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Abstract The exponential distribution is a popular model both in practice
and in theoretical work. As a result, a multitude of tests based on varied
characterisations have been developed for testing the hypothesis that observed
data are realised from this distribution. Many of the recently developed tests
contain a tuning parameter, usually appearing in a weight function. In this
paper we compare the powers of 20 tests for exponentiality — some containing
a tuning parameter and some that do not. To ensure a fair ‘apples to apples’
comparison between each of the tests, we employ a data-dependent choice
of the tuning parameter for those tests that contain these parameters. The
comparisons are conducted for various samples sizes and for a large number
of alternative distributions. The results of the simulation study show that the
test with the best overall power performance is the Baringhaus & Henze test,
followed closely by the test by Henze & Meintanis; both tests contain a tuning
parameter. The score test by Cox & Oakes performs the best among those
tests that do not include a tuning parameter.
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1 Introduction and motivation

The exponential distribution is a popular choice of model both in practice and
in theoretical work. For this reason a great deal of research has been dedicated
to the large number of ways in which it can be uniquely characterised. This has
ultimately lead to a multitude of tests for testing the hypothesis that observed
data are realised from the exponential distribution.

Several authors have written review papers on this topic, describing and
comparing a number of tests, see, for example, Spurrier (1984), Ascher (1990),
and Henze and Meintanis (2002). However, the most recent review paper on
this topic was written more than 10 years ago by Henze and Meintanis (2005).
Since then, a number of new tests have been proposed, see for example Jam-
malamadaka and Taufer (2006), Haywood and Khmaladze (2008), Mimoto and
Zitikus (2008), Wang (2008), Volkova (2010), Grané and Fortiana (2011), Ab-
basnejad et al (2012), Baratpour and Habibi Rad (2012), Volkova and Nikitin
(2013), Meintanis et al (2014), and Zardasht et al (2015). Furthermore, many
of the tests for exponentiality contain a tuning parameter, often appearing in
a weight function. The fact that the powers of these tests are functions of the
tuning parameter complicates the comparisons between tests. In many papers
the authors evaluate the power of the test over a grid of possible values of this
parameter, but the problem with this approach is that the optimal choice of
the tuning parameter is unknown in practice. In these papers the authors often
provide a so-called ‘compromise’ choice; this is a choice of the tuning param-
eter that provides reasonably high power for the majority of the alternatives
considered in their finite sample studies. Examples of papers that contain these
compromise choices include Henze and Meintanis (2002), Henze and Meintanis
(2005), and Meintanis et al (2014). However, while these fixed choices of the
parameter are able to produce high powers against a number of alternatives,
they can also produce abysmally low powers against other alternatives. Nat-
urally, in practice, the distribution of the realised data is unknown, meaning
that the power of tests employing the compromise choice might be suspect.

A method to choose the value of the tuning parameter data-dependently is
proposed in Allison and Santana (2015). This approach removes the practical
problem of choosing the tuning parameter and also allows one to directly
compare the powers achieved by various goodness-of-fit tests.

The aim of this paper is to objectively compare the powers of various tests
for exponentiality. Where applicable, the methodology detailed in Allison and
Santana (2015) is used in order to choose the value of the tuning parameter
data-dependently; this allows a fair ‘apples to apples’ comparison between the
tests containing a tuning parameter and those without one.
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The remainder of the paper is organised as follows: In Section 2 we intro-
duce and provide details of the various tests for exponentiality that form part
of the simulation study. The data-dependent choice of the tuning parameter
is discussed in Section 3. Section 4 presents the results of an extensive Monte
Carlo study of the empirical powers of the tests against numerous alternatives
to the exponential distribution (a distinction is made between alternative dis-
tributions with increasing, decreasing, and non-monotone hazard rates). In
Section 5 we apply all the tests to a real-world data set and the paper con-
cludes in Section 6 with some final remarks.

2 Tests for exponentiality

Let X1, X2, ..., Xn be a sequence of independent and identically distributed
continuous realisations of a random variable X. Denote the exponential dis-
tribution with expectation 1/λ by Exp (λ). The composite goodness-of-fit hy-
pothesis to be tested is

H0 : the distribution of X is Exp (λ) ,

for some λ > 0, against general alternatives.
The majority of the test statistics that we consider are based on the scaled

values Yj = Xj λ̂, where λ̂ = 1/X̄n with X̄n = 1
n

∑n
j=1Xj . The use of scaled

values is motivated from the invariance property of the exponential distri-
bution with respect to scale transformations. Since X follows an exponential
distribution if and only if cX is exponentially distributed for every c > 0,
we would not expect a scale transformation to influence the conclusion drawn
regarding the exponentiality of X. As a result, the test statistic depends on
the data only through scaled versions of the original data, and the conclusions
drawn regarding the exponentiality of X1, ..., Xn and Y1, ..., Yn should be the
same. In the remainder of the paper we denote the order statistics of Xj and
Yj by X(1) < X(2) < ... < X(n) and Y(1) < Y(2) < ... < Y(n) respectively.

In this section we provide short descriptions of the 20 tests for exponen-
tiality that we compare to one another in the Monte Carlo study in Section
3. These tests are arranged according to the characteristics of the exponential
distribution that the test is based on. These tests are chosen because they
provide a diverse selection of established tests (tests that have been shown to
perform well in terms of power) and newly developed tests, and simultaneously
considering tests that contain a tuning parameter as well as those that do not.
In addition to the tests presented in this section, we also provide references to
numerous other tests for exponentiality not included in this study.

2.1 Tests based on the empirical characteristic function

In recent years many goodness-of-fit tests have been developed which are based
on the characteristic function (CF). Typically in these tests the CF of a random
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variable X, given by
φ(t) = E

[
eitX

]
,

is estimated by the empirical characteristic function (ECF) of the dataX1, ..., Xn,
defined as

φn(t) =
1

n

n∑
j=1

eitXj .

Standard methods for testing that employ the ECF utilise the L2-type distance∫ ∞
−∞
|φn(t)− φ(t)|2wγ(t)dt,

which incorporates the CF, ECF and a parametric weight function wγ(· ),
which usually satisfy the conditions

∫∞
−∞ t2wγ(t)dt <∞, wγ(t) = wγ(−t), and

wγ(t) ≥ 0, ∀ t, and depends on some tuning parameter γ.
There has been considerable discussion in the literature on the choice of

wγ(t). Popular choices are wγ(t) = e−γ|t| or wγ(t) = e−γt
2

. Both of these
correspond to kernel-based choices with e−γ|t| being a multiple of the standard
Laplace density as kernel with bandwidth equal to 1/γ and e−γt

2

a multiple
of the standard normal density as kernel with bandwidth equal to 1/(γ

√
2).

For various tests for exponentiality that incorporate the ECF, the inter-
ested reader is referred to Henze and Meintanis (2002) and Henze and Meinta-
nis (2005) and the references therein. However, for the purposes of this paper
we will only focus on the ‘Epps and Pulley’ test proposed in Epps and Pulley
(1986) and a more recent test based on the concept of the probability weighted
empirical characteristic function (PWECF) proposed in Meintanis et al (2014).

2.1.1 Epps and Pulley (1986) test (EPn)

The test proposed in Epps and Pulley (1986) is based on the difference between
the ECF, φn(t), of X1, X2, . . . , Xn and the CF of the exponential distribution,
φ0(t, λ) = λ/(λ− it). If the data are exponentially distributed with parameter
λ, then φn(t) should be close to φ0(t, λ).

Estimating λ by λ̂ = 1/X̄n, the test is based on the idea that the quantity∫ ∞
−∞

(
φn(t)− φ0(t, 1/X̄n)

)
w(t)dt,

should be small under the null hypothesis, where

w(t) =
1

2π(1 + iX̄nt)
.

The normalised Epps and Pulley test statistic simplifies to

EPn =
√

48n

∫ ∞
0

(
φn(t)− 1

1− iX̄nt

)
X̄n

2π(1 + iX̄nt)
dt =

√
48n

 1

n

n∑
j=1

e−Yj − 1

2

 .
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This test rejects H0 for large values of |EPn|. The null distribution of this
test statistic was shown to be standard normal in Epps and Pulley (1986).
Furthermore, the test was also shown to be consistent against absolutely con-
tinuous alternative distributions with monotone hazard rates, strictly positive
supports and finite expected values. In a number of studies it has been shown
that this test is reasonably powerful, see for example Henze and Meintanis
(2005).

2.1.2 PWECF (PW 1
n,γ and PW 2

n,γ)

There has been a lot of discussion regarding the form of the weight function
when using goodness-of-fit tests based on the ECF and CF. Fortunately, Mein-
tanis et al (2014) provides a statistically meaningful way to choose the weight
function. This choice reduces the problem to only choosing a tuning parameter
γ, typically still contained in the weight function. The probability weighted
characteristic function (PWCF) is defined as

χ(t; γ) = E
[
W (X; γt)eitX

]
=

∫ ∞
−∞

W (x; γt)eitxdFλ(x),

where the probability weight function is given by

W (x, β) = [Fλ(x)(1− Fλ(x))]
|β|
, β ∈ R, x ∈ R, (1)

and where Fλ(· ) denotes the exponential distribution function with parameter
λ. Note that the weight function in (1) places more weight at the centre of the
distribution than in the tails. The probability weighted empirical characteristic
function (PWECF) is then defined as

χn(t; γ) =
1

n

n∑
j=1

Ŵ (Xj ; γt)e
itXj , t ∈ R, (2)

where the estimated probability weight is given by

Ŵ (Xj ;β) =
[
Fλ̂(x)(1− Fλ̂(x))

]|β|
, β ∈ R, x ∈ R,

and where Fλ̂(· ) denotes the exponential distribution function with estimated

parameter λ̂.
Meintanis et al (2014) employs these expressions and develops a test for ex-

ponentiality based on the L2-norm between χn(t; γ) and χ(t; γ). The resulting
test statistic is given by

PW 1
n,γ = n

∫ ∞
−∞
|χn(t; γ)− χ(t; γ)|2dt. (3)

Note that the weight function that plagues other tests based on the ECF no
longer appears in the test statistic, since the weight function has been incor-
porated within the PWECF and PWCF functions themselves. In Meintanis



6 J.S. Allison et al.

et al (2014), the limiting null distribution of the test statistic is derived and it
is shown that this test is consistent for a very large class of alternative distri-
butions. In a finite sample simulation study, the test was also found be quite
powerful against a variety of alternative distributions.

The test statistic in (3) can be simplified to

PW 1
n,γ =− 2

n2

n∑
j=1

n∑
k=1

γ ln [(1− Zj)Zj (1− Zk)Zk]

(Xj −Xk)2 + γ2 ln2 [(1− Zj)Zj (1− Zk)Zk]

+
2

n

n∑
j=1

∫ 1

0

γ ln [(1− Zj)Zj (1− u)u]

[Xj + ln (1− u)]
2

+ γ2 ln2 [(1− Zj)Zj (1− u)u]
du,

where Zj = exp(−Yj). In the Monte Carlo simulation study presented in
Meintanis et al (2014) the power of this test was evaluated over a grid of
possible choices of the tuning parameter γ. However, for practical applications
the authors suggest using γ = 1, because this choice fared well for the majority
of the alternatives considered in their paper. We will henceforth refer to this
type of recommended choice of the parameter as the compromise choice.

In Meintanis et al (2014), the weight function is chosen to give more weight
to the centre of the distribution. In this paper we also consider a weight func-
tion that places greater weight on the tails. This alternative choice for the
weight function appearing in (2) is given by

W̃ (Xj ;β) =

[
1

4
− Fλ̂(x)(1− Fλ̂(x))

]|β|
, β ∈ R, x ∈ R,

and the test statistic resulting from (3) when employing this weight function
is denoted by PW 2

n,γ . Based on some preliminary Monte Carlo studies, we
recommend using γ = 0.1 as the compromise choice.

Both PW 1
n,γ and PW 2

n,γ reject for large values.

2.2 Tests based on the empirical Laplace transform

In general, the Laplace transform (LT) of a random variable X is defined
as E

[
e−tX

]
. For a standard exponential random variable, Y , the Laplace

transform is given by

ψ(t) = E
[
e−tY

]
=

1

1 + t
.

Employing the scaled data Y1, . . . , Yn, ψ(t) can be estimated by the empirical
Laplace transform (ELT),

ψn(t) =
1

n

n∑
j=1

e−tYj .

We consider two test statistics based on the ELT, namely the ‘Baringhaus and
Henze (1991)’ test and the ‘Henze and Meintanis (2002)’ test.
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2.2.1 Baringhaus and Henze (1991) test (BHn,γ)

Baringhaus and Henze (1991) developed a test based on the following differ-
ential equation that characterises the exponential distribution: (1 + t)ψ′(t) +
ψ(t) = 0, for all t ∈ R.

Their test makes use of he following weighted L2 norm

BHn,γ = n

∫ ∞
0

[(1 + t)ψ′n(t) + ψn(t)]
2

exp(−γt)dt, (4)

where γ > 0 is a constant tuning parameter. It is easy to show that the statistic
in (4) simplifies to

BHn,γ =
1

n

n∑
j=1

n∑
k=1

[
(1− Yj)(1− Yk)

Yj + Yk + γ
+

2YjYk − Yj − Yk
(Yj + Yk + γ)2

+
2YjYk

(Yj + Yk + γ)3

]
.

Baringhaus and Henze (1991) showed that the test statistic has a nondegen-
erate limiting null distribution and also that the test is consistent against a
class of alternative distributions with strictly positive, finite mean. The com-
promise choice for γ suggested in Baringhaus and Henze (1991) is γ = 1. This
test rejects exponentiality for large values of BHn,γ .

2.2.2 Henze and Meintanis (2002) test (Ln,γ)

The natural idea of creating a test for exponentiality by measuring the L2-
distance between the ECF and the CF for the standard exponential distribu-
tion was first proposed in Henze (1993). The proposed test statistic has the
following form:

Hn,γ = n

∫ ∞
0

(
ψn(t)− 1

1 + t

)2

exp(−γt)dt. (5)

This test statistic should produce a value close to zero if the null hypothesis
is true. However, the equation in (5) does not simplify to a simple closed-form
expression and requires numerical integration. To overcome this issue Henze
and Meintanis (2002) proposes the following form of the test statistic:

Ln,γ = n

∫ ∞
0

[
ψn(t)− 1

1 + t

]2
(1 + t)2 exp(−γt)dt, (6)

where γ > 0. The statistic in (6) simplifies to the following closed-form ex-
pression:

Ln,γ =
1

n

n∑
j=1

n∑
k=1

[
1 + (Yj + Yk + γ + 1)2

(Yj + Yk + γ)3

]
− 2

n∑
j=1

[
1 + Yj + γ

(Yj + γ)2

]
+
n

γ
.

Two possible compromise choices for the parameter γ are suggested for prac-
tical applications in Henze and Meintanis (2002); γ = 0.75 and γ = 1. For the
purpose of this paper, we will make use of γ = 0.75. This test rejects H0 for
large values of Ln,γ .
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2.3 Tests based on the empirical distribution function

The use of distance measures based on the empirical distribution function
(EDF) is one of the earliest approaches to goodness-of-fit testing. The EDF
based on the scaled data Y1, . . . , Yn is defined as

Fn(x) =
1

n

n∑
j=1

I(Yj ≤ x),

where I(· ) denotes the indicator function and x ∈ R. The tests considered mea-
sure the discrepancy between the standard exponential distribution function
and the EDF. The most famous of these include the Kolmogorov-Smirnov and
Cramér-von Mises tests (see, for example, D’Agostino and Stephens, 1986),
which are discussed below. Another test, based on the integrated EDF, can be
found in Klar (2001), but is not discussed here.

2.3.1 Kolmogorov-Smirnov (KSn)

The Kolmogorov-Smirnov test statistic is given by:

KSn = sup
x≥0

∣∣Fn(x)−
(
1− e−x

)∣∣ . (7)

The test statistic in (7) can be simplified to

KSn = max
{
KS+

n ,KS
−
n

}
,

where

KS+
n = max

1≤j≤n

[
j

n
−
(
1− e−Y(j)

)]
,

KS−n = max
1≤j≤n

[(
1− e−Y(j)

)
− j − 1

n

]
.

This test rejects the null hypothesis for large values of KSn.

2.3.2 Cramér-von-Mises (CMn)

The Cramér-von-Mises test statistic for testing exponentiality is given by

CMn =

∫ ∞
0

[
Fn(x)−

(
1− e−x

)]2
e−xdx. (8)

The test statistic in (8) can be simplified to

CMn =
1

12n
+

n∑
j=1

[(
1− e−Y(j)

)
− 2j − 1

2n

]2
.

Large values of CMn will lead to the rejection of the null hypothesis.
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2.4 Tests based on mean residual life

In reliability theory and survival analysis the mean residual life (MRL) of a
non-negative random variable X at time t, defined as the expected value of
the amount of life time remaining after time t, is expressed as

m(t) =E [X − t|X > t] =

∫∞
t
S(x)dx

S(t)
,

where S(t) = 1 − F (t) is the survival function. It was shown in Shanbhag
(1970) that the exponential distribution is characterised by a constant MRL,
i.e., for the exponential distribution we have that

m(t) = E(X) =
1

λ
, ∀t > 0. (9)

It can be shown that the characterisation in (9) is equivalent to

E (min {X, t}) =
F (t)

λ
, ∀t > 0, (10)

or ∫ ∞
t

S(x)dx =
S(t)

λ
, ∀t > 0. (11)

Tests based on the MRL (and the various forms of the characterising prop-
erties given in (9) to (11)) to test for exponentiality can be found in Baringhaus
and Henze (2000), Jammalamadaka and Taufer (2006), and Taufer (2000). A
generalisation of the test in Baringhaus and Henze (2000) which includes a
more general weight function can be found in Baringhaus and Henze (2008).
The two tests considered in this paper, namely the Jammalamadaka and Taufer
test from Jammalamadaka and Taufer (2006) and the Baringhaus and Henze
test from Baringhaus and Henze (2000), employ the characterisations in (9)
and (10), respectively. The test proposed by Taufer in Taufer (2000), however,
makes use of the characterisation in (11). This test is not considered in this
study.

2.4.1 Baringhaus and Henze (2000) (KSn and CMn)

In Baringhaus and Henze (2000), a Kolmogorov-Smirnov and Cramér-von
Mises type tests based on the MRL is introduced. The test statistic of the
Kolmogorov-Smirnov version of the test is given by

KSn =
√
n sup
t≥0

∣∣∣∣∣∣ 1n
n∑
j=1

min{Yj , t} −
1

n

n∑
j=1

I (Yj ≤ t)

∣∣∣∣∣∣ =
√
nmax

{
KS

+

n ,KS
−
n

}
,
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where

KS
+

n = max
j∈{0,1,...,n−1}

[
1

n

(
Y(1) + ...+ Y(j)

)
+ Y(j+1)

(
1− j

n

)
− j

n

]
,

KS
−
n = max

j∈{0,1,...,n−1}

[
j

n
− 1

n

(
Y(1) + ...+ Y(j)

)
− Y(j)

(
1− j

n

)]
.

The Cramér-von-Mises type test statistic is:

CMn = n

∫ ∞
0

 1

n

n∑
j=1

min {Yj , t} −
1

n

n∑
j=1

I (Yj ≤ t)

2

e−tdt

=
1

n

n∑
j=1

n∑
k=1

[
2− 3 exp (−min{Yj , Yk})− 2 min{Yj , Yk}

(
e−Yj + e−Yk

)
+ 2 exp (−max{Yj , Yk})

]
.

The null hypothesis is rejected for large values of KSn and CMn. The asymp-
totic null distributions of KSn and CMn are identical to the asymptotic null
distributions of KSn and CMn when used to test for a standard uniform
distribution. Baringhaus and Henze (2000) showed that these two tests are
consistent against each fixed alternative distribution with positive mean.

2.4.2 Jammalamadaka and Taufer (2006) (Jn,γ)

In Jammalamadaka and Taufer (2006), a test based on the characterization in
(9) is developed by first defining what they call the ‘sample MRL after X(k)’
as follows:

X̄>k =
1

n− k + 1

n+1∑
j=k+1

(
X(j) −X(k)

)
=

1

n− k + 1

n+1∑
j=k+1

(n− j + 2)
(
X(j) −X(j−1)

)
.

Under exponentiality it follows that

E
[
X̄>k

]
= E

[
X̄n

]
=

1

λ
, k = 1, 2, . . . , n. (12)

Using (12), a Kolmogorov-Smirnov type statistic is proposed in Jammala-
madaka and Taufer (2006) as a possible test for exponentiality:

J ′n = max
1≤k≤n

∣∣X̄n − X̄>k

∣∣
X̄n

.

Unfortunately, it was shown that this version of the test statistic does not
converge to zero even under the null hypothesis of exponentiality. To overcome
this problem and some other issues plaguing the statistic J ′n, Jammalamadaka
and Taufer (2006) constructs a trimmed test statistic whereby some of the last
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residual means are removed from the calculation. The resulting test statistic
has the form

Jn,γ = max
1≤k≤n−bnγc

n
γ
2

∣∣X̄n − X̄>k

∣∣
X̄n

, γ ∈ (0, 1), (13)

where bxc = floor(x) and γ is the trimming parameter which indicates how
many of the last residual means are discarded. This test rejects the null hy-
pothesis for large values of Jn,γ .

In Jammalamadaka and Taufer (2006), the authors derive the asymptotic
null distribution of Jn,γ and also prove that the test is consistent for every
fixed non-exponential alternative distribution with finite mean. In addition, it
is shown that the powers of the test are highly sensitive to the choice of γ, but
that a compromise choice of γ = 0.9 (i.e., when a large proportion of the last
mean residuals are trimmed) produces the highest powers for the majority of
the alternatives considered.

2.5 Tests based on entropy

For a non-negative continuous random variable X with density function f(x),
the entropy (sometimes referred to as the differential entropy) is given by

DE(X) = −
∫ ∞
0

f(x) ln f(x)dx. (14)

Initial attempts (see, for example, Grzegorzewski and Wieczorkowski, 1999;
Ebrahimi et al, 1992) to construct tests for exponentiality based on the en-
tropy exploited the characterisation that, among all distributions with support
[0,∞) and fixed mean, the quantity DE(X) is maximised if X follows an ex-
ponential distribution. However, these tests are not explored further in this
paper, instead we focus on two more recent tests based on the cumulative
residual entropy (CRE). The CRE, introduced in Rao et al (2004), is an alter-
native information measure which replaces the density function in (14) with
the survival function, and is defined as

CRE(X) = −
∫ ∞
0

S(x) lnS(x)dx,

where S(x) = 1− F (x) is the survival function.

2.5.1 Zardasht et al. (2015) (ZPn)

The first test for exponentiality based on the CRE information measure con-
sidered is found in Zardasht et al (2015). Let X and Z be non-negative ran-
dom variables with distribution functions F and G, respectively. The test is
based on the CRE of the so-called comparison distribution function, D(u) =
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F (G−1(u)) (Parzen, 1998). Calculating the CRE of a random variable with
distribution function D(u) and simplifying the following expression is obtained

C(X,Z) = −
∫ ∞
0

S(x) lnS(x)dG(x). (15)

If W is exponentially distributed with parameter λ > 0, then (15) can be
expressed as

C(W,Z) =

∫ ∞
0

xλe−xλdG(x),

which is a measure used to compare the distribution function of Z to that
of the exponential distribution. If Z is also exponentially distributed, then it
easily follows that C(W,Z) = 1

4 . The authors of Zardasht et al (2015) based
their test statistic on the difference between an estimator for C(W,Z) and 1

4 .
The resulting test statistic is thus

ZPn =
1

n

n∑
j=1

Yje
−Yj − 1

4
.

This test rejects exponentiality for both small and large values of ZPn. Zardasht

et al (2015) go on to show to show that
√
nZPn

D→ N(0, 5/382), but did not
formally prove the consistency of the test.

2.5.2 Baratpour and Habibi Rad (2012) (BRn)

The next test considered is based on the cumulative Kullback-Leibler (CKL)
divergence (and indirectly on the CRE) introduced in Baratpour and Habibi Rad
(2012). If W1 and W2 are two non-negative continuous random variables with
distribution functions H and G, respectively, then the CKL divergence be-
tween these two distributions is defined as

CKL(H,G) =

∫ ∞
0

(1−H(x)) ln
1−H(x)

1−G(x)
dx− [E(W1)− E(W2)] .

Note that the CKL divergence is somewhat similar to the classical Kullback-
Leibler divergence, with the density functions replaced by survival functions.

The authors make use of the fact that, if the null hypothesis is true, then
CKL(F, F0) = 0. Rewriting the CKL measure in terms of the CRE mea-
sure, and plugging in the necessary estimates, they arrive at the following test
statistic

BRn =

∑n−1
j=1

n−j
n

(
ln n−j

n

) (
X(j+1) −X(j)

)
+

∑n
j=1X

2
j

2
∑n
j=1Xj∑n

j=1X
2
j

2
∑n
j=1Xj

.

The asymptotic distribution under the null hypothesis is not derived in Barat-
pour and Habibi Rad (2012), however it is shown that the test is consistent.

This test rejects H0 for large values of BRn.
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2.6 Tests based on normalised spacings

It has been shown (see, for example, Jammalamadaka and Goria, 2004) that
transforming the data can increase the power of tests for exponentiality against
certain alternatives. A widely used transformation is to convert the data to
the so-called normalized spacings, defined as

Dj = (n− j + 1)
(
X(j) −X(j−1)

)
, j = 1, ..., n,

with X(0) = 1. To find tests for exponentiality that use normalised spacings,
the reader is referred to Epstein (1960), Jammalamadaka and Taufer (2003)
and Jammalamadaka and Goria (2004), and for a test where these spacings
are used to test for exponentiality in the presence of type-II censoring, see
Balakrishnan et al (2002). We consider two other tests based on spacings; one
found in Gail and Gastwirth (1978) and a modification of a test in Gnedenko
et al (1969) which is found in Harris (1976).

2.6.1 Gini test (Gn)

A test statistic that employs normalised spacings for testing exponentiality is
described in D’Agostino and Stephens (1986) and is given by:

DSn =

n−1∑
j=1

Uj = 2n− 2

n

n∑
j=1

jY(j), (16)

where

Uk =

∑k
j=1Dj∑n
j=1Xj

, for k = 1, . . . , n− 1,

and follows a standard uniform distribution under H0.
This test rejects H0 for both small and large values of DSn.
An additional test based on the so-called Gini index, proposed in Gail and

Gastwirth (1978), makes use of the following test statistic

Gn =

∑n
j=1

∑n
k=1 |Yj − Yk|

2n(n− 1)
. (17)

It is easy to see that the following relationship holds between the test statistics
in (16) and (17):

Gn = 1− DSn
n− 1

.

Similar to DSn, this test rejects the null hypothesis for both small and large
values.

Unfortunately, both of these tests have been shown not to be universally
consistent.
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2.6.2 Harris’ modification of Gnedenko’s F -test (HMn,r)

In Gnedenko et al (1969) a test is proposed for exponentiality involving order-
ing a sample of size n and then splitting the n elements into two groups; the
r smallest elements and the second containing the remaining n − r elements.
The test statistic, given by

GDn,r =

∑r
j=1Dj/r∑n

j=r+1Dj/(n− r)
, (18)

follows an F distribution with 2r and 2(n− r) degrees of freedom under H0.
A modification of the test in (18) was introduced in Harris (1976). This

modification can be used to accommodate testing for exponentiality in the
presence of hypercensoring and is referred to as Harris’ modification of Gne-
denko’s F -test. For this test, the sample spacings are split into three groups:
The first group contains the first r spacings, the last group contains the last r
last spacings, and the remaining n− 2r spacings form the second group. The
test is based on the elements in the second group and the test statistic is given
by

HMn,r =

(∑r
j=1Dj +

∑r
j=n−r+1Dj

)
/2r(∑n−r

j=r+1Dj

)
/(n− 2r)

.

In Harris (1976), it is recommended that r is chosen to be equal to n/4, and
this is also the value of r used in the simulation study presented Section 4.

The null hypothesis is rejected for small and large values of both GDn,r

and HMn,r.

2.7 A test based on a score function

The score function, defined as the gradient of the log likelihood function, is a
powerful tool that can be used to test statistical hypotheses. We consider one
test, developed in Cox and Oakes (1984), that employs this score function to
test for exponentiality.

2.7.1 Cox and Oakes (1984) (COn)

A score test is introduced in Cox and Oakes (1984) that, when applied to
censored data, has the following form

COn = d+

n∑
j=1

ln (Xj)− d
∑n
j=1Xj ln (Xj)∑n

j=1Xj
,

where d ≤ n is the number of uncensored data points. However, when d = n
(i.e., in the uncensored case) and one uses the scaled data Y1, . . . , Yn, the
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statistic becomes

COn = n+

n∑
j=1

(1− Yj) ln(Yj).

The test rejects H0 for both large and small values of COn and it is shown
using finite sample simulation studies in both Ascher (1990) and Henze and
Meintanis (2005) that the test is quite powerful against a wide variety of non-
exponential alternatives.

It follows that
√

6/n(COn/π) has a standard normal asymptotic null dis-
tribution and is consistent against alternative distributions with E(X) < ∞
and E(X lnX − lnX) 6= 1, as discussed in, for example, Henze and Meintanis
(2002).

2.8 Tests based on other characterizations and properties

Over the years, a multitude of tests for exponentiality have been developed by
utilising a number of interesting and varied characterisations and properties of
the exponential distribution, but it would not be possible to address all of them
in a single study. These tests utilise characterisations such as the memoryless
property (see, for example, Ahmad and Alwasel, 1999; Alwasel, 2001; Angus,
1982), the Arnold-Villasenor characterisation (see Jovanović et al, 2015), the
Rossberg characterisation (Volkova, 2010), and various other characterisations
(see, for example, Abbasnejad et al, 2012; Noughabi and Arghami, 2011a).
Other tests for exponentiality, not included in this paper, include tests for
exponentiality based on the analysis of variance (see Shapiro and Wilk, 1972),
tests based on order statistics (see Bartholomew, 1957; Hahn and Shapiro,
1967; Jackson, 1967; Wong and Wong, 1979), tests based on transformations
to uniformity (see Hegazy and Green, 1975; Seshadri et al, 1969), and tests
based on maximum correlations (see Grané and Fortiana, 2011), to name but
a few. However, for the purposes of the simulation study conducted in this
paper, we consider the following four tests: the Ahsanullah test (Volkova and
Nikitin, 2013), a test based on likelihood ratios (Noughabi, 2015), a test based
on transformed data (Noughabi and Arghami, 2011b), and the Atkinson test
(Mimoto and Zitikus, 2008). The Ahsanullah test is chosen because no finite
sample results for this test are available in Volkova and Nikitin (2013), whereas
the remaining three are chosen because of their good power performance in
finite sample studies found in the literature.

2.8.1 Tests based on Ahsanullah’s characterisation (AH1
n and AH2

n)

Assume that the distribution F belongs to a class of distributions F that are all
strictly monotone and whose hazard rate function, f(x)/S(x), is either increas-
ing or decreasing monotonically. Ahsanullah proved the following characteri-
sation of the exponential distribution in Ahsanullah (1978): Let X1, X2, ..., Xn

be non-negative iid random variables with distribution function F . A necessary
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and sufficient condition for F to be exponential is that for some j and k, the
statistics (n − j)(X(j+1) − X(j)) and (n − k)(X(k+1) − X(k)) are identically
distributed for 1 ≤ j < k < n.

In Volkova and Nikitin (2013), the following specific settings of this char-
acterization is considered: n = 2, j = 0 and k = 1. Under these settings,
the characterization takes the following form: Let X and Y be non-negative
iid random variables from the class F . X is then exponentially distributed if
|X − Y | and 2 min {X,Y } are identically distributed.

The test statistic suggested in Volkova and Nikitin (2013), derived from
this characterization, is

AH1
n =

∫ ∞
0

[Hn(t)−Gn(t)] dFn(t),

where

Hn(t) =
1

n2

n∑
j=1

n∑
k=1

I (|Xj −Xk| < t), t > 0,

Gn(t) =
1

n2

n∑
j=1

n∑
k=1

I (2 min {Xj , Xk} < t), t > 0.

If the null hypothesis is true, then Hn and Gn should be close to one another.
The test therefore rejects H0 for small or large values of AH1

n. The authors
showed that

√
nAH1

n
D→ N

(
0,

647

42525

)
,

and calculated local Bahadur efficiencies under common parametric alterna-
tives. However, the finite sample performance of their test statistic was not
investigated. In addition, we also consider the more common Cramer-von Mises
type distance where the squared difference between Hn and Gn is used; the
corresponding statistic is denoted by

AH2
n =

∫ ∞
0

[Hn(t)−Gn(t)]
2
dFn(t).

This new form of the test will reject H0 for large values of the test statistic.

2.8.2 A test based on likelihood ratios (ZAn)

Consider the following two generic statistics,

Z =

∫ ∞
−∞

Z(t)dw(t) (19)

and

Zmax = sup
t∈(−∞,∞)

{Z(t)w(t)}, (20)
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where Z(t), dw(t) and w(t) are appropriately chosen functions. It is easy to
show (see, for example, Zhang, 2002) that if one chooses Z(t) = X2(t), where

X2(t) =
n[Fn(t)− F0(t)]2

F0(t)[1− F0(t)]

is the Pearson chi-squared statistic, then the statistics in equations (19) and
(20) become the traditional Anderson-Darling, Cramer-von Mises, and Kolmogorov-
Smirnov test statistics for specific choices of dw(t) and w(t), and where F0(x) =
1− exp(−λx).

However, Zhang (2002) suggests using the likelihood ratio statistic G2(t)
instead of the X2(t) statistic, where G2(t) is defined as

G2(t) = 2n

{
Fn(t) log

(
Fn(t)

F0(t)

)
+ [1− Fn(t)] log

(
1− Fn(t)

1− F0(t)

)}
.

Choosing Z(t) = G2(t), the authors obtain the following easy-to-calculate
versions of the tests statistics for certain choices of dw(t) and w(t):

– Setting dw(t) = Fn(t)−1{1−Fn(t)}−1dFn(t) in (19), the following statistic
is obtained:

ZAn = −
n∑
j=1

(
log(1− exp(−Y(j)))

n− j + 0.5
−

Y(j)

j − 0.5

)
.

– Setting dw(t) = F0(t)−1{1− F0(t)}−1dF0(t) in (19), the following approx-
imate statistic is obtained:

ZCn =

n∑
j=1

(
log

{
(1− exp(−Y(j)))−1 − 1

(n− 0.5)/(j − 0.75)− 1

})2

.

– Setting w(t) = 1 in (20), the following statistic is obtained:

ZKn = max
1≤j≤n

(
(j − 0.5) log

{
j − 0.5

n(1− exp(−Y(j)))

}
+ (n− j + 0.5) log

{
n− j + 0.5

n(exp(−Y(j)))

})
.

All of these tests reject H0 for large values of the test statistics.
The finite sample performance of these three new tests for testing the

hypothesis of normality are investigated in Zhang (2002), where it is found
that the ZAn and ZCn versions of these statistics perform well, even when
compared to traditionally powerful tests for normality, such as the Shapiro-
Wilk test. In Noughabi (2015) the finite sample performance of these tests
is investigated when testing for exponentiality. The authors conclude that,
among these three tests, ZAn performs best. As a result we include only ZAn
in our own Monte Carlo study. Note that while the finite sample performance
of these tests were extensively studied in Noughabi (2015), the derivation of the
asymptotic null distribution and consistency of these tests were not discussed.
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2.8.3 A test using transformed data (NAn)

The test proposed in Noughabi and Arghami (2011b) employs the rather sim-
ple idea that, for a uniform distribution, the quantity xfU (x) will be equal to
FU (x), where x ∈ [0, 1], fU (· ) is the uniform density function and FU (· ) is
the uniform distribution function. Therefore, given data V1, V2, . . . , Vn, a test
statistic proposed to test for uniformity is

Tn =
1

n

n∑
j=1

∣∣∣Vj f̂(Vj)− FU (Vj)
∣∣∣ , (21)

where f̂(· ) is the kernel density estimator defined as

f̂(x) =
1

nh

n∑
j=1

K

(
x− Vj
h

)
,

with K(· ) the standard normal density function and h the bandwidth chosen
using Silverman’s normal rule of thumb, h = 1.06sn−1/5 (see Silverman, 1986),
where s is the sample standard deviation .

The test for exponentiality proceeds by exploiting the following character-
isation of exponentiality (see Alzaid and Al-Osh, 1992): For two independent
random observations W1 and W2 from a distribution G, the random variable
W1/(W1 +W2) is uniformly distributed if, and only if, G is the exponential
distribution.

Subsequently, given the order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n), con-
struct the transformed data set

Zij =
X(i)

X(i) +X(j)
, i 6= j, i, j = 1, 2, . . . , n.

Under the hypothesis of exponentiality, these newly transformed values will
have a uniform distribution. The test statistic given in (21) can consequently
be used to test deviations from exponentiality for these transformed data:

NAn =
1

n(n− 1)

∑∑
i6=j

∣∣∣Zij f̂(Zij)− FU (Zij)
∣∣∣ .

The test rejects the null hypothesis for large values of NAn.

In Noughabi and Arghami (2011b) the authors investigate the finite sample
performance of their newly proposed test, but do not derive any asymptotic
results.

Another test using transformed data can be found in Dhumal and Shirke
(2014), but we will not discuss this test further in this paper.
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2.8.4 The Atkinson test (ATn,γ)

In Lee et al (1980) the authors propose tests for exponentiality based on the
ratio

QF (γ) =
E[Xγ ]

(E[X])
γ ,

for γ > 0, which is equal to Γ (1 + γ) if X is exponentially distributed.
However, an approach whereby the quantity QF (γ) is raised to the power

1/γ to create the following ratio

RF (γ) =
E[Xγ ]1/γ

E[X]
,

is adopted in Mimoto and Zitikus (2008). Naturally, if X is exponentially
distributed, then RF (γ) equals Γ (1 + γ)1/γ for γ 6= 0, and equals exp(−ε)
when γ → 0, where ε = 0.577215... is the Euler constant. The test statistic
proposed in Mimoto and Zitikus (2008), called the Atkinson statistic, is based
on the difference between an empirical estimator of RF (γ) and Γ (1 + γ)1/γ ,
for γ values between −1 and 1, but γ 6= 0. The test statistic is given by

ATn,γ =
√
n
∣∣∣Rn(γ)− Γ (1 + γ)1/γ

∣∣∣ , (22)

where

Rn(γ) =
1

X̄n

 1

n

n∑
j=1

Xγ
j

1/γ

.

In the limit where γ → 0 the quantity RF (γ) has the form

RF (0) =
exp (E[log(X)]))

E[X]
,

the numerator of which is consistently estimated by the geometric mean Gn =∏n
j=1X

1/n
j . Therefore, when γ = 0, the resulting test statistic, called the

Moran statistic for exponentiality, has the form

ATn,0 =
√
n

∣∣∣∣GnX̄n
− exp(−ε)

∣∣∣∣ ,
see Moran (1951). For all choices of γ, the test rejects the null hypothesis for
large values.

Extensive Monte Carlo power studies are presented in Mimoto and Zitikus
(2008) where it is found that values of γ close to 0 and close to 0.99 produce
the highest power for most alternatives considered. For the purposes of this
paper, a compromise choice of γ = 0.01 is selected. In addition, the authors
of Mimoto and Zitikus (2008) establish the asymptotic null distribution and
consistency of the test statistic ATn,γ .
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3 A data-dependent choice of the tuning parameter

Many of the tests mentioned in Section 2 contain a tuning parameter γ typ-
ically appearing in a weight function (see for example the test statistics in
(4), (6), and (13)). As stated in the introduction, authors typically approach
the selection of this parameter by evaluating the power performance of their
tests across a grid of values of the tuning parameter and then suggesting a
compromise choice for the parameter by selecting a value that fares well for
the majority of the alternatives considered. However, there is general agree-
ment that a data-dependent choice of this parameter is required for practical
implementation.

Consider a generic test statistic which contains a tuning parameter γ de-
noted Tn,γ , whose critical values, denoted by C̃n,γ(α), can be obtained through
Monte Carlo simulation. A possible data-dependent choice of the parameter γ
proposed by Allison and Santana (2015) can be obtained by maximising the
bootstrap power of the test as follows:

γ̂ = γ̂ (Xn) = arg sup
γ∈R

P ∗
(
Tn,γ (Y∗n) ≥ C̃n,γ (α)

)
,

where Y∗n = (Y ∗1 , Y
∗
2 , ..., Y

∗
n ) denotes a bootstrap sample taken with replace-

ment from Yn, and P ∗ is the law of Y∗n given Yn. In Allison and Santana
(2015) the following algorithm used to approximate the ideal bootstrap esti-
mator γ̂ is provided:

1. Fix a grid of γ values: γ ∈ {γ1, γ2, ..., γk}.
2. Obtain a bootstrap sample Y∗n by sampling with replacement from Yn.
3. Calculate Tn,γj (Y∗n), j = 1, 2, ..., k.
4. Repeat steps (2) and (3) a large number of times (say B times) and denote

the resulting test statistics by T ∗n,γj ,1, T
∗
n,γj ,2, ..., T

∗
n,γj ,B

, j = 1, 2, ..., k.
5. Calculate

P̂boot,γj =
1

B

B∑
b=1

I
(
T ∗n,γj ,b ≥ C̃n,γj (α)

)
, j = 1, 2, ..., k.

6. Calculate
γ̂B = γ̂B (Xn) = arg max

γ∈{γ1,γ2,...,γk}
P̂boot,γ . (23)

The numerical results reported in Tables 6 – 11 in Section 4 relating to
test statistics containing a tuning parameter are obtained using the estimated
tuning parameter obtained in (23). The estimated powers obtained using the
compromise choice of γ are reported in parentheses in these tables. The details
related to the choice of the grid used for each test are discussed in the next
section.

4 Monte Carlo methodology and results

In this section Monte Carlo simulations are used to evaluate the power of the
various tests discussed in Section 2.
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4.1 Simulation setting

Throughout the simulation study we use a significance level of 5% and the
critical values of all tests are calculated based on 10 000 independent Monte
Carlo replications. All calculations are done in R (R Core Team, 2013).

Power estimates are calculated for sample sizes n ∈ {10, 20, 30, 50, 75, 100}
using 5 000 independent Monte Carlo replications for various alternative distri-
butions. These alternative distributions, given in Table 1, are chosen since they
are commonly employed alternatives to the exponential distribution, which
has a constant hazard rate (CHR). The distributions considered include those
with increasing hazard rates (IHR), decreasing hazard rates (DHR), as well as
non-monotone hazard rates (NMHR).

In order to determine the power of the six tests containing a tuning parame-
ter (BHn,γ , Ln,γ , PW 1

n,γ , PW 2
n,γ , Jn,γ , ATn,γ) when using the data-dependent

choice of the parameter (discussed in Section 3), we first need to approximate
the empirical powers of these tests for each value of γ in a sequence of γ values.
The empirical power based on the data-dependent choice is then calculated as
described in Allison and Santana (2015). In each case B = 250 bootstrap repli-
cations are used to evaluate the bootstrap power of the tests. The following
grids of values of the parameter are used for the respective tests:

– For BHn,γ , Ln,γ , PW 1
n,γ , and PW 2

n,γ the grid of γ values is given by

γ ∈ {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 5}.

– For Jn,γ , the grid of γ values is

γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

– The grid of γ values used for ATn,γ is

γ ∈ {−0.99,−0.75,−0.5,−0.25,−0.01, 0.01, 0.25, 0.5, 0.75, 0.99}.

4.2 Simulation results

Tables 6 – 11 show the estimated powers of the various tests discussed in
Section 2 for sample sizes n ∈ {10, 20, 30, 50, 75, 100} against each of the al-
ternative distributions given in Table 1. The entries in these tables are the
percentage of 5 000 independent Monte Carlo samples that resulted in the re-
jection of H0 rounded to the nearest integer. Note that, for the tests containing
a tuning parameter, the primary entry is the approximate power for the test
based on the data-dependent choice of the parameter, γ̂, while the approxi-
mate power of the test based on the compromise choice appears in parentheses
along-side it. To ease comparisons between the results, the highest power for
each alternative distribution is highlighted.
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Table 1 Various choices of the alternative distributions. ∗ see Lemonte (2013).

Alternative f(x) Notation

Gamma
1

Γ (θ)
xθ−1e−x Γ (θ)

Weibull θxθ−1 exp(−xθ) W(θ)

Power
1

θ
x(1−θ)/θ, 0 < x < 1 PW(θ)

Lognormal exp

{
−

1

2
(log(x)/θ)2

}
/
{
θx
√

2π
}

LN(θ)

Dhillon
θ + 1

x+ 1
exp

{
− (log(x+ 1))θ+1

}
(log(x+ 1))θ DH(θ)

Chen 2θxθ−1 exp
{
xθ + 2

(
1− exp

(
xθ
))}

CH(θ)

Linear failure rate (1 + θx) exp(−x− θx2/2) LF(θ)

Extreme value
1

θ
exp

(
x+

1− ex

θ

)
EV(θ)

Half normal

(
2

π

)2

exp

(
−x2

2

)
HN

Beta
Γ (θ1 + θ2)

Γ (θ1)Γ (θ2)
xθ1−1(1− x)θ2−1 B(θ1, θ2)

Exponential power exp
{

1− exp
(
xθ
)}

exp
{
xθ
}
θxθ−1 EP(θ)

Exponential logarithmic
1

− ln θ

(1− θ)e−x

1− (1− θ)e−x
EL(θ)

Exponential Nadarajah Haghighi (1)∗
θ(1 + x)−0.5e1−(1+x)0.5

2
[
1− e1−(1+x)0.5

]1−θ ENH1(θ)

Exponential Nadarajah Haghighi (2) ∗ 2θ(1 + x)e−x
2−2x[

1− e−x2−2x
]1−θ ENH2(θ)

Beta exponential θe−x(1− e−x)θ−1 BEX(θ)

Exponential geometric
(1− θ)e−x

(1− θe−x)2
EG(θ)
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The primary aim of this paper is to compare the power of these tests against
a wide range of alternative distributions. Below we present some general con-
clusions relating to the reported estimated powers of the various tests. For the
second part of the analysis of the results we consider only the tests containing
tuning parameters. Here we compare the powers achieved by tests employing
the data-dependent choice proposed in Allison and Santana (2015) with those
associated with the compromise choice of the parameter.

The performance of the tests are greatly affected by the shape of the hazard
rate of the alternative distribution considered. Consequently, we discuss the
overall results, as well as the results categorised according to the shape of the
hazard rate classified as increasing, decreasing, or non-monotone.

4.3 Power comparisons

For the purposes of the comparison between the power of the various tests we
use the data-dependent choice (and not the compromise choice) of the tuning
parameter for the tests containing such a parameter.

Consider the performance of the tests in general against all alternatives.
The powers of HMn do not compare favourably to those of the other tests;
this test reveals lower powers against the majority of the alternatives. For
small samples, AH2

n, BRn and NAn also exhibit lower powers against the
majority of the alternatives. The tests that generally perform well are COn,
ZAn, ATn,γ̂ , BHn,γ̂ and Ln,γ̂ . The CMn and CMn also perform relatively
well against the majority of the alternatives, especially for large samples.

We now consider the results pertaining to the alternatives with increasing
hazard rates. Against these alternatives HMn, KSn, AH1

n, Jn,γ̂ , PW 1
n,γ̂ and

PW 2
n,γ̂ exhibit lower powers for all sample sizes considered. BRn has higher

power in the case of small sample sizes, but its power relative to the other
tests decreases with sample size. The opposite is true for Ln,γ̂ , which reveals
a relative increase in power with sample size. The two tests based on mean
residual life, KSn and CMn, perform relatively well for all sample sizes. The
Cramér-von-Mises type statistic for Ahsanullah’s test, AH2

n, and NAn also
perform well, especially for small sample sizes. The following tests exhibit
high powers in the case of large sample sizes: Gn, EPn, ZAn and BHn,γ̂ .

We now turn our attention to the alternatives with decreasing hazard rates.
HMn, AH2

n, BRn and NAn perform poorly for all sample sizes. In turn, the
tests for which large powers are observed are COn, BHn,γ̂ and Ln,γ̂ . Further-
more, CMn, Gn, EPn and ATn,γ̂ perform well, especially for large samples,
while PW 2

n,γ̂ provides higher relative powers in the case of small samples.
The results pertaining to the alternatives with non-monotone hazard rates

are as follows. The tests generally demonstrating the lowest powers are HMn,
BRn and NAn. For small sample sizes AH2

n performs poorly, while Gn, and
EPn exhibit relatively low powers in the case of large samples. However, ZAn,
ATn,γ̂ , BHn,γ̂ and Ln,γ̂ generally perform well for all sample sizes. The original
probability weighted characteristic function test, PW 1

n,γ̂ , where the weights
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emphasise the centre of the distribution, does well in the case of larger samples.
On the other hand, the alternative formulation of this test with the weight
function allocating the majority of the weight to the tails of the distribution,
PW 2

n,γ̂ , exhibits relatively high power, especially for small samples. The same
is true for COn.

In summary, the powers achieved by HMn are generally substantially lower
than those of the remaining tests. Other tests that do not generally achieve
good results are AH2

n, BRn, and ZAn. The tests that perform well are BHn,γ̂ ,
Ln,γ̂ , ATn,γ̂ and COn. The test that performs the best overall is BHn,γ̂ , closely
followed by Ln,γ̂ . Note that only one of the tests reported to perform relatively
poorly contain a tuning parameter, while only one of the tests reported to
achieve high powers do not contain such a parameter; COn performs the best
among those tests that do not include a tuning parameter.

4.4 Comparisons based on the choice of the tuning parameter

Six of the goodness-of-fit test statistics considered contain tuning parameters.
Below we compare the powers achieved by these tests using two different values
of the tuning parameter. The first value is chosen data-dependently using
the method detailed in Allison and Santana (2015), while the second is the
compromise choice recommended in the relevant literature. As was the case
above, the discussion below does not only refer to the overall performance of
the tests; the performance of the tests against alternatives with increasing,
decreasing and non-monotone hazard rates are also discussed separately.

We consider the overall results first. For smaller sample sizes there is little
to choose between the powers obtained using ATn,γ based on the choices of
the tuning parameter. However, as the sample size increases, use of the data-
dependent choice generally results in a slight increase in relative power. On the
other hand, when using Jn,γ the choice between the tuning parameters is unim-
portant for large samples, but for smaller samples the data-dependent choice
leads to slightly higher powers. For both BHn,γ and Ln,γ the data-dependent
choice leads to higher powers than the compromise choice. Interestingly, the
compromise choice outperforms the data-dependent choice in the case of the
original PWECF test, PW 1

n,γ , by a small margin, while the data-dependent
choice leads to vast improvements in the powers associated with PW 2

n,γ (giv-
ing more weight towards the tails of the distribution), especially for larger
samples.

Next we consider alternative distributions with increasing hazard rates. In
this case the use of either method for the choice of the tuning parameter leads
to little difference in powers obtained using the ATn,γ , BHn,γ , PW 1

n,γ and Ln,γ
tests. The performance of Jn,γ is slightly improved by using the compromise
choice, while the performance of PW 2

n,γ is greatly improved when using the
data-dependent choice of the tuning parameter.

Turning our attention to the alternative distributions with decreasing haz-
ard rates, we see that the observed powers are not substantially affected by
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the choice of tuning parameter in the case of the following tests: ATn,γ , BHn,γ

and Ln,γ . For both PW 1
n,γ and PW 2

n,γ the compromise choice of the tuning
parameter outperforms the data-dependent choice. The power of Jn,γ is sub-
stantially improved when using the data-dependent choice, especially for small
samples.

Finally, we consider the performance of the tests against alternatives with
non-monotone hazard rates. When using PW 1

n,γ the powers can be increased
by using the compromise choice, especially for small samples. However, sub-
stantial improvements in the power of PW 2

n,γ are realised when the data-
dependent choice is used, especially in the case of larger samples. The powers
of BHn,γ and Ln,γ are higher when the data-dependent choice is used than
is the case for the compromise choice. The performance of ATn,γ is not sub-
stantially affected by the choice of the tuning parameter for small samples,
but using the data-dependent choice leads to improved power in the case of
larger samples. When using Jn,γ the data-dependent choice outperforms the
compromise choice for small samples.

It is interesting to note that in the cases where the compromise choice of
the tuning parameter outperforms the data-dependent choice the difference
in realised power is usually small. However, there are cases where the power
associated with the data-dependent choice vastly outperforms the compromise
choice. As an example, consider the power of PW 2

n,γ against samples of size
75 generated from a lognormal distribution with parameter 0.8. The power
using the compromise choice is estimated to be 0%, while the estimated power
associated with the data-dependent choice is estimated to be 96%. Various
other instances of this phenomenon can be observed in the reported powers.

To conclude this section, we provide a short illustration of how the choice
of the tuning parameter affects the power of two of the tests considered in
the study. For this purpose we consider the tests Ln,γ and Jn,γ for sample
size n = 20. In order to more easily visualise the behaviour of the powers
across the γ values Figures 1 and 2 present the powers obtained for tests Ln,γ
and Jn,γ , respectively, for each choice of γ in the grid of selected γ values.
The powers are calculated for five different alternative distributions. For each
test, the compromise choice of the tuning parameter is indicated by a vertical
dashed line in the relevant figure.

It is clear from the figures that the power of the tests is highly depen-
dent on the choice of γ. The compromise choice performs moderately well in
many of the alternatives, but in some cases it produces low powers relative
to other choices of γ (see, e.g., Ln,γ for alternative PW(2) and Jn,γ for al-
ternatives LN(1.5) and PW(1)). Furthermore, the main entries in Tables 2
and 3 correspond to the powers presented in the figures, whereas the values
stated in parentheses in these tables denote the percentage of times (out of
5000 independent Monte Carlo simulations) that the data-dependent proce-
dure selected the γ value that corresponds to the γ value given in the column
heading. These tables are provided to show that the procedure for obtaining
the data-dependent choice of the tuning parameter most frequently selects the
value of γ that produces the highest power for a given alternative. Consider,
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Fig. 2 Powers for Jn,γ for n = 20 for various alternatives.

for example, Ln,γ for the alternative PW(2), where the maximum power of
53% is obtained at γ = 0.1. The percentage of times that the procedure chose
γ = 0.1 is 68%, and the power of the test based on the data-dependent choice
is 43%. In contrast, the power associated with the compromise choice is only
21%.
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Table 2 Percentage of 5000 samples that resulted in the rejection of H0 (main entries) and
the percentage of times that the procedure selected the specific value of γ (in parentheses)
based on test Ln,γ for n = 20.

γ 0.1 0.25 0.5 0.75 1 1.5 2 2.5 5 γ̂
LN(1.5) 39(4) 51(5) 57(7) 60(6) 62(9) 64(9) 65(12) 66(15) 67(33) 63
PW (1) 4(3) 25(5) 38(3) 46(3) 51(2) 58(5) 61(10) 63(15) 66(54) 59
PW (2) 53(68) 40(10) 28(2) 21(3) 17(1) 12(2) 10(3) 8(3) 5(8) 43
PW (3) 93(83) 89(11) 82(3) 75(2) 70(1) 62(0) 56(0) 51(0) 37(0) 91
EV (1.5) 3(5) 20(6) 29(5) 34(4) 38(6) 42(10) 43(13) 44(17) 45(34) 39

Table 3 Percentage of 5000 samples that resulted in the rejection of H0 (main entries) and
the percentage of times that the procedure selected the specific value of γ (in parentheses)
based on test Jn,γ for n = 20.

γ 0.1 0.3 0.5 0.7 0.9 γ̂
LN(1.5) 62(18) 66(17) 69(33) 64(29) 16(3) 64
PW (1) 0(0) 0(0) 49(23) 65(50) 48(27) 57
PW (2) 0(0) 1(0) 9(24) 15(48) 16(28) 14
PW (3) 9(0) 17(1) 32(10) 50(39) 64(50) 55
EV (1.5) 0(0) 0(0) 12(8) 33(43) 38(49) 34

5 Practical application

In this section we apply all of the tests considered in Section 2 to a real-
world data set: the ‘Leukemia’ data set given below in Table 4 (see Kotze and
Johnson, 1983, for a discussion of the original data set). These data display
the survival times (in days) of 43 patients diagnosed with a certain type of
Leukemia.

Table 4 Survival times in days after diagnosis.

7 47 58 74 177 232 273 285 317 429 440 445
455 468 495 497 532 571 579 581 650 702 715 779
881 900 930 968 1077 1109 1314 1334 1367 1534 1712 1784

1877 1886 2045 2056 2260 2429 2509

Table 5 lists the names of the 20 different tests discussed in this paper along
with the value of the test statistic calculated from these data, the p-value for
testing the hypothesis of exponentiality, as well as the time (in seconds) taken
to compute the p-value and critical value for each test (based on MC = 10 000
replications). Where applicable, the data-dependent choice of γ used is also
displayed in the table. The number of bootstrap replications in the calculation
of the data-dependent choice of the tuning parameter is set to B = 1 000.
The final column in the table indicates whether the test is available in the
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software package R (R Core Team, 2013); these tests are primarily available
in the package exptest (Novikov et al, 2013).

Table 5 Summary of results for the Leukaemia data set.

Test γ̂ value Test statistic value p-value Time Available in R?
EPn 1.714 0.081 0.64 Y
PW 1

n,γ̂ 0.10 −1.872 0.309 1377.19 N

PW 2
n,γ̂ 0.25 −1.167 0.069 1363.20 N

BHn,γ̂ 2.50 0.079 0.086 24.94 N
Ln,γ̂ 5.00 0.003 0.081 16.96 N
KSn 0.162 0.054 1.72 Y
CMn 0.150 0.148 1.67 Y

KSn 1.274 0.069 3.79 Y

CMn 0.331 0.108 107.28 Y
Jn,γ̂ 0.90 1.198 0.040 92.35 N
ZPn 0.160 0.079 1.47 N
BRn 0.098 0.038 1.92 N
Gn 0.426 0.951 0.98 Y
HMn 1.336 0.181 1.06 Y
COn 12.171 0.076 0.61 Y
AH1

n 0.113 0.081 2301.30 Y
AH2

n 0.016 0.112 2051.38 N
ZAn 0.160 0.085 2.11 N
NAn 0.090 0.069 4235.27 N
ATn,γ̂ 0.99 0.009 0.086 7.23 N

All of the tests except Jn,0.9 and BRn do not reject the null hypothesis of
exponentiality at a significance level of α = 0.05.

As shown in Table 5, none of the tests containing a tuning parameter ap-
pear in R. These tests are rather powerful and therefore it might be a worth-
while avenue for future work to create an R package that includes these tests
along with the procedure to obtain the tuning parameter data-dependently.

6 Conclusions

In this paper we consider a large number of tests for exponentiality based on
a wide variety of characteristics of this distribution. Below we briefly mention
these characteristics as well as the tests associated with them.

The tests based on the characteristic function are the Epps and Pulley test
(EPn) as well as tests based on the probability weighted empirical character-
istic function. We consider two forms of this test; the first uses the original
test statistic proposed in Meintanis et al (2014) (PW 1

n,γ). The weight function
used in this test statistic assigns the majority of the weight to the centre of the
distribution. The second formulation of the test statistic considered (PW 2

n,γ)
gives more weight towards the tails of the distributions.

The tests based on the empirical Laplace transform are those of Baringhaus
and Henze (BHn,γ) as well as Henze and Meintanis (Ln,γ).
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Another characteristic of the exponential distribution that some of the tests
are based on is the distribution function. The tests associated with this char-
acteristic are the Kolmogorov-Smirnov (KSn) and Cramér-von-Mises (CMn)
tests.

Next we consider the tests based on the mean residual life of the data.
The tests considered include those of Baringhaus and Henze. We consider two
test statistics based on mean residual life introduced in Baringhaus and Henze
(2000); a Kolmogorov-Smirnov type test (KSn) and a Cramér-von-Mises type
test (CMn). The test of Jammalamadaka and Taufer (Jn,γ) is also based on
this characteristic.

Another characteristic used to test for exponentiality is entropy. We con-
sider two tests based on entropy; the test of Zardasht et al. (ZPn) and that of
Baratpour and Habibi Rad (BRn).

Furthermore, we consider two tests based on the normalised spacings of
the observed data. The first of these is the Gini test (Gn) and the second is
Harris’ modification of Gnedenko’s F-test (HMn).

The Cox and Oakes test (COn) is also included in the study. This test is
based on a score function.

Various other characteristics are also used. We consider two tests based on
Ahsanullah’s characterisation. The first (AH1

n) uses the original test statistic
proposed in Volkova and Nikitin (2013). The second test (AH2

n) utilizes a
Cramér-von-Mises type test statistic. Zhang’s test (ZAn), based on likelihood
ratios, is included in the study as well as the Noughabi and Arghami test
(NAn) which uses transformed data. Finally, the Atkinson test (ATn,γ), based
on the Atkinson statistic, is considered.

Based on the results of the Monte Carlo study conducted in this paper,
we make some brief conclusions regarding the powers of the tests considered.
Generally, HMn achieves powers substantially lower than the remaining tests.
In addition, the AH2

n, BRn, and ZAn tests are also relatively poor performers
in terms of power. However, tests that do perform well are BHn,γ̂ , Ln,γ̂ , ATn,γ̂
and COn. BHn,γ̂ has the best overall performance, closely followed by Ln,γ̂ .
Note that only one of the tests reported to perform relatively poorly contain a
tuning parameter, while only one of the tests reported to achieve high powers
do not contain such a parameter; COn performs the best among those tests
that do not include a tuning parameter.

In light of the results discussed above, we would advise using the data-
dependent choice of the tuning parameter; this choice generally outperforms
the compromise choice. It is important to note that power associated with the
data-dependent choice of the tuning parameter can conceivably be increased
further by evaluating the powers over finer grids of tuning parameters than
the grids used in the paper. Because of the large number of Monte Carlo
replications required for the numerical results shown in the paper, finer grids
would substantially increase the computational burden. However, in the case
where the hypothesis of exponentiality is to be tested on a single dataset the
computational time required is substantially less.
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