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Abstract 

This paper makes use of two types of extreme value distributions, namely: the generalised 

extreme value distribution often referred to as the block of maxima method (BMM), and the 

peak-over-threshold method (POT) of the extreme value distributions, to model the financial 

tail risks associated with the empirical daily log-return distributions of the Dow Jones Islamic 

market (DJIM), the U.S. S&P 500, the S&P Europe (SPEU), and the Asian S&P (SPAS50) 

indexes during the period between 01/01/1998 and 16/09/2015. Using both the maximum 

likelihood (ML) method and the bootstrap simulations to estimate the parameters of these 

extreme value distributions in the left and right tails separately, we find that the empirical 

distributions of conventional stock markets are characterized by a fat-left tail behaviour, 

which implies high probability of price drops during a financial crisis, and by a right-tail 

characterised by a truncation. This finding implies the existence of an upper bound on 

possible profit during an extreme event. The empirical distribution of the Islamic market is 

characterised by a thin-left tail behaviour, implying moderately low probability of price drops 

during a financial crisis, and by a right-tail without truncation implying large probability of 

positive returns during an extreme event. We divide our sample period into three equal sub-

periods in order avoid the impact of outliers and structural breaks. The results in each sub-

period remain the same and also suggest that for all stock returns the BMM method performs 
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better than the POT method, and that the Islamic stock market is less risky than the 

conventional stock markets during extreme events.  

JEL Classification: G1, G13, G14. 

Keywords: tail risk, extreme value distributions, expected shortfall, value at risk. 

 

1. Introduction 

Extreme episodes, better known as Black Swan events, have the worrying feature that when 

they occur they have great or extreme effects despite their paucity.  These rare events exist in 

economics, finance, ecology, earth sciences and biometry, among others. However, in 

economics and finance, these ―worst-case‖ episodes have become more recurrent than before, 

but they kept their overwhelming consequences. Examples of financial extreme events 

include the Black Monday of the stock market crash that took place on October 19, 1987, the 

turmoil in the bond market in February 1994, the 1997 Asian currency crisis, and the 

2007/2008 global financial crisis (GFC). Such crises are a major concern for regulators, 

financial institutions and investors because of their heavy and widespread consequences.  

As a consequence, many economists and financial analysts have shown increasing interest 

in examining the behavior of financial markets, testing financial stress and managing risks 

during those events. Frank Graham (1930) indicates that drastic events such as the 1920-1923 

hyperinflation in Germany offer a much better way to test competing theories than normal 

events. The current research hopes to do so by taking into account the impact of recent 

financial crises or extreme events such as the GFC on the risks in different financial markets 

by applying the extreme value theory. 

This paper examines the extraordinary behavior of certain random variables specifically 

the seemingly different conventional and Islamic stock returns, using the recently developed 

models known as the extreme value theory methods which quantify risks in left and right tail 

distributions. During extreme financial crises, these variables are characterized by extreme 

value changes and have very small probabilities of occurrence. The extreme value theory 

relies on extreme observations to derive the tail distributions. The risk is measured more 

efficiently using this model than by modeling the entire distributions of the random variables. 

Then the link between the extreme value theory and risk management is that the EVT fits 

extreme quantiles better than the conventional methods for tail-heavy data. In risk 



3 

 

management, two types of extreme value distributions are frequently used namely the 

generalized extreme value distribution often referred to as the block of maxima method 

(BMM), and the Pareto distribution referred to as the peak-over-threshold method (POT).  

While these methods have been applied to conventional stock markets to model the tail 

risks associated with the empirical return distributions, to our knowledge only Frad and 

Zouari (2014) used the POT method but not the BMM method and applied it to DJIM. 

Moreover, these authors have not applied this method to compare the left (long position) and 

right (short position) tail risks in Islamic and regional conventional stock markets which may 

or may not be ostensibly different markets. Specifically, this study models the tail risks 

associated with the empirical return distributions of four global financial markets which 

include the U.S. S&P 500 index (SP500), the S&P Europe index (SPEU), the Asian S&P 

index (SPAS50) and the Dow Jones Islamic market (DJIM).   

Accordingly, our main objective of this study is to use both the BMM and the POT 

methods in order to model the tail risk behaviour associated with the occurrence of extreme 

events in the Islamic and conventional stock markets. We also consider the left and the right 

tails of the empirical return distribution to estimate financial losses as a result of a long or 

short position on these markets. 

The comparison between the Islamic and conventional markets in the tail distributions is 

relevant and useful because the Islamic stocks are arguably viewed as a viable financial 

system that can endure financial crises better than the conventional system and can also be 

used as a diversification vehicle to reduce the risk in conventional portfolios. In essence, 

Islamic finance may offer products and instruments that are fortified by greater social 

responsibility, ethical and moral values and sustainable finance.  

The Islamic and conventional markets differ in several ways (Dridi and Hassan, 2010; 

Chapra, 2008). First, Islamic markets prefer growth and small cap stocks, but conventional 

markets opt for value and mid cap stocks. Second, Islamic finance restricts investments in 

certain sectors (e.g. alcohol, tobacco, rearms, gambling, nuclear power and military-weapons 

activities, etc.). Third, unlike the conventional finance, Islamic finance also restricts 

speculative financial transactions such as financial derivatives like futures and options which 

have no underlying real transactions, government debt issues with a fixed coupon rate, and 

hedging by forward sale, and interest-rate swaps, and any other transactions involving items 
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not physically in the ownership of the seller (e.g., short sales).  Therefore, the research 

contends that Islamic stock markets have low correlations and limited long-run relationships 

with the conventional markets, whereby they can provide financial stability and 

diversification. The more recent literature underlines the superiority of Islamic stock 

investing in outperforming conventional investments, particularly under the recent global 

financial crisis (Jawadi et al., 2013). 

The novelty of this paper is that it makes use of two extreme value distributions, namely 

the generalized Pareto distribution and the generalized extreme value distribution, to 

simultaneously model both the left and right tails of the empirical return distribution in order 

to understand the effect of each methodology in modelling the tail distribution. The paper 

uses the maximum likelihood and the bootstrap techniques to estimate the parameters of these 

two distributions. In addition, unlike previous studies (e.g. Longin, 1996; McNeil and Frey, 

2000; Xubiao and Gong, 2009), this paper provides reliable confidence intervals within 

which the tail risk measures are expected to be found. These confidence intervals are vital in 

assessing the investor‘s risk tolerance level. For example, a risk lover investor is likely to 

have a risk measure that is close to the upper bound of the confidence interval, while a risk 

averse investor is expected to be near the lower bound of the confidence interval.   

The results of this study show that the empirical distributions of conventional stock 

markets are characterised by a fat-left tail behaviour that implies high probability of price 

plunge during financial crisis; and by a right-tail characterised by a truncation similar to that 

of the Fréchet distribution, implying the existence of an upper bound on possible profit 

during extreme events. However, the empirical distribution of the Islamic market is found to 

be characterised by a thin-left tail behaviour similar to that of the Gumbel distribution, 

implying moderately low probability of price drops during financial crises; and by a right-tail 

without truncation implying large probability of positive returns during financial crises. 

However, the corresponding tail risk measures are found to be significantly different, 

depending on the method used. Our results show that for Islamic and conventional stock 

returns addressed in this study, the BMM method performs better than the POT method by 

generating positive shape parameters that are consistent with existing literature in EVT
1
.  

                                                           
1
See for example Bekiros and Georgoutsos (2005); Gilli and Këllezi (2006) or Embrechts, P., Klüppelberg, C. 

and Mikosch, T. (1997). 

http://www.sciencedirect.com/science/article/pii/S1042443104000745
http://www.sciencedirect.com/science/article/pii/S1042443104000745
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To check the robustness of the results, we divide the sample period into three sub-sample 

periods of equal length and re-estimate the shapes, the scales and the tail risk measures for 

the left and the right tail of the empirical distributions, using both the POT and the BMM 

methodologies. Our objective in doing so is to avoid the impacts of outliers and structural 

breaks and figure out whether we can have the same findings in each sub-period. The results 

of these sub-sample period are reported in Tables 16 to Table 25. At the one percent 

significance level, we find similar results in each sub-period and confirm the main findings 

which attest that Islamic markets are less risky than their conventional counterparts.  

Although the POT methodology has become more popular in recent years, our results 

show that for some stock market returns; it generates negative shape parameters, suggesting 

that the loss distribution of these stock market returns has an upper bound support in its tails. 

Practically, this is impossible for stock market returns. Embrechts, Kluppelberg and Mikosch 

(1997) find similar results for the POT method and argue that this inconsistency might be due 

to the presence of both autocorrelation and heteroscedasticity in financial time series. 

However when the GEV method is used, we find that it generates positive shape 

parameters for all stock market returns that can capture the negative skewness and excess 

kurtosis of the distribution of these returns. The presence of such two moments of the return 

distribution indicates serious deviations from the normal distribution and may suggest that the 

empirical distribution is asymmetric and exhibit a fat-tailed behaviour. During financial 

crisis, a positive value of the shape parameter results in a significant excess skewness in the 

generalized extreme value (GEV) distribution for losses and implies extreme price drops with 

large probabilities on the right tail
2
 of the GEV distribution. In this case, the GEV distribution 

nests a special case of the EVT distributions known as the Fréchet distribution characterised 

by a truncation to its left tail, implying the existence of an upper bound on possible gains for 

the right tail of the empirical distribution. To date, many EVT models that have intended to 

deal with both the fat-tail behaviour and the presence of excess skewness and kurtosis in 

financial asset returns in regional and Islamic markets have failed to highlight the above 

characteristic features of fat tailed distributions. These features have prevented many of these 

                                                           
2
 Since we transform negative returns into positive ones by multiplying them by minus one before fitting them 

to the GEV distribution, it is worth mentioning that the right tail of the GEV distribution for losses corresponds 

to the left tail of the empirical distribution that represents losses. 
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EVT models from being of practical use in risk management during extreme market 

conditions as they result in unrealistic risk measures. 

In addition, the current study attempts to answer the question of whether the Islamic 

market is different from conventional markets during extreme market conditions. Applying 

the single analysis of variance (ANOVA) technique to the tail distribution data, we find that 

the DJIM market is significantly different from the conventional markets, which is likely to 

be due to its Sharia rules as indicated earlier. 

The paper is organized as follows. After this introduction, Section 2 presents a review of 

the literature on Islamic stock markets and in particular the use of extreme value theory 

(EVT) distributions in finance. Section 3 discusses the modeling of extreme events using the 

BMM and the POT methods. Section 4 presents the empirical analysis, while section 5 

concludes the paper 

 

 

2. Literature review     

      Many studies in the general literature have used the EVT to measure the downside risk 

for conventional markets but to our knowledge this theory has not been applied to a 

comparison between conventional and Islamic stock markets, although Frad and Zouari, 

(2014) applied one method of the EVT to the Islamic markets but without comparing them to 

their conventional counterparts. The EVT has become popular for its ability to focus directly 

on the tails of the empirical return distribution, and therefore it performs better than other 

theoretical distributions in predicting extreme events (Dacorogna et al., 1995).  To reflect the 

volatility dynamics in the tail risk estimation, McNeil and Frey (2000) use a GARCH process 

with EVT and find quite interesting results that favour the extreme value theory. Other 

studies on EVT-based tail risk estimation include among others Gençay and Selçuk (2004), 

who investigate the relative performance of market risk models for the daily stock market 

returns of nine different emerging markets. They use the EVT to generate tail risk estimates. 

Their results indicate that those tail risk estimates are more accurate at higher quantiles. 

Using the U.S. stock market data, Longin (2005) shows how EVT can be useful in learning 

precisely the characteristics of the distributions of asset returns, and finally help to select a 

better model by focusing on the tails of the distribution. A survey of some major applications 

of EVT to finance is provided by Rocco (2011).  
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The literature on Islamic finance can be divided into four categories.  These include the 

characteristics of Islamic finance, the relative performance of this financial system in 

comparison to that of other socially responsible and faith-based investments, possible links 

between Islamic banks and markets and their conventional counterparts, and the potential 

performance between the two business systems during the recent global financial crisis and 

the shrinking gap between them. The review in the current study is conducted on the basis of 

two of the four themes: a general comparison between the performances of the two seemingly 

different business models, and the relative performance during the recent global financial 

crises. Studies such as Hammoudeh et al. (2014) and Ajmi et al. (2014) review the other 

themes. 

The more recent strand of the literature compares Islamic and conventional financial 

markets in terms of relative returns and relative volatility. The comparison also focuses on 

the relative performance during the recent global financial crisis and relies on certain 

characteristics of Islamic markets. The markets are represented by indexes from different 

regions where some are a subset of the Dow Jones indexes, while others belong to the FTSE 

indexes, among others (Ashraf, 2014). Dania and Malhotra (2013) find evidence of a positive 

and significant return spillover from the conventional market indexes in North America, 

European Union, Far East, and Pacific markets to their corresponding Islamic index returns. 

Sukmana and Kholid (2012) examine the risk performance of the Jakarta Islamic stock index 

(JAKISL) and its conventional counterpart Jakarta Composite Index (JCI) in Indonesia using 

GARCH models. Their result shows that investing in the Islamic stock index is less risky than 

investing in the conventional counterpart. 

  Girard and Kabir (2008) compare the differences in return performance between Islamic 

and non-Islamic indexes. After controlling for the firm, market and global factors, the authors 

do not find significant differences in terms of performance between these types of 

investments.  Using a four factor EGARCH model, Mohammad and Ashraf (2015) examine 

the determinants of the performance of Islamic stock index returns and find that stock 

selection and funds rebalancing according to the Sharia screening standards may result in 

superior performance for investors. They suggest that Sharia screening helps Islamic stock 

indices to select securities of firms that are growth-oriented and are not financially distressed.  
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Balcilar et al. (2015) assess the risk exposures of major Islamic sector indexes with 

respect to shocks in global conventional markets and find positive risk exposures of Islamic 

equity sectors with respect to developed market shocks. 

Dewandaru et al. (2015) investigate the co-movements between Islamic stock indexes 

and the major stock indexes across different regions during the major global financial crises. 

Using the wavelet methods, the authors expose the multi-horizon nature of the co-movements 

and show that shocks are transmitted via excessive linkages during the recent GFC. However, 

it is found that the Islamic stock markets exhibit lower exposure to the recent crises. Also 

using the wavelet decomposition, Rizvi et al. (2015) compare the co-movements for Islamic 

and mainstream equity markets across the United States and Asia Pacific, with a focus on the 

behavior of contagion across multiple crises in the last decade and a half. They find that the 

majority of the global shocks since 1996 have been transmitted from the United States to 

Asia Pacific through excessive linkages, while the recent subprime crisis unveils a contagion 

based on the fundamentals. Their results also provide an empirical ground that the Islamic 

equities and their composition constitute a buffer to financial crises. 

The literature also explores the potential importance of Islamic finance, particularly 

during the recent global financial crisis. Chapra (2008) indicates that excessive lending, high 

leverage on the part of the conventional financial system and lack of an adequate market 

discipline have created the background for the global crisis. This author contends that the 

Islamic finance principles can help introduce better discipline into the markets and preclude 

new crises from happening. Dridi and Hassan (2010) compare the performance of Islamic 

banks and conventional banks during the recent global financial crisis in terms of the crisis 

impact on their profitability, credit and asset growth and external ratings.  Those authors find 

that the two business models are impacted differently by the crisis.
3
  More recently, Jawadi et 

al. (2014) measure financial performance for Islamic and conventional stock indexes for three 

regions (the U.S., Europe and the World) before and after the subprime crisis and point to the 

attractiveness of performance of Islamic stock returns, particularly after the subprime crisis. 

Arouri et al. (2011) pursue a different approach. While comparing the impacts of the recent 

global financial crisis on Islamic and conventional stock markets in the same three global 

                                                           
3
 There is also a growing literature on Islamic banks (see for example, Cihak and Hesse, 2010; Abd Rahman, 

2010; Hesse et al., 2008). Sole (2007) also presents a ―good‖ review of how Islamic banks have become 

increasingly more integrated in the conventional banking system. 
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areas and finding less negative effects on the former than the latter, these authors examine 

diversified portfolios in which the Islamic stock markets outperform the conventional 

markets. They demonstrate that diversified portfolios of conventional and Islamic 

investments lead to less systemic risks.  

In an earlier study, Ashraf and Mohammad (2014) test the validity of the claim that 

equities which comply with the Islamic investment principles, based on the Shariah 

screening, perform better than conventional equities during the declining phase of capital 

markets. In this regard, the authors compare the performance of global and regional Islamic 

equity indices with conventional equity indices during the past decade using a logistic smooth 

transition autoregressive (LSTAR) model.  The LSTAR model helps the authors to compare 

the performances of the Islamic and conventional equity indices across regimes of up and 

down markets, with the model allowing for a smooth transition from the ‗down market‘ to the 

‗up market‘ rather than an abrupt change as in the Markov-switching models. The empirical 

results indicate that Islamic equity indices, in general, perform better than conventional 

indices during the period 2000 to 2012. In addition, this study does not find any abnormal 

returns associated with Islamic equity indices on a global basis, but evidence of positive 

abnormal returns is observed for regional indices of Europe and Asia. Overall, Ashraf and 

Mohammad (2014) provide evidence that Islamic equity indices are comparatively less risky 

than their conventional counterparts, and thus can act as suitable hedges during the downfall 

of capital markets. 

Ashraf (2014) investigates the performance of 29 Islamic stock indices and compares 

it with that of conventional indices from four major international index providers, using 

different Shariah screening criteria. The results suggest that the difference in screening 

criteria does not significantly affect the performance of the Islamic stock indices. The return 

deviations, if any, are due to the relative riskiness of the Islamic indexes with respect to the 

relevant benchmarks. 

More recently, Yilmaz et al. (2015) investigate the cross interactions between ten 

major Islamic sectors of the Dow Jones Islamic Market index, using both the consistent 

dynamic conditional correlation (cDCC) and the dynamic equicorrelation (DECO) models. 

The authors find that the Islamic equity sectors are highly integrated. More importantly, this 

result is emphasized further through financial contagion channels in the recent global 
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financial crisis. It indicates however that the Islamic equity indexes are also prone to global 

shocks hitting the world financial system. Furthermore, the result fails to provide evidence of 

decoupling of the Islamic equity markets from the conventional financial system. 

Hkiri et al. (2015) employ the generalized vector autoregressive framework proposed 

by Diebold and Yilmaz (2012) to measure both total directional and net volatility spillovers 

between Islamic stock indexes and their conventional counterparts at the sector level among 

themselves across nine major regions. The results show significant time-varying patterns in 

the volatility spillovers for all the Islamic and conventional stock indexes and identify the 

stress transmitters and receivers. Furthermore, they show that the cross-market volatility is 

strongly affected by several global financial crises. 

Mensi et al. (2015) analyse the dynamic spillovers across ten Dow Jones Islamic-

conventional sector index pairs. Using various multivariate GARCH models, the results show 

significant time-varying conditional correlations among all the pairs. Moreover, there is 

evidence that the conditional correlations among all the sector pairs, except those of the 

telecommunication and utilities sectors, increase after the onset of the recent global financial 

crisis, suggesting non-subsiding risks, contagion effects and gradual financial linkages. The 

conventional sectors‘ risk exposure can be effectively hedged over time in portfolios 

containing Islamic sector stocks. 

Frad and Zouari (2014) use the EVT-POT method and apply it to DJIM to identify the 

extreme observations that exceed a given threshold for this index. Our study uses both the 

BMM and POT methods to examine the tail risk for the Islamic and regional conventional 

stock markets. As indicated earlier, this is the only article that uses EVT in examining the 

Islamic stock markets. 

 

3.  Methodology 

The process of fitting log-returns series to the extreme value distributions is described 

below. We will discuss both the BMM and POT methods despite the fact the former gives 

more reasonable results than the latter. 
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3.1. The Block of Maxima  

Let 
1X , 2X , …, nX  be a sequence of iid random variables representing negative 

returns for the left tail (or positive returns for the right tail) of the distribution of a portfolio 

with common density function F. In what follows, fluctuations of the sample maxima 

(minima) are investigated. Let 11 XR   be the largest rate of return in the portfolio; and 

1 2max( , ,..., )m nR X X X  the maximal returns or maxima for the right tail of the same 

portfolio.  Corresponding results for the minima (left tail) can be easily obtained by changing 

the sign of the maxima into negative: 

1 2 1 2min( , ,..., ) max( , ,..., )n nX X X X X X                                                                     (1) 

Assuming that the maxima (minima) are independent and identically distributed, we 

obtain the density function as follows: 

1 2Pr ( ) Pr ( , ,..., ) ( ) ( ) ( ) ( )n

m nob R x ob X x X x X x F x F x F x F x          ; x R  , 

n N                                                                                                                   (2) 

where F(x) is cumulative distribution function of the random variable x. 

Following Embrechts, Kluppelberg, and Mikosch (1997), extreme events happen in 

the tail of the empirical distribution. Therefore, the asymptotic behaviour of the extreme 

returns/losses 
mR  must be related to the density function in its right-hand tail for positive 

returns or in its left-hand tail for maximum/largest losses. If the series of maximum/largest 

losses of a portfolio during each quarterly or yearly block are centered with a mean 
nd  and 

standard deviation
nc , then its density function can be expressed as:  

m n
m n n

n

R -d
Prob x =Prob(R u )=F(u )

c

  
   

    

                                                                   (3)  

where ( )n n n nu u x c x d   , ( )nF u  is the limit distribution of 
mR , while 

nd  and 
nc  are the 

location and scale parameters, respectively. Given some continuous density function H such 

that m n

n

R -d

c
 converges in distribution in H, Embrechts et al. (1997) show that H belongs to 

the type of one of the following three density functions: 

Fréchet: 

0,  for  0

( ) 0

exp( ),  for 0

x

x

x x

 


 


  


                                        (4)
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Weibull: 

exp( ( ) ), 0

( ) 0

1, 0

x x

x

x



 

   


 
                                           (5)

 

Gumbel: ( ) exp( ),xx e x R                                                           (6)  

The density functions are called standard extreme value distributions. 

  

3.1.1. Generalized extreme value distribution 

  Let X  be a vector of extreme returns representing the maximum returns (positive or 

negative) of each quarterly or yearly block period as depicted in Figure 1 below, and denote 

by F, the density function of X . The limiting distribution of the normalised maximum 

returns X is known to be the generalized extreme value distribution.  

 

Figure 1 shows the hypothetical returns for a long position on the SP500 index during five 

consecutive years. The maximum returns of each year block denoted by
2X ,

5X , 
7X , 

11X  and 

13X have a limiting distribution known as the generalized extreme value distribution 

expressed as: 

1/

( , , )( ) exp 1
x

H x



  








  
    

                                                                                    (7)

 

 

  represents the shape parameter of the tail distribution,   its location, and   its scale 

parameter. When 1 0    , Equation (7) corresponds to the Fréchet type of distributions 

which includes some well-known fat-tailed distributions such as the Pareto, Cauchy and 

Student-t distributions. When 1 0     Equation (7) corresponds to the Weibull type of 

distributions which includes among others the Pareto type II distribution. When 0   

Equation (7) corresponds to the Gumbel type of distributions which include most exponential 

distributions. The Gumbel type of distributions has zero skewness and displays symmetric 

behaviour in its right and left tails. Its tail index value is infinite, implying that all moments 

of the distribution are either finite or zero. Generally when 0  ,  Equation (7) imposes a 

truncation of the probability distribution and a distinct asymmetric behaviour in the right and 

left tails such that when there is high probability of the realisation of an extreme event at one 
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tail, there is also an absolute maxima (or minima) in the other tail beyond which values of   

have zero probability (Embrechts et. al., 1997).  

        Following Gilli and Kellezi (2006), we re-parameterise the generalized extreme value 

distribution above in order to include a tail risk measure which is referred to as the ―return 

level‖: 

 
 

 

1/

, ,

exp

1
exp log 1 ; 0

1
1 ;                                             =0

K
k

k

R
x R

x R
k

H x

k




 













 
  
 

                        

     

                                 (8) 

where k

nR represents the return level that is the maximum loss expected in one out of k  

periods of length n  computed as:  

 
1

, ,

1
1k

nR H
k

  

  
  

 
                                                                         (9) 

 

 

The ML method is used to estimate the parameters of the re-parameterised generalized 

extreme value distribution as well as their corresponding confidence intervals by maximising 

its log-likelihood function:  

   
,

max , ,k k
L R L R

 

 

                                                                                       (10)  

  

These confidence intervals satisfy the following condition: 

     2

1

1ˆ ˆˆ, ,
2

k kL R L R                                                                                     (11) 

where 2

1   is the  1
th

  quantile of the Chi-square distribution with 1 degree of freedom. 

3.2. The peak over the threshold approach 

3.2.1. Generalized Pareto distribution 

Let X  be a vector of extreme returns larger than a specific threshold u  as depicted in 

Figure 2 below, and assume that the density function of X  is given by F . The limiting 
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distribution of the extreme returns above a specific threshold is known as the generalized 

Pareto distribution. The excess density function of X over the threshold u  is defined as; 

   
   

 
0x ;

1

uxF
 /)(Pr 






uF

uF
uXxuXobxFu                                   (12)                                                  

This function is obtained via the generalized Pareto distribution in what is termed as the 

―peak-over-threshold‖ method. Figure 2 illustrates how the generalized Pareto distribution 

fits the extreme returns above a specific threshold value of 3u  . 

 

This figure shows a hypothetical extreme return distribution marked as 1, 2, 3, 4, 5, 6, 

and 7 observed during the first half of January, and the y-axis reports their magnitudes. 

Assume that the return marked as 3 is our threshold. In this case, the returns marked as 4, 5, 6 

and 7 are considered here as extreme returns since they are larger than the threshold 3u  . 

The limiting distribution of these extreme returns over the threshold 3u   is known as the 

generalized Pareto distribution (GPD) and is given by the following expression:  
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                                                            (13) 

where   is the shape, and u is the threshold parameter, respectively. It is assumed that the 

random variable x is positive and that  
 

0.for   ;
u

-x0 and 0for  0  ;0  



 xu

 

The shape parameter   is independent of the threshold u . If 0  then  u,G   is a 

Pareto distribution, while if 0  then  u,G   is an exponential distribution. If 0 , then 

 u,G   is a Pareto type II distribution. These parameters are estimated by making use of the 

ML method. Firstly, an optimal threshold is chosen using the mean excess function plot 

method introduced by Davidson and Smith (1990). The mean excess function plots the 

conditional mean of the extreme returns above different thresholds. The empirical mean 

excess function is defined as: 
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where 1uI if uxi   and 0, otherwise. uN  is the number of extreme returns over the 

threshold u. If the empirical mean excess function has a positive gradient above a certain 

threshold u, it is an indication that the return series follows the GPD with a positive shape 

parameter ξ. In contrast, an exponentially distributed log-return series would show a 

horizontal mean excess function, while the short tailed log-return series would have a 

negatively sloped function. The parameters of the generalized Pareto distribution are obtained 

by maximising the following log-likelihood function: 
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Embrechts, Klüppelberg and Mikosch (1997) show that the tail distribution of the generalized 

Pareto distribution can be expressed as follows: 
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                                                                          (16) 

3.3. Computing tail risk measures 

Although widely used to measure market risk, the value at risk (VaR) method is not a 

coherent measure of risk because it doesn‘t satisfy the sub-additivity condition. Assume that 

we have a long position in two financial assets 1z and 2z , then sub-additivity means the total 

risk of a portfolio of these two assets must be less than the sum of the individual asset risks. 

Consequently, VaR doesn‘t satisfy the diversification principle. A more coherent risk 

measure is the Expected Shortfall (ES). The ES measures the expected loss of a portfolio, 

given that the VaR is exceeded. In this paper, we compute the VaR as the alpha quantile of 

the tail distribution in Equation (16), and obtain the ES by adding to the VaR, the mean 

excess function over the VaR (see Coles, 2001 for derivation): 
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                                                                             (17) 
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where p is the significance level at which the VaR is computed. For example, when 

0.99p  , Equations (17) and (18) produce the tail risk measures at the 99 significance level. 

 

4.  Empirical results 

4.1. Data description 

We make use of the closing daily stock market indexes for the Sharia-compliant 

stocks in the Dow Jones stock index (DJIM) universe and for conventional stocks in three 

main regions: the United States, Europe and Asia in the S&P universe (see, for example, 

Hammoudeh et al., 2014a; Hammoudeh et al. in press b). As indicated earlier, the four 

Islamic and regional conventional market indexes under consideration are the US SP500, the 

Eurozone SPEU, the Asian SPAS50 and the global Islamic market DJIM. The time series for 

the four stock market indexes are sourced from Bloomberg. The DJIM index represents the 

global universe of investable equities that have been screened for Sharia compliance. The 

companies in this index pass the industry and financial ratio screens. The regional allocation for 

DJIM is classified as follows: 60.14% for the United States; 24.33% for Europe and South 

Africa; and 15.53% for Asia. The S&P Euro (SPEU) is a sub-index of the S&P Europe 350 

and includes all Eurozone-domiciled stocks from the parent index. This index is designed to 

be reflective of the Eurozone market, yet efficient to replicate. The Asian SPAS50 is an index 

that represents the most liquid 50 blue chip companies in the four Asian countries: Hong 

Kong, Korea, Singapore, and Taiwan.  

The data span from 01/01/1998 to 16/09/2014, making a total of 4358 observations, 

which include the recent global financial crisis period. Our aim is to model the tail 

distribution of these financial markets which follow different business models and compute 

the corresponding left and right risk measures. The left tail represents the losses for an 

investor with a long position on the market indexes, whereas the right tail represents the 

losses for an investor being short on the market indexes. Table 1 exhibits the basic statistics 



17 

 

of the log-returns. It shows that the Asian market SPAS50 index has on average the highest 

historical rate of return which is equal to 0.0305%, with a corresponding standard deviation 

of 1.47% which is the highest among all the indexes. The Islamic market index (DJIM) has 

the lowest historical average rate of return, with the corresponding lowest standard deviation 

of 1.0743%.   The mean returns for the SP500 and SPEU are reported to be equal to 0.0167%, 

and 0.0075 with a standard deviation of 1.2582 and 1.4017, respectively.  

A risk-reward analysis exhibited in Figure 3 shows that the Islamic market 

represented by the DJIM index has the lowest annualised risk of all the markets, and has an 

annualized rate of return higher than that of the US and the Euro zone markets which are 

represented by the SP500 and SPEU, respectively. However, the Asian market provides the 

highest annualized rate of return with the corresponding relatively highest level of risk. 

Unlike the Islamic markets, the Asian market is characterised by higher uncertainty and 

political instability that require higher premium than the Islamic market does.  

4.2. Tail estimation results 

Following MacNeil and Frey (2000); we begin by removing the effect of 

autocorrelation and heteroscedasticity of order one in the log-returns series by fitting them to 

an Exponential-GARCH (Nelson, 1991) of order one i.e. EGARCH(1,1) model. Table 13 

reports the EGARCH (1,1) estimations and the Ljung-Box test for the first 5 lags. All the 

coefficients in the mean and variance equations are statistically significant. The leverage 

effect represented by the coefficient gamma is also statistically significant implying that 

negative returns have a larger impact on the volatility in these markets than positive returns 

do. The Ljung-Box test results for the first 5 lags show that there is no remaining 

autocorrelation effect in the data.  

The resulting negative and positive residuals i.e. filtered returns are then used to 

estimate the left and the right tail risks, repsectively. All positive and negative filtered-returns 

are collected separately, and then fitted to the generalised extreme value distribution using the 

BMM method, and to the Pareto distribution using the POT method.  
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For the generalized extreme value distribution, we first divide our sample period into 

quarterly blocks
4
 and collect the maximum positive filtered-returns (for the right tail) and the 

minimum negative filtered-returns (for the left tail) of each quarterly block. The limiting 

distribution of these maximums (minimums) is known as the generalized extreme value 

distribution, whose re-parameterised version that is expressed in Equation (8) is used to 

estimate the shape and scale parameters using the maximum likelihood (ML) method. Table 2 

reports the ML estimates of these parameters as well as their confidence intervals.  For the 

purpose of robustness, we report the best estimate and its corresponding bootstrapped value.  

Table 2 reports the shape (ξ) and the scale (σ) parameters of the re-parameterised 

GEV function shown in Equation (8), the point estimates and their corresponding confidence 

intervals for the Islamic and conventional stock market at the 1% and 5% significance levels. 

The maximum likelihood estimates are referred to as ML, whereas the bootstrapped estimates 

are denoted by BS. Moreover, LT (RT) refers to the left tail (right tail) of the empirical return 

distribution, representing the downside risk and upside risk, respectively. We find that the 

BMM method generates only positive shape parameters for all of the four market indexes 

used in our study. Based on the 99% confidence intervals, our results show that the left and 

right shape parameters of all stock markets are statistically different from zero, except for the 

shape parameter of the right tail distribution of the Islamic market. In fact, the shape 

parameter values of the US, Eurozone, and Asian stock markets are found to be equal to 

0.324, 0.249, and 0.244 for the left tail respectively, and 0.36, 0.326, and 0.635 for the right 

tail, respectively. These results suggest that the empirical distributions of these conventional 

stock markets exhibit a fat left tail behaviour with large probabilities of extreme price drops 

during financial crises. The estimated shape parameters for these conventional stock markets 

also suggest that the GEV distribution nest the Fréchet type of distributions whose truncation 

to the right tail implies the existence of an upper bound on possible profits that can be made 

in these regional markets. 

In comparison with the Islamic market index, we find that the BMM method 

generates a left tail shape parameter of 0.29, and a right tail shape parameter of 0.007 for the 

                                                           
4
 One of the criticisms of the BMM method is that there is not a standard way of grouping data in blocks of 

maxima. Given the length of our daily sample period (i.e., 16 years), we believe that grouping the maximums 

(minimums) in quarterly blocks would result in enough data points to generate unbiased estimates of the 

generalized extreme value distribution.  
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global Islamic market. Based on the 99% confidence intervals, the left tail shape parameter is 

statistically different from zero, while the right tail shape parameter is statistically equal to 

zero. This is an indication that the empirical return distribution exhibits a thin left tail 

behaviour with an infinite tail index similar to that of the Gumbel distribution, implying 

moderately low probability of price drops during financial crises. It also exhibits a right tail 

without truncation and with finite higher moments, implying a high probability of large 

positive return during financial crises. The quantile-quantile plots shown in Figures 6, 7, 8 

and 9 confirm that the generalized extreme value distribution best fits the set of quarterly 

block maximums (minimums) data.  

Given the parameters of the re-parameterized generalized extreme value distribution, 

we thereafter compute one tail risk measure associated with the generalized extreme value 

distribution, namely the return level for the four markets (see Gilli and Kellezi, 2006). We 

denote by RL the return level which represents the maximum loss expected in one out of ten 

quarters. Table 3 reports the RL for both the left and the right tails of the empirical 

distribution at the 1% and 5% significance levels as per the Basel II accord.
5
 Their confidence 

intervals are reported in Tables 8 and 9. For the purpose of robustness, we also report the 

bootstrapped return level after 1000 resamples.  

For example, using the US SP500 index, one would say that at the 1% significance 

level, the maximum loss observed during a period of one quarter exceeds 4.8% in one out of 

ten quarters on average for an investor with a long position on the market index (left tail). 

Figure 4 below highlights the differences in the return level of each market index at both the 

1% and 5% significance levels. At these levels, we find that due to its Sharia laws, the 

Islamic market is less risky than the conventional market markets. Both the left and right ML 

and bootstrapped maximum losses during one quarter are expected to exceed 3.8% on 

average in one out of ten quarters for an investor with long and/or short positions in the 

Islamic market. In contrast, the Asian market index SPAS50 is more risky than the rest of the 

market indices in our portfolio. Its maximum loss observed during one quarter exceeds 5.8% 

in one out of ten quarters on average for an investor with a long position on the index (left 

tail) and 6% for an investor with a short position on the index (right tail). 

                                                           
5
 The Basel II accords recommend that the VaR be estimated at higher quantile, i.e., the 1% significance level 

for the next 10 trading days. 
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Based on the specific market regulations, we find that in the US market and the Sharia 

- compliant market which has 64% of it constiutents in the US maket, the portfolio risk 

measure is indepedent of the investment strategy used, i.e., the long or the short position. The 

maximum expected losses in these markets are almost the same for both the long position 

(left tail) and short positions (right tail) on the market indices. However, in the Eurozone and 

Asian markets, we find that the short (selling) position generates higher risk than the long 

only position. We argue that this has to do with the presence of market speculations and  

short selling regulations, particualrly during the debt crisis. 

The POT method proceeds as follows. Using the filtered-return we firstly determine 

an optimal threshold
6
 value by using the mean excess function method which is described 

above. We report in Figures 6, 7, 8, and 9 the plots of the mean excess function, the excess 

distribution and the quantile-quantile distribution for the left tail of the empirical distribution. 

A visual analysis suggests that the optimal threshold value for the four market indices vary 

between 3% and 5%. These values are located at the beginning of a portion of the sample 

mean excess plot that is roughly linear. Given the large number of values the thresholds can 

take in this interval of 3% to 5%, and the resulting subjectivity about the correct threshold 

value, in this study we follow Mackay, Challenor, and Bahaj (2010), Damon (2009); and 

Sigauke, Vester and Chikobvu (2012) who suggest the preferable use of the 90
th

 quantile of 

the empirical return distribution
7
.  

We follow the same procedure described above for the BMM method to separate the 

filtered-returns for the left and right tails for the four stock markets respectively. Using the 

ML estimation method, we obtain the shape and scale parameters of the generalized Pareto 

distribution expressed in Equation (13). We also make use of the Bonferroni confidence 

interval to correct for the sample bias. Two types of confidence intervals are reported: the ML 

confidence interval and the Bonferroni confidence interval for the left and the right tail 

                                                           
6
 The mean excess analysis may be used to select an optimal threshold. An optimal threshold is crucial for 

obtaining reliable risk measures. Notice that a lower threshold is likely to reduce the variance of the estimates of 

the Generalized Pareto Distribution and induce a bias in the data above the threshold. A higher threshold 

reduces the bias but increases the volatility of the estimate of the GPD distribution. See for example Danielsson 

and de Vries (1997) and Dupuis (1998) for more discussion on this issue. To avoid these issues, we use the 90
th

 

quantile of the empirical log-return distribution as the threshold value.  

  
7
 For more discussion on the choice of the optimal threshold value, we refer the interested readers to the 

following studies Damen (2009); Mackay et al. (2010); Sigauke at al. (2012). 
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distributions at the 1% and 5% significance levels, respectively. The ML and bootstrapped 

point estimates are reported in Table 4 in the column labelled ―best estimate‖. For example, 

using the SP500, we observe that, at the 1% significance level, the ML and bootstrapped 

estimates of the left tail shape are 0.397% and 0.011%, respectively. Their corresponding 

confidence intervals are -0.034 (-1.028), and 1.669 (3.99), respectively. These numbers 

represent the smallest and the largest values these parameters can take.  

Unlike the BMM results which are more reliable, the shape parameters generated with the 

POT method are mostly negative, except for the left tail of the US SP500 and the right tail of the 

SPAS50 indices. A negative shape parameter basically implies that the distribution of returns has a 

bounded support in the tail, i.e. has a finite endpoint. The existence of such a bounded support for 

stock market returns distribution is unrealistic. Table 4 shows that some of the negative shape 

parameters are also statistically insignificant, i.e. equal to zero, leading to the conclusion that 

their tail distributions are symmetric. These results highlight the shortcomings of the POT 

method, most importantly its inability to consistently produce reliable shape parameter 

estimates for stock market returns.   

Table 5  reports the POT-based tail
8
 risk measures for both the left and right tail 

distributions. Their confidence intervals are reported in Tables 8, 9, 10, and 11 . We find that 

these tail risk measures are significantly different from the ones obtained with the BMM 

method. In fact, the BMM-based tail risk measures are between 4.7% and 6% for the 

convetional markets and around 3.6% for the Islamic markets. Whereas the POT-based risk 

measures are between 9% and 27% for the convetional markets, and around 9% for the 

Islamic markets.  

However, both the POT and BMM methods suggest that the Islamic stock market is 

relatively less risky than the conventional stock market during financial crises. To avoid the 

impact of outliers and strtuctural breaks on our analysis; we divide the sample period into 

three sub-sample periods of equal length and re-estimate the GEV and GPD parameters in 

each sub-sample period. We also re-estimate the tail risk measures for the left and the right 

tails of the empirical distributions, using both the POT and the BMM methodologies. Table 

16 to Table 25 report the re-estimation results at the one percent significance level. We find 

similar results in each sub-period, according to which the Islamic markets are less risky than 

                                                           
8
 The estimated tail risk measures are the VaR and the expected shortfall (ES). Theoretically, the ES is equal to 

the sum of VaR and the average of all losses exceeding the VaR. Therefore, we expect in all cases the VaR 

estimates to be of less magnitude than the ES estimates. 
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conventional markets in the tails. These results are quiet surprising given the high correlation 

between Islamic and conventional markets in general. Table 13 shows that the correlation 

between the Islamic and the SP500 indices is close to ninety percent. With such a high 

correlation, one would expect the two markets to comove together during financial crises. 

Using the ANOVA technique below, our study can confirm that this difference is statistically 

significant. 

Figures 4 and 5 show graphically that the Islamic stock market remains less risky than 

the regional convetional stock markets during financial crises. This differnce might be due to 

the regulations on short selling which is not permitted in the Sharia-compliant markets. To 

test the existence of such difference between the Islamic stock market and the conventional 

markets, we apply the ANOVA technique to the tail distribution data, i.e. the quarterly 

maximum and minimum filtered-returns series. 

        Our aim in applying the ANOVA technique is to study the variability (dynamics) of 

each stock market during extreme events. In other words, we attempt to see whether the 

variability of the Islamic market during extreme market conditions is the same as that of 

conventional stock markets. We therefore test the null hypothesis of equal variability for the 

four markets, i.e. H0: V1=V2=V3=V4 against H1: at least one stock market is different from 

the others, where V1 is the variability in the SP500 market, V2 is the variability in the SPEU 

market, V3 is the variability in the SPAS50 market and V4 is the variability in the Islamic 

DJIM market.  

       Two results can possibly be obtained from this test. First, if we fail to reject the null 

hypothesis H0, it means that there is no difference between the Islamic and the conventional 

markets during extreme market events. Second, if we reject the null hypothesis it means that 

at least one market is different from others. In this case, we need to further test two sets of the 

null hypotheses:  

1. The conventional stock markets are not different (they have equal variability during 

extreme events) against the alternative that they are different. We refer to these 

hypotheses as H01: V1=V2=V3, and H11: at least one conventional market is 

different from the rest. 
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2. The Islamic stock market is different from each one of the conventional market. In 

this case, the following hypotheses are formulated: H02: V4=V1 against H12: 

V4≠V1; and H03: V4=V2 against H13: V4≠V2; and H04: V4=V3 against H14: 

V4≠V3. V1, V2, V3, and V4 are defined as above. 

Tables 6 and 7 report the test statistic corresponding to each hypothesis test as well as 

its p-values. We reject the null hypothesis (H0) of equal variability in all stock markets, and 

conclude that at least one stock market is different from the others. To find out which market 

it is, we first test the null hypothesis H01 of equal variability for all conventional stock 

markets. We fail to reject this null hypothesis only at the 10% significance level and conclude 

that the variability in convnentional stock markets during extreme events is the same. Lastly, 

we test the null hypotheses of equal variability between the Islamic market and each one of 

the conventional stock markets; that is, hypotheses H02, H03, and H04. We do reject the null 

hypotheses for H03 and H04 at the 5% signifiance level, and for H02 at  the 10% significance 

level. We conclude that the Islamic DJIM market is significantly different from the 

convnentional stock markets. 

 

5.  Conclusion 

This paper makes use of two techniques utilized in the extreme value theory literature, 

namely the BMM method based on the generalized extreme value dostribution and the POT 

method based on the generalized Pareto distribution. They are used to model the tails of the 

empirical distributions of the indices of three conventional stock markets and the global 

Islamic stock market. These indices are represented by the US SP500, the Eurozone SPEU, 

the Asian SPAS50 and the Islamic DJIM. The main objective of the study is to compute the 

financial tail risk measures associated with the distributions of these two groups of markets, 

which follow different business models. To achieve this purpose, the study begins by filering 

the log-returns series using EGARCH(1,1). The resulting filtered-returns are then separated 

in positive and negative series for the left and the right tail distributions respectively, and 

fitted to both the BMM and POT methods. 

For the BMM method, the paper groups the filtered-return series into 67 independent 

and non-overlapping quarterly blocks and identifies the minimum (maximum) of each block 
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as the adequate inputs  to this methodology. However, the inputs for the POT method have 

been identified as the excesses over the threshold of the 90
th

 quantile of the empirical log-

return distribution.  

Using the maximum likelihood method and the 1000 bootstrap simulations, we find 

that the POT shape parameter estimates are inconsistent with most of the existing literature 

on EVT since most of these shape parameters are negative except for the right tail of SP500, 

and left tail of SPEU
9
. These negative shape parameters suggest the existence of a bounded 

support for the distribution of stock market returns. We argue that such negative shape 

parameter estimates are unrealistic for stock market returns since we cannot practically have 

such bounded support during financial crises. As a result of such negative shape parameters, 

the POT-based tail risk measures are found to be largely and unreasonably higher than those 

obtained with the BMM method. 

We find that the BMM method generates statistically significant positive shape 

parameter estimates for all four market indexes, except for the shape parameter of the right 

tail of the empirical distribution of the Islamic market. The comparison of these estimated 

shape parameters shows that the conventional stock markets are characterised by a fat-left tail 

distribution which implies high probability of price drops during financial crisis. They are 

also characterized by a right-tail distribution with a truncation similar to that of the Fréchet 

distribution, which implies the existence of an upper bound support on possible profit during 

an extreme event. On the other hand, the Islamic market is characterised by a thin left-tail 

behaviour similar to that of the Gumbel distribution, implying moderately low probability of 

price drops during financial crises. This market is also categorized by a right-tail without a 

truncation, implying large probability of positive returns during an extreme event.   

We also find that the tail risk measures are significantly different between the 

conventional and the Islamic markets. These tail risk measures are lower for the Islamic 

market and higher for the the conventional stock markets. Similar results are also found in the 

three sub-sample periods. We argue that the tail risk difference has to do with the Islamic 

                                                           
9
 Although most of POT- based shape parameters are negative; we find that the right tail of the SP500 and the 

left tail of the SPEU are statistically insignificant and exhibit a thin tail behaviour.  Thin tail distributions cannot 

model properly extreme events. Therefore the POT-based results are inconsistent with some of the existing 

literature on EVT modelling see for example McNeil, Frey and Embrocates (2005).  
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regulations in regard to industry screening, short selling and other excessive risk-taking 

behaviours in the Islamic market, which are not allowed in the Sharia-compliant market.  

To test the existence of such a difference between the Islamic and conventional stock 

markets; we apply the ANOVA technique to the tail data. Using different statistical 

hypothesis tests, we find that the Islamic stock market is indeed significantly different from 

the conventional stock markets during extreme events..  

The results of this current study are significantly important since they show clearly 

that during major crises (i.e. extreme events) the Islamic stock index is not only less risky but 

also significantly different from the conventional stock markets. Thus, the results come 

differently to those of the recent studies which show that the Islamic stock market is no 

different from its counventional counterparts domocilized in different regions.  
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Table 1: Summary statistics 

Index Mean Std Dev Skewness Kurtosis 

SP500 0.0167 1.2582 -0.2039 7.9104 

SPEU 0.0075 1.4017 -0.0994 4.4679 

SPAS50 0.0305 1.4689    0.03 5.5 

DJIM 0.0187 1.0743 -0.322 6.5891 

 

Table 2: BMM shape and scale estimates
10

 

   

Alpha=1% 

 

Alpha=5%   

   

LOWER 

BOUND 

POINT 

ESTIMATE 

UPPER 

BOUND 

LOWER 

BOUND 

POINT 

ESTIMATE 

UPPER 

BOUND 

SP500 LT MLξ 0.089 0.324 0.574 0.136 0.324 0.524 

  

MLσ 0.007 0.008 0.011 0.0071 0.00825 0.01 

  

BSξ 

 

0.3239 

 

  0.32   

  

BSσ 

 

0.0082 

 

  0.0082   

 

RT MLξ 0.092 0.36 0.635 0.145 0.36 0.581 

  

MLσ 0.007 0.008 0.011 0.007 0.0082 0.01 

  

BSξ 

 

0.3605 

 

  0.3604   

  

BSσ 

 

0.0082 

 

  0.0082   

SPEU LT MLξ 0.016 0.249 0.535 0.06 0.249 0.473 

  

MLσ 0.007 0.009 0.011 0.0072 0.00851 0.1034 

  

BSξ 

 

0.2487 

 

  0.2487   

  

BSσ 

 

0.0505 

 

  0.00851   

                                                           
10

 LT denotes left tail, while RT refers to right tail. ML and BS refer to the maximum likelihood and bootstraps 

estimates for the shape (ξ) and the scale (σ) parameters, respectively 

MLξ: estimate of the shape parameter using the Maximum likelihood method 

MLσ: estimate of the scale parameter using the Maximum likelihood method 

BSξ: estimate of the shape parameter using the Bootstrap technique 

BSσ: estimate of the scale parameter using the Bootstrap technique 

NB: each Bootstrap technique involves 1000 simulations in order to obtain unbiased estimates 
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RT MLξ 0.089 0.326 0.554 0.137 0.356 0.51 

  

MLσ 0.008 0.009 0.012 0.0079 0.00921 0.1113 

  

BSξ 

 

0.0326 

 

  0.326   

  

BSσ 

 

0.0092 

 

  0.009205   

SPAS50 LT MLξ -0.014 0.244 0.604 0.032 0.244 0.526 

  

MLσ 0.009 0.011 0.014 0.0091 0.01082 0.0132 

  

BSξ 

 

0.2443 

 

  0.2443   

  

BSσ 

 

0.0108 

 

  0.010816   

 

RT MLξ 0.048 0.635 0.791 0.137 0.338 0.552 

  

MLσ 0.009 0.011 0.013 0.0088 0.01038 0.0128 

  

BSξ 

 

0.3381 

 

  0.3381   

  

BSσ 

 

0.0104 

 

  0.010379   

DJIM LT MLξ 0.06 0.29 0.556 0.105 0.29 0.5 

  

MLσ 0.006 0.007 0.009 0.0058 0.00674 0.0082 

  

BSξ 

 

0.2902 

 

  0.2902   

  

BSσ 

 

0.0067 

 

  0.00674   

 

RT MLξ 0.019 0.007 

 

0.057 0.23 0.435 

  

MLσ 0.006 0.039 

 

0.0063 0.0071 0.0086 

  

BSξ 

 

0.0071 

 

  0.02302   

  

BSσ 

 

0.0386 

 

  0.007095   

Note. See footnotes 4 for Table 2. 

Table 3: BMM return levels  

  

Alpha=1% 

 

Alpha=5% 

 

  

ML Bootstrap ML Bootstrap 

SP500 Left.RL 4.8 4.78 4.778 4.777 

 

Right.RL 4.8 4.81 4.805 4.8048 

SPEU Left.RL 5.1 5.05 5.053 5.0526 

 

Right.RL 5.4 5.41 5.412 5.4121 

SPAS 

50 Left.RL 5.8 5.82 5.824 5.824 

 

Right.RL 6.001 6.02 6.023 6.0227 

DJIM Left.RL 3.901 3.92 3.92 3.9195 

 

Right.RL 3.9021 3.86 3.862 3.8619 
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Table 4: POT shape and scale estimates 

   

Alpha=1% 

 

Alpha=5%   

   

LOWER 

BOUND 

BEST 

ESTIMATE 

UPPER 

BOUND 

LOWER 

BOUND 

BEST 

ESTIMATE 

UPPER 

BOUND 

SP500 L.T MLξ -0.034 0.379 1.669 0.026 0.379 1.217 

  

MLσ 0.005 0.011 0.025 0.006 0.011 0.021 

  

Bcaξ -1.028 0.3787 3.99 -0.236 0.3787 2.919 

  

Bcaσ 0.001 0.113 0.08 0.002 0.0113 0.03 

 

R.T MLξ -0.003 -0.003 -0.178 -0.03 -0.003 -0.159 

  

MLσ 0.01 0.016 0.03 0.011 0.016 0.025 

  

Bcaξ -1.191 -0.0032 0.035 -0.672 -0.0032 0.267 

  

Bcaσ 0.01 0.0163 0.32 0.011 0.016 0.023 

SPEU L.T MLξ -0.085 -0.085 -0.268 -0.085 -0.085 -0.246 

  

MLσ 0.001 0.046 0.011 0 0.046 0.012 

  

Bcaξ -0.615 -0.0854 0.594 -0.378 -0.0852 0.383 

  

Bcaσ 0.006 0.0163 0.033 0.009 0.0163 0.027 

 

R.T MLξ -0.136 -0.136 -0.3 -0.136 -0.136 -0.283 

  

MLσ 0.001 0.022 0.015 0 0.022 0.017 

  

Bcaξ -1.082 -0.1356 0.782 -0.467 -0.1356 0.395 

  

Bcaσ 0.007 0.0224 0.049 0.011 0.022 0.039 

SPAS50 L.T MLξ -0.051 -0.051 -0.236 -0.051 -0.051 -0.21 

  

MLσ 0.001 0.017 0.012 0.001 0.017 0.013 

  

Bcaξ -0.463 -0.0507 0.408 -0.306 -0.51 0.289 

  

Bcaσ 0.008 0.0166 0.031 0.011 0.011 0.029 

 

R.T MLξ 0.115 0.115 0.758 0.115 0.115 0.544 

  

MLσ 0.011 0.017 0.029 0.012 0.017 0.025 

  

Bcaξ -0.405 0.1151 1.112 -0.161 0.1151 0.817 

  

Bcaσ 0.007 0.0172 0.031 0.009 0.172 0.027 

DJIM L.T MLξ -0.06 -0.06 -0.295 -0.06 -0.06 -0.276 

  

MLσ 0.001 0.016 0.009 0.001 0.016 0.01 

  

Bcaξ -1.599 -0.06 1.781 -1.087 -0.06 1.594 

  

Bcaσ 0.001 0.0161 0.08 0.02 0.0161 0.043 

 

R.T MLξ 0.201 0.266 1.62 -0.016 0.266 1.113 

  

MLσ 0.004 0.008 0.02 0.005 0.008 0.016 

  

Bcaξ 0.23 0.266 1.6 -1.587 0.2664 0.886 
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Bcaσ 0.0031 0.008 0.021 0.002 0.0083 0.017 

 

 

Table 5: POT estimates of VaR and ES 

  

Alpha=1% Alpha=5% 

SP500 Left.VaR 11.06 17.15 

 

Left.ES 17.79 27.15 

 

Right.VaR 8.65 10.44 

 

Right.ES 10.26 12.04 

SPEU Left.VaR 8.22 8.22 

 

Left.ES 9.31 9.31 

 

Right.VaR 9.47 9.47 

 

Right.ES 10.67 10.67 

SPAS50 Left.VaR 9.08 9.1 

 

Left.ES 10.37 10.4 

 

Right.VaR 11.53 11.53 

 

Right.ES 14.58 14.58 

DJIM Left.VaR 7.38 7.38 

 

Left.ES 8.65 8.65 

 

Right.VaR 8.024 7.02 

 

Right.ES 10.18 9.61 

 

Table 6: Summary of ANOVA tests for lower tail 

Source of Variation 
Sum-of 

Squared 

Degree 

of 

Freedom 

Mean 

Square 

F. 

Calculated 

P 

value 

F. 

Theoretical 

H0:V1=V2=V3=V4 

      Between Markets 43.6297 3 14.54323 5.8797 0.000672 2.6388 

Error 652.9923 264 2.4725 

   Total 696.622 267 

    Decision 

    
Reject H0 

 H01: V1=V2=V3 

      Between Markets 12.7728 2 6.4864 2.3885 0.0944 3.0415 

Error 537.7111 198 2.7157 

   Total 550.6839 200 

    

Decision 

    

Do not Reject 

H0 @ 10% 
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H02: V4=V1 

      Between Markets 6.9886 1 6.9886 2.9873 0.086258 3.912875 

Error 308.804 132 2.3394 

   Total 315.7926 133 

    Decision 

    
RejectOnlyat10% 

 H03: V4=V2 

      Between Markets 21.9468 1 21.9468 11.1996 0.001066 3.912875 

Error 258.6684 132 1.9596 

   Total 280.6152 133 

    Decision 

    
Reject H0 

 H04: V4=V3 

      Between Markets 38.8648 1 38.8648 16.2305 0.000094 3.9129 

Error 316.0822 132 2.3946 

   Total 354.947 133 

    Decision 

    
Reject H0 

  

 

Table 7: Summary of NOVA tests for upper tail 

Source of Variation 
Sum-of 

Squared 

Degree 

of 

Freedom 

Mean 

Square 

F 

Calculated 

P 

value 

F 

Theoretical 

H0:V1=V2=V3=V4 

      Between Markets 54.9709 3 18.3236 6.0139 0.00056 2.6388 

Error 804.3742 264 3.0469 

   Total 859.3451 267 

    Decision 

    
Reject H0 

 H01: V1=V2=V3 

      Between Markets 20.1067 2 10.0534 2.8871 0.058087 3.041518 

Error 689.4675 198 3.4822 

   Total 709.5742 200 

    

Decision 

    

Do not Reject 

H0 @ 10% 

 H02: V4=V1 

      Between Markets 5.9004 1 5.9004 2.654607 0.1056 3.912875 

Error 293.3947 132 2.2227 

   Total 299.295 133 

    Decision 

    
RejectOnlyat10% 

 H03: V4=V2 

      Between Markets 26.6209 1 26.6209 10.5848 0.00148 3.91288 

Error 331.9807 132 2.515 

   Total 358.6016 133 

    Decision 

    
Reject H0 

 H04: V4=V3 

      Between Markets 47.2605 1 47.2605 15.2598 0.000149 3.912875 
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Error 408.8121 132 3.0971 

   Total 456.0726 133 

    Decision 

    
Reject H0 

  

 

Table 8: ML and Bca Estimates of RL when alpha=1% 

for BMM method 

  

LOW 

BOUND 

POINT 

ESTIMATE 

UPPER 

BOUND 

  

ML ML Bca ML 

SP500 Left RL 4.71 4.8 4.78 6.26 

 

Right 

RL 4.8 4.8 4.81 6.6 

SPEU Left RL 5.1 5.1 5.05 6.5 

 

Right 

RL 5.4 5.4 5.41 7.2101 

SPAS50 Left RL 5.8 5.8 5.82 7.9 

 

Right 

RL 6.01 6.001 6.02 8.2 

DJIM Left RL 3.9 3.901 3.92 5.1 

 

Right 

RL 3.9 3.9021 3.86 16.4 

 

 

Table 9: ML and Bca Estimates of VaR when 

alpha=5% for BMM method 

  

LOW 

BOUND 

POINT 

ESTIMATE 

UPPER 

BOUND 

  

ML ML Bca ML 

SP500 Left RL 3.968 4.778 4.777 6.377 

 

Right 

RL 3.931 4.805 4.8048 6.638 

SPEU Left RL 4.334 5.053 5.0526 6.472 

 

Right 

RL 4.503 5.412 5.4121 7.168 

SPAS 

50 Left RL 4.913 5.824 5.824 7.871 
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Right 

RL 4.97 6.023 6.0227 8.17 

DJIM Left RL 3.301 3.92 3.9195 5.137 

 

Right 

RL 3.287 3.862 3.8619 4.948 

 

 

Table 10: ML Estimates of VaR and ES when alpha=1% for POT 

method 

  

LOW BOUND best ESTIMATE UPPER BOUND 

 SP500 Left VaR -58.94 11.06 598 

 

 

Left ES 7.12 17.79 810.37 

 

 

Right VaR -21.35 8.65 27.75 

 

 

Right ES 7.33 10.26 120.05 

 SPEU Left VaR -21.79 8.22 28.81 

 

 

Left ES 7.15 9.31 142.3 

 

 

Right VaR -20.53 9.47 35.33 

 

 

Right ES 8.23 10.67 182.12 

 SPAS 

50 Left VaR -20.92 9.08 27.32 

 

 

Left ES 7.81 10.37 78.75 

 

 

Right VaR -38.47 11.53 55.61 

 

 

Right ES 9.32 14.58 164.5 

 DJIM Left VaR -22.62 7.38 125.74 

 

 

Left ES 0.01 8.65 183.39 

 

 

Right VaR 23.01 8.024 118.027 

 

 

Right ES 0.31 10.18 162.03 
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Table 11: ML Estimates of VaR and ES when alpha=5% 

for the POT method 

  

LOW 

BOUND 

best 

ESTIMATE 

UPPER 

BOUND 

SP500 

Left 

VaR -92.85 17.15 74.254 

 

Left ES 0.01 27.15 248.65 

 

Right 

VaR -29.56 10.44 28.7 

 

Right ES 8.75 12.04 57.61 

SPEU 

Left 

VaR -21.78 8.22 16.47 

 

Left ES 7.46 9.31 32.5 

 

Right 

VaR -20.53 9.47 19.48 

 

Right ES 8.6 10.67 38.03 

SPAS50 

Left 

VaR -20.9 9.1 17.4 

 

Left ES 8.1 10.4 30.9 

 

Right 

VaR -38.47 11.53 29.22 

 

Right ES 9.95 14.58 88.41 

DJIM 

Left 

VaR -22.62 7.38 28.22 

 

Left ES 0.01 8.65 183.39 

 

Right 

VaR -22.98 7.02 27.21 

 

Right ES 0.01 9.61 257.14 

 

Table 12: Correlation Matrix 

 

SP500 SPEU SPAS50 DJIM 

SP500 1 0.5743 0.1888 0.8866 

SPEU 0.5743 1 0.3829 0.7501 

SPAS50 0.1888 0.3829 1 0.4197 

DJIM 0.8866 0.7501 0.4197 1 
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Table 13: EGARCH Estimates and the Ljung – Box Test 

  

Mean-Eq Variance -Eq 
  

Ljung-Box: lag 5  

  

Mu Ari ω Alpha Beta Gamma Test-Stat P-Value 

SP500 
Coeff 0.041 -0.043 -0.004 -0.133 0.987 0.010 1.606 0.995 

t-stat 4.838 -2.842 -2.543 -16.470 445.018 3.857 
  

SPEU 
Coeff 0.034 0.004 0.003 0.111 0.984 0.128 6.344 0.075 

t-stat 2.816 0.376 1.282 -12.898 1066.78 10.048 
  

SPAS50 
Coeff 0.041 0.068 0.005 -0.064 0.988 0.126 2.421 0.523 

t-stat 2.457 4.220 2.965 -7.972 721.72 6.557 
  

DJIM 
Coeff 0.038 0.137 -0.005 -0.101 0.987 0.114 3.308 0.354 

t-stat 3.028 9.118 -2.741 -11.219 1074.934 9.269 
   

 

Table 14: Sub-period1 – POT Risk Measures α=1% 

  

VaR ES 

SP500 
RT 0.0376 0.0442 

LT 0.00328 0.0423 

SPEU 
RT 0.0419 0.0501 

LT 0.0428 0.0529 

SPAS50 
RT 0.0437 0.0598 

LT 0.0409 0.0543 

DJIM 
RT 0.0306 0.0357 

LT 0.0302 0.0364 

 

 

Table 15: Sub-period1 – BMM Risk Measures α=1% 

 

Right-tail Left-tail 

SP500 0.0385 0.0385 

SPEU 0.0447 0.0457 

SPAS50 0.0517 0.0482 

DJIM 0.0218 0.0219 

 

 

 

 

 



38 

 

Table 16: Sub-period1 – POT Shape and Scale Estimates α=1% 

  

Lower Bound Best Estimate Upper Bound 

SP500 

RT (ξ) -1.226 -0.415 -0.053 

RT(σ) 0.007 0.013 0.033 

LT(ξ) 1.235 0.2775 -0.049 

LT(σ) 0.0035 0.006 0.019 

SPEU 

RT (ξ) -0.02 -0.09 -0.221 

RT(σ) 0.011 0.011 0.014 

LT(ξ) -0.136 -0.015 -0.015 

LT(σ) 0.018 0.012 0.021 

SPAS50 

RT (ξ) 0.217 0.217 0.773 

RT(σ) 0.01 0.0096 0.015 

LT(ξ) 0.111 0.111 0.678 

LT(σ) 0.01 0.011 0.017 

DJIM 

RT (ξ) -0.097 -0.439 -0.495 

RT(σ) 0.01 0.011 0.014 

LT(ξ) -0.061 -0.061 -0.234 

LT(σ) 0.001 0.007 0.011 

 

 

Table 17: Sub-period1 – BMM Shape and Scale Estimates  α=1% 

  

Lower Bound 

Best 

Estimate 

Upper 

Bound 

SP500 

RT(ξ) -0.086 0.114 0.373 

RT(σ) 0.006 0.007 0.009 

LT(ξ) -0.089 0.057 0.265 

LT(σ) 0.006 0.008 0.01 

SPEU 

RT (ξ) -0.0097 0.096 0.351 

RT(σ) 0.007 0.009 0.012 

LT(ξ) -0.096 0.0676 0.29 

LT(σ) 0.008 0.0095 0.012 

SPAS50 

RT(ξ) -0.053 0.1138 0.29 

RT(σ) 0.008 0.0103 0.013 

LT(ξ) -0.002 0.1871 0.405 

LT(σ) 0.007 0.0092 0.012 

DJIM 

RT (ξ) 0.0074 0.269 0.63 

RT(σ) 0.005 0.0051 0.006 

LT(ξ) 0.133 0.3083 0.635 

LT(σ) 0.005 0.005 0.005 
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Table 18: Sub-period2 – POT Risk Measures  α=1% 

  

VaR ES 

SP500 
RT 0.037 0.057 

LT 0.0435 0.065 

SPEU 
RT 0.0314 0.058 

LT 0.0402 0.0578 

SPAS50 
RT 0.04 0.062 

LT 0.0496 0.0621 

DJIM 
RT 0.025 0.049 

LT 0.0355 0.0538 

 

 

Table 19: Sub-period2 – BMM Risk Measures α=1% 

 
Right-tail Left-tail 

SP500 0.0385 0.0385 

SPEU 0.0359 0.0404 

SPAS50 0.0439 0.0469 

DJIM 0.0263 0.0297 

 

 

Table 20: Sub-period2 – POT Shape and Scale Estimates α=1% 

  

Lower Bound Best Estimate Upper Bound 

SP500 

RT (ξ) 0.185 0.185 0.833 

RT(σ) 0.014 0.014 0.023 

LT(ξ) 0.174 0.174 0.69 

LT(σ) 0.014 0.014 0.022 

SPEU 

RT (ξ) 0.121 0.512 1.447 

RT(σ) 0.01 0.009 0.017 

LT(ξ) 0.169 0.169 0.683 

LT(σ) 0.01 0.012 0.018 

SPAS50 

RT (ξ) 0.042 0.298 0.833 

RT(σ) 0.01 0.01 0.016 

LT(ξ) -0.248 -0.129 -0.129 

LT(σ) 0.021 0.018 0.023 

DJIM 

RT (ξ) 0.091 0.526 1.668 

RT(σ) 0.01 0.008 0.017 

LT(ξ) 0.169 0.169 0.732 

LT(σ) 0.01 0.012 0.02 
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Table 21: Sub-period2 – BMM Shape and Scale Estimates α=1% 

  

Lower Bound Best Estimate Upper Bound 

SP500 

RT(ξ) -0.086 0.1135 0.373 

RT(σ) 0.006 0.0069 0.009 

LT(ξ) 0.089 0.0643 0.265 

LT(σ) 0.006 0.0077 0.01 

SPEU 

RT (ξ) 0.209 0.4409 0.734 

RT(σ) 0.05 0.0056 0.007 

LT(ξ) 0.105 0.3982 0.781 

LT(σ) 0.006 0.0073 0.009 

SPAS50 

RT(ξ) 0.019 0.2568 0.297 

RT(σ) 0.008 0.0095 0.012 

LT(ξ) 0.094 0.3645 0.644 

LT(σ) 0.007 0.0086 0.011 

DJIM 

RT (ξ) 0.057 0.182 0.302 

RT(σ) 0.005 0.0054 0.007 

LT(ξ) 0.16 0.3637 0.541 

LT(σ) 0.005 0.0055 0.007 

 

 

Table 22: Sub-period3 – POT Risk Measures α=1% 

  

VaR ES 

SP500 
RT 0.0315 0.0418 

LT 0.0318 0.0416 

SPEU 
RT 0.0343 0.0464 

LT 0.0372 0.0442 

SPAS50 
RT 0.0322 0.0418 

LT 0.0337 0.0407 

DJIM 
RT 0.0272 0.0334 

LT 0.0276 0.0363 

 

 

Table 23: Sub-period3 – BMM Risk Measures α=1% 

 
Right-tail Left-tail 

SP500 0.0327 0.0411 

SPEU 0.0398 0.0415 

SPAS50 0.0357 0.041 

DJIM 0.03038 0.0368 
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Table 24: Sub-period3 – POT Shape and Scale Estimates α=1% 

  

Lower Bound Best Estimate Upper Bound 

SP500 

RT (ξ) 0.077 0.077 0.667 

RT(σ) 0.009 0.009 0.014 

LT(ξ) 0.114 0.114 0.67 

LT(σ) 0.01 0.008 0.012 

SPEU 

RT (ξ) 0.206 0.206 0.68 

RT(σ) 0.1 0.007 0.011 

LT(ξ) -0.191 -0.191 0.015 

LT(σ) 0.1 0.011 0.015 

SPAS50 

RT (ξ) 0.153 0.153 0.687 

RT(σ) 0.007 0.007 0.01 

LT(ξ) -0.339 -0.189 -0.189 

LT(σ) 0.11 0.01 0.015 

DJIM 

RT (ξ) -0.248 -0.099 -0.099 

RT(σ) 0.001 0.008 0.011 

LT(ξ) 0.106 0.106 0.515 

LT(σ) 0.001 0.007 0.01 

 

 

Table 25: Sub-period3 – BMM Shape and Scale Estimates α=1% 

 

 

 

 

  

Lower Bound Best Estimate Upper Bound 

SP500 

RT(ξ) 0.055 0.2823 0.52 

RT(σ) 0.005 0.0057 0.007 

LT(ξ) 0.272 0.6752 0.93 

LT(σ) 0.003 0.0037 0.005 

SPEU 

RT (ξ) -0.012 0.1539 0.353 

RT(σ) 0.006 0.0075 0.01 

LT(ξ) 0.125 0.4004 0.699 

LT(σ) 0.004 0.0046 0.006 

SPAS50 

RT(ξ) -0.033 0.1877 0.403 

RT(σ) 0 0.0069 0.009 

LT(ξ) 0.159 0.4854 0.874 

LT(σ) 0.003 0.041 0.05 

DJIM 

RT (ξ) 0.1 0.5094 0.928 

RT(σ) 0.003 0.0032 0.005 

LT(ξ) 0.172 0.6165 0.993 

LT(σ) 0.003 0.0035 0.05 
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Figure 1. Hypothetical return series for a long position on the SP500 index during 

years 1, 2, 3, 4, and 5. 

 

 

      

  Figure 2: A hypothetical extreme return distribution with a threshold 3u  . 

 

 

Figure 3: Risk-reward plot. 
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Figure 4: BMM comparative return levels. 

 

 

Figure 5: POT comparative risk measures. 
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Figure 6: Checking the GPD for the SPAS50. 
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Figure 7: Checking the GPD for the DJIM. 
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Figure 8: Checking the GPD for the SPEU. 
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Figure 9: Checking the GPD for the SP500. 
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