`

ż t

0
rppûnpsq, vqq ` py̌npsq ˆ ûnpsq, vqs1r0,kspsqds` ppu0, vqq.

(3.54)

Now, observe that

1
k

n´1
ÿ

`“1

ż t

0
pGpu`q∆`η1rt`,t``1s

, vqds “
1
k

`n
ÿ

`“0

ż t

0

ˆ
ż t``1^t

t`
Gpu`qdWprq, v

˙

1rt`,t``1s
psqds

`
1
k

ż t

0

˜

ż τn`1

t
Gpu`nqdWprq, v

¸

1rt`,t``1s
psqds

´
1
k

ż t

0

˜

ż k

0
Gpu0qdWprq, v

¸

1r0,kspsqds,

from which and the definition of ǔn we infer that

1
k

n´1
ÿ

`“1

ż t

0
pGpu`q∆`η1rt`,t``1s

, vqds “
`n
ÿ

`“0

ˆ
ż t``1^t

t`
GpǔnprqqdWprq, v

˙

`

ˆ
ż τn

t
GpǔnprqqdWprq, v

˙

´
t^ k

k

˜

ż k

0
GpǔnprqqdWprq, v

¸

.

Substituting the last identity into (3.54) yields (3.52).
The proof of (3.53) is very similar to the argument above, thus we omit it.

Now we proceed to the tightness of the functions we defined above. To this end we define addi-
tional functional spaces which are very important for our study.
Let Y be a Banach space, γ P p0, 1q and p P r1,8q. The Nikolskii space Nγ,p

T :“ Nγ,pp0, T; Yq is the
space of functions f P Lpp0, T; Yq such that

} f }Nγ,p
T

:“ sup
δą0

δ´γ} f p¨ ` δq ´ f p¨q}Lpp0,T´δ;Yq ă 8.

The fractional Sobolev space Wγ,p
T :“ Wγ,pp0, T; Yq is the space of functions f P Lpp0, T; Yq such that

} f }Wγ,p
T

:“

˜

ż T

0

ż T

0

ˆ

} f prq ´ f psq}Y
|r´ s|γ

˙p drds
|r´ s|

¸
1
p

.

From [63, Section 13, Corollary 24] we derive the following embedding, which plays a important role
in the sequel,

Nγ,p
T Ă Wβ,p

T , for all γ ą β. (3.55)

We now recall the following lemma.
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Lemma 3.13. Let Y1, Y2 be two Banach spaces such that the embedding Y1 Ă Y2 is compact. Let γ P p0, 1q
and p P r1,8q. Then, the space L1p0, T; Y1q XNγ,pp0, T; Υ2q is relatively compact in Lpp0, T; Y2q.

Proof. Note that one has, uniformly in f from the unit ball of Nγ,pp0, T; Υ2q,

lim
δÑ0

} f p¨ ` δq ´ f p¨q}Lpp0,T´δ;Y2q
“ 0.

Thus, the conclusion of the lemma follows from this observation and the applicability of [64, Section
6, Theorem 3].

We also recall the following result which is taken from [65, Theorem 2.2].

Lemma 3.14. Let Y1, Y2 be two Banach spaces satisfying the assumptions of Lemma 3.13, and γ P p0, 1q,
p ą 1 such that γp ą 1. Then, the embedding Wγ,pp0, T; Y1q Ă Cpr0, Ts; Y2q is compact.

Now, we can proceed to the heart of the subject in this subsection. For this aim, for a Polish
space K we denote by MpKq the space of probability measures on pK, BpKqqwhere BpKq is the Borel
σ-algebra of K. We also set

UT :“ Cpr0, Ts; L4pOqq,

ŨT :“ L2p0, T; L4pOqq,

ZT :“ Cpr0, Ts; W´1, 4
3 pOqq,

Z̃T :“ L2p0, T; W´1, 4
3 pOqq,

WT :“ Cpr0, Ts; H q.

Finally, we define a sequence of H -valued Wiener processes tηn; n P Nu defined by

ηn “ η, @n P N.

The family of laws of tηn; n P Nu on WT is denoted by tγn; n P Nu. The following result is of the
essence for the existence result in Proposition 2.6.

Proposition 3.15. Let us denote by tµn; n P Nu (reps. tρn; n P Nu) the family of laws of tun; n P Nu

(resp. tyn; n P Nu) on UT (resp. on ZT). Then, the family tpµn, ρn, γnq; n P Nu is tight on UT ˆ Zt ˆWT .

Proof. Because a cartesian product of finite compact sets is compact, it is sufficient to consider the
tightness of each component of pµn, ρn, γnq. Hence, we firstly prove that the family tµn; n P Nu

is tight on UT . From (3.45) and (3.47) and the Sobolev embedding V Ă L4pOq we infer that the
family tun; n P Nu forms an uniformly bounded subset of N

1
2 ,4p0, T; L4pOqq X L8p0, T; Vq. Thanks

to (3.55), the family tun; n P Nu also forms an uniformly bounded subset of Wβ,4p0, T; L4pOqq for any
β P p 1

4 , 1
2 q. Due to these remarks and the compact embeddings V Ă L4pOq, the desired tightness of

the family tµn; n P Nu on UT follows from Lemma 3.14.
Secondly, thanks to (3.46), (3.48) and the compact embedding L2pOq Ă W´1, 4

3 pOq, we can use the
same argument as above to establish the tightness of tρn; n P Nu on ZT .

Finally, endowed with the uniform convergence, Cpr0, Ts; H q is a Polish space, then it follows
from [66, Theorem 6.8] that the space of probability measure on Cpr0, Ts; H q endowed with the
Prohorov’s metric is a separable and complete metric space. By construction the family of probability
laws tγn; n P Nu is reduced to one element which is the law of η and belongs to MpCpr0, Ts; H qq.
Therefore, invoking [67, Chapter II, Theorem 3.2] we easily deduce that the family tγn; n P Nu is
tight on MpCp0, T; H qq.

Remark 3.16. Due to the continuous embeddings UT ˆ ZT ˆWT Ă ŨT ˆ Z̃T ˆWT and UT ˆ ZT ˆ

WT Ă L2p0, T; V˚q ˆ Z̃T ˆWT , the family tpµn, ρn, γnq; n P Nu is also tight on ŨT ˆ Z̃T ˆWT and on
L2p0, T; V˚q ˆ Z̃T ˆWT . One can also use Lemma 3.13 to prove these claims.
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4. Passage to the Limit and the Proof of Theorem 2.6

This section contains the proof of the existence of a weak martingale solution to the problem (1.5).
By Proposition 3.15 and the Prokhorov Theorem in the version given in [66, Chapter 1, Theorem

3.1], we can find a subsequence of n, still denoted by n, such that the family of laws tpµn, ρn, γnq; n P
Nuweakly converge to a probability measure pµ, ρ, γq on UT ˆ ZT ˆWT . Thanks to Remark 3.16, [66,
Chapter 1, Theorem 3.1], (3.49) and (3.50), we also infer that the family of laws of tpûn, ŷnq; n P Nu

and tpǔn, y̌nq; n P Nu, denoted respectively by tpµ̂n, ρ̂nq; n P Nu and tpµ̌n, ρ̌nq; n P Nu, converge to
pµ, ρq on ŨT ˆ Z̃T .

Proposition 4.1. (i) There exist a new probability space pΩ, F , Pq on which one can find a sequence of UT ˆ

ZT ˆWT-valued random variables (r.v.) tpun, zn, Wnq; n P Nu such that its family of laws on UT ˆZT ˆWT
is equal to tpµn, ρn, γnq; n P Nu. On pΩ, F , Pq one can also find a UT ˆ ZT ˆWT-valued r.v. pu, z, Wq
such that

pun, zn, Wnq Ñ pu, z, Wq in UT ˆ ZT ˆWT P a.s.. (4.1)

(ii) There exists two sequences of ŨT ˆ Z̃T-valued r.v. tpûn, ẑnq; n P Nu, tpǔn, žnq; n P Nu, and two
ŨT ˆ Z̃T-valued r.v. pû, ẑq, pǔ, žq defined on pΩ, F , Pq such that we have the following equalities of laws and
convergences

pûn, ẑnq
law
“pûn, ŷnq on ŨT ˆ Z̃T , (4.2)

pǔn, žnq
law
“pǔn, y̌nq on ŨT ˆ Z̃T , (4.3)

pûn, ẑnq Ñpû, ẑq in ŨT ˆ Z̃T P a.s., (4.4)

pǔn, žnq Ñpǔ, žq in ŨT ˆ Z̃T P a.s.. (4.5)

Proof. This result follows from Skorokhod’s representation theorem, see, for instance, [66, Chapter 1,
Theorem 6.7].

Remark 4.2. Because of Remark 3.16 we can assume that the equalities of laws above also hold with
UT and ŨT replaced by L2p0, T; V˚q. Since, by [68, Theorem 1.1 of Chapter I], the Borel subsets of
Cpr0, Ts; Vˆ L2pOqq are Borel subsets of UT and, by construction,

P
´

pun, ynq P Cpr0, Ts; Vˆ L2pOqq,@n P N
¯

“ 1,

we can and will assume that tpun, znq; n P Nu Ă Cpr0, Ts; Vˆ L2pOqq and that its family of laws on
Cpr0, Ts; Vˆ L2pOqq is equal to that of tpun, ynq; n P Nu. Analogously, the same assumption will be
imposed for the sequences tpûn, ẑnq; n P Nu and tpǔn, žnq; n P Nu.

The above remark and proposition will be used to derive the following estimates.

Proposition 4.3. For any p P J1, 3K and α ą 0 there exists a constant C ą 0 such that for any fixed ν ě 0,

sup
nPN

E sup
tPr0,Ts

r}unptq}2
p

α ` }ûnptq}2
p

α ` }ǔnptq}2
p

α s ď Cp}u0}
2p
` 1q, (4.6)

sup
nPN

E sup
tPr0,Ts

r|znptq|2
p
` |ẑnptq|2

p
` |žnptq|2

p
s ď Cp|z0|

2p
` ‖u0‖2p

α ` 1q, (4.7)

lim
nÑ8

E

ż T

0
}unptq ´ ǔnptq}2αdt` lim

nÑ8
E

ż T

0
}unptq ´ ûnptq}2αdt “ 0, (4.8)

lim
nÑ8

E

ż T

0
|znptq ´ žnptq|2dt` lim

nÑ8
E

ż T

0
|znptq ´ ẑnptq|2dt “ 0. (4.9)

Furthermore, for any p P J1, 3K there exists constant C ą 0 such that

E sup
tPr0,Ts

r}uptq}2
p

α ` }ûptq}
2p

α ` }ǔptq}
2p

α s ď Cp}u0}
2p

α ` 1q, (4.10)

E sup
tPr0,Ts

r|zptq|2
p
` |ẑptq|2

p
` |žptq|2

p
s ď Cp|z0|

2p
` }u0}

2p

α ` 1q. (4.11)

26



Proof. The estimates and convergences (4.6)-(4.9) follows from the equality of laws stated in Remark
4.2 and the estimate (3.45).

Thanks to (4.6) and (4.7), the estimates (4.10) and (4.11) can be proved by arguing exactly as in
[69, Proof of (4.12), page 20].

We will also exploit the results in Proposition 4.1 and Remark 4.2 to derive the following two
important propositions. In the first one, we will show that the limit process W defines a H -valued
Wiener process with covariance Q. In the second one, we will prove that for each n P N the stochas-
tic processes pun, znq, pûn, ẑnq and pǔn, žnq satisfy a system of equations very similar to the original
problem (1.5) up to small errors which converge to zero when the time step k approaches zero.

Proposition 4.4. The stochastic process tWptq; t P r0, Tsu is a H -valued Wiener process on pΩ, F , Pq

with covariance Q. Furthermore, if 0 ď s ă t ď T then the increments Wptq ´Wpsq are independent of the
σ-algebra generated by puprq, zprq, Wprqq for r P r0, ss.

Proof. We closely follow [69, Lemma 5.2] and [70, Proposition 3.11]. By Proposition 4.1 the family
of laws of tpǔn, žn, Wnq; n P Nu are equal to those of tpǔn, y̌n, ηq; n P Nu on ŨT ˆ Z̃T ˆWT and,
by construction, η is a H -valued Wiener process with covariance Q. Hence it is easy to check that
tWn; n P Nu is a sequence of Wiener processes taking values in H . Moreover, for any s, t P r0, Ts
such that 0 ď s ă t ď T, the increments Wnptq ´Wnpsq are independent of the σ-algebra generated
by pǔnprq, žnprq, Wnprqq, for r P r0, ss. Now, by arguing exactly as in [70, Proposition 3.11] we can
show that W satisfies the Lévy characterization of the finite dimensional distribution of a H -valued
Wiener process with covariance Q; that is, for any partition ΠN “ t0 “ s0 ă s1 ă ¨ ¨ ¨ ă sN “ Tu of
r0, Ts and h P H , we have

E

„

ei
řN

`“1 tjxWps`q´Wps`´1q,hyH


“ e´
1
2
řN

`“1 t2
`ps`´s`´1qxQh,hyH ,

where here i denotes the complex number satisfying i2 “ ´1.
Next we prove that the increments Wptq ´Wpsq, 0 ď s ă t ď T, are independent of the σ-algebra

generated by puprq, zprq, Wprqq for any r P r0, ss. To this end, let us consider tΦ`; ` “ 1, . . . , Nu Ă
CbpL4pOq ˆW´1, 4

3 pOqq and tΨ`; ` “ 1, . . . , Nu Ă CbpH q, where

CbpBq “ tΦ : B Ñ R, Φ is continuous and boundedu,

for any Banach space B. Let also 0 ď r1 ă ¨ ¨ ¨ ă rN ď s ă t ď T, Ψ P CbpH q. For each n P N, there
holds

E

„ˆ N
ź

`“1

Φ`pǔnpr`q, žnpr`qq
N
ź

`“1

Ψ`pWnpr`qq
˙

ˆΨpWnptq ´Wnpsqq


“ E

„ N
ź

`“1

Φ`pǔnpr`q, žnpr`qq
N
ź

`“1

Ψ`pWnpr`qq


ˆE pΨpWmptq ´Wmpsqqq .

Thanks to (4.1), (4.5), the Lebesgue Dominated Convergence Theorem and Remark 4.7, the same
identity is true with pu, z, Wq in place of pǔn, žn, Wnq.

To rigorously deal with all the stochastic integrals below we define the following filtrations: let
N be the set of null sets of F and for any t ě 0 and n P N, let

F̌ n
t :“ σ

ˆ

σ

ˆ

pǔnpsq, žnpsq, Wnpsqq; s ď t
˙

YN
˙

,

Ft :“ σ

ˆ

σ
´

pupsq, zpsq, Wpsqq; s ď t
¯

YN
˙

,
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be the completion of the natural filtration generated by pǔn, žn, Wnq and pu, z, Wq, respectively. Note
that from the proof of Proposition 4.4 we see that W (resp. Wn) is a H -valued Wiener process adapted
to the filtration F :“ tFt : t P r0, Tsu (resp. F̌n :“ tF̌ n

t : t P r0, Tsu). The H-valued stochastic processes
ǔn and u are adapted with respect to F and F̌n as well. Thus, they are also predictable in H because
their sample paths are left-continuous in H. Hence, the existence of the following stochastic integrals
is justified:

M̃np¨q :“
ż ¨

0
GpǔnpsqqdWpsq,

Ñnp¨q :“
ż ¨

0
rot GpǔnpsqqdWpsq,

M̃p¨q :“
ż ¨

0
GpupsqqdWpsq,

Ñp¨q :“
ż ¨

0
rot GpupsqqdWpsq.

For fixed n P N, let also Mn, M P L2pΩˆ r0, Ts; V˚q and Nn, N P L2pΩˆ r0, Ts; W´1, 4
3 pOqq be four

stochastic processes defined by

pMnptq, vq :“ ppunptq, vqqα ´ ppu0, vqqα `
ż t

0
rνppûnpsq, vqq ` pžnpsq ˆ ûnpsq, vqs ds,

pNnptq, φq :“ pznptq, φq ´ pz0, φq `

ż t

0

”ν

α
pẑnpsq ´ rot ûnpsq, φq ´ pûnpsq ¨∇φ, ẑnpsqq

ı

ds,

pMptq, vq :“ ppuptq, vqqα ´ ppu0, vqqα `
ż t

0
rνppupsq, vqq ` pzpsq ˆ upsq, vqs ds,

pNptq, φq :“ pzptq, φq ´ pz0, φq `

ż t

0

”ν

α
pzpsq ´ rot upsq, φq ´ pupsq ¨∇φ, zpsqq

ı

ds,

for any t P r0, Ts, v P V and φ P W1,4
0 pOq.

In the next two lemma we will show that on pΩ, F , Pq the stochastic processes pun, znq, pûn, ẑnq

and pǔn, žnq satisfies the integral and weak form of (1.5) up to small error terms En and Ẽn.

Proposition 4.5. The following identities holds P-a.s

xMnptq, vy ´ pEnptq, vq “ pM̃nptq, vq (4.12)

xNnptq, φy ´ pẼnptq, φq “ pÑnptq, φq, (4.13)

for any t P r0, Ts, v P V and φ P W1,4
0 pOq. Here we put G̃p¨q :“ rot Gp¨q and

Enp¨q :“
ż τn`1

¨

GpǔnpsqqdWpsq ´
k^ ¨

k

ż k

0
GpǔnpsqqdWpsq

`

ż ¨

0
1r0,kspsq r´ν∆ûnpsq ` žnpsq ˆ ûnpsqs ds,

Ẽnp¨q :“´
ż ¨

0
1r0,kspsq

”ν

α
prot ûnpsq ´ ẑnpsqq ´ ûnpsq ¨∇ẑnpsq

ı

ds

`

ż τn`1

¨

G̃pǔnpsqqdWpsq ´
k^ ¨

k

ż k

0
G̃pǔnpsqqdWpsq.

Proof. The proof of the proposition follows the exact same lines as the proof of [35, Theorem 4.9],
thus we omit it.
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We will justify in the next lemma the alluded term small error terms by showing that En and Ẽn
become very small when performing a time grid refinement, that is, when n takes large values.

Lemma 4.6. We have

lim
nÑ8

E}En}
2
L2p0,T;V˚q “ 0, (4.14)

lim
nÑ8

E}Ẽn}
2

L2p0,T;W´1, 4
3 pOqq

“ 0. (4.15)

Proof. We will only prove the lemma for ν “ 0 because the treatment of the case ν ą 0 differs to the
former case up to the study of linear terms which are easy to deal with.

First, notice that thanks to (4.6) and (4.7) it is a straightforward task to check that

E

ż T

0
}žnptq ˆ ûnptq}2V˚dt ď

˜

E sup
tPr0,Ts

|žnptq|4
¸

1
2
˜

E sup
tPr0,Ts

}û}4α

¸
1
2

ă C, (4.16)

E

ż T

0
}ûnptq ¨∇ẑnptq}2

W´1, 4
3 pOq

dt ď E sup
tPr0,Ts

|žnptq|4E sup
tPr0,Ts

}û}4α ă C. (4.17)

Thanks to (4.16), we easily infer that

E

ż T

0

›

›

›

›

›

ż t^k

0
ržnpsq ˆ ûnpsqs ds

›

›

›

›

›

2

V˚
dt ď E sup

tPr0,Ts
|žnptq|4E sup

tPr0,Ts
}û}4α

ż T

0
pt^ kq2dt

ď C

˜

ż k

0
pt^ kq2dt`

ż T

k
pt^ kq2dt

¸

ď Cpk3 ` k2q.

Now we proceed to the derivation of some estimates for the stochastic integrals. Making use of the
Fubini theorem, the Itô isometry we obtain

E

ż T

0

›

›

›

›

›

ż τn`1

t
GpǔnpsqqdWnpsq

›

›

›

›

›

2

α

dt “ Tr Q
ż T

0
E

ż τn`1

t
}Gpǔnpsqq}2L pH ,Vqdt.

Since, by definition, amongst the subdivision intervals of r0, Ts, rτn, τn ` 1s is the first interval con-
taining t, we infer, from Assumption (G) and the estimate (4.6), that

E

ż T

0

›

›

›

›

›

ż τn`1

t
GpǔnpsqqdWnpsq

›

›

›

›

›

2

α

dt ď
ż T

0
E

ż τn`1

τn

}Gpǔnpsqq}2L pH ,Vqdt

ď CTkE sup
tPr0,Ts

p1` }ǔn}
2q ď Ck.

Analogously,

E

ż T

0

›

›

›

›

›

t^ k
k

ż k

0
GpǔnpsqqdWnpsq

›

›

›

›

›

2

α

“ E

ż T

0

pt^ kq2

k2

˜

E

ż k

0
}Gpǔnpsqq}2L pH ,Vqds

¸

dt

ď CkE sup
tPr0,Ts

p1` }ǔn}
2q

«

ż k

0

pt^ kq2

k2 dt`
ż T

k

pt^ kq2

k2 dt

ff

ď Cpk2 ` kq.

Summing up, we have shown that

E}En}
2
L2p0,T;V˚q ď cpk3 ` k2 ` kq,
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from which we easily derive (4.14). Because of the similarity of the estimates (4.16), (4.17) and the
terms in the definition of En and Ẽn, the convergence (4.15) can be proved exactly by the same argu-
ment given above. Thus, we omit the proof of (4.15).

To complete the proof of the existence of solution we need to pass to the limit in the other terms
of (4.12) and (4.13). To this end, we will derive several convergences which are consequences of the
facts stated in Proposition 4.3. By (4.6) and (4.7) we can find a subsequence of n, still denoted by n,
such that for any p P r1, 8swe have the following weak convergences

pun, znq, pûn, ẑnq, pǔn, žnq á pu, zq, pû, ẑq, pǔ, žq in L2ppΩˆ r0, Ts; Vˆ L2pOqq. (4.18)

Due to (4.10) and (4.11) it is easy to see that the norm of pun, znq is uniformly integrable in L4pΩ, UT ˆ

ZT X Z̃Tq. Thus, it follows from the almost sure convergences stated in Proposition 4.1 and Vitali’s
Convergence Theorem that

lim
nÑ8

E sup
tPr0,Ts

}unptq ´ uptq}L4pOq “ 0, (4.19)

lim
nÑ8

E sup
tPr0,Ts

}znptq ´ zptq}
W´1, 4

3 pOq
“ 0. (4.20)

In the same way, we can show that

lim
nÑ8

E

ż t

0
}ûnptq ´ ûptq}2L4pOqdt` lim

nÑ8
E

ż t

0
}ǔnptq ´ ǔptq}2L4pOqdt “ 0, (4.21)

lim
nÑ8

E

ż t

0
}ẑnptq ´ ẑptq}2

W´1, 4
3 pOq

dt` lim
nÑ8

E

ż t

0
}žnptq ´ žptq}2

W´1, 4
3 pOq

dt “ 0. (4.22)

Remark 4.7. Note that (4.21) and (4.22) along with (4.8) and (4.9) enable us to make the following
identification

u “ û “ ǔ in L4pOq Pb λ a.e., (4.23)

z “ ẑ “ ž in W´1, 4
3 pOq Pb λ a.e.. (4.24)

where λ denotes the Lebesgue measure on r0, Ts.

For the nonlinear terms, we can find a subsequence of n, still denoted by n, such that

žn ˆ ûn á zˆ u in L2pΩˆ r0, Ts; V˚q, (4.25)

ûn ¨∇ẑn á u ¨∇z in L2pΩˆ r0, Ts; W´1, 4
3 pOqq. (4.26)

In fact, as a result of (4.16) and (4.17), the sequences tžn ˆ ûn; n P Nu and tûn ˆ ẑn; n P Nu are
bounded in L2pΩ ˆ r0, Ts; V˚q and L2pΩ ˆ r0, Ts; W´1, 4

3 pOqq, respectively. Therefore, by Eberlein-
Smulyan Theorem, see [71, Chapter 21, Proposition 21.23-(h)], there exists a subsequence of n, de-
noted in the same way as the original sequence, and two stochastic processes Γ P L2pΩˆ r0, Ts; V˚q
and Θ P L2pΩˆ r0, Ts; W´1, 4

3 pOqq such that

žn ˆ ûn á Γ in L2pΩˆ r0, Ts; V˚q,

ûn ¨∇ẑn á Θ in L2pΩˆ r0, Ts; W´1, 4
3 pOqq.

Thus, we need to identify Γ (resp. Θ) with zˆ u (resp. u ¨∇z). To this end, let D Ă L8pΩˆ r0, Ts; Vq
be a dense subset of L2pΩˆ r0, Ts; Vq. For any Φ P D, we have∣∣∣∣∣E

ż T

0
pžnptq ˆ ûnptq ´ zptq ˆ uptq, Φptqqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď CIn ` CIIn
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where

In :“

˜

E sup
tPr0,Ts

|žnptq|4
¸

1
4
˜

E sup
tPr0,Ts

}Φptq}4L4

¸
1
4
˜

E

ż T

0
}ûnptq ´ unptq}2L4 ` }unptq ´ uptq}2L4

¸

,

IIn :“

ˇ

ˇ

ˇ

ˇ

ˇ

E

ż T

0
pržnptq ´ zptqs ˆ uptq, Φptqqdt

ˇ

ˇ

ˇ

ˇ

ˇ

,

and, for the sake of simplicity, we have set L4 :“ L4pOq. Thanks to (4.7) and the strong convergence
(4.21), from a successive application of the Cauchy-Schwarz and Hölder inequalities we infer that

lim
nÑ8

In “ 0.

Let K :“ L2pΩ ˆ r0, Ts; L2pOqq ˆ L4pΩ; L8p0, T; Vqq ˆ L4pΩ; L8p0, T; Vqq. Then, we can argue as in
the proof of (3.4) to show that the trilinear form cp¨, ¨, ¨q defined on K by

cpψˆ v, wq :“ pψˆ v, wq, @pψ, v, wq P K,

is continuous. Thus, thanks to the weak convergences (4.18) we easily infer that

lim
nÑ8

IIn “ 0.

Summing up, we have shown that for any Φ P D

lim
nÑ8

∣∣∣∣∣E
ż T

0
pžptq ˆ ûnptq ´ zptq ˆ uptq, Φptqqdt

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.

By [71, Proposition 21.23], we readily infer that Γ “ zˆ u which also concludes the proof of (4.25)
from the last identity. Since the procedure for identifications of Θ with u ¨∇z is very similar to the
argument above, we omit the proof of (4.26).

With the convergences in (4.18), Proposition (6.9) we see that

Mn ÑM weakly in L2pΩˆ r0, Ts; V˚q, (4.27)

Nn Ñ N weakly in L2pΩˆ r0, Ts; W´1, 4
3 pOqq. (4.28)

Due to the convergences (4.14), (4.15), (4.27) and (4.28), in order to complete the proof of the existence
of solution we need to identify M and N respectively with the stochastic integrals M̃p¨q, and Ñp¨q in
appropriate topologies. These identification will be the object of the sequence of lemmata below.

Lemma 4.8. We have the following weak convergences

M̃np¨q á M̃p¨q in L2pΩˆ r0, Ts; V˚q, (4.29)

Ñnp¨q á Ñp¨q in L2pΩˆ r0, Ts; W´1, 4
3 pOqq. (4.30)

Proof. Firstly, we will show that M̃n converges strongly in L2pΩˆ r0, Ts; Hq to M̃. For this aim, we
observe that because of the Itô isometry, the Assumption (G) and the estimate (4.6), the family of

maps r0, Ts Q t ÞÑ E

ˇ

ˇ

ˇ

şt
0 GpunpsqqdWnpsq

ˇ

ˇ

ˇ

2
P L2p0, Tq is uniformly integrable in L2p0, Tq. Hence it is

sufficient to show that M̃nptq converges strongly in L2pΩ; Hq to M̃ptq for any t P r0, Ts which will
follow from (4.8), (4.21) and [58, Part I, Theorem 3.3]. Indeed, we can write

E
ˇ

ˇM̃nptq ´ M̃ptq
ˇ

ˇ

2
ď 2E

ˇ

ˇ

ˇ

ˇ

ż t

0
rGpǔnpsqq ´ GpunpsqqsdWnpsq

ˇ

ˇ

ˇ

ˇ

2

`2E

ˇ

ˇ

ˇ

ˇ

ż t

0
GpunpsqqdWnpsq ´

ż t

0
GpupsqqdWpsq

ˇ

ˇ

ˇ

ˇ

2

,
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and because of the Itô’s isometry, Assumption (G) and (4.8) we see that the first term of the right hand
side of the above inequality converges to zero as n Ñ 8. To show that the second term converges
to zero as n Ñ 8, it is sufficient to use [58, Part I, Theorem 3.3] which is permissible because of the
following two reasons:

(i) by the Lipschitz continuity of G in L pH , Hqw.r.t to the H´norm and (4.21), we see that Gpunq

converges to Gpuq in L2pΩ, Cp0, T; L pH , Hqqq.

(ii) Since the Wiener process Wn with covariance Q converges in Cpr0, Ts; H q to W with probability
1 and }Wn}

2
Cpr0,Ts;H q

is uniformly integrable, a fact which follows from (2.4), we see that Wn

converges to W in L2pΩ, Cpr0, Ts; H qq.

Secondly, let Φ P X :“ L2pΩˆ r0, Ts; Vq, Υ :“ L2pΩˆ r0, Ts; Hq, and x¨, ¨y be the duality pairing of X
and its dual X˚. Since M̃n, M̃ P Υ for all n P N, it readily follows from the identification (2.3) that

|xM̃n ´ M̃, Φy| “ |ppM̃n ´ M̃, ΦqqΥ|,@n P N,

which along with the strong convergence of tM̃n; n P Nu to M̃ in Υ we infer that for any Φ P

L2pΩˆ r0, Ts; Vq
lim

nÑ8
|xM̃n ´ M̃, Φy| “ 0.

This completes the proof of (4.29).
Finally, the convergence (4.30) easily follows from the strong convergence of tM̃n; n P Nu to M̃

in L2pΩˆ r0, Ts; Hq and the boundedness of the linear map rot : L2pOq Ñ W´1, 4
3 pOq. This completes

the proof of the lemma.

Now we state and prove the following important proposition.

Lemma 4.9. The following identities holds P-a.s.

xMptq, vy “ xM̃ptq, vy,

xNptq, φy “ xÑptq, φy,

for any t P r0, Ts, v P V and φ P W1,4
0 pOq.

Proof. It follows from (4.29) that M̃n weakly converges to M̃ in L2pΩ, L2p0, T, V˚qq, and from Propo-
sition 4.5 we derive that Mn ´ En “ M̃n in L2pΩ, L2p0, T, V˚qq. Hence we derive from (4.14), (4.27)
and the uniqueness of the weak limit that M “ M̃ in L2pΩ, L2p0, T; V˚qq. This fact implies that P-a.s.
Mptq “ M̃ptq for almost all t P r0, Ts. Since M and M̃ptq are V˚-valued continuous functions which
agree for almost all t P r0, Ts, they must be equal for all t P r0, Ts. This ends the first part of the
proposition. Thanks to (4.14), (4.27) and (4.30) the previous argument can be carried out to establish
the second identity of the proposition.

Now we are ready to give the proof of the existence of weak martingale solution formulate in
Theorem2.6.

Proof of Theorem 2.6. Let N be the set of null sets of F . Let F “ tFt : t P r0, Tsu, where the σ-algebra
Fs is defined by

Ft :“ σ

ˆ

σ
´

pupsq, zpsq, Wpsqq; s ď t
¯

YN
˙

.

We will check that pU , u, zq, where U :“ pΩ, F , F, P, Wq, is a weak martingale solution to the prob-
lem (1.5). To establish this claim we need to check the items (a)-(c) of Definition 2.4.

It follows from Proposition 4.28 that the stochastic process W, defined on pΩ, F , F, Pq, is a H -
valued Wiener process with covariance Q. By construction the filtration F satisfies the usual con-
dition. Therefore, U :“ pΩ, F , F, P, Wq is a stochastic basis. This proves the item (a) of Definition
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2.4. From the construction of the filtration F it is clear that pu, zq is F-adapted. Because of (4.11) and
(4.22), we have

z P LppΩ, Cpr0, Ts; W´1, 4
3 pOq X L8p0, T; L2pOqq, p P r2, 16s.

We also observe from (4.10) and (4.21) that

u P LppΩ, Cpr0, Ts; Hq X L8p0, T; Vqq, p P r2, 16s.

Hence in order to prove Definition 2.4(b) we need to show the continuity of u in V. To this end,
observe that by using the Lax-Milgram lemma as in the proof of Lemma 3.1, we can find a linear
isomorphism A : V Ñ V˚ such that for all v, w P V,

ppv, wqq “ xAv, wy.

From (3.4) one can find a bilinear map C : L2pOq ˆV Ñ V˚ such that

xCpy, vq, wy “ pyˆ v, wq. (4.31)

With this observation and by denoting the identity map on V by Id, we can rewrite the first identity
in Lemma 4.9, i.e., M “ M̃, in the following form

pId` αAquptq `
ż t

0
rνAupsq ` Cpzpsq, upsqqs ds “ u0 `

ż t

0
GpupsqqdWpsq, (4.32)

for any t P r0, Ts. For the sake of simplicity, we will set

A :“ pId` αAq´1 ˝A,

C :“ pId` αAq´1 ˝ C,

G “ pId` αAq´1 ˝ G.

With this in mind, we derive from (4.32) that

uptq “ u0 ´

ż t

0
rνA upsq `C pzpsq, upsqqs ds`

ż t

0
G pupsqqdWpsq, (4.33)

for all t P r0, Ts. As a result of (4.16) and (4.10) we see that Au` Cpz, uq P L2pΩˆ r0, Ts; V˚q which
implies that A upsq ` C pzpsq, upsqq P L2pΩ ˆ r0, Ts; Vq. We also have that G puq P M 2

TpL pK, Vqq,
thus the stochastic integral defines a martingale which is continuous in V. From these observations
we readily infer that there exists Ω˚ P F such that PpΩ˚q “ 1 and for each ω P Ω˚ the function
upω, ¨q : r0, Ts Ñ V is continuous. Thus, with (4.10) we readily see that u P LppΩ, Cpr0, Ts; Vqq.
Hence, we have finished the proof Definition 2.4(b).
The last item, i.e., Definition 2.4(c), readily follows from the identities in Lemma 4.9. Thus, the proof
of Theorem 2.6 is completed.

5. Proofs of Theorems 2.9(a) and 2.10: space regularity and uniqueness of solution

This section, which is divided in 2 subsections, is devoted to the proof of the space- regularity
and the uniqueness of solution stated in Theorems 2.9 and 2.10.

5.1. Space regularity of the solution: proof of Theorem 2.9(a)

The smoothness in spatial variable that we stated in Theorem 2.9 and prove in this subsection
plays a crucial role in the remaining part of the paper. Its proof is quite elementary and relies only
on the theory of deterministic elliptic differential equations on non-smooth domains.
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Proof of Theorem 2.9(a). Let pu, U q be a weak martingale solution of (1.4). From Definition (2.3) we
have z “ rotpu´ α∆uq in L2pOq almost all pω, tq P Ωˆ r0, Ts. The calculation in what follows hold
for almost all pω, tq P Ωˆ r0, Ts a term that, for the sake of simplicity, we will omit for the remaining
part of this proof. Since div z “ 0, extending z by zero outside O and using the Fourier transform as
in [72, Theorem 3.1] we can find an element z P H1pOq such that

z “ rot z, that is, rotpu´ α∆u´ zq “ 0. (5.1)

Moreover, arguing as in [72, Proof Proposition 3.1] we can show that there exist a constant C ą 0
depending only on O such that

}z}H1pOq ď C|z|. (5.2)

Since u P V and any convex polygon is a simply connected domain, we infer from (5.1) and [72,
Theorem 2.9] that there exists a class of functions q̄ P H1pOq{R such that pu, q̄q is the solution of the
generalized Stokes problem

u´ α∆u`∇q̄ “ z in O , (5.3a)

div u “ 0 in O , (5.3b)

u “ 0 on BO . (5.3c)

Since z P H1pOq Ă LrpOq, r P r2,8q, we can conclude as in [21, Proof of Proposition 5.3], see also
[12, Theorem 7.3.3.1], that there exists a constant r0 ą 2 depending on the largest interior angle of O

such that u P W2,rpOq for any r P p2, r0q. Moreover, there exists a constant C ą 0 depending only on
r (hence on O) such that

}u}W2,rpOq ď C}z}H1pOq.

Plugging (5.2) into the last estimate and invoking (4.11) we infer that

E}u}p
L8p0,T;W2,rpOqq

ď E}z}p
L8p0,T;L2pOqq

ă 8.

This completes the proof of the Theorem 2.9(a).

5.2. Proof of the uniqueness of solution
In this subsection we will prove the uniqueness stated in Theorem 2.10. To achieve this goal

we first establish few preparatory results which are mainly some estimates on the nonlinear term
rotpu´ α∆uq ˆ u. To this aim, we introduce the well known trilinear form b used in the study of the
Navier-Stokes equation by setting

bpu, v,wq “
2
ÿ

i,j“1

ż

O
upiq

Bvpjq

Bxi
wpjqdx,

for any u P Lr1pOq, v P W1,r2pOq, w P Lr3pOq with ri, i P J1, 3K satisfying
ř3

i“1
1
ri
“ 1. In the above

formula upiq is the i-th component of the vector u “ pup1q, up2qq.
We recall the following formula which was established in [21, Proof of Proposition 5.6]: for any

u, v P W1,4pOq there holds

protpu´ α∆uq ˆ v, uq “bpu, v, uq ` αbpu, rot v, rot uq

´ 2α

ż

O
rot upxq

´

∇vp1qpxq ¨∇up2qpxq ´∇vp2qpxq ¨∇up1q
¯

dx.
(5.4)

In the following lemma we state an important property satisfied by the bilinear map Cp¨, ¨q defined
in (4.31).

Lemma 5.1. Let r0 be the positive number from Theorem 2.9(a). Then, there exists a constant κ ą 0 such that
for any ν ě 0 and u, v P W we have

|xCprotpu´ α∆uq, vq, uy| ď κ}u}α| rotpv´ α∆vq|.
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Proof. Throughout this proof all the constants are independent of ν ě 0. Let r P p2, r0q and s “ 2r
r´1 .

Since 1
2 `

1
s `

1
r “ 1, we infer from the Hölder inequality and the Sobolev embeddings H1

0pOq Ă LspOq

that

|bpu, rot v, rot uq| ď C}u}LspOq| rot u|}∇prot vq}LrpOq,

ď C|∇u|2}v}W2,rpOq

ď
C
α
}u}2α}v}W2,rpOq,

for any u P V, v P W2,rpOq. In a similar manner, we can prove that
ˇ

ˇ

ˇ

ˇ

2α

ż

O
rot upxq

´

∇vp1qpxq ¨∇up2qpxq ´∇vp2qpxq ¨∇up1q
¯

dx
ˇ

ˇ

ˇ

ˇ

ď C}u} }∇v}L8pOq| rot u|

ď
C
α
}u}2α}v}W1,8pOq,

for any u P V, v P W1,8pOq. Also, there exists a constant C ą 0 such that for any u P V, v P H1pOq

the following chain of inequalities holds

|bpu, v, uq| ď C}u}2L4pOq}v}

ď
C
α
}u}2α}v}.

Now notice that from the Sobolev embedding W2,rpOq Ă W1,8pOq and the proof of Theorem 2.9(a)
we see that W Ă W2,rpOq Ă W1,8pOq and for any v P W we have

}v}W1,8pOq ď C}v}W2,2pOq ď C| rotpv´ α∆vq|.

Thus, from the definition of Cp¨, ¨q, see 4.31, (5.4) and all the estimates above, we infer that there exists
a constant κ ą 0 such that

|xCprotpu´ α∆uq, vq, uy| “ |protpu´ α∆uq ˆ v, uq| ď κ}u}α| rotpv´ α∆vq|,

for any ν ě 0, u, v P W. This completes the proof of the lemma.

We are now ready to give the promised proof of Theorem 2.10.

Proof. We recall that any solution u of the problem (1.4) with the initial condition u0 P W satisfies, P

a.s.

uptq `
ż t

0
rνA upsq `C protpupsq ´ α∆upsq, upsqs ds “ u0 `

ż t

0
GpupsqqdWpsq,

for any t P r0, Ts. Thus, if u and v are two solutions to (1.4) on the same stochastic basis U and
respectively starting with the initial conditions u0, v0 P W, then the difference u “ v´ u satisfies P

a.s.

uptq `
ż t

0
rνA upsq `C pzpsq, upsqq `C protpupsq ´ α∆upsqq, upsqs ds

“ up0q `
ż t

0
rGpvpsqq ´ Gpupsqqs dWpsq,

for any t P r0, Ts. In the above formula, we put z “ rotpu´ α∆uq, up0q “ v0 ´ u0. By the application
of Itô formula, see [62, Theorem 26.5], to }uptq}2α and the identity

pppId` αAq´1f, vqq “ xf, vy for any f P V˚,
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we obtain

}uptq}2α ` 2
ż t

0

”

ν}upsq}2 ` xCpzpsq, upsqq, upsqy
ı

ds

“ }up0q}2α `
ż t

0
}rGpvpsqq ´ GpupsqqsQ

1
2 }2L2pH ,Vqds` 2

ż t

0
pupsq, Gpvpsqq ´ GpupsqqdWpsqq.

We should notice that in the proof of the last identity we also used the equality

xCprotpu´ α∆uq, uq, uy “ protpu´ α∆uq ˆ u, uq “ 0,

which is valid because u, u P W for almost all pω, tq P Ωˆ r0, Ts. Now, let κ ą 0 be the constant in
Lemma 5.1, θ and ϑ be two stochastic processes defined by

θptq “ 2κ| rotpvptq ´ α∆vptqq| and ϑptq “ e´
şt

0 θpsqds, t P r0, Ts.

Applying the Itô formula to ϑptq}uptq}2α and using the inequality in Lemma 5.1 yields

ϑptq}uptq}2α “}up0q}
2
α `

ż t

0
ϑpsqdp}upsq}2αq ´ κ

ż t

0
r}upsq}2α| rotpvpsq ´ α∆vpsqq|sϑpsqds

ďC TrpQq
ż t

0
}Gpvpsqq ´ Gpupsqq}2L pH ,Vqϑpsqds´ 2ν

ż t

0
}upsq}2ϑpsqds

` 2
ż t

0
ϑpsqpupsq, Gpvpsqq ´ GpupsqqdWpsqq ` }up0q}2α.

By invoking Assumption (G), taking the mathematical expectation and noticing that the term with
the stochastic integral is a martingale with zero mean, we obtain

E
”

ϑptq}uptq}2α
ı

` 2νE

ż t

0
}upsq}2ϑpsqds ď }up0q}2αC TrpQq

ż t

0
Er}upsq}2αϑpsqsds.

This estimate along with the Gronwall lemma implies

E
”

ϑptq}uptq}2α
ı

` 2νE

ż t

0
}upsq}2ϑpsqds ď }up0q}2αeC Tr pQqT ,

from which we readily conclude the proof of Theorem 2.10.

6. Proof of the time regularity stated in Theorem 2.9(b)

This section is devoted to the proof of the time-continuity in the Hilbert space W of the solution
to (1.4). This aim will be achieved in observing that z :“ u´ α∆u is weakly continuous in L2pOq and
showing that the norm of z “ u´ α∆u in L2pOq is continuous. This part of the paper will be divided
into two subsections.

6.1. Regularization technique and convergences of (semi)martingale

The continuity of |zp¨q|2 will follow from an energy equation for the norm of z in L2pOq. Due to
the lack of regularity of z, the derivation of this energy inequality is non-trivial and require the use of
a regularization technique. Hence, we start recalling the following property of Lipschitz-continuous
domain.

Lemma 6.1. Let O be a bounded Lipschitz domain of R2; then O has a finite open covering,

sO Ă

m
ď

r“1

Or,
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with the following property. For each r with 1 ď r ď m, there exists a nonzero vector yr of R2 and a number
δr ą 0 such that for all 0 ă ε ď 1 and for all x P sO XOr,

Bpx; εδrq ` εyr Ă O , (6.1)

where Bpx; δq denotes the ball with center x and radius δ.

Proof. The lemma is exactly the same as [54, Lemma 2.1].

Following the idea in [54], we will construct a special mollifier which does not use values outside
O . To this end, we consider a standard mollifier $r with support in Bp0; δrq, i.e, $r P rC8c pR2qs2,
0 ď $r ď 1 in R2 and

ż

R2
$rpxqdx “

ż

Bp0;δrq
$rpxqdx “ 1.

Furthermore, for any index 1 ď r ď m we set Or “ sO XOr and for any ε P p0, 1swe put

$ε,rpxq “
1
ε2 $r

´x
ε
` yr

¯

.

For a function f P Lpp0, T; LqpOqq (its extension by zero outside O is still denoted by f ) we define its
convolution with $ε,r by

f ˚ $ε,rpx, tq :“
ż

Bp0;δrq
f px´ εpy´ yrq, tq$rpyqdy, a.e. in Or ˆ r0, Ts.

We see from this last formula and (6.1) that the convolution with $ε,r regularizes f without using its
extension outside Or. We proceed now to the statement and proof of the following proposition which
can be viewed as a generalization of the results in [54, Proposition 2.2 & Corollary 2.3].

Proposition 6.2. Let O be a bounded Lipschitz domain of R2 and f P L8p0, T; LppOqq with p P r1,8s.
Assume also that we are given a function v such that v P Lγp0, T; W1,qpOqq for some q ě p

p´1 . Let s ą 0 be
the real number defined by

1
s
“

1
p
`

1
q

.

Then, there exists a constant C ą 0 independent of f and v such that

}v ¨∇p f ˚ $ε,rq ´ pv ¨∇ f q ˚ $ε,r}Lγp0,T;LspOrqq ď C} f }L8p0,T;LppOqq}v}Lγp0,T;W1,qpOqq, (6.2)

for any index 1 ď r ď m, εp0, 1s.
Furthermore, for all 1 ď r ď m we have

lim
εÑ0

}v ¨∇p f ˚ $ε,rq ´ pv ¨∇ f q ˚ $ε,r}Lγp0,T;LspOrqq “ 0 (6.3)

Proof. There are several way to prove this lemma, but the easiest and shortest way is to use some
results from [73].
Proof of (6.2). It is proved in [73, Lemma 1.2] that there exists a constant C ą 0 independent of f and
v such that for any index 1 ď r ď m, εp0, 1s, we have

}v ¨∇p f ˚ $ε,rq ´ pv ¨∇ f q ˚ $ε,r}LspOrq ď C} f }LppOq}v}W1,qpOq. (6.4)

From this estimate we easily conclude the proof of (6.2).
Proof of (6.3). From [73, Corollary 1.1] we derive that for almost all t P r0, Ts

lim
εÑ0

}rv ¨∇p f ˚ $ε,rqsp¨, tq ´ rpv ¨∇ f q ˚ $ε,rsp¨, tq}LspOrq “ 0, (6.5)

which along with (6.2) and the Lebesgue Dominated Convergence Theorem yields (6.3).
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Now we will regularize the stochastic process z “ rotpu´ α∆uq, where u is the weak martingale
solution to (1.4). For this purpose, let us still denote by z the extension of z by zero outside O , let
tψr; 1 ď r ď mu be a partition of unity in sO , subordinated to the finite covering tOr 1 ď r ď mu, and
set zr “ zψr. For any integer k ě 1 we set

zk “

m
ÿ

r“1

zr ˚ $ 1
k ,r. (6.6)

In what follows, we extend u outside O via an extension operator that is linear and continuous
(bounded) as a map W1,rpOq Ñ W1,rpR2q so that the extended function, still denoted by u, belongs
to L2p0, T; W1,rpR2qq.

We have the following result.

Proposition 6.3. There exists an integer k0 such that for all f P Lγp0, T; LspOqq, γ P r1,8q and s P r1,8s,
extended by zero outside O , for all k ě k0 and for all 1 ď r ď m, the support of the function p f ψrq ˚ $ 1

k ,r is
contained in Or. Moreover,

lim
kÑ8

›

›

›

›

›

m
ÿ

r“1

p f ψrq ˚ $ 1
k ,r ´ f

›

›

›

›

›

Lγp0,T;LspOqq

“ 0. (6.7)

Proof. The first part of the proposition is exactly the first part of [54, Lemma 2.4]. The argument
of the proof of the second part is quite similar to the idea of the proof of the second part of [54,
Lemma 2.4], but for the sake of completeness we give a rather sketchy proof of it. Observe that, since
tψr; 1 ď r ď mu is a partition of unity in sO ,

›

›

›

›

›

m
ÿ

r“1

rp f ψrq ˚ $ 1
k ,rsp¨, tq ´ f p¨, tq

›

›

›

›

›

LspOq

“

›

›

›

›

›

m
ÿ

r“1

´

rp f ψrq ˚ $ 1
k ,rsp¨, tq ´ rp f ψrqsp¨, tq

¯

›

›

›

›

›

LspOq

ď

m
ÿ

r“1

›

›

›
rp f ψrq ˚ $ 1

k ,rsp¨, tq ´ rp f ψrqsp¨, tq
›

›

›

LspOq
,

for almost all t P r0, Ts. Owing to the property of $ 1
k ,r we have for almost all t P r0, Ts and for all

1 ď r ď m
lim

kÑ8

›

›

›
rp f ψrq ˚ $ 1

k ,rsp¨, tq ´ r f ψrsp¨, tq
›

›

›

LspOrq
“ 0, (6.8)

from which and the first part of the proposition we derive that for almost all t P r0, Ts and for all
1 ď r ď m

lim
kÑ8

›

›

›
rp f ψrq ˚ $ 1

k ,rsp¨, tq ´ r f ψrsp¨, tq
›

›

›

LspOq
“ lim

kÑ8

›

›

›
rp f ψrq ˚ $ 1

k ,rsp¨, tq ´ r f ψrsp¨, tq
›

›

›

LspOrq
“ 0.

Thus, for almost all t P r0, Ts

lim
kÑ8

›

›

›

›

›

m
ÿ

r“1

rp f ψrq ˚ $ 1
k ,rsp¨, tq ´ f p¨, tq

›

›

›

›

›

LspOq

“ 0. (6.9)

Notice also that
›

›

›

›

›

m
ÿ

r“1

p f ψrq ˚ $ 1
k ,r ´ f

›

›

›

›

›

Lγp0,T;LspOqq

ď

m
ÿ

r“1

›

›

›
p f ψrq ˚ $ 1

k ,r ´ f
›

›

›

Lγp0,T;LspOqq

ď Cm} f }Lγp0,T;LspOqq,

from which altogether with (6.9) and the Lebesgue Dominated Convergence Theorem we easily con-
clude the proof of (6.7) and the proposition.
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We will also need the following result.

Proposition 6.4. Let s P p1,8q and X be a Banach space such that the injection LspOq Ă X is continuous.
Then, the first part of Proposition 6.3 remains valid for any f P L8p0, T; LspOq such that f : r0, Ts Ñ X is
weakly continuous. Furthermore, for all t P r0, Ts

lim
kÑ8

›

›

›

›

›

m
ÿ

r“1

p f ψrq ˚ $ 1
k ,r ´ f

›

›

›

›

›

LspOq

“ 0. (6.10)

Proof. The proof of the first part follows the same lines of the proof of the first part of Proposition
6.3. Investigating closely the proof of [74, Theorem 2.1], we infer from [74, Eq. (2.1), page 544] that
f ptq P LspOq for all t P r0, Ts. With this observation, we can repeat, mutatis mutandis, the proof of
(6.9) to complete the proof of (6.10).

Hereafter, for the sake of simplicity we set Lq :“ LqpOq for any q ě 1. To close the paragraph
about the mollifier $ 1

k ,r we formulate the following remarks.

Remark 6.5. It is not difficult to see that the map Λk : Lq Ñ Lq, q P r1,8q defined by

Λkv “
m
ÿ

r“1

pψrvq ˚ $ 1
k ,r,@v P Lq,

is linear, continuous and closed. It can act on D1pOq which is the dual of C8c pOq. Furthermore, the
convergences 6.7 and (6.10) can be reformulated using Λk.

Now, we will state and prove several results related to the theory of (semi)martingales. To this
end, let H be a separable Hilbert space with norm 9 ¨ 9, Z be a H-valued semimartingale with
quadratic variation rZs :“ trZst; t P r0, Tsu. Here we closely follow the notation of [62], in particular,
we refer to [62, Theorem 26.5] for the definition of rZs.

Lemma 6.6. Let tZk; k P Nu be sequence of H-valued semimartingales and Z a H-valued semimartingale
such that

(S) the sequence trZk ` ZsT ; k P Nu is uniformly bounded and

lim
kÑ8

EprZk ´ ZsTq “ 0.

Then,

lim
kÑ8

E

˜

sup
tPr0,Ts

|rZkst ´ rZst|
¸

“ 0. (6.11)

Proof. For the sake of simplicity we will write Xt :“ Xptq where X denotes either Zk or Z. For any
partition J “ t0 ă t1 ă . . . ă tn “ Tu of r0, Tswe also set

∆iZt “ Zt^ti`1 ´ Zt^ti .

Using the definition of the quadratic variation given in [62, Theorem 26.5], we obtain

|rZkst ´ rZst| “ lim
n
pPq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

9∆iΛkZt 92 ´9 ∆iZt92

ˇ

ˇ

ˇ

ˇ

ˇ

“ lim
n
pPq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

Ji

´

∆ipZt
k ´ Ztq, ∆ipZt

k ` Ztq
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
n
pPq

»

–

ÿ

i

9∆ipZt
k ´ Ztq92

ÿ

Ji

9∆ipZt
k ` Zq92

fi

fl

1
2

ďprZk ´ ZstrZk ` Zstq
1
2 ,
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where limpPq means limit in probability. Since rXs is an increasing function w.r.t. the time variable,
we easily obtain from the last line of the above chain inequalities that

E sup
tPr0,Ts

|rZkst ´ rZst| ď
ˆ

E prZk ´ ZsTqE prZk ` ZsTq
˙

1
2
, (6.12)

which altogether with Assumption (S) yield the desired convergence.

We will also need the following result.

Lemma 6.7. Let f P L2pΩ, L8p0, T; Hqq be a predictable process and t fk; k P Nu a sequence of predictable
stochastic processes in L2pΩ, L8p0, T; Hqq such that

lim
kÑ8

E

ż T

0
9 fkpsq ´ f psq92 ds “ 0.

Let tZk; k P Nu (resp. Z) be a sequence of càdlàg martingales (resp. a martingale) satisfying Assumption (S)
of Lemma 6.6. We assume further that there exists a real-valued process Φ ě 0 and a sequence of non-negative
real-valued processes tΦk; k P Nu such that

rZs¨ “
ż ¨

0
Φpsqds, rZks¨ “

ż ¨

0
Φkpsqds,

and there exists a constant C ą 0 such that

E

˜

sup
tPr0,Ts

´

Φ2
kpsq `Φ2psq

¯

¸

ă C,

for any k P N. Then,

lim
kÑ8

E

˜

sup
tPr0,Ts

ˇ

ˇ

ˇ

ˇ

ż t

0
p fkps´q, dZkpsqqH ´

ż t

0
p f ps´q, dZpsqqH

ˇ

ˇ

ˇ

ˇ

¸

“ 0. (6.13)

Proof. From an application of the Burkholder-Davis-Gundy inequality we infer that there is a con-
stant C ą 0 such that

E

˜

sup
tPr0,Ts

ˇ

ˇ

ˇ

ˇ

ż t

0
p fkps´q, dZkpsqqH ´

ż t

0
p f ps´q, dZpsqqH

ˇ

ˇ

ˇ

ˇ

¸

ď CE

˜

ż T

0
9 fkpsq ´ f psq92 drZkss

¸
1
2

`CE

˜

ż T

0
9 f psq92 drZk ´ Zss

¸
1
2

,

(6.14)

which along with the assumption of the lemma implies

E

˜

sup
tPr0,Ts

ˇ

ˇ

ˇ

ˇ

ż t

0
p fkps´q, dZkpsqqH ´

ż t

0
p f ps´q, dZpsqqH

ˇ

ˇ

ˇ

ˇ

¸

ď CE

˜

sup
sPr0,Ts

Φ2
kpsq

ż T

0
9 fkpsq ´ f psq92 ds

¸
1
2

` CE

˜

sup
sPr0,Ts

9 f psq9
a

rZk ´ ZsT

¸

.

(6.15)

Owing to the Cauchy-Schwarz inequality, we readily infer that

lim
kÑ8

E

˜

sup
tPr0,Ts

ˇ

ˇ

ˇ

ˇ

ż t

0
p fkps´q, dZkpsqqH ´

ż t

0
p f ps´q, dZpsqqH

ˇ

ˇ

ˇ

ˇ

¸

ď C lim
kÑ8

«

E

˜

sup
sPr0,Ts

Φkpsq

¸

E

ż T

0
9 fkpsq ´ f psq92 ds

ff
1
2

` C lim
kÑ8

«

E

˜

sup
sPr0,Ts

9 f psq92

¸

ErZk ´ ZsT

ff
1
2

,

(6.16)

40



The desired result follows easily by passing to the limit in the last line of the above estimate.

6.2. The actual proof of Theorem 2.9(b)

In this subsection we will give the promised proof of the time regularity of the weak martingale
solution to problem (1.4). To this aim, let u be the weak martingale solution of (1.4), z “ rotpu´ α∆uq
and tzk; k P Nu be the sequence defined by (6.6). For each k P N, we set

Lkpuq “
ν

α

m
ÿ

r“1

pψr rot uq ˚ $ 1
k ,r,

Ak “

m
ÿ

r“1

”

u ¨∇pzr ˚ $ 1
k ,rq ´ pu ¨∇zrq ˚ $ 1

k ,r

ı

,

Bk “

m
ÿ

r“1

´

rpu ¨∇ψrqzs ˚ $ 1
k ,r ´ pu ¨∇ψrqz

¯

.

We also put

Mup¨q :“
ż ¨

0
rot GpupsqqdWpsq, and Mu

k p¨q :“ Λk Mup¨q, @k P N.

Remark 6.8. By the Remark 6.5 and [61, Proposition 4.30], we have

Mu
k p¨q “

ż ¨

0
Λk rot GpupsqqdWpsq.

Thus, thanks to Assumption (G) and the fact that u P L2pΩ; Cp0, T; Vqq, for each integer k ě 1, Mu
k

and Mu are L2-valued martingales and Mu, Mu
k P L2pΩ, Cp0, T; L2qq. Note also that

rMs¨ “
ż ¨

0
Tr

´

prot GpupsqqQ
1
2 q˚prot GpupsqqQ

1
2 q

¯

ds

“

ż ¨

0

¨

˝

8
ÿ

j“1

| rot GpupsqqQ
1
2 hj|

2

˛

‚ds,

and for each k ě 1

rMks¨ “

ż ¨

0
Tr

´

pΛk rot GpupsqqQ
1
2 q˚pΛk rot GpupsqqQ

1
2 q

¯

ds, (6.17)

“

ż ¨

0

¨

˝

8
ÿ

j“1

|Λk rot GpupsqqQ
1
2 hj|

2

˛

‚ds,

which along with Remark 6.5 implies that there exists a constant C ą 0 such that for any k P N

rMks¨ ď C
ż ¨

0

¨

˝

8
ÿ

j“1

| rot GpupsqqQ
1
2 |2

˛

‚ds ď CrMs¨. (6.18)

Hence, owing to Assumption (G) and the fact that u P L2pΩ; Cp0, T; Vqq

sup
kPN

E sup
tPr0,Ts

rMkst ď CE sup
tPr0,Ts

rMst ď C.

The following proposition plays an important role in the proof of the time-continuity in W of u.
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Proposition 6.9. There exists a subset Ω4 Ă Ω with PpΩ4q “ 1 and a subsequence of integers k1 such that
the following limit hold for any ω P Ω4 and t P r0, Ts

lim
k1Ñ8

ż t

0
pAk1psq ` Bk1psq, zk1psqqds “ 0, (6.19)

lim
k1Ñ8

ż t

0
pLk1pupsqq, zk1psqqds “

ż t

0
prot upsq, zpsqqds, (6.20)

lim
k1Ñ8

ż t

0
pzk1psq, dMu

k1psqq “
ż t

0
pzpsq, dMupsqq, (6.21)

lim
k1Ñ8

rMu
k1st “ rMst. (6.22)

Proof. The proof will be divided in several steps.

(Step 1) In this step we will show that (6.19) and (6.20) hold with probability 1 for any t P r0, Ts for
the whole sequence k. Indeed, by Theorem 2.9(a) we have u P L8p0, T; W2,rpOqq for some r ą 0.
Since the space dimension is 2 and the embedding W1,rpOq Ă L8pOq, r ą 2, is continuous, we also
have u P L2p0, T; W1,8pOqq. Thus, PpΩ1 XΩ0q “ 1 where

Ω0 “ tω P Ω; z P L8p0, T; L2pOqq X L2p0, T; W´1, 4
3 pOqqu,

Ω1 “ tω P Ω; u P L8p0, T; W1,8pOqqu.

It follows from (6.3) and (6.7) that on Ω1 XΩ0

lim
kÑ8

ż t

0
pAkpsq ` Bkpsq, zkpsqqds “ 0 (6.23)

for all t P r0, Ts. From (6.23), (6.10), (6.7) we readily deduce that the convergences (6.19) and (6.20)
hold on Ω0 XΩ1 for any t P r0, Ts for the whole sequence k.

(Step 2) Now, we prove that

lim
kÑ8

E

˜

sup
tPr0,Ts

|rMu
k st ´ rM

ust|
¸

“ 0. (6.24)

Since Mu
k and Mu, k ě 1, are both continuous and square integrable L2-valued martingales, we can

argue as in the proof of (6.7) and (6.10) to show that for all t P r0, Ts

lim
kÑ8

E|Mu
k ptq ´Muptq|2 “ 0.

Now, observe that because of the definition of Mu
k ´Mu, the Itô isometry and (6.25) we have

lim
kÑ8

ErMu
k ´MusT “ lim

kÑ8
E

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0
rΛkG̃pvptqq ´ G̃pvptqqsdWptq

ˇ

ˇ

ˇ

ˇ

ˇ

2

,

“ lim
kÑ8

E|Mu
k pTq ´MupTq|2 “ 0. (6.25)

(Step 3) In this step we shall show that

lim
kÑ8

E

˜

sup
tPr0,Ts

∣∣∣∣ż t

0
pzkpsq, dMkpsqq ´

ż t

0
pzpsq, dMpsqq

∣∣∣∣
¸

“ 0. (6.26)

Because u is weak martingale solution to (1.4) we have u P L2pΩ, L8p0, T; Wqq and we can infer from
Remark 6.5 that there exists a constant C ą 0 such that

sup
kPN

E sup
tPr0,Ts

|zkptq|2 ď CE sup
tPr0,Ts

|zptq|2 ă C. (6.27)
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Owing to (6.7) and the above estimate we can infer, with the help of the Lebesgue Dominated Con-
vergence Theorem, that

lim
kPr0,Ts

E

ż T

0
|zkpsq ´ zpsq|2ds “ 0. (6.28)

Because of Remark 6.8, (6.27) and (6.28), all the assumptions of Lemma 6.7 are verified by zk, z, Mu
k

and Mu. Therefore, (6.26) holds.

(Step 4) This is the final step of our proof. Thanks to (6.24), (6.26) and an application of Egorov’s
theorem one can find a subsequence k1 and a subset Ω̃4 with PpΩ̃4q “ 1 such that (6.21) and (6.22)
holds on Ω̃4 for any t P r0, Ts. We conclude the proof by taking Ω4 “ Ω0 XΩ1 XΩ4 and k1.

As our final preliminary result, we will show in the next proposition that the regularized process
zk given in (6.6) satisfies a tic PDES very similar to (1.4b).

Proposition 6.10. Let Ω4 Ă Ω and k1 be respectively the subset and subsequence of integers given by Propo-
sition 6.9. For the sake of simplicity we still denote k1 by k. Let u be the weak martingale solution of (1.4)
given by Theorem 2.7, z “ rotpu´ α∆uq and zk be the function defined in (6.6). Then, zk solves

dzk `
´ν

α
zk ` u ¨∇zk

¯

dt “ pLkpuq ` Ak ` Bkqdt`Λk rot GpuqdW, (6.29a)

zkp0q “
m
ÿ

r“1

pψrz0q ˚ $ 1
k ,r, (6.29b)

where z0 “ rotpu0 ´ α∆u0q.

Proof. First, note that z solves (1.4a) with the initial condition z0, i.e., with probability 1

zptq `
ż t

0

´ν

α
zpsq ` upsq ¨∇zpsq

¯

ds “ z0 `
ν

α

ż t

0
rot upsqds`

ż t

0
rot GpupsqqdWpsq, (6.30)

for all t P r0, Ts. Multiplying this identity by ψr, regularizing both sides of the resulting equation by
convolution with $ 1

k ,r and summing from r “ 1 to r “ m yields

zkptq `
ż t

0

«

ν

α
zkpsq `

m
ÿ

r“1

´

rpu ¨∇zqψrs ˚ $ 1
k ,r

¯

psq

ff

ds “ zkp0q `
ż t

0
Lkpupsqqds

`Λk Nuptq.

(6.31)

Second, observe that
pu ¨∇zqψr “ ´pu ¨∇ψrqz` u ¨∇zr,

and since tψr; 1 ď r ď mu is a partition of unity in sO , we also have

m
ÿ

r“1

pu ¨∇ψrqz “ pu ¨∇r
m
ÿ

r“1

ψrsqz “ 0.

Therefore,

m
ÿ

r“1

rpu ¨∇zqψrs ˚ $ 1
k ,r “u ¨∇zk `

m
ÿ

r“1

pu ¨∇zrq ˚ $ 1
k ,r ´ u ¨∇pzr ˚ $ 1

k ,rq

` pu ¨∇ψrq ´ rpu ¨∇ψrqzs ˚ $ 1
k ,r,

“ u ¨∇zk ´ Ak ´ Bk.

Then (6.29) follows by substituting the last line into (6.31).
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After all these preparatory results we are now ready to give the promised proof of Theorem 2.9(b).

Proof of Theorem 2.9(b). First, define Ω5 “
Ş4

j“1 Ωj where Ω4 is given by Proposition 6.9, Ω0 and Ω1
are defined in the proof of Proposition 6.9, and

Ω2 “ tω P Ω; z : r0, Ts Ñ L2 is weakly continuousu,

Ω3 “ tω P Ω; (6.30) holds u.

Owing to Theorem 2.9(a) we have PpΩ1q “ 1. Thanks to [74, Theorem 2.1] and Proposition 2.6 we
have PpΩ0q “ PpΩ2q “ PpΩ3q “ 1. Hence, PpΩ5q “ 1. Set also

G̃kp¨q :“ Λk rot Gp¨q.

Thanks to the Itô formula [62, Theorem 26.5], the identity pu ¨∇zk, zkq “ 0 and Remark 6.8, we have

|zkptq|2 `
2ν

α

ż t

0
|zkpsq|2ds “ 2

ż t

0
pLkpupsqq ` Akpsq ` Bkpsq, zkpsqqds` rMu

k st

`2
ż t

0
pzkpsq, dMu

k psqq,
(6.32)

for all ω P Ω5, t P r0, Ts. From (6.10) and (6.7) respectively, we infer that for all ω P Ω5 and for all
t P r0, Ts,

lim
kÑ8

|zkptq|2 “ |zptq|2,

lim
kÑ8

ż t

0
|zkpsq|2ds “

ż t

0
|zpsq|2ds.

Setting G̃p¨q :“ rot Gp¨q, taking the last two convergences and those in Proposition 6.9 into account
and passing to the limit in (6.32) imply

|zptq|2 `
2ν

α

ż t

0
|zpsq|2ds “2

ż t

0
protpupsqq, zpsqqds

`

ż t

0
Tr

´

pG̃pupsqqQ
1
2 qpG̃pupsqqQ

1
2 q˚

¯

ds

` 2pz,
ż t

0
G̃pupsqqdWpsqq,

for any ω P Ω5 and for any t P r0, Ts. The last identity implies that |zp¨q|2 is continuous on Ω5. This
fact along with the weak continuity of z : r0, Ts Ñ L2 implies that z is continuous in L2 on Ω5. Now,
recalling that from Theorem 2.7 we can find a subset Ω6 with PpΩ6q “ 1 such that up¨q : r0, Ts Ñ V
is continuous on Ω6. Hence, once can readily show that on Ω1 “ Ω5 XΩ6, which clearly satisfies
PpΩ1q “ 1, the function u is continuous in W. Since u P LppΩ, L8p0, T; Wqq and is continuous in W,
we infer that u P LppΩ; Cpr0, Ts; Wqq. This completes the proof of Theorem 2.9(b).
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[7] D. D. Holm, J. E. Marsden, T. S. Ratiu, Euler-poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett.

80 (1998) 4173–4176. doi:10.1103/PhysRevLett.80.4173.
[8] R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (11) (1993)

1661–1664. doi:10.1103/PhysRevLett.71.1661.
[9] S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys. 40 (2)

(1999) 857–868. doi:10.1063/1.532690.
[10] S. Shkoller, Geometry and curvature of diffeomorphism groups with H1 metric and mean hydrodynamics, J. Funct. Anal.

160 (1) (1998) 337–365. doi:10.1006/jfan.1998.3335.
[11] S. Shkoller, Smooth global Lagrangian flow for the 2D Euler and second-grade fluid equations, Appl. Math. Lett. 14 (5)

(2001) 539–543. doi:10.1016/S0893-9659(00)00190-7.
[12] P. Grisvard, Elliptic problems in nonsmooth domains, Vol. 24 of Monographs and Studies in Mathematics, Pitman (Ad-

vanced Publishing Program), Boston, MA, 1985.
[13] G. B. Warburton, The Dynamical Behaviour of Structures, Structures and Solid Body Mechanics, Pergamon, Oxford,

Great Britain, 1976. doi:10.1016/B978-0-08-020364-5.50001-8.
[14] D. Cioranescu, O. El Hacène, Existence and uniqueness for fluids of second grade, in: Nonlinear partial differential
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two driven by random force of Lévy type, Potential Anal. 38 (4) (2013) 1291–1331. doi:10.1007/s11118-012-9316-7.

[39] J. Zhai, T. Zhang, Large deviations for stochastic models of two-dimensional second grade fluids, Applied Mathematics
& Optimization (2016) 1–28doi:10.1007/s00245-016-9338-4.

[40] R. Wang, J. Zhai, T. Zhang, Exponential mixing for stochastic model of two-dimensional second grade fluids, Nonlinear
Anal. 132 (2016) 196–213. doi:10.1016/j.na.2015.11.009.

[41] A. Budhiraja, P. Dupuis, A variational representation for positive functionals of infinite dimensional Brownian motion,
Probab. Math. Statist. 20 (1, Acta Univ. Wratislav. No. 2246) (2000) 39–61.

[42] C. Odasso, Exponential mixing for stochastic PDEs: the non-additive case, Probab. Theory Related Fields 140 (1-2) (2008)
41–82. doi:10.1007/s00440-007-0057-2.

[43] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, The Camassa-Holm equations and turbulence, Phys. D
133 (1-4) (1999) 49–65, predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998).
doi:10.1016/S0167-2789(99)00098-6.

[44] T. Caraballo, J. Real, T. Taniguchi, On the existence and uniqueness of solutions to stochastic three-dimensional La-
grangian averaged Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2066) (2006) 459–479.
doi:10.1098/rspa.2005.1574.

[45] G. Deugoue, M. Sango, On the stochastic 3D Navier-Stokes-α model of fluids turbulence, Abstr. Appl. Anal. (2009) Art.
ID 723236, 27doi:10.1155/2009/723236.

[46] A. Cheskidov, D. D. Holm, E. Olson, E. S. Titi, On a Leray-α model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci. 461 (2055) (2005) 629–649. doi:10.1098/rspa.2004.1373.

[47] D. Barbato, H. Bessaih, B. Ferrario, On a stochastic Leray-α model of Euler equations, Stochastic Process. Appl. 124 (1)
(2014) 199–219. doi:10.1016/j.spa.2013.07.002.
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[58] E. Pardoux, Equations aux Dérivées Partielles Stochastiques Monotones, 1975, thesis (Ph.D.)– Université Paris-Sud.
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