
Adaptive leaderless consensus of agents in jointly

connected networks

Hui Yua,∗, Xiaohua Xiab

aCollege of Science, China Three Gorges University, Yichang 443002, China
bCentre of New Energy Systems, Department of Electrical, Electronics and Computer

Engineering, University of Pretoria, Pretoria 0002, South Africa

Abstract

In this paper, the leaderless consensus problem of multi-agent systems with
jointly connected topologies and nonlinear dynamics is considered, in which
the nonlinear dynamics are assumed to be non-identical and unknown. The
unknown nonlinear dynamics existing in the systems are assumed to be lin-
early parameterized, and an adaptive design method for leaderless multi-
agent systems is presented. By just using the relative position information
between each agent and its neighbours, a distributed adaptive consensus con-
trol algorithm for the considered systems is proposed, in which the network
graphs are jointly connected. Both the global uniform asymptotical stability
and the global uniform asymptotical parameter convergence analysis of the
adaptive control algorithm are carried out by using adaptive control theory,
Lyapunov theory and algebraic graph theory. Finally, an example is given to
illustrate the validity of our theoretical results.

Keywords: Adaptive consensus, Decentralized control, Parameter
convergence, Jointly connected topology, Multi-agent system

1. Introduction

Distributed cooperative control of multi-agent systems has been taken
much attentions by many researchers in automatical control and multi-robot
coordination. Its broad applications include in various fields, such as, multi-
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robot rendezvous, flocking and swarming control, multi-robot formation con-
trol, etc. In distributed coordinated control of muliti-agent systems, a sig-
nificant problem is to design distributed coordinated controllers such that
consensus can be achieved on a decision value.

In the past decades, the consensus problem of both leader-following and
leaderless multi-agent systems have been extensively studied on different top-
ics under various assumptions, for example, distributed robust consensus [1],
consensus in time-delay networks [2, 3], consensus with finite-time conver-
gence [4], average consensus [5, 6], consensus in jointly connected networks
[7], group consensus [8], containment control [9], consensus with communica-
tion constraints [10], etc. In the studies of consensus problem of multi-agent
systems, variable network topologies have been extensively investigated in
the literature. However, information transfer may interrupt in some practi-
cal applications due to the instability of communication channels. Therefore,
joint connectedness [7, 11, 12] is an important assumption for the network
topologies of multi-agent systems. It does not requires that the switching
graphs are connected at any moment, which means that the switching graphs
are permitted to be disconnected at any time instant.

In practice, uncertainty and unmodeled dynamics may exist in the sys-
tems. Therefore, one of the interesting topics on consensus problem is in-
vestigating the case of multi-agent systems with unknown nonlinearity. The
adaptive design method is a good choice. In [13, 14], a coordination problem
steering a group of agents to a formation with a prescribed reference veloc-
ity is considered. Adaptive algorithms are proposed for reference velocity
recovery [13] and reference velocity tracking [14]. In [15], robust adaptive
design techniques is applied in multi-agent systems such that the consid-
ered systems can reach consensus. As the controller for each agent only
use its neighbor agents’ information, the proposed algorithm is distributed.
In [16], the authors propose an adaptive finite-time leader-following con-
sensus algorithm for multi-agent networks, in which the model dynamics of
both leader and follower agents are non-identical, unknown and nonlinear.
A type of homogenous Lyapunov function is introduced in the finite-time
control algorithm design and stability analysis based on finite-time stabili-
ty theory. In [17], the unknown nonlinear dynamics of multi-agent systems
are approximated by neural networks. An adaptive controller is proposed
for directed multi-agent networks such that the consensus error vectors and
weight estimate errors are uniformly ultimately bounded. In [18], for a class
of interconnected nonlinear pure-feedback systems, the unknown nonlinear
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dynamics of the interconnected system are approximated by fuzzy logic sys-
tems. An adaptive output feedback control approach is proposed such that
all variables are semi-globally uniformly ultimately bounded and the system
errors converge to a small neighborhood of the origin. In [19], under linear
parameterizations assumptions, an adaptive control strategy is proposed for
leader-following multi-agent networks that is undirected and jointly connect-
ed. In [20], the authors present distributed cooperative adaptive controllers
to solve the uniformly exponential stability problem of a group of uncertain
systems in a general framework. Some other studies on adaptive consensus
of multi-agent systems focus on adaptive tuning of the network weights, or
coupling strength [21, 22].

In this paper, the leaderless consensus problem of multi-agent systems
is studied. The multi-agent networks considered in this paper are jointly
connected. The system model is assumed to be nonidentical, nonlinear and
unknown. The uncertain dynamics of all agents are assumed to be linear-
ly parameterized by some basis functions and the unknown parameters are
estimated by each agent. For networks with jointly connected topologies,
a distributed adaptive consensus scheme is proposed through only relative
position feedback between agents. By introducing the Persistent excitation
(PE) assumption for regressor matrix, and using algebraic graph theory and
Lyapunov techniques, we prove that the consensus can be achieved globally
uniformly asymptotically, in the meanwhile, the global uniform asymptotical
parameter convergence to zero is also guaranteed.

The main contributions of this work are mainly in three aspects. First,
a purely distributed adaptive consensus algorithm is proposed for leaderless
multi-agent networks which are assumed to be jointly connected. Consen-
sus analysis is given by using Lyapunov theory, algebraic graph theory, and
Barbalat’s lemma. In [19], a similar model is considered for leader-following
multi-agent systems. The control algorithm proposed in [19] depends on the
local consensus errors from itself and its neighbors. From the definition of
the local consensus error, each agent requires not only the information of its
neighbors but also the information of its neighbors’ neighbors. Therefore, it
is not purely distributed. In this paper, a purely distributed control algorith-
m only depending on relative position measurements between its neighbors,
is proposed. The leaderless consensus stability analysis is more challenging
than that in leader-following systems, because the zero eigenvalue of the sys-
tem matrix in leaderless systems is intrinsic even if the graph is connected.
Second, by introducing the PE condition, a sufficiency condition is derived for
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the considered systems to achieve the parameter convergence. Since the in-
trinsic zero eigenvalue exists in leaderless multi-agent systems, the parameter
convergence analysis is a challenging work. By using some transformations,
a common matrix C is obtained to derive the sufficiency condition for pa-
rameter convergence. The PE condition is also introduced in [13, 14, 20] for
the parameter convergence. In [13, 14], because the topology of intercon-
nected graph is fixed, the parameter convergence is straightforward form the
classical adaptive control theory. In [20], a cooperative PE condition and
a integration-based topology condition are introduced for cooperative adap-
tive systems to reach uniformly exponential stability in a general framework.
Some applications are given for identification and control of multi-agent sys-
tems. Third, the topologies of the interconnected graphs are switching, espe-
cially, jointly connected. This condition is more general. Except for [19, 20],
the works [13–18, 21, 22] on adaptive system mentioned above are all for
networks with fixed topology.

This paper is built up as follows. We state formally the problem which is
formulated with some notations in Section 2. We present our main results in
section 3. We give an illustrative example and show the simulation results
to validate our theoretical results in section 4. Concluding remarks are given
in section 5.

2. Preliminaries and Problem Statement

2.1. Preliminaries

The multi-agent interconnection networks can be expressed by graphs. A
graph G (V ,E ) consists of a node set V = {1, 2, · · · , N} and an edge set
E ⊂ V × V , in which an edge (i, j) in the edge set E is an unordered pair.
A simple graph is undirected, and has no repeated edges and self-loops. In
this paper, only simple graphs is considered. In an edge (i, j), the node
j is termed as neighbor of the node i. Denote neighbors set of node i by
Ni = {j ∈ V |(i, j) ∈ E , j ̸= i}. A path in a graph is a sequence of edges
(1, 2), (2, 3), · · · in the graph. A graph G is termed to be connected if there
exists a path between any two nodes of the graph. For a collection of graphs,
its union is defined as a new graphs where its node set and edge set are the
union of node set and edge set of all of the graphs in the collection. If the
union of a collection of graphs is connected, we say that the collection of
graphs is jointly connected.
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The information exchanges between agents can be modelled by a graph
G , in which each agent is according to a node in V . An edge (i, j) means that
the agent i can receive, obtain or sense information from agent j. Denote
the weighted adjacency matrix of a graph G by A = [aij] ∈ RN×N , where
aij > 0 if (i, j) ∈ E and aij = 0 if (i, j) /∈ E . The degree of node i in a graph
is defined as

∑
j∈Ni

aij. The degree matrix D ∈ RN×N of a graph G is a
diagonal matrix whose iith entry being the degree of node i. Let L = D−A,
the matrix L is called the Laplacian of the graph. The following lemma of L
in algebraic graph theory [23] is well known.

Lemma 1. The Laplacian L of graph G has at least one zero eigenvalue with
1N = (1, 1, · · · , 1)T ∈ RN as its eigenvector, and all the non-zero eigenvalues
of L are positive. The Laplacian L has a simple zero eigenvalue if and only
if graph G is connected.

In this paper, we consider the case that the interconnected graphs of the
systems are switching over time. The set of all possible switching graphs is
denoted by {Gp|p ∈ P}, where P is an index set. For describing the time
dependence of graphs, a piecewise constant switching signal σ(t) : [0,∞) →
P is defined. We use Gσ(t) to denote the underlying graphs at time t on N
nodes. Since the Laplacian L of the graph, the neighbors set Ni of agent
i, and the (i, j)th entry aij of A are all vary with time, their time varying
versions are denoted by Lσ(t), aij(t) and Ni(t), , respectively.

2.2. Problem Statement

Consider a group of N nonidentical nonlinear agents, the dynamics of the
ith agents are described by

ẋi(t) = fi(xi(t), t) + ui(t), i = 1, 2, · · · , N, (1)

where xi(t) ∈ R is the position state of the ith agent, ui(t) ∈ R is the
control input, and fi(xi(t), t) is the unknown nonlinear dynamics of agent i,
which is assumed to be continuous in t and Lipschitz in xi(t) to guarantee
the existence of unique solution of equation (1).

We denote the stack column vector of xi(t) with i in some index set S by
col(xi(t))i∈S or simply col(xi(t)) , the stack column vector of vector x and
y by col(x, y) , etc. Letting x(t) = col(xi(t)), u(t) = col(ui(t)), f(x, t) =
col(fi(xi, t)), the dynamics of N agents can be rewritten as

ẋ(t) = f(x, t) + u(t). (2)
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Remark 1. We assume that xi ∈ R, i = 1, 2, · · · , N , to avoid complicated
expressions. It is trivial to extend this case to that of xi ∈ Rn, i = 1, 2, · · · , N ,
by using Kronecker product ⊗.

In this work, the consensus problem of above systems is considered, that
is, designing distributed controllers ui(t), i = 1, 2, · · · , N , such that the con-
sensus can be reached.

For the considered systems (1), the consensus is said to be achieved if,
for some distributed controller ui(t), i = 1, 2, · · · , N ,

lim
t→∞

|xi(t)− xj(t)| = 0, i ̸= j, i, j = 1, 2, · · · , N, (3)

for ∀xi(0), i = 0, 1, · · · , N .

3. Main results

In this section, the linear parameterizations models of the leaderless sys-
tems (1) are given firstly. Then, we present our distributed controllers and
parameter adaptive laws. Finally, the stability and parameter convergence
analysis are given.

The unknown nonlinear dynamics fi(xi(t), t), i = 1, · · · , N , of group of
agents are supposed to be linearly parameterized as

fi(xi(t), t) = ϕT
i (xi(t), t)ϑi, i = 1, 2, · · · , N, (4)

where ϕi(xi(t), t) ∈ Rm is the basis function column vector, ϑi ∈ Rm is the
parameter column vector which is constant, unknown and will be estimated.

Let ϑ̂i be the estimate of ϑi, the estimate of fi(xi(t), t) can be expressed
as

f̂i(xi(t), t) = ϕT
i (xi(t), t)ϑ̂i, i = 1, 2, · · · , N. (5)

Remark 2. The linearly parameterized models of the unknown nonlinear dy-
namics have been extensively investigated in classical adaptive control theory
[24, 25]. Examples for multi-agents systems can be found in [13, 14, 16, 19,
26].

3.1. Distributed adaptive consensus algorithm design

For multi-agent systems (1), let [tk, tk+1), k = 0, 1, 2, · · · be an infinite
time interval sequence, where t0 = 0 is the initial time instant, T0 ≤ tk+1 −
tk ≤ T , and T0, T are some positive constants.
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Assumption 1. The switching times of the switching signal σ(t) is finite in
any bounded time intervals.

From Assumption 1, suppose that each time interval [tk, tk+1), k = 0, 1, 2, · · · ,
is divided into a finite time interval sequence

[t0k, t
1
k), . . . , [t

l
k, t

l+1
k ), · · · , [tlk−1

k , tlkk ), (6)

where tk = t0k, tk+1 = tlkk for some integer lk ≥ 0, tl+1
k − tlk ≥ τ, 0 ≤ l ≤ lk − 1,

τ > 0 is a positive constant, the so-called dwell time. t0k, t
1
k, · · · , t

lk−1
k are the

time instants at which the time-varying graph switches, in other words, in
each such time subinterval [tlk, t

l+1
k ) the switching graph Gσ(t) is time invariant.

Note that the switching graph Gσ(t) is possibly disconnected in each such
subinterval [tlk, t

l+1
k ). If the union of {Gσ(t)|t ∈ [tk, tk+1)} is connected, then

we say it is jointly connected across the time interval [tk, tk+1), k = 0, 1, 2, · · · .
Motivated by [12], we have the following lemma:

Lemma 2. Let matrices Li1 , Li2 , · · · , Lis be associated with the graphs Gi1 ,Gi2 ,
· · · ,Gis, respectively. If these graphs are jointly connected, then

∑is
p=i1

Lp is
an effective Laplacian matrix of some connected graph.

Proof. Obviously, matrix
∑is

p=i1
Lp is an effective Laplacian matrix of the

connected graph ∪is
p=i1

Gp.

Assumption 2. In each time interval [tk, tk+1), the switching graph Gp, p ∈
P is jointly connected.

Remark 3. In the study of switching topologies, the joint connectedness
[7, 11, 12] subject to the Assumption 1 and 2 is more general. It does not
require the switching graphs are connected at any moment. In other word,
the switching graphs can be disconnected at any time instants.

Let Θ = col(ϑi), Θ̂ = col(ϑ̂i). In the following, we present our control
algorithm for adaptive consensus achieving:

ui(t) = −c
∑

j∈Ni(t)
aij[xi(t)− xj(t)]− ϕT

i (xi, t)ϑ̂i

i = 1, 2, · · · , N,
(7)

and
˙̂
ϑi(t) = c1ϕi(xi, t)

∑
j∈Ni(t)

aij[xi(t)− xj(t)],

i = 1, 2, · · · , N,
(8)
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where c, c1 > 0 are positive constant numbers.
The equations (7) and (8) can be rewritten in the following form:

u(t) = −cLσ(t)x(t)− ΦT (x, t)Θ̂ (9)

and
˙̂
Θ(t) = c1Φ(x, t)Lσ(t)x(t), (10)

where Φ(x, t) = diag(ϕ1(x1, t), ϕ2(x2, t), · · · , ϕN(xN , t)), Lσ(t) is the Laplacian
of graph Gσ(t).

3.2. Stability analysis

Let x̄(t) = 1
N

∑N
i=1 xi(t) and define

ei(t) = xi(t)− x̄(t), i = 1, 2, · · · , N, (11)

as the consensus error of the ith agent.
Let e(t) = col(ei(t)),we have

e(t) = (IN − 1

N
1N1

T
N)x(t) = Cx(t), (12)

where C = IN − 1
N
1N1

T
N =


N−1
N

− 1
N

· · · − 1
N

− 1
N

N−1
N

· · · − 1
N

... · · · · · · ...
− 1

N
− 1

N
· · · N−1

N

 is positive semi-

definite with eigenvalues 0 and 1, IN ∈ RN×N is the identity matrix.
Let ϑ̄i = ϑ̂i − ϑi, Θ̄ = Θ̂ − Θ = col(ϑ̄i). Considering the time interval

[tlk, t
l+1
k ), 0 ≤ l ≤ lk − 1, k = 0, 1, · · · , we have

ė(t) = Cẋ
= C[f(x, t) + u(t)]
= −cCLσ(t)e(t)− CΦT (x, t)Θ̄.

(13)

From (10)-(13) and the properties of L in Lemma 1, we have

LC = L− 1

N
L1N1

T
N = L,CL = L− 1

N
1N1

T
NL = L, (14)

then LC = CL = L. The error system of the system (1) can be obtained as
follows: {

ė(t) = −cLσ(t)e(t)− CΦT (x, t)Θ̄,
˙̄Θ(t) = c1Φ(x, t)Lσ(t)e(t).

(15)
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Let λmin(P ) be the the smallest non-zero eigenvalue of the positive semi-
definite matrix P . The N eigenvalues of Lp are denoted by λ1

p, λ
2
p, · · · , λN

p

with λ1
p = 0 due to Lp having at least a zero eigenvalue. Define γp = λmin(Lp),

µp = λmax(Lp), p ∈ P. Then

δmin = min{γp|p ∈ P}, δmax = max{µp|p ∈ P} (16)

are well defined and obviously positive.

Assumption 3. The PE (persistently exciting) condition [25]∫ t+δ0

t

ΦCΦTdτ ≥ αI > 0, ∀t ≥ 0, (17)

is satisfied, where δ0 and α are some positive reals.

Remark 4. In classical adaptive control theory [25], the PE condition is a s-
tandard assumption for the regressor matrix Φ. It guarantees the information
richness of the regressor Φ and plays a key role in the parameter convergence
analysis, i.e.,

lim
t→∞

∥ϑ̂i − ϑi∥ = 0, (18)

for ∀ϑ̂i(0), i = 1, 2, · · · , N. However, the problem how to check the PE con-
dition is still open. Because C is symmetric and positive semi-definite, there
exists some matrix B such that C = BBT . If Φ is periodic and then ΦB
is also periodic. Additional conditions can be imposed which ensure the PE
condition. For example, if Φ is periodic, then it is well known [24, 27] that
the PE condition (17) is ensured.

In the following, we present our main result:

Theorem 1. Assume that the Assumption 1-3 are satisfied and suppose that
ϕi and ϕ̇i, i = 0, 1, · · · , N , are uniformly bounded. Then, under the con-
trol scheme (7) and (8),the consensus of the multi-agent systems (1) can
be reached globally uniformly asymptotically, and the global uniform asymp-
totical parameter convergence is also guaranteed in the sense of (3) and
(18),respectively.

Proof. Considering the positive semi-definite function

V (t) =
1

2c
e(t)TLpe(t) +

1

2cc1
Θ̄T (t)Θ̄(t). (19)
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for systems (15). Except for the switching instants, V (t) is continuous and
differentiable .

Consider a time interval [tlk, t
l+1
k ] with switching graph Gp, p ∈ P, in-

cluded in the time interval [tk, tk+1]. Calculating the time derivative of V (t)
defined in (19) along the trajectory of the system (15), we get

V̇ (t) = −e(t)TL2
pe(t)

≤ −γpe(t)
TLpe(t)

≤ −δmine(t)
TLpe(t)

≤ 0.

(20)

Therefore, V (t) is non-increasing and V (t) ≥ 0. Then, limt→∞ V (t) =
V (∞) is finite.

In the following, we focus on proving limt→∞ |xi − xj| = 0.
Consider the infinite sequence

{V (tk), k = 0, 1, · · · }.

Based on the Cauchy’s convergence criteria, for ∀ϵ > 0, there exists an integer
K > 0, such that

|V (tk+1)− V (tk)| < ϵ

for ∀k > K. Then, we have |
∫ tk+1

tk
V̇ (t)dt |< ϵ and therefore,

lk−1∑
l=0

∫ tl+1
k

tlk

V̇ (t)dt > −ϵ.

From (20), we have

−ϵ <
∑lk−1

l=0

∫ tl+1
k

tlk
V̇ (t)dt

≤ −
∑lk−1

l=0

∫ tl+1
k

tlk
δmine(t)

TLσ(tlk)
e(t)dt.

(21)

Because lk is assumed to be finite within the time interval [tk, tk+1). Then,
we derive

−ϵ ≤ −δmin

∫ tl+1
k

tlk
e(t)TLσ(tlk)

e(t)dt

≤ −δmin

∫ tlk+τ

tlk
e(t)TLσ(tlk)

e(t)dt,
(22)

or equivalently

δmin

∫ tlk+τ

tlk
e(t)TLσ(tlk)

e(t)dt ≤ ϵ, (23)
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for ∀k > K, where l = 0, 1, · · · , lk − 1 and k = 0, 1, 2, · · · .
From (23) and ϵ > 0 being arbitrary, we have

lim
t→∞

∫ t+τ

t

eT (

lk−1∑
l=0

Lσ(tlk)
)eds = 0. (24)

Now, we need to prove the function eT (
∑lk−1

l=0 Lσ(tlk)
)e is uniformly contin-

uous. This is due to the uniform boundedness of e(t), Θ̄(t) and ė, which can
be derived form (15), (19), (20) and the assumption of uniform boundedness
of ϕi and ϕ̇i. From the Barbalat’s lemma, we have

lim
t→∞

eT (

lk−1∑
l=0

Lσ(tlk)
)e = 0. (25)

Since the switching graphs are jointly connected across the time inter-
val [tk, tk+1), we have the matrices

∑lk−1
l=0 Lσ(tlk)

, k = 0, 1, 2, · · · , are effec-
tive Laplacian of some connected graph based on Lemma 2. Let Wk =
[ 1√

N
1N , Sk] ∈ RN×N be an orthogonal matrix, and Sk ∈ RN×(N−1) such that

W T
k (

lk−1∑
l=0

Lσ(tlk)
)Wk = diag{ν1

k , ν
2
k , · · · , νN

k }, (26)

where ν1
k = 0, 0 < ν2

k ≤ · · · ≤ νN
k , are the N eigenvalues of

∑lk−1
l=0 Lσ(tlk)

, due

to the symmetry of
∑lk−1

l=0 Lσ(tlk)
and Lemma 1.

Let ζ(t) = W T
k e(t), we have

ζ(t) =
(
ζ1(t), ζ2(t), · · · , ζN(t)

)T
=

( 1√
N
1T
N

ST
k

)
Cx

=

( 1√
N
1T
NCx

ST
k Cx

)
.

(27)

Noting that 1T
NC = 0, we have ζ1(t) =

1√
N
1T
NCx = 0. Then

eT (
∑lk−1

l=0 Lσ(tlk)
)e = ζ(t)Tdiag{ν1

k , ν
2
k , · · · , νN

k }ζ(t)
≥ ν2

kζ(t)
T ζ(t)

≥ 0.

(28)
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From (25) and (28), we have

lim
t→∞

ζT (t)ζ(t) = 0. (29)

This implies
lim
t→∞

∥ei(t)∥ = 0, i = 1, 2, · · · , N. (30)

Therefore, limt→∞ |xi(t)− xj(t)| = 0, i, j = 1, 2, · · · , N, i ̸= j.
Now, we prove that

lim
t→∞

∥Θ̄(t)∥ = 0, (31)

for any initial condition Θ̄(0), i.e., for ∀ϵ > 0, there exists tϵ > 0 such that
∥Θ̄(t)∥ < ϵ, ∀t > tϵ.

To prove (31), we first show that: For ∀ϵ > 0 and T̂ > 0, there exists
t > T̂ such that

∥ϑ̄i(t)∥ < ϵ, i = 1, 2, · · · , N, (32)

for ∀x(0) and Θ̄(0).
We prove this by contradiction that, for ∀ϵ > 0 and some i ∈ {1, 2, · · · , N},

a time tϵ,1 such that
∥ ϑ̄i(t) ∥≥ ϵ, ∀t ≥ tϵ,1 (33)

does not exist.
Consider the time interval [tk, tk+1) = [tk, tk + Tk) with T0 ≤ Tk ≤ T and

construct the following function

Ψ(Θ̄(t), t) =
1

2
[Θ̄T (t+ Tk)Θ̄(t+ Tk)− Θ̄T (t)Θ̄(t)]. (34)

From the initial condition x(tϵ) and Θ̄(tϵ), according to (19), (29), and
limt→∞ V (t) = V (∞), then limt→∞ Θ̄T (t)Θ̄(t) exists and limt→∞Ψ(Θ̄(t), t) =
0 due to (34). Therefore, Ψ(Θ̄(t), t) is bounded.

Calculating the time derivative of the function Ψ(Θ̄(t), t) defined in (34)
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at the time instant tk, we have

Ψ̇(Θ̄(tk), tk)

=
∫ tk+Tk

tk

d
dτ
[Θ̄T (τ) ˙̄Θ(τ)]dτ

= c1
∑lk−1

l=0

∫ tl+1
k

tlk

d
dτ
(Θ̄T (τ)Φ(x, τ)Lpe(τ))dτ

=
∑lk−1

l=0

∫ tl+1
k

tlk
c21e

T (τ)LpΦ
T (x, τ)Φ(x, τ)Lp

+ c1Θ̄
T (τ)Φ̇(x, τ)Lp − cc1Θ̄

T (τ)Φ(x, τ)L2
p}e(τ)dτ

−
∑lk−1

l=0

∫ tl+1
k

tlk
c1Θ̄

T (τ)Φ(x, τ)LpΦ
T (x, τ)Θ̄(τ)dτ

, I1 − I2.

(35)

Due to the boundedness of e(t), Θ̄(t), Φ(x, t), and Φ̇(x, t), there exists a
constant number M > 0 such that

I1 ≤ M

lk−1∑
l=0

∫ tl+1
k

tlk

∥ e(τ) ∥ dτ. (36)

From Assumption 1, lk, k = 1, 2, . . . , are finite and limt→∞ ∥ e(t) ∥= 0,
we have

I1 ≤
1

2
c1αδminϵ

2, ∀tk ≥ tϵ,2. (37)

Let Up = [ 1√
N
1N , Fp] ∈ RN×N be an orthogonal matrix, and Fp ∈

RN×(N−1) such that

UT
p LpUp = diag{λ1

p, λ
2
p, · · · , λN

p }, (38)

where λ1
p = 0, 0 ≤ λ2

p ≤ · · · ≤ λN
p , are the N eigenvalues of Lp, due to the

symmetry of Lp.
From (38)and UPU

T
P = 1

N
1N1

T
N + FpF

T
p = IN , we have FpF

T
p = IN −

1
N
1N1

T
N = C. Then

Lp = Up


0

λ2
p

. . .

λN
p

UT
p

≥ δminFpF
T
p

= δminC.

(39)
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Therefore

I2 ≥ c1δmin

lk−1∑
l=0

∫ tl+1
k

tlk

Θ̄T (τ)Φ(x, τ)CΦT (x, τ)Θ̄(τ)dτ. (40)

By the contradiction, we assume that there exists a time tϵ,1 such that
(33) is satisfied. From the PE condition (17), we have

I2 ≥ c1αδminϵ
2, ∀tlk ≥ tϵ,1. (41)

From (35),(37) and (41), we obtain

Ψ̇(Θ̄(tk), tk) ≤ −1

2
c1αδminϵ

2 < 0, ∀tk ≥ tϵ,3 (42)

with tϵ,3 = max{tϵ,1, tϵ,2}, which contradicts the boundedness of Ψ(Θ̄(t), t).
So, (32) holds.

Due to limt→∞ ∥e(t)∥ = 0, we have

∥e(t)∥ ≤
√

1

2c1δmax

ϵ, ∀t ≥ tϵ,4 (43)

holds for ∀ϵ > 0 and some time instant tϵ,4.
From (32),

∥Θ̄(tϵ)∥ ≤ 1√
2
ϵ, (44)

holds for some time instant tϵ > tϵ,4.
From the initial condition e(tϵ) and Θ̄(tϵ), according to (19), (43) and

(44), we have

∥Θ̄(t)∥ ≤
√
c1δmax∥e(tϵ)∥2 + ∥Θ̄(tϵ)∥2 ≤ ϵ, ∀t ≥ tϵ. (45)

Thus, (31) holds.
From (30) and (31), it follows that the equilibrium col(e(t), Θ̄(t)) = 0

is attractive. Sine (30) and (31) hold uniformly respect to the initial time
instant, it follows that col(e(t), Θ̄(t)) = 0 is globally uniformly asymptotically
stable. Therefore limt→∞ |xi(t) − xj(t)| = 0, for ∀xi(0) ∈ R, i = 1, 2, · · · , N
and limt→∞ ∥ϑ̂i − ϑi∥ = 0, for ∀ϑ̂i(0) ∈ Rm, i = 1, 2, · · · , N . This completes
the proof of the theorem.
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Remark 5. From the proof, it is obvious that all of the variables of the
system are bounded. The main result of the paper shows that under the pro-
posed controller (7) and the adaptive law (8), leaderless consensus can be
reached, and in the meanwhile, parameter convergence is also ensured. The
distribution of the consensus controller (7) and the adaptive law (8) is very
important in algorithm design of multi-agent systems. However, the adap-
tive control algorithm proposed in [19], which considered the leader-following
consensus problem, is not purely distributed.

4. Simulations

Figure 1: Jointly connected graphs

In this section, an example consisting of five agents is given to validate the
theoretical results proposed in this paper. The unknown nonlinear functions
are assumed to be parameterized as

fi(xi, t) = [xi(t) cos(t), xi(t) sin(t)]ϑi, i = 1, 2, · · · , 5. (46)

We select ϑi = [−10, 10]T , i = 1, 2, · · · , 5, which are assumed to be unknown
in our algorithm.

Supposing that all possible switching graphs are {G1, G2, G3, G4, G5, G6}
shown in Figure 1. The switching graphs are assumed to switch one time per
three time steps according to G1 → G2 → G3 → G4 → G5 → G6 → G1 · · · .
However, the union ofG1∪G2∪G3 (in 9 time steps) andG4∪G5∪G6 (in 9 time
steps) are jointly connected through some time intervals. Setting the initial s-
tates col(e(0), Θ̄(0)) = (−1.6, 2.3, 2.9, 0.5,−4.1, 4.7,−2.9, 0.1,−4.0, 3.0,−3.5,
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Figure 2: Consensus errors converging to zero under (7) and (8).
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Figure 3: Parameter errors converging to zero under (7) and (8).

0.4,−2.1,−1.8, 0.8)T , c = 0.8 and c1 = 100, the adaptive control algorithms
(7) and (8) are simulated in 180 (sec). Figure 2 shows that the consensus
errors converge to zero. Figure 3 shows that the parameter errors converge
to zero. Figure 4 shows that the components of the estimates of parameter-
s converge to the true parameters −10 and 10 resectively. Figure 5 shows
the curves of the control input. The above simulation results validate our
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Figure 4: The estimates of the true parameter under (7) and (8).
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Figure 5: The control input.

theoretical results.

Remark 6. The adaptive algorithms mentioned above [13–22] are mainly
divided into two categories. One is using the parameter adaptive method [13–
20], another is by tuning the coupling strength or network weights [21, 22]
adaptively. In this paper, a leaderless consensus algorithm is presented using
parameter adaptive method. However, the works [13–20] are all focus on
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leader-following problem.

5. Conclusions

In this paper, the leaderless consensus problem of multi-agent systems
with uncertainty has been investigated. Leaderless consensus with parameter
convergence is ensured by using adaptive design method. We use algebra-
ic graph theory to model the interconnection relations between agents, and
the stability analysis has been conducted using the Barbalat’s lemma and
Lyapunov techniques. For jointly connected graphs, a common matrix C is
obtained to derive the PE condition. The joint connectedness of the switch-
ing graphs property ensures global uniform asymptotical consensus achieving
and the PE condition plays a key role the in the analysis of the global unifor-
m asymptotical parameter convergence. The simulation example illustrates
the validation of our algorithm. In the future works, we will focus on the fol-
lowing aspects: 1)considering the case of multi-agent systems with directed
topologies; 2) searching the sufficient conditions guaranteeing the parameter
convergence without the PE condition; 3) searching the relationship between
the control performance and parameters associated with jointly connected
networks.
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