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Abstract—This paper presents the application of specific emit-
ter identification (SEI) to access control and points out the secu-
rity caveats of current radio-based access remotes. Specifically,
SEI is applied to radio frequency (RF) access remotes used to
open and close motorised gates in residential housing complexes
for the purposes of access control. A proof-of-concept SEI system
was developed to investigate whether it is possible to distinguish
between the RF signals produced by two nominally-identical
access remotes. It was determined that it is possible to distinguish
between the remotes with an accuracy of 98%.

I. INTRODUCTION

Access remotes are used to open gates to residential estates,
houses and garages. On this basis they provide security as
only people with the remote are able to gain access to these
areas, akin to a key. However, the signal produced by these
remotes can easily be read from low-cost software-defined
radios (SDRs) and reproduced by another radio transmitter
[1]. This allows for illegitimate access to residential estates,
houses and garages. This motivates the need for making access
remotes robust against replay attacks and cloning.

SDRs are radios whose hardware implementation is either
replaced by corresponding software components or config-
urable via software [2]. Recently the concept of SDR has
matured due to advancements in hardware and software tech-
nology to the point where anyone can purchase a SDR for $10
to $15 [3]. In particular the RTL2832U-based SDRs fit in this
category of low-cost SDR. They consist of a number of models
based on the tuning chip that they utilise. Three of the tuning
chips used are the Raphael R820T, the Elonics E4000 and the
Fitipower FC tuning chips. The R820T SDR can tune from
24 MHz to 1766 MHz [3], while the Elonics E4000 can tune
between 52 MHz to 2200 MHz, though with a frequency gap
between approximately 1100 MHz and 1250 MHz. Regardless
of the type of tuner used, the RTL2832U receiver can sample
data at up to 3.2 Msps and has an 8-bit analogue-to-digital
converter (ADC) resolution. However, it has been found that
the RTL2832U can only sample data reliably (i.e. without
dropping samples) at sampling rates lower than 2.56 Msps
[3]. While these low-cost SDRs have relatively low ADC res-

This work is based on the research supported in part by the National
Research Foundation (NRF) (Grant specific unique reference number (UID)
85845). The NRF Grantholder acknowledges that opinions, findings and
conclusions or recommendations expressed in any publication generated by
the NRF supported research are that of the author(s), and that the NRF accepts
no liability whatsoever in this regard.

978-1-5090-2473-8/16/$31.00 ©2016 IEEE

olution and tuning range, they are sufficient for eavesdropping
on radio communications.

Connected to a software application such as GNU Radio [4],
an SDR can be used to listen to radio transmissions in its tun-
ing range and to store these transmissions in a digital format.
This makes it easier to perform replay attacks provided the
assailant has a radio transmitter capable of transmitting on the
same frequency as the captured communications. The HackRF
is the cheapest SDR capable of receiving and transmitting
radio communications at $299 [5]. Access remotes are thus
vulnerable to replay attacks since they perform access control
by transmitting radio signals.

Specific emitter identification (SEI) is a technique used to
uniquely identify radio transmitters, even those of the same
make and model, using only their transmitted radio signals [6].
This means of identification is possible due to hardware
tolerances in the radio frequency (RF) circuitry created during
manufacturing [7]. SEI is also referred to as radio-frequency
fingerprinting (RFF) or physical-layer identification. SEI aims
to alleviate the mimicing or spoofing of the identities of radio
devices as the identifying characteristics produced by SEI
are inherently difficult to spoof [8], [9]. In this way, SEI is
used to enhance the security of communication networks using
wireless devices.

A typical approach used in SEI is to maintain a library
of signal characteristics (or features) that uniquely identify a
variety of emitters, and comparing the incoming signal of an
emitter to the library of feature sets. The identifier (or label)
of the feature set that best matches the incoming signal is
assigned to it [6], [10]. An implicit requirement of this ap-
proach is that the feature sets cluster. This implies that feature
values from a particular emitter are similar and repeatable for
all signals produced by the emitter while appreciably distinct
from feature values produced by a different emitter [6].

This paper demonstrates how conventional RF access re-
motes can be uniquely identified using low-cost SDR receivers
and SEI. The success of this demonstration suggests that this
is a viable approach to increasing the security which can be
achieved using conventional RF access remotes.

Section II presents the design and implementation of a
proof-of-concept software system that performs SEI to dis-
tinguish between two nominally-identical access remotes.
Section III describes the results obtained from the study.
Section IV concludes the paper.
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Fig. 1. SEI system overview.

II. SYSTEM DESCRIPTION

The overall SEI system depicted in Fig. 1 consists of the
following elements which will be considered below.

1) The acquisition system acquires the RF signals produced
by the access remotes. It then stores the data in a digital
format for later processing.

2) Signal processing is then performed on the stored digital
RF signals to remove any arbitrary variances in the
signals that may distort the signals and affect signal
classification.

3) The feature-extraction subsystem then extracts distinct
features from the processed RF signals.

4) The classifier subsystem then takes the extracted features
and builds an association between the radio signals and
the transmitters from which they were produced.

A. Operating Characteristics of RF Access Remotes

RF access remotes operate in the industrial, scientific and
medical (ISM) band at 433 MHz [11], [12]. This band is
intended for the operation of equipment designed to use local
RF energy for purposes other than telecommunications [13].

These access remotes transmit a modulated sequence of bits
to the gate’s receiver in order to open or close the gate. This
usually takes the form of pulse width modulation (PWM)
in which a logical O is represented by a short pulse, and
a logical 1 is represented by a long pulse [1]. This simple
form of modulation makes these access remotes susceptible
to replay attacks allowing for illegitimate access to residential
estates, houses and garages. This simple modulation scheme
also allows for access remotes to be programmed by cloning
the signal from another access remote [11].

For the development of this system, two RF access remotes
that open the gate to a residential complex were considered.
Each remote was distinctly labelled (A and B) as shown in
Fig. 2.
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Fig. 2. Access remotes utilised for the development of the
proof-of-concept SEI access control system.

Fig. 3. RTL2832U SDR with a Raphael R820T tuner.

The signal characterisitics of the RF access remotes will be
described in Section II-B during the elaboration of the signal
acquisition setup.

B. Signal Acquisition

The signal acquisition system consists of two processes,
namely the recording process and burst extraction process.

For signal recording, an RTL2832U SDR with an R820T
tuner, shown in Fig. 3, was utilised and interfaced through a
GNU Radio applet. The selected SDR is a relatively inexpen-
sive SDR that can sample signals at up to 3.2 Msps and has
8-bit ADC resolution [3]. The SDR receiver was configured
as shown in Table 1.

The applet was run for 80 s while the button on the remote
was continously pressed for the duration of 80 s. After the
80 s, the applet stored the recorded samples in a binary file
for later processing.

The recorded samples were then investigated in order to
identify the characteristics of the signals produced by the
access remotes. A single burst produced by an access remote
is shown in Fig. 4. It is observed that the access remotes’
signals consist of a 10.4-ms start pulse followed by twelve
modulated pulses comprising a burst with a total duration of
13.6 ms. The start pulse is used for the detection of a signal
produced by an access remote. The encoded burst pulses are
seen to utilise PWM (as mentioned earlier) in which the a
short pulse corresponds to a 0 and a long pulse corresponds
to 1. Based on this, each access remote transmitted the same
bit sequence of 011001100001.
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TABLE I
RECEIVER PARAMETERS.

Receiver parameter Value
Low-noise amplifier (LNA) gain 5 dB
Center frequency 43391 MHz
Sampling rate 1 Msps
Distance from receiver 20 cm
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Fig. 4. Captured signal from access remote A.

In order to extract the individual access-remote bursts, burst
extraction was performed on the digitally-stored RF signals
produced by each access remote. A threshold algorithm was
utilised to extract the individual bursts and is described in
Algorithm 1. Essentially the algorithm parses the amplitude
of the recorded samples and checks the number of consec-
utive samples above the theshold (the mean value of all the
amplitude samples). If the number of consecutive samples is
at least 90% of the preceeding start pulse length (i.e. 10.4 ms
as mentioned earlier), then a burst has been detected. The
algorithm then extracts the complex in-phase and quadrature
samples from the current search index to 13.6 ms later, which
as mentioned earlier, is the approximate burst length. These
extracted data constitute a single access remote burst. In this
case, the search window is advanced by the sum of the start
pulse length (i.e. 10.4 ms) and the burst length (i.e. 13.6 ms).
If no burst is detected, the search index is advanced by 100
samples to continue parsing the data in a small window. For
the development of this proof-of-concept system, more than a
thousand bursts were extracted for each remote.

C. Signal processing

Following recording of the access-remote signals and ex-
traction of bursts, the individual bursts are then further pro-
cessed in order to remove any arbitrary variances in the bursts
that are due to noise, amplitude variances and phase offsets.

The first step taken in processing is filtering out noise. This
is typically done by first down-converting the recorded burst
to its baseband frequency and then applying a low-pass filter
to the signal [14]. In order to correctly filter the noise, the
bandwidth of a burst had to be identified. This was done by
taking the Fourier transform of a single burst and visually
inspecting which frequency bins had the most energy, as shown

978-1-5090-2473-8/16/$31.00 ©2016 IEEE

Data: Complex samples s
Result: Array of extracted bursts
amp <— absolute(s);
threshold < mean(amp);
searchlndex < O;
burstCount < 0;
while searchindex < total number of samples in amp do
window < [searchlndex to searchIndex + 10.4 ms];
if X(amp[window] > threshold) > 90% of window
length then
increment burstCount;
extractionWindow <
[searchIndex:searchIndex+window+13.6 ms];
burstArray[burstCount] < s[extractionWindow];
increment searchIndex by (10.4 ms + 13.6 ms);
else
increment searchIndex by 100 samples;
end

end
return burstArray;

Algorithm 1: Algorithm for burst extraction.
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Fig. 5. Magnitude of frequency spectrum computed over a
single burst.

in Fig. 5. In this way, the burst bandwidth was determined to
be 20 kHz. Thus a finite impulse response (FIR) low-pass
filter with a 3 dB cut-off frequency of 10 kHz was utilised
in order to filter out noise. The FIR filter consisted of 10000
coefficients and used a Hamming window.

The effect of filtering is demonstrated in Fig. 6 which shows
filtered and unfiltered bursts in Figs 6(a) and 6(b), respectively.

Following filtering, the amplitude representations of each
burst need to be normalised between 0 and 1 so as to allow
bursts recorded at different amplitudes to be compared. This
prevents the feature extraction subsystem from producing
feature vectors that differ due to amplitude variances between
bursts. This would cause the misclassification of bursts even
if they were produced from the same access remote.

Similarly, frequency offsets in the phase representations of
each burst can cause misidentifications by the classifier. A
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Fig. 6. Amplitude representation of an access remote burst.

phase representation of a burst with and without a frequency
offset is shown in Figs 7(a) and 7(b), respectively.

D. Signal difference inspection

Once signal processing is complete, only then can the
true differences between the signals produced by each access
remote be determined.

Observing the differences between mean amplitude repre-
sentations of 100 bursts produced by the individual access
remotes, shown in Fig. 8(a), it is seen that there are distinct
differences in the amplitude representations. However, these
differences are not consistent as shown in Fig. 8(b). The
average amplitude representation over the first 100 bursts
for access remote A differs from the average amplitude
representation for the next 100 bursts. The same holds true
for access remote B. As mentioned earlier, for SEI to be
successful it is imperative that the characteristics of the signal
produced by a specific transmitter be consistent for all signals
produced by that transmitter, while being appreciably distinct
from the characteristics produced by another transmitter. Based
on this observation, the amplitude representations of the access
remotes are unlikely to achieve the ultimate goal of classifying
the bursts emitted by them.

Observing the differences between the mean phase repre-
sentations over 100 bursts of access remotes A and B alone
(Fig. 9(a)), it is seen that the phase representations for each key
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Fig. 7. Phase representation of an access remote burst.

differ significantly. As shown in Fig. 9(b), the post-processed
mean phase representations do not exhibit the inconsistencies
seen in the amplitude representations. As seen in Fig. 9(b), the
mean phase representation for the first 100 bursts of access
remote A is similar to mean phase representation for the
next 100 bursts. The same holds true for access remote B.
These phase differences are more distinct than the differences
seen in the amplitude representation. On this basis, the phase
representations of the access remotes would be better for the
purposes of SEL

E. Feature Extraction

While it is possible to present the entire amplitude or phase
representation to the classifier, this would be inefficient and
may hinder the classification accuracy. This is because each
sample in the phase and amplitude representations would be
treated as a feature leading to an exorbitant number of features.
Instead, a set of values that effectively summarises the shape
of each representation are calculated. These values then serve
as the features for each signal representation and the process
is called feature extraction [15].

Statistical measures, namely variance, standard deviation,
skewness and kurtosis, are typically used in the SEI of wireless
devices such as Global System for Mobile Communications
(GSM) cellular telephones [14]. For the development of this
system, statistical feature extraction was utilised and is de-
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Fig. 8. Mean amplitude representation of 100 bursts.

scribed in Algorithm 2. Each signal representation (the mean
phase and amplitude representations over a certain number of
bursts) is divided into a number of equally sized sub-regions
(NR). For each sub-region, the variance, standard deviation,
skewness and kurtosis are calculated. These statistical values
are then standardised using [14]

mean([0, 0%, 7, k])
standard deviation([o, 02, v, k])’

[0,0%, 7, k] = (1
Once statistical measures have been calculated for each sub-
region, the variance, standard deviation, skewness and kurto-
sis are calculated over the whole signal representation. The
number of sub-regions determined to work best for GSM
cellphones was 5 [14], which leads to a total of 24 features per
signal representation. Once the statistical features have been
calculated for each signal representation, they are concatenated
with the first 24 features corresponding to amplitude features
and the latter 24 corresponding to phase features. The 48
features in total represent a single feature vector.

The average representation of the features for each access
remote is shown in Fig. 10, with the amplitude and phase
features in Figs 10(a) and 10(b), respectively.

F. Signal Classification

Once a set of feature vectors have been established, clas-
sification can take place. In order to perform classification,
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Fig. 9. Mean phase representation of 100 bursts.

the feature vectors have to be segmented into training and test
groups for each access remote. The training feature vectors
serve to build an association between the feature vectors and
the access remotes from which they were derived. This is
done by presenting the classifier with a feature vector and
an associated access remote label for all feature vectors in the
training group. The test group of feature vectors is then used to
evaluate the performance of the classifier. In this phase, each
feature vector in the test group is presented to the classifier
without a label, and the classifier returns the label of the
access remote it deems most likely to correspond to the feature
vector [16]. It is important to note that the training and test
groups of feature vectors must be derived from different bursts.
For the development of this system, training feature vectors
were derived from the first 200 bursts for each remote. Test
feature vectors were derived from bursts 200 to 1 000 for each
remote.

The classifier utilised was a k** nearest neighbour (KNN)
classifier. KNN computes a distance d between an m-
dimensional input feature vector x to a number of training
feature vectors t, (with the same dimensionality). The label
of x is based on the most occurring label of its & nearest
neighbours, where k is a positive integer [16]. The distance
measure utilised in the implementation of KNN is the Man-
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Data: Array of access remote bursts
Result: Feature vector of statistical features
amplitude representation of burst <
mean(absolute(low-pass filter(access remote bursts)));
amplitude representations of burst <—
normalise(amplitude representation of burst);
phase representation of burst <— mean(angle(low-pass
filter(access remote bursts)));
phase representations of burst <— remove phase offset
from phase representation of burst;
NR « 5;
for each representation do
N < number of samples in representation;
s « | N/NR |;
for m =1 to NR do
g4 m X s;
d < (g-s)+1;
segment <— representation from samples d to g;
feature_vector(m) « standardise([c o2 v k of
segment]);
end
feature_vector(m+1) < standardise([c 0 v k of
entire representation]);

end

final_feature_vector <— concatenate feature_vector 1 to
NR+1;

return final_feature_vector;

Algorithm 2: Algorithm for feature extraction.

hattan distance calculated by

d=2_Ix() = t(i)] 2)

Manhattan was the chosen distance measure due to the fact
that Manhattan distance is best suited for features that measure
dissimilar properties [16]. Given that feature extraction process
considers amplitude and phase measures, Manhattan distance
is apt for evaluating distance.

Once the distances for all feature vectors are computed, the
labels of the k feature vectors corresponding to the lowest
distance (nearest neighbours) are considered. The most occur-
ring label among the k nearest neighbours is then assigned
to x. For this process, k is usually set to an odd number to
avoid ties [16]. However, for the development of this SEI
system, only the average feature vector per access remote
was maintained in the memory of the KNN classifier. That
is to say, only two feature vectors were presented to the KNN
classifier for training, with each one corresponding to the mean
of all training feature vectors produced by a particular access
remote. Thus, k£ was set to 1. The processing detail for the
KNN classifier is shown in Algorithm 3.
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Fig. 10. Average representation of the features.

III. RESULTS

As mentioned earlier, feature vectors are derived by taking
the mean representations of phase and amplitude over a
certain number of bursts. In order to determine the effect
that number of bursts utilised during feature extraction had on
classification, the following two classification scenarios were
considered.

1) Classification scenario 1 — Feature vectors were derived
over 50 bursts.

2) Classification scenario 2 — Feature vectors were derived
over 10 bursts.

The confusion matrices are shown in Table II. A summary
of the classification accuracy (taken as the mean across the
diagonal of the confusion matrix) for each of the scenarios
and features used is shown in Table III.

The performance of the system is determined by how well
the classifier is able to identify the bursts of the access
remotes. Based on Table III, it is seen that the KNN classifier
can identify bursts from access remotes A and B with an
accuracy of at least 98% provided phase features are utilised.
When amplitude features are used exclusively, the accuracy
drops to between 53% and 55% depending on the number
of bursts utilised to form a feature vector. Furthermore, the
high accuracy for phase features in classification scenario 2
indicates that as few as ten bursts can be used to form a feature
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Data: Feature vector (x), training feature vectors (t,),
class labels [ and value for k
Result: Class labels and mean distance from nearest
neighbours for each x
P < number of feature vectors x;
Q < number of training feature vectors t;
for p=11t0 P do
for =11 Q do
x' + x(p);
ty + tr(q);
dlg) ¢ o X/ (0) — b/ ()
end
Sort d in ascending order;
Sort [ based on sorted indices of d;
if kK > I then
nearest_neighbours < [ from 1 to k;
class_result(p) +
most_occurring_class(nearest_neighbours);

distance_result(p) + L S°%_ d(i);

else
class_result(p) < I(1);
distance_result(p) + d(1);

end
end
return class_result and distance_result;

Algorithm 3: Algorithm for the KNN classifier.

TABLE II
CLASSIFICATION ACCURACY.
Features used
Amplitude
Amplitude Phase and phase
A B A B A B
Classification scenario 1
A | 6.25% 93.75% | 100% 0% 100% 0%
B 0% 100% 0% 100% 0% 100%
Classification scenario 2
Al 10% 90% 97.5% 2.5% 96.25% 3.75%
B 0% 100% | 1.25% 98.75% 0% 100%

vector distinct enough to provide accurate classification. As a
result, an access remote will only need to be sampled for less
than a quarter of a second in order to produce the number of
bursts required for accurate identification.

IV. CONCLUSION

In conclusion, the development of a proof-of-concept SEI
access control system for RF access remotes proved success-
ful. Offline classification was performed on RF bursts pro-
duced by two access remotes. When the phase features of the
bursts were utilised, the bursts could be identified as belonging
to a specific access remote with an accuracy in excess of 98%.
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Furthermore, this classification can theoretically be performed
TABLE III

SUMMARY OF CLASSIFIER PERFORMANCE.

Classification Classification
. Features used

scenario accuracy
1 Amplitude and phase 100%
1 Amplitude 53.13%
1 Phase 100%
2 Amplitude and phase 98.125%
2 Amplitude 55%
2 Phase 98.125%

by sampling bursts produced by an access remote for less
than a quarter of a second. In light of these observations,
SEI has been shown to hold tremendous potential to enhance
the security of RF access remotes by providing physical-
layer identification of the individual remotes and consequently
makes these remotes less susceptible to replay attacks.
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