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Abstract 

 

Cloud-to-ground lightning data from the Southern Africa Lightning Detection Network and 

numerical weather prediction model parameters from the Unified Model are used to develop a 

lightning threat index (LTI) for South Africa. The aim is to predict lightning for austral summer 

days (September to February) by means of a statistical approach. The austral summer months are 

divided into spring and summer seasons and analysed separately. Stepwise logistic regression 

techniques are used to select the most appropriate model parameters to predict lightning. These 

parameters are then utilized in a rare-event logistic regression analysis to produce equations for 

the LTI that predicts the probability of the occurrence of lightning. Results show that LTI 

forecasts have a high sensitivity and specificity for spring and summer. The LTI is less reliable 

during spring, since it over-forecasts the occurrence of lightning. However, during summer, the 

LTI forecast is reliable, only slightly over-forecasting lightning activity. The LTI produces sharp 

forecasts during spring and summer. These results show that the LTI will be useful early in the 

morning in areas where lightning can be expected during the day. 
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1. Introduction 
 

Severe thunderstorms are a major concern to the weather community and the public due to their 

ability to cause death, injury and damage (Lang et al., 2004). Lightning, tornadoes, strong wind, 

heavy rainfall and hail are some of the phenomena associated with severe thunderstorms (Kohn 

et al., 2011). Lightning alone poses a severe threat, since it can cause injury or death to humans 

and animals (Blumenthal et al., 2012), damage to infrastructures (Lynn and Yair, 2010), and can 

be a hazard to various industries like aviation and forestry (Price, 2013). It is estimated from 

satellite observations that about 39-49 lightning flashes occur around the globe every second 

(Christian et al., 2003). This equates to more than 1.4 billion flashes a day. Lightning is one of 

the leading causes of death from natural disasters. It causes approximately 24 000 deaths and 

240 000 injuries annually around the globe (Blumenthal et al., 2012). 

In South Africa, the annual mortality rate due to lightning is estimated to be between 1.5 (in 

urban areas) and 8.8 (in rural areas) people per million of the population (Blumenthal et al., 

2012; Holle, 2008). These statistics are based on published data (Blumenthal et al., 2012), but it 

is likely to be an underestimate of the actual mortality rate, since lightning deaths are often not 

reported, especially in rural areas (Trengrove and Jandrell, 2011). Bhavika (2007) stated that the 

number of lightning deaths in South Africa is about four times higher than the global average. 

South Africa is a country that consists of mainly two rainfall seasons, austral summer and winter 
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rainfall seasons. The central to northern interior of the country falls within the summer rainfall 

region and receives most of its rainfall from convective thunderstorms (De Coning and Poolman, 

2011; Kruger, 2007; Landman et al., 2012; Tyson, 1986; Dyson et al., 2015). Most of the rainfall 

in the winter rainfall regions of the south-western and coastal parts of the country originates from 

either stratiform clouds or shallow convective clouds that form from the on-shore flow by 

ridging high-pressure systems and cold fronts (De Coning and Poolman, 2011). Consequently, 

these systems are associated with low lightning activity (Figure 1d). On the other hand, the 

summer rainfall area of South Africa is extremely vulnerable to cloud-to-ground (CG) lightning, 

which occurs predominantly during spring (Figure 1a) and summer (Figure 1b). The lightning 

activity decreases during autumn (Figure 1c). Since most lightning activity occurs during spring 

and especially summer (Figure 1a,b), these were the seasons of interest in this study. 

 

 

Fig. 1. The distribution of CG lightning ground flash densities (flashes per square kilometre per 

season) over South Africa for (a) September to November, (b) December to February, (c) March 

to May, and (d) June to August, during a nine-year period from 2006 to 2014. 

 

Due to the hazardous nature of lightning, there is a need for prediction techniques to ensure the 

protection of people and property (McCaul et al., 2009; Lynn and Yair, 2010). Forecasting 

thunderstorms remains a challenge due to their small spatial and temporal scales, as well as 

uncertainty in the processes that govern thunderstorm development (Rajeevan et al., 2012). To 

predict lightning from a thunderstorm poses an even bigger challenge, since the processes that 

(a) (b) 

(c) (d) 
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govern the electrification of a thundercloud are still poorly understood (Shafer and Fuelberg, 

2008). Many techniques have been developed to forecast lightning, ranging from nowcasting (0 

to 2 hours ahead) and very short-range (2 to 12 hours ahead) up to short-range (12 to 72 hours 

ahead) forecasting time scales. Past studies have utilised lightning data from lightning detection 

networks (LDN), parameters from atmospheric soundings and numerical weather prediction 

(NWP) models to aid with lightning forecasts. 

LDN are capable of detecting lightning strokes in real-time and the data measured by these 

networks could be utilised to aid in the nowcasting of thunderstorms. Many of these LDN 

networks however are designed to detect only CG lightning, and it has been shown that 

inconsistent relationships exist between CG lightning trends and thunderstorm nowcasting 

(Schultz et al, 2011). Total lightning sensors that can detect CG and cloud lightning have been 

found to be useful in the nowcasting of CG lightning strikes since lightning in the clouds mostly 

precedes CG lightning on the ground. MacGorman et al. (2011) showed that cloud lightning can 

precede the first CG lightning flash by up to an hour. This shows that total lightning sensors can 

be used for the nowcasting of thunderstorms or lightning but not for short-range forecasts. In 

South Africa the LDN detects mostly CG lightning which makes it less useful for nowcasting 

purposes. 

Statistical techniques have been used extensively to aid in the prediction of thunderstorms and 

lightning (Shafer and Fuelberg, 2008). These techniques often rely on the connections between 

lightning occurrence and the parameters of the pre-storm environment (Rajeevan et al., 2012; 

McCaul et al., 2009). Many examples of such lightning prediction schemes exist (Livingston et 

al., 1996; Mazany et al., 2002; Benson, 2005; Lambert et al., 2005; Shafer and Fuelberg, 2006). 

Parameters are often derived from atmospheric soundings to predict lightning (Shafer and 

Fuelberg, 2008) however soundings in South Africa are typically only performed twice daily and 

at a limited amount of locations (de Coning et al., 2011). As a result, morning soundings are 

typically used to predict thunderstorms or lightning later in the day, which may result in 

inaccurate forecasts due to changes in atmospheric conditions later in the day or the site-specific 

sounding not being able to represent a large forecast domain (Shafer and Fuelberg, 2008). Due to 

the lack of soundings performed in South Africa, lightning cannot be forecasted using this 

approach. 

With the advent of NWP models, many of the forecasting schemes started focusing on utilizing 

data from NWP models to predict thunderstorms. The latest NWP models provide accurate 

forecasts with a high spatial and temporal resolution (Shafer and Fuelberg, 2008), which results 

in the parameters related to lightning formation to be available over large domains for several 

hours ahead (McCaul et al., 2009). Parameters of the pre-storm environment usually derived 

from soundings can now be obtained from NWP models. The parameters can be obtained for the 

entire country and on an hourly basis for the next few days. Statistical prediction schemes that 

forecast the threat of lightning by relying on connections between lightning occurrence and 

parameters of the pre-storm environment has also been developed by making use of NWP data 

(Reap, 1994 ; Burrows et al., 2005 ; Bothwell, 2008 ; Shafer and Fuelberg, 2008 ; Rajeevan et 

al., 2012). These models were developed for specific regions and NWP models and the 

techniques used underestimated the occurrence of lightning. Whenever NWP data is utilised, 

users must always remember that NWP is a model representation of reality and the output of the 

model will only be as good as the performance of the model calculations for a specific day. 

Nevertheless, when the output of NWP models are used to developed a new statistical model 
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with data over a sufficiently long period, the new model should learn the typical errors and 

biases of the NWP model and consider it in the calculations. 

This study, which is inspired by the work of Frisbie et al. (2009), presents a NWP model-based 

statistical lightning prediction scheme to forecast the probability of CG lightning over southern 

Africa for the austral summer months (September to February). Logistic regression techniques 

are used to select the most appropriate predictors from the Unified Model (UM) to include in the 

lightning prediction scheme. A rare-event logistic regression technique was chosen to develop 

equations that predict the probability of at least one lightning stroke per grid box between 07:00 

and 22:00 UTC. The selection of predictors and the development of the equations are derived 

from CG lightning and NWP data from the austral summer days of 2011/12 and 2012/13. The 

scheme is validated over the independent austral summer days of 2013/14. The statistical scheme 

introduced in this study is named the lightning threat index (LTI) and aims to provide improved 

forecast guidance of lightning over southern Africa. 
 

2. Data 
 

2.1. Study area and period 
 

The study domain covers the entire area of Lesotho, South Africa and Swaziland, as well as 

small areas of Botswana, Mozambique, Namibia and Zimbabwe and the surrounding oceans 

(Figure 2). The grey areas were excluded due to a reduction in the accuracy of lightning data in 

those areas. The domain was divided into a 0.5° x 0.5° grid that was used throughout this study. 

This study focuses on the daily 15-hour period between 07:00 and 22:00 UTC. Most 

thunderstorms occur during the afternoon and evening in South Africa (De Coning et al., 2011), 

with a smaller frequency in the morning (Rouault et al., 2013). The 07:00 UTC starting time was 

selected to correspond with the availability of NWP data in an operational environment. 

The UM prognosis for the austral summer days of 2011/12 and 2012/13 is used to select the most 

appropriate parameters to predict lightning (Section 3.4) and train the LTI statistical model 

(Section 3.5). Moreover, the austral summer was divided into spring (September to November 

(SON)) and summer (December to February (DJF)). A different LTI is developed for each of 

these seasons respectively. In early summer, the atmospheric circulation is generally extra-

tropical with a conditionally unstable atmosphere over the summer rainfall areas, while in late 

summer the circulation is mostly tropical with a convectively unstable atmosphere (Dyson et al., 

2015). Different model parameters and thresholds are needed to describe the atmospheric 

conditions during spring and summer, which necessitated two separate LTIs. The spring and 

summer LTIs were verified for the austral summer days of 2013/14. 
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Fig. 2. The study domain over southern Africa with the location of lightning sensors in green. 

The grey areas were not considered in the analysis. 

 

2.2. Lightning data 
 

CG lightning data from the Southern Africa Lightning Detection Network (SALDN) of the South 

African Weather Service (SAWS) is utilized in this study. The SALDN became operational 

towards the end of 2005 and underwent a series of upgrades throughout the years. From 2011, 

the network consisted of 24 Vaisala CG lightning sensors (Gijben, 2012) as indicated by the 

green dots on Figure 2. The SALDN can detect lightning with a location accuracy of ~0.5 km 

and an estimated detection efficiency of ~90% over most of South Africa (Gijben, 2012). This 

means that the SALDN can detect at least 90% of all CG flashes and position them within 0.5 

km. 

Daily lightning data for 06:30 to 21:30 UTC is assigned to each of the 0.5° x 0.5° grid boxes 

over the study domain from where the number of CG strokes is counted. The NWP model data is 

available hourly and was considered representative of the lightning occurrences in the 30-minute 

interval before and after each NWP time step. Lightning is the predictand (observed) in this 

study, and when at least one lightning stroke occurred in a grid box during the study period, a 

value of 1 was assigned to the predictand. If no lightning strokes occurred in a grid box, the 

predictand was given a value of 0. This means that the study attempts to predict lightning 

occurrence (1) and non-occurrence (0) and does not attempt to predict the amount of lightning. 
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2.3. The Unified Model 
 

The UM is the NWP model that was developed at the United Kingdom Meteorological Office 

(UKMO) (Davies et al., 2005). It is a fully compressible and non-hydrostatic model that follows 

the terrain and resolves many layers in the atmosphere with height-based vertical coordinates 

(Davies et al., 2005). The UKMO runs the UM on various resolutions, but also offers a global 

model that runs four times daily on a 40 km-resolution (Landman et al., 2012). The SAWS has 

been running a local version of the UM since 2006. Different versions of the UM run with 

different configurations (parametrization schemes, horizontal resolutions and with or without 

data assimilation) at the SAWS and uses initial and boundary conditions from the global model 

from the UKMO (Landman et al., 2012). In the study, data from the main operational model at 

the SAWS was utilized. This version of the model has a 12 km horizontal resolution and runs 

once daily to produce hourly forecasts on 38 vertical levels for 48 hours ahead. No data 

assimilation is available in this model and it produces a forecast for the entire southern Africa. 

The domain is bounded by 0° to 44°S and 10°W to 56°E. 

As was mentioned in Section 2.1, the domain of South Africa was divided into a 0.5˚ x 0.5˚ grid 

that was used throughout the study. This grid is much coarser than the UM grid, but due to the 

long periods considered and the intensive calculations performed, the coarser grid was utilized to 

save on computation time. The 0.11˚ X 0.1112˚ resolution grid of the UM would have meant that 

all the calculations would have taken about 22 times longer than using the coarser grid. This 

work had to be done on a research server, and the increase in computation time would have made 

it unfeasible. As a result, the model output from the UM was re-gridded to a 0.5˚ x 0.5˚ grid 

before the calculations of the LTI was performed. A higher resolution would provide more detail 

in the LTI especially with the smaller forecast scales of thunderstorms. The LTI equations 

determined in this research will be directly applied to the higher resolution model output in the 

operational environment where supercomputers are available. Verification of this product in an 

operational environment is commencing. 

Hourly output from the UM forecast is utilized from 07:00 to 22:00 UTC daily. The most 

favourable value of every parameter is identified per grid box within this 15-hour period and 

assigned to the parameter value of that specific day. For example, if the lowest value of the lifted 

index -7 occurred in a grid box at 12:00 UTC, then -7 is assigned as the lifted index value for 

that specific 15-hour forecast. 

In total, 25 parameters were calculated from the UM data as possible predictors (forecast) of 

lightning. Six main types of parameters were considered in this study. They are convective 

available potential temperature (CAPE), precipitable water (PW), relative humidity (RH), lifted 

index (LI), lapse rates of equivalent potential temperature (Ɵe) and air temperature (T). Different 

variations from these six groups of parameters were considered. The 25 predictors were selected 

because they are useful in either lightning prediction studies or thunderstorm/rainfall 

development (see Table 1). Table 1 provides a summary of the candidate predictors used in this 

paper. Complete discussions of the 25 predictors are not provided in this paper, but references to 

authors who have utilized these parameters for lightning or thunderstorm prediction are listed in 

Table 1. The abbreviation of each predictor, a description and reference to other studies that 

utilized these predictors are included. SON indicates those parameters identified as the most 

appropriate to predict lightning in September to October and DJF in December to February. 
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Table 1. A list of considered NWP model predictors. 

 

Abbreviation Description (units) Reference 

muCAPE0,3 km Largest CAPE obtained when each parcel 

between the surface and 3 km above ground 

level (AGL) is lifted from the level with the 

highest Ɵe (J kg-1) 

Frisbie et al. (2009); 

Groenemeijer and Van 

Delden (2007) 

muCAPE1,6km
SON, DJF Largest CAPE obtained when each parcel 

between 1 km and 6 km AGL is lifted from 

the level with the highest Ɵe (J kg-1) 

Frisbie et al. (2013) 

muCAPElow,300 Largest CAPE obtained when each parcel 

between the surface and lowest 300 hPa AGL 

is lifted from the level with the highest Ɵe (J 

kg-1) 

Craven and Brooks 

(2004) 

CAPE CAPE obtained when a parcel is lifted from 

the surface (J kg-1) 

Zepka et al. (2014) 

Ɵe Surface equivalent potential energy (Ɵe) (K) Livingston et al. 

(1996); Zepka et al. 

(2014) 

ƟeΓ600 Ɵe lapse rate (ƟeΓ) at 600 hPa (K) Frisbie et al. (2009) 

ƟeΓ850,400
DJF ƟeΓ between 850 and 400 hPa (K) Dyson et al. (2015) 

ƟeΓ850,500 ƟeΓ between 850 and 500 hPa (K) Dyson et al. (2015) 

ƟeΓ1,6 km ƟeΓ between 1 and 6 km AGL (K) Frisbie et al. (2009) 

ƟeΓm10,m20 ƟeΓ between -10˚C and -20˚C levels (K) Frisbie et al. (2013) 

ƟeΓ700,500
 SON ƟeΓ between 700 and 500 hPa (K) Zepka et al. (2013) 

SLISON,DJF Surface LI when lifting the parcel from the 

surface to 500 hPa (°C) 

Garreaud et al. (2014); 

Haklander and Van 

Delden (2003) 

BLI The best lifted index (BLI) obtained from the 

most unstable LI when each parcel is lifted 

between the surface and 700 hPa (°C) 

Frisbie et al. (2013) 

Shafer and Fuelberg 

(2008) 

PW850,300
SON,DJF Total PW between 850 and 300 hPa (cm) Dyson et al. (2015) 

PW700,400 Total PW between 700 and 400 hPa (cm) Burrows et al. (2005) 

PWsurf,100 Total PW between surface and 100 hPa (cm) Burrows et al. (2005); 

Shafer and Fuelberg 

(2008) 

RHm10 RH at the -10˚C level (𝑅𝐻 = 𝑒/𝑒𝑠 ) (%) Frisbie et al. (2009) 
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Abbreviation Description (units) Reference 

RHm12,m18 Mean RH in the -12˚C to -18˚C levels (%) Frisbie et al. (2013) 

aveRH3,6 km
DJF Mean RH in 3 to 6 km AGL (%) Frisbie et al. (2013) 

maxRH3,6 km Maximum RH in 3 to 6 km AGL (%) Frisbie et al. (2013) 

minRH3,6km
SON Minimum RH in 3 to 6 km AGL (%) Frisbie et al. (2013) 

T1p5m T at 1.5 meters above the ground (K) Mazany et al. (2002) 

T700 T at the 700 hPa level (K) Burrows et al. (2005) 

T850,700
SON,DJF Mean T of pressure levels from 850 and 700 

hPa (K) 

Dyson et al. (2015) 

T500,300 Mean T of pressure levels from 500 and 300 

hPa (K) 

Dyson et al. (2015) 

 

 

3. Model development 
 

3.1. Selection of predictors 
 

Not all of the 25 predictors listed in Table 1 were added to the final LTI model. There are six 

main groups of candidate predictors (CAPE, PW, RH, LI, Ɵe and T). Each of these groups 

consists of different variations of the predictors. The goal was to select the best preforming 

lightning predictor parameter from each of the six groups. One parameter from each group was 

selected. In order to achieve this goal, stepwise logistic regression techniques with Statistical 

Analysis System (SAS) and R software were utilized to select the most appropriate parameters. 

R software was used to perform a stepwise binary logistic regression analysis (R Development 

Core Team, 2015) in order to select the most appropriate predictors from the six main groups to 

forecast the occurrence of lightning. The Akaike Information Criterion (AIC) is calculated using 

the R functions. The predictor with the lowest AIC value was selected to be the most appropriate 

for predicting the occurrence of lightning (Chaurasia and Harel, 2012; Posada and Buckley, 

2004; Snipes and Taylor, 2014). This process was repeated with a full (backwards and forwards) 

stepwise logistic regression using Firth’s Penalized Likelihood method in the SAS software 

(Firth, 1993; SAS Institute Inc., 2010) in order to confirm that the most appropriate parameter 

was identified for each parameter group. The same parameter was identified with both methods 

in all instances. 

 

3.2. Statistical model 
 

Binary logistic regression techniques are used to develop the new LTI. Logistic regression is 

often used to predict the probability of an event by means of a set of predictors (Kiezun et al., 

2009) and it can be expressed by Equation 1, where 𝑝𝑖 is the probability of the event as a 

function of 𝑚 independent variables 𝑋, when 𝑖 ranges from 1 to 𝑚. The regression coefficients, 
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𝛼̂ and 𝛽̂, are estimated from the dataset by means of the maximum likelihood method (Guns and 

Vanacker, 2012; Kleinbaum and Klein, 2010). 

 

𝑝𝑖 =
1

1+exp⁡[−(𝛼̂+∑𝛽𝑖̂𝑋𝑖)]
   i = 1 to m   (1) 

 

In the development of the LTI by means of the logistic regression technique, the binary outcome 

of lightning occurrence was the dependent variable, while the six selected model predictors were 

the independent variables. Initial tests in the development of the LTI by means of ordinary 

logistic regression resulted in very low probabilities of lightning occurrence. King and Zeng 

(2001) showed that ordinary logistic regression (Equation 1) often underestimates the 

probabilities of rare events (Guns and Vanacker, 2012). This underestimation is due to the 

logistic regression favouring the larger amount of non-events (0’s) compared to the smaller 

amount of events (1’s) when developing a model. King and Zeng (2001) states that rare events in 

a dataset are classified as dozens to thousands of times more non-events compared to events, 

while Yap et al. (2014) considers a rare event to be when the events make up 5% or less of the 

data. In the datasets considered in this study, the SON dataset had approximately 20 times more 

non-events than events. The DJF dataset had approximately 34 times more non-events than 

events. In both datasets, the non-events made up less than 5% of the data. 

Building on the work of King and Zeng (2001), Guns and Vanacker (2012) and Imai et al. 

(2009), the LTI is developed as follows: 

1. Take all the events (1’s or lightning occurrences) in the dataset and select a random 

sample of non-events (0’s or no lightning occurrences) with equal size from the data. 

2. Run the “Zelig” package in R to perform a rare-event logistic regression with the bias 

correction and addition of the correction term to the estimated probabilities. 

3. Repeat the previous two steps 1 000 times by selecting a new sample of random non-

events (0’s or no lightning occurrences). The random samples of non-events are taken 

with repetition where the non-events of the previous sample are added back to the dataset 

and have the chance to be chosen again. 

The 1 000 models produced by the procedure above were combined by averaging their intercept 

term and regression coefficients. This process is similar to the bootstrap aggregating technique 

that aims to improve any instability found in the estimation of the regression output (Kotsiantis 

et al., 2006). The average of the intercept terms and regression coefficients was added to 

Equation 1. Separate equations for SON and DJF were developed with this approach. 
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Fig. 3. The steps involved to produce the LTI forecast from the UM output. 

 

Figure 3 shows a flow diagram of the steps to generate the LTI forecast. The first step in the 

process is to download the initial and boundary conditions from the Global UM, which is 

operational at the UKMO. This information is prepared for input into the UM at SAWS by 

means of dynamical downscaling. Once the initial and boundary conditions are given to the UM 

at SAWS, the modelling of dynamical and physical processes are performed. The UM produce a 

list of output parameters, from which temperature, relative humidity and geopotential height on 

all the pressure levels, as well as surface pressure are utilised. With these output parameters from 

the UM, the CAPE, LI, PW, RH, Ɵe and air temperature needed for the LTI can be calculated. 

The final output of the LTI provides a probability forecast of lightning occurrence. 

 

3.3. Independent evaluations 
 

The LTI forecast output gives the probability of lightning occurrences, and standard probabilistic 

evaluation techniques are considered. The Receiver Operating Characteristic (ROC) curve, 

reliability diagram and sharpness plot were produced with independent lightning and NWP 

model parameters datasets for SON of 2013 and DJF of 2013/14. 

ROC curves are used to compare the sensitivity and specificity of a forecast over the range of all 

possible values (Florkowski, 2008). Sensitivity is the ability of a forecast to predict events, while 

specificity is the forecast’s ability to predict the non-events (Robin et al., 2011). The “plot.roc” 

function in the R-package “pROC” was utilized to plot the ROC curves and area-under-the-curve 

(AUC) values for the validation of the LTI (Robin et al., 2011; R Development Core Team, 

2015). 
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A reliability diagram is often used to determine the reliability of a probabilistic forecast by 

showing how well forecasted probabilities correspond to their observed frequency of occurrence 

(Weisheimer and Palmer, 2014). As such, the reliability diagram is created by plotting the 

observed relative frequencies against forecast probabilities, where the forecast probabilities are 

divided into bins (Bröcker and Smith, 2007). In this study, the “verify” and “reliability.plot” 

functions in the R package “verification” was utilized to plot the reliability diagrams for the 

validation of the LTI (NCAR Research Applications Laboratory, 2014; R Development Core 

Team, 2015). 

The sharpness of a forecast is a measure of how forecast probabilities vary and is often presented 

on a sharpness diagram or sharpness histogram, which displays the relative frequencies of 

occurrence for probability intervals (bins). Sharpness diagrams often accompany reliability plots 

(Callado et al., 2013). In this study, the “verify” and “reliability.plot” functions in the R package 

“verification” was modified to plot the sharpness diagrams separately from the reliability plots 

for the validation of the LTI (NCAR Research Applications Laboratory, 2014; R Development 

Core Team, 2015). 
 

 

4. Results and discussion 
 

4.1. Selection of predictors 
 

The approach discussed in Section 3.1 was used to select the six top-performing NWP model 

parameters from the 25 candidate predictors (Table 1). A stepwise logistic regression analysis 

with SAS and R software was performed to select the most appropriate predictor from each main 

group of parameters. However, due to the large amount of output produced by the regression 

analysis, the results will not be shown in this paper. The final six predictors selected from the 

regression output, which predicts the occurrence of lightning the best during SON and DJF, are 

shown in Table 1. 

With the exception of Ɵe lapse rates and RH, the same parameters were identified for both 

seasons. The minRH3,6 km and ƟeΓ700,500 performed the best in SON, while the aveRH3,6 km and 

ƟeΓ850,400 performed the best in DJF. The CAPE, Ɵe lapse rates and LI predictors provide 

information on the updrafts that supply a thundercloud with the necessary hydrometeors in the 

cloud’s charge separation zone (Murugavel et al., 2014; Singh and O’Gormon, 2015; Bright et 

al., 2005; Madhulatha et al., 2013; Houston and Wilhelmson, 2012; Cummings and Pickering, 

2013; Huntrieser et al., 2011; Kuo, 1966). The moisture needed to create favourable conditions 

for thunderstorm development and the hydrometeors for lightning formation is provided by the 

RH and PW predictors (Burrows et al., 2005; Duplika and Reuter, 2006; Berdeklis and List, 

2001; Xiong et al., 2006). Surface heating, which is responsible for the convective processes that 

result in atmospheric instabilities, is represented by the temperature predictor (Bharatdwaj, 2006; 

Price, 2013; Williams, 1992, 1994, 2009; Reeve and Toumi, 1999; Markson and Price, 1999; 

Price and Asfur, 2006; Markson, 2007). The six predictors for SON and DJF can be utilized in 

the development of the LTI. 
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4.2. Statistical model 
 

The dataset for SON consisted of 137 864 observations, of which 3 945 were lightning events 

and 133 919 were non-events. The rare-event logistic analysis described in Section 3.4 was 

applied to this data set using the six identified parameters (Table 1). Five of the six predictors 

were significant (p-value less than 0.05 and Z-value not between -1.96 and +1.96). The 

muCAPE1,6 km was not significant and was removed from the analysis. The rare-event logistic 

regression procedure was repeated again for SON, but this time without muCAPE1,6 km. The rare-

event logistic analysis was also performed for DJF where 128 562 observations were made. 

Some 6 118 of these observations were events and 122 444 were non-events. In DJF, all six 

parameters were significant (see Table 2). SON was constructed without using muCAPE1,6 km. 

Table 2 also shows the regression coefficients (Coef), standard error on Coef (SE), odds ratio 

(Odds), maximum parameter value (MPV) and measure of parameter importance (MPI) for the 

intercept term and the six model parameters. The MPV is the largest value of a parameter (or 

smallest for parameters where a negative value is important) in the dataset. The MPI is the MPV 

value multiplied by the regression coefficient (Coef) and it is a measure to determine the most 

important variables in the regression analysis (Guns and Vanacker, 2012; Vanwalleghem et al., 

2008). The intercept term of the regression analysis does not have a MPV and MPI value. All of 

the predictors have regression coefficients that are significant with p-values < 0.05 and absolute 

values of z ≥ 1.96 (not shown). 

 

Table 2. Output from the rare-event logistic regression for SON and DJF in brackets. 

 

 Coef SE Odds MPV MPI 

Intercept 81.597771 

(96.373973) 

1.8112 

(1.8712) 

6.612E+35 

(1.985E+42) 

  

muCAPE1,6 km (-0.000362) (2.378E-05) (0.9996) (6757.06) (-2.45) 

PW850,300 1.858302 

(1.649851) 

0.0536 

(0.0349) 

6.4196 

(5.2081) 

3.90 

(4.80) 

7.25 

(7.92) 

SLI -0.301027 

(-0.274410) 

0.0070 

(0.0089) 

0.7401 

(0.7600) 

-17.04 

(-13.63) 

5.13 

(3.74) 

ƟeΓ700,500 

(ƟeΓ850,400) 

-0.199863 

(-0.253844) 

0.0059 

(0.0039) 

0.8189 

(0.7758) 

-20.83 

(-33.60) 

4.16 

(8.53) 

minRH3,6 km 

(aveRH3,6 km) 

0.021953 

(0.022844) 

0.0008 

(0.0007) 

1.0222 

(1.0231) 

104.10 

(105.60) 

2.29 

(2.41) 

T850,700 -0.308811 0.0065 0.7343 298.81 -92.28 
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(-0.364683) (0.0066) (0.6944) (299.80) (-109.33) 

 

All the parameters for SON and DJF have very low SE values, which mean that the model fits 

the data well. In both seasons, T850,700 plays the principal role in the regression model, as can be 

seen from the high MPI values. This confirms the importance of surface heat as a trigger for the 

development of thunderstorms (Bharatdwaj, 2006). The relative importance of the other 

parameters varies according to season. In SON, PW850,300 is the second-most important 

parameter, followed by the SLI, ƟeΓ700,500 and minRH3,6 km. In DJF, ƟeΓ850,400 is the second-most 

important parameter in the model, followed by the PW850,300, SLI, muCAPE1,6 km and 

aveRH3,6 km. 

The intercept term and the regression coefficients listed in Table 2 were added to Equation 1 to 

produce a new LTI for SON and DJF respectively. The LTI for SON (DJF) is given by Equation 

2 (3) and provides the probability that lightning will occur (values between 0 and 1). 

 

𝐿𝑇𝐼𝑆𝑂𝑁 =
1

1 + exp⁡[−[𝛼̂ +⁡𝛽1̂(𝑃𝑊850,300) + 𝛽2̂(𝑆𝐿𝐼) + 𝛽3̂(𝜃𝑒𝛤700,500) +⁡𝛽4̂(𝑚𝑖𝑛𝑅𝐻3,6𝑘𝑚) + 𝛽5̂(𝑇850,700))]
 

 (2) 

 

where:  𝛼̂ = 81.597771 𝛽1̂ = 1.858302 𝛽2̂ = −0.301027 𝛽3̂ = −0.199863

 𝛽4̂ = 0.021953 𝛽5̂ = −0.308811 

 

𝐿𝑇𝐼𝐷𝐽𝐹 =
1

1 + exp⁡[−[𝛼̂ +⁡𝛽1̂(𝑃𝑊850,300) + 𝛽2̂(𝑆𝐿𝐼) + 𝛽3̂(𝜃𝑒𝛤700,500) +⁡𝛽4̂(𝑚𝑖𝑛𝑅𝐻3,6𝑘𝑚) + 𝛽5̂(𝑇850,700))]
 

(3) 

 

where:  𝛼̂ = 96.373973 𝛽1̂ = −0.000362 𝛽2̂ = 1.649851 𝛽3̂ = −0.274410

 𝛽4̂ = −0.253844 𝛽5̂ = 0.022844 𝛽6̂ = −0.364683 

 

4.3. Independent verification 
 

During SON, (Figure 4a) and DJF (Figure 4b), the ROC curves approach the top left corner of 

the diagram and fall above the no-skill diagonal line. The curves show that the LTI has a high 

sensitivity (or high hit rate) and high specificity (or low false alarm rate) across all the possible 

probability ranges. The high sensitivity indicates that the LTI correctly predicts the lightning 

events, while the high specificity shows that the LTI correctly predicts the lightning non-events. 

One can conclude from the ROC curves in Figure 4a and Figure 4b that the LTI discriminates 

well between lightning occurrences and non-occurrences and that the LTI forecasts are very 

accurate. The ROC curves in Figure 4a and Figure 4b are also accompanied by an AUC value 

that represents the overall performance of the LTI. During SON, the AUC value was 0.927 and 
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during DJF, it was 0.899. Since an AUC value of 1.0 represents a perfect forecast and a value of 

≤ 0.5 represents a worthless forecast (Fawcett, 2006), the LTI performed well, as the AUC 

values are close to 1.0. The AUC was slightly higher for SON than for DJF. 

 

Fig. 4. The ROC curves, together with the AUC values for SON (a) and DJF (b), the reliability 

diagrams during SON (c) and DJF (d) and sharpness diagrams during SON (e) and DJF (f) for 

the UM LTI forecasts against lightning observations. The SON months of 2013 and DJF months 

of 2013/14 were utilized. 

(a) 

(c) 

(b) 

(d) 

(e) (f) 



 

16 

 

During SON (Figure 4c), the LTI over-forecasts the observed frequency of lightning occurrence. 

This is evident from the curve falling under the diagonal line. For the first bin, the forecast is 

reliable, but it becomes increasingly more unreliable towards the 8th bin. It then starts moving 

back to the diagonal line. The reliability diagram for DJF (Figure 4d) presents much better than 

that of SON. The LTI only slightly over-forecasts the observed frequency of lightning 

occurrence that is evident from the curve falling just under the diagonal line. The forecast starts 

out to be reliable in the first probability bin, moves away slightly from the diagonal line up to the 

6th probability bin, from where it gradually moves back to the diagonal line. This shows that the 

LTI forecast is reliable during DJF and much more reliable than the LTI forecasts for SON. 

The LTI forecasts have good sharpness during SON (Figure 4e) and DJF (Figure 4f) since the 

sharpness diagrams have a U-shaped distribution. The most forecasts are made in the first 

probability bin for both SON and DJF, from where they decrease to the sixth probability bin for 

SON and the fifth bin for DJF. From here, it increases again. During DJF, more forecasts are 

made in the ninth probability bin compared to the tenth. 
 

5. Case examples 
 

The independent verifications (Section 4.3) indicated that the LTI is skilful in predicting 

lightning for both SON and DJF over South Africa. Two case examples are included here to 

provide an example of how the operational LTI appears and to illustrate its performance on a 

daily basis. These case examples were randomly chosen based on days where significant 

amounts of lightning occurred over South Africa. 
 

5.1. 20 December 2013 
 

On 20 December 2013, lightning occurred over large areas of southern and north-western South 

Africa (Figure 5b). Most of the lightning occurred over the Northern Cape and Eastern Cape and 

extended to the surrounding territories (See Figure 2 for location map). The LTI probability 

forecast is shown in Figure 5a. The highest lightning probability is >90% over parts of Northern 

Cape and Eastern Cape. Lightning was also predicted for large areas of Botswana and Namibia, 

which could not be verified due to the inaccuracy of the SALDN over these countries. Most of 

the lightning over South Africa occurred in the areas where the LTI probability exceeded 60%. 

Some lightning was observed in areas where the probability was less than 60% (North West and 

Gauteng). In these areas, the number of lightning stokes was relatively low (< 15). No lightning 

materialized over the western Free State, where high lightning probability was predicted. Over 

Eastern Cape and North West, the area of maximum lightning prediction was slightly misplaced. 

Nevertheless, the lightning probability forecast provided good indications of the actual 

occurrence of lightning over South Africa on this day.  
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Fig. 5. The LTI forecast (a) and occurrence of lightning (b) for 20 December 2013 between 

07:00 and 22:00 UTC. 
 

5.2. 15 January 2014 

 

On 15 January 2014, the LTI forecasted lightning to occur over a large area of the central interior 

of South Africa, extending into Namibia (Figure 6a). When the LTI forecast is compared with 

the observed lightning (Figure 6b), one can see that the LTI performed well on this day.  Most of 

the lightning activity was observed in the areas where the probabilities ≥ 60%. The remaining 

lightning activity occurred in areas with lower probabilities, especially when the probabilities 

were ≥ 40%. Some areas over Mpumalanga and KwaZulu-Natal were over-forecasted, while the 

small isolated storms over the southern parts of the Northern Cape were missed. 

 
 

 
Fig. 6. The LTI forecast (a) and occurrence of lightning (b) for 15 January 2014 between 07:00 

and 22:00 UTC. 
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6. Summary and Conclusions 
 

CG lightning data and UM data for austral summer days during 2011/12 and 2012/13 were 

utilized to develop a statistical scheme to predict the daily occurrence of lightning over southern 

Africa for the period 07:00 to 22:00 UTC. The austral summer months were divided into two 

seasons, spring (September to November) and summer (December to February), since the 

atmospheric conditions are different between the seasons. 

Before the LTI could be developed, it was necessary to identify the most appropriate NWP 

model parameters capable of predicting the occurrence of lightning over southern Africa. 

Stepwise logistic regression techniques were used to identify six parameters from a list of 25 

candidate predictors. One parameter from the six groups, CAPE, LI, PW, RH, Ɵe, and air 

temperature was selected. The top-performing predictors for SON and DJF were the 

muCAPE1,6 km, SLI, PW850,300, and T850,700. In addition to these predictors, the minRH3_6km 

(aveRH3_6km) and ƟeΓ850,400 (ƟeΓ700,500) were identified for SON (DJF). These predictors were 

used in the development of the new LTI. 

The new LTI was developed by means of a rare-event logistic regression technique. Since there 

is typically a larger number of non-events (or no lightning occurrences) compared to events 

(lightning occurrences), the rare-event logistic regression technique was utilized so that the 

regression procedure does not favour the larger number of non-events that result in the output of 

low probabilities. A separate LTI was created for SON and DJF and gives the probability that at 

least one lightning stroke can be expected between 07:00 and 22:00 UTC at any particular grid 

point. 

A probabilistic evaluation over the independent period of the 2013 SON and 2013/14 DJF 

showed that the LTI forecasts have a high sensitivity and specificity for both SON and DJF. The 

LTI is not so reliable during SON, since it over-forecasts the occurrence of lightning quite 

significantly, but during DJF, the LTI forecast is reliable, only slightly over-forecasting lightning 

activity. Lastly, the results also show that the LTI produces sharp forecasts during both SON and 

DJF. The reason for the LTI being more reliable during DJF can be due to the nature of 

convection, which develops in different atmospheric conditions during the 2 seasons. In early 

summer, the atmospheric circulation is generally extra-tropical with a conditionally unstable 

atmosphere. Convection is often surface heat driven and develops from favourable local 

conditions. In late summer, the circulation is near tropical with a convectively unstable 

atmosphere and convection results from large-scale synoptic circulation systems (Dyson et al., 

2015). 

In this paper, a LTI was developed for South African conditions. In this paper, a LTI was 

developed for South African conditions. South Africa has its own unique geographical and 

synoptic circulation patterns, which requires a unique product for predicting lightning. Most of 

the interior of South Africa rises to 1500 m and more above mean sea level resulting in 

significant modification of the thermodynamics of the atmosphere. The amount of moisture 

available for convective development is much less than areas located close to sea level. (Dyson 

et al., 2015). Lightning prediction parameters identified elsewhere in the world can therefore not 

be applied directly to South Africa and bespoke methods need to be developed. Note how for 

both seasons CAPE was identified is being the least important parameter for predicting lightning 

while low level temperature lapse rates and moisture were identifies as the most important 
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parameters. In fact, it was found that CAPE was not significant in the LTI regression model (p-

value > 0.05) during SON and was not used during the spring season. This deviates from 

findings elsewhere in the world where CAPE is often considered important (Burrows et al., 

2005; Livingston et al., 1996; Shafer and Fuelberg, 2006, 2008; Zepka et al., 2014). These results 

emphasize the importance of identifying parameters specific to local conditions. Furthermore, 

different NWP models differ in dynamics, physics and initial conditions. Statistical lightning 

models therefore needs to be trained for specific NWP models as was done in this research. The 

LTI was developed with the operational NWP employed at SAWS and this provides a unique 

insight into the behaviour of this model for the identification of convection and lightning.   

This paper contributes to the development of statistical models in predicting rare events by 

proposing a rare-event binary logistic regression approach to produce a probability based 

lightning forecast. This eliminates the model favouring the large amount of non-events (no 

lightning) that is often found with ordinary binary logistic regression techniques. Moreover, 

previous studies have focused on using multiple linear regression and ordinary binary logistic 

regression techniques to develop a model. The multiple linear regression techniques have been 

found to over-estimate the occurrence of lightning while ordinary binary logistic regression 

under-estimates the occurrence of lightning. 

The LTI will be a useful tool to operational weather forecasters or sectors interested in lightning 

forecasts, to provide guidance early in the morning on the areas where lightning can be expected 

during the day. It can ultimately contribute to society by aiding with timely warnings of lightning 

or thunderstorms to protect humans, animals and property. Users of the product should however 

keep in mind that the lightning forecast is only a model of reality and its performance depends on 

the accuracy of the NWP model for a particular day. The evaluations of the LTI shows that in 

most cases the model performs well and will be a valuable additional tool that can be used by 

forecasters and various sectors of society. 
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