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ABSTRACT
An analysis is presented which allows the engineer to quantitatively estimate the validity
bounds of aerodynamic methods based in linear potential flows a-priori. The development is
limited to quasi-steady planar flows with attached shocks and small body curvature. Pertur-
bation velocities are parametrised in terms of Mach number and flow turning-angle by means
of a series-expansion for flow velocity based in the method of characteristics. The parametri-
sation is used to assess the magnitude of nonlinear term-groupings relative to linear groups in
the full potential equation. This quantification is used to identify dominant nonlinear terms
and to estimate the validity of linearising the potential flow equation at a given Mach number
and flow turning angle. Example applications include the a-priori estimation of the validity
bounds for linear aerodynamic models for supersonic aeroelastic analysis of lifting surfaces
and panels.
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NOMENCLATURE
a∞ freestream speed of sound, ms−1

ai ith order isentropic contribution to the pressure-coefficient perturbation
aie entropy-related contribution to the pressure-coefficient perturbation
b′i ith order isentropic contribution to the perturbation velocity
bi ith order entropy-related contribution to the pressure coefficient
bie entropy-related contribution to the pressure coefficient
ci terms in closed-form shock-angle relation
cp pressure coefficient, cp = (p − p∞)/q∞
C defined in Equation (33)
CFD computational fluid dynamics
e defined in Equation (34)
li ith order contribution to the rise in entropy-ratio
Li grouping of linear coefficients of φ̂ii, where i is the coordinate x or z
m

√
M2
∞ − 1

M∞ freestream Mach number
M2 Mach number following a Prandtl-Meyer expansion
Ni grouping of nonlinear coefficients of φ̂ii, where i is the coordinate x or z
p fluid pressure, Pa
q∞ freestream dynamic pressure, Pa
s entropy, J/K
u x-component of the full perturbed velocity, ms−1

V∞ freestream velocity, ms−1

V full perturbed velocity, ms−1

w z-component of the full perturbed velocity, ms−1

x coordinate parallel to the freestream, m
X1 defined in Equation (37)
X2 defined in Equation (38)
z coordinate perpendicular to the freestream, m
Z defined in Equation (39)

Greek Symbol

γ ratio of specific heats
∆pe change in pressure coefficient associated with entropy, Pa
∆prot change in pressure coefficient associated with flow rotationality, Pa
∆Vcurv change in perturbation velocity associated with aerofoil curvature, ms−1

∆Ve change in perturbation velocity associated with entropy, ms−1

δ local flow turning angle, rad
δdet shock detachment angle, rad
δvac maximum flow turning angle, rad
ε measure of smallness of relative term magnitudes
θ shock angle, rad
ν Prandtl-Meyer function
φ̂ perturbation potential function, m2s−1

ψ defined in Equation (19)
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Subscripts

( )∞ freestream quantity
( )donov quantities evaluated through approximate relations
( )exact quantities evaluated through exact relations
( )x derivative in x-direction
( )z derivative in z-direction

1.0 INTRODUCTION
The increase in computing power over the past two decades has made the use of high-fidelity
modelling in computational fluid dynamics (CFD) increasingly affordable. This has allowed
for complex flow phenomena to be modelled; however, the use of high-fidelity models in
computing relatively simple flows may yield a very low increment in modelling accuracy
while incurring significant expense. The balance between computational cost and modelling
fidelity is particularly important in engineering tasks involving large numbers of computations
or cases to be analysed, such as aeroelastic studies or design optimisation in the conceptual
design stage. The complexity of the mathematical model used in the analysis must be ap-
propriate to the complexity of the physics involved (see Fig. 1). The use of a lower-order
mathematical model is generally appropriate for simple flows, or when the contribution from
the neglected physics is not of interest. Examples of such simple supersonic flows include
conical flows, as may be encountered over a sharp cone or delta-wing at near-zero incidence,
and planar flows around corners, as occur over wedges and sharp-nosed aerofoils. These ex-
amples are characterised by attached shocks and small, attached boundary-layers, and hence
the analytical inviscid models describing these flows are typically accurate. These restrictive
conditions may still be encountered (at least approximately) in practical applications such as
missiles at near-zero incidence, the lifting surfaces of supersonic aircraft in level flight, and
supersonic air intakes. An example of a scenario in which the contribution from the physics
neglected by lower-order models may not be of great interest is the supersonic aeroelasticity
of a sharp aerofoil: the skin-friction drag and boundary layer may be of little interest to an
aeroelastician concerned the with normal forces and pitching moments acting on the profile.
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Figure 1. Hierarchy of flow models, adapted from Jameson (2).
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Linear potential-flow methods have a long history of use in aeroelasticity and continue to
receive attention (1) in literature. Their linear formulation allows the superposition of funda-
mental potential flows, such as doublets and horseshoe vortices, to describe the flow around
general three-dimensional bodies. Linearity of the aerodynamic forces also facilitates their ex-
pression in the frequency domain and makes the aeroelastic system amenable to solution by
methods for linear time-invariant systems. However, potential-flow methods are limited in the
physics which they model. With reference to Fig. 1, it is seen that the more general descrip-
tion of physics offered by the Navier-Stokes equations is successively simplified in reduction
to the linear potential-flow formulation, with mathematical terms modelling viscous effects,
rotationality, and nonlinearity being discarded. These terms become increasingly important
in the transonic and hypersonic regimes, for flows with detached or curved shocks, and for
geometries with large curvature and flow separation. It can therefore not be expected that lin-
ear potential-flow methods will yield an accurate results under such conditions. Nonetheless,
they remain valuable in the aeroelastic analysis of aircraft at supersonic speeds.

Justification of the successive simplification in the mathematical models used to model the
flow physics as described above may be made through two different approaches. One ap-
proach is to solve the problem defined by the particular geometry and freestream parameters
using flow models of differing fidelity (e.g., nonlinear potential vs. linear potential formula-
tion) and to compare the results of the final solutions. While this approach provides a rigorous
basis for simplification in terms of the results of interest, it is costly in requiring the problem to
be solved using more than one model. Furthermore, the solution will generally not be linearly
dependent on the parameters involved, and the justification would need to be repeated for a
problem with a different set of parameters. The second approach to justifying the simplifica-
tion of the mathematical model lies in an a-priori consideration of the relative order of terms
in a non-dimensionalised formulation of the governing equations. Terms which are identified
to be of a sufficient order smaller than the rest are neglected, leading to a simplification of
the mathematical formulation. While this approach does not compare the differences in the
solution of the simplified flow models, it offers the advantage of being general, and effectively
has no computational cost associated with it, as no solution is required.

A disadvantage of the a-priori mathematical approach is the question of quantifiability.
The development of simplified models and physical analogies is typically (3) achieved through
asymptotic development, in which terms are neglected through assumptions such as “small”
perturbations and “sufficiently large” Mach numbers. Theoretical validity ranges for applying
such models are often only defined as an asymptotic limit; quantitative ranges are typically
empirically determined. The purpose of the present work is to provide a framework for quan-
tifying nonlinearity in planar supersonic potential flows in terms of the main parameters of
interest, and hence, for determining a-priori the parameter space within which the simplifying
assumptions made in linearising the potential flow equation are mathematically consistent or
valid. This would serve to better inform the engineer of the conditions under which the appli-
cation of analysis tools based in linear potential flows is no longer mathematically consistent,
and of the probable error due to linearisation in the methods.

The present work offers a parametrisation of the nonlinear terms in the full potential equa-
tion in terms of the freestream Mach number and the local flow turning angle. The rela-
tive magnitude of nonlinear terms and term groupings as quantified by the parametrisation is
considered over the parameter space to give a quantitative estimate of the regions in which
terms may be discarded to within a specified degree of error. The velocity perturbations are
parametrised using expressions developed by Donov (4) for the velocity at the surface of an
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aerofoil. The accuracy of Donov’s method, which has not previously been quantified, is in-
vestigated in the present work by comparison to the exact solutions for an oblique shock over
a wedge and for Prandtl-Meyer expansion around a corner.

The approach adopted in the present work of comparing nonlinear and linear potential flow
terms is similar to the analysis carried out by Cole (5) in assessing nonlinearity in transonic
flows for bodies of revolution, while the focus of the present work is planar flows. The a-priori
justification for linearisation adopted here, by means of quantifying the relative magnitude of
terms in the full potential equation, provides insight into the sources of nonlinearity. This
is absent from a justification based on the differences between models in the resulting pres-
sure, as was adopted by Hilton (6) in evaluating the limitations of Busemann’s (7) second-order
theory relative to a third-order model.

The paper is outlined as follows. Donov’s (4) method and the its key relations are intro-
duced in Section 2, with their accuracy relative to exact relations being assessed in Section 3.
The subsequent parametrisation of terms in the potential flow equation and nonlinear term-
groupings is presented in Section 4. The approach adopted in quantifying nonlinearity and
estimating the validity bounds of linear analysis is described in Section 5, followed by key
conclusions in Section 6.

2.0 PRESSURE AND VELOCITY PERTURBATIONS
Donov (4) developed a number of power-series expressions for the flow velocity and pressure
on an aerofoil surface. The aim of the work was to expand on existing expressions developed
for isentropic, irrotational flows (as described in Section 2.1), and to obtain expressions which
would account for the rotationality and entropy gradients in the flowfield between the leading-
edge shock and the aerofoil surface (as presented in Section 2.3 and depicted in Fig. 2). The
basis for Donov’s development was in the method of characteristics (8) for two-dimensional
steady flows, with the general formulation accounting for flow rotationality. This restricted
the analysis to flows in which the flowfield was everywhere supersonic, and thereby does not
permit application to bodies with detached shocks or embedded subsonic flows. No discussion
was given of the expected validity bounds of the analysis in terms of Mach number or the
flow turning angle, other than that perturbations were assumed to be “small”. The subsequent
derivation of the expressions for velocity and pressure on the aerofoil surface was presented
in three parts, which are outlined in the subsections that follow. The nomenclature associated
with the development is defined in Fig. 3.

characteristic lines

shock waves

V

Figure 2. General configuration considered.

V∞
x

δ(x)V(x)

z

Figure 3. Nomenclature adopted.
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2.1 Isentropic Flow Over a Shock-Free Aerofoil

The first component of Donov’s (4) analysis related to the existing expressions for the isen-
tropic flow over an aerofoil that would occur if no shocks are present in the entire flowfield, as
in Fig. 4. The case of isentropic expansion from the freestream around a corner was presented
first, with arguments for isentropic compressions made later. With the flowfield everywhere
irrotational, the characteristic equations reduced to a form allowing analytical integration,
and the familiar Prandtl-Meyer function was obtained. By means of a Taylor-series expansion
about the freestream reference values (V = V∞, p = p∞, δ = 0), a power series for the flow
velocity and pressure on the aerofoil surface was obtained in terms of M∞ and δ. The fluid
pressure following an isentropic expansion or compression was expressed (4) as

p = p∞ + q∞
[
a1δ(x) + a2δ

2(x) + a3δ
3(x) + a4δ

4(x) + O(δ5)
]

(1)

where the coefficients are given in the appendix, and

q∞ =
γp∞M2

∞

2

The corresponding flow velocity along the aerofoil was given (4) by

V = V∞
[
1 + b′1δ + b′2δ

2 + b′3δ
3 + b′4δ

4 + O(δ5)
]

for δ < 0 (2)

Donov (4) argued that for sufficiently small perturbations, the same equations could be used to
model isentropic compressions, as might occur for smoothly- and slowly-turned flow. This
argument was made from consideration of the oblique shock equations, which were part of
the second tier of Donov’s development.

characteristic lines

V

Figure 4. Shock-free isentropic flow.

shock waves

V

Figure 5. Oblique leading-edge shock.

2.2 Flow Velocity Behind an Oblique Shock

Having established the expressions for flow over an aerofoil which produces no shocks,
Donov (4) turned to the treatment of the oblique shock that would be produced at the aero-
foil leading edge, shown in Fig. 5. Power-series expressions for the flow velocity and entropy
rise following an oblique shock were given, developed from the Euler equations. The expres-
sion used for the velocity behind an oblique shock in the second step of Donov’s (4) analysis
was

V = V∞
[
1 + b1δ + b2δ

2 + b3δ
3 + b4δ

4 + O(δ5)
]

for δ > 0 (3)

with coefficients listed in the appendix. The rise in entropy was described (4) by

s = s∞
[
1 + l3δ3 + l4δ4 + O(δ5)

]
(4)
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Donov (4) noted that the rise in entropy and associated rotationality introduced by the shock
entered only from third-order terms in δ and higher, concluding that for sufficiently small
disturbances (and hence small δ), the flow could be approximated as irrotational and isen-
tropic. This would allow the same form of the characteristic equations as in the previous step
to be integrated, and would allow the existing expressions for isentropic expansions, namely
Equation (1) and Equation (2), to be used for isentropic compressions.

2.3 Rotational Flow Over an Aerofoil with a Leading-Edge Shock

Building on the expressions from the previous steps, Donov (4) constructed a solution for the
flow properties at the aerofoil surface which accounted for the entropy gradients between the
shock produced by the leading edge and the aerofoil surface, originally depicted in Fig. 2.
The mathematical details of the solution are not entered into here, and are presented at length
in Donov’s (4) original work. The crux of the procedure lies in the assumption of small per-
turbations and weak (but non-zero) rotationality; analytical integration of the approximate
equations is then performed along characteristics. This sets the method apart from a lower-
order ”shock-expansion” approach in which isentropic expansion behind a straight shock is
assumed; in Donov’s method, entropy gradients and curvature of the shock due to interaction
with characteristics from the aerofoil surface are accounted for. Flow behind the leading-edge
shock was modelled as being turned smoothly, with no further shocks forming.

The final product of the three-tiered development was a set of power-series expressions for
p and V along the surface of an aerofoil with a rotational flowfield. Terms representing the
increments relative to isentropic expansions and compressions (derived in the previous steps)
were singled out, and terms specifically associated with vorticity behind the shock (∆prot) and
the curvature of the aerofoil immediately aft of the leading edge (Vcurv) were identified.

The pressure on the aerofoil was given (4) as

p = p∞ + q∞
[
a1δ(x) + a2δ

2(x) + a3δ
3(x) + a4δ

4(x)
]

+ ∆pe + O(δ5) (5)

where the additional terms relative to the isentropic formulation of Equation (1) are given by

∆pe = q∞
[
a1eδ

3(0) + a2eδ
4(0) + a3eδ

3(0)δ(x)
]

+ ∆prot (6)

∆prot = q∞
[
a4exδ3(0)δx(0)

]
(7)

The result of Donov’s (4) integration along characteristics, given in Equation (5), is that the
pressure distribution is essentially similar in form to that which the aerofoil would have if no
leading-edge shock were formed, given by the isentropic formulation of Equation (1). The
additional pressure distribution associated with the formation of the leading-edge shock and
the subsequent entropy gradients and rotationality in the flowfield are given by the term ∆pe.
This term is seen to only contain terms in the third-order and higher of the flow turning angle
at the leading edge, δ(0), with a fourth-order-smallness term involving the local flow turning
angle, δ(x). Donov further isolated the contribution from vortex-formation as the term ∆prot.
It is seen to depend on the curvature δx(0) of the aerofoil surface immediately aft of the sharp
leading-edge and to depend on the distance x from the leading edge. The coefficients ane

(given in the appendix) associated with the additional term ∆pe are seen to depend on both
isentropic coefficients b′n and on coefficients relating to flow behind the oblique shock, bn and
ln; this composition of the coefficients ane derives from the integration along characteristics
between the shock and the aerofoil surface.
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The flow velocity at the aerofoil surface as given by Donov (4) was similarly cast as

V = V∞
[
1 + b′1δ(x) + b′2δ

2(x) + b′3δ
3(x) + b′4δ

4(x)
]

+ ∆Ve + O(δ5) (8)

where additional terms relative to the isentropic formulation of Equation (2) are given by

∆Ve = V∞
[
b1eδ

3(0) + b2eδ
4(0) + b3eδ

3(0)δ(x)
]

+ ∆Vcurv (9)

∆Vcurv = V∞
[
b4exδ3(0)δx(0)

]
(10)

Similar conclusions may be drawn regarding the expression for velocity as were drawn for
pressure, with the coefficients listed in the appendix. The increment in velocity arising from
the influence of the leading-edge shock and entropy gradients is given by the term ∆Ve, which
again only contains terms of third-order and higher in δ. The term associated with the cur-
vature of the aerofoil aft of the sharp leading-edge is isolated as ∆Vcurv. Note that the term
∆Ve is not equivalent to simply the difference between the velocity behind a shock and the
velocity following an isentropic expansion or compression (given by Equation (3) and Equa-
tion (2), respectively, with the difference expressed in the appendix), as it is arrived at through
integration throughout the flowfield. This is once again reflected in the composition of the
coefficients bne. As expected, the influence of entropy in the preceding expressions is only
seen in terms of third- or higher order in the flow turning angle; the effect of the leading-edge
shock is absent up to second-order. The effect of leading-edge curvature is modelled as negli-
gible in the vicinity of the leading edge. These considerations will be exploited in correlating
the expressions of Donov (4) to potential-flow terms.

3.0 PARAMETRISATION ACCURACY
The power-series expressions of Donov (4) may be compared to exact solutions for planar
supersonic flows to assess the accuracy of Donov’s results: for isentropic expansion, Equa-
tions (1) and (2) may be evaluated against the exact solution of Prandtl-Meyer expansion; for
oblique shocks, Equations (5) and (8) (evaluated for δx(0) = 0) are compared to the Rankine-
Hugoniot equaitons.

3.1 Exact Relations

The pressure and velocity ratios following a Prandtl-Meyer expansion are manipulated from
Anderson (8) as

p
p∞

=

2 + (γ − 1)M2
∞

2 + (γ − 1)M2
2

γ/(γ−1)

(11)

V
V∞

=
M2

M∞

√
2 + (γ − 1)M2

∞

2 + (γ − 1)M2
2

(12)

where M2 is found from the corresponding value of the Prandtl-Meyer function ν( ) following
the turn, with

ν(M2) = ν(M∞) − δ for δ < 0 (13)
ν(M∞) =

√
e tan−1

[
m/
√

e
]
− tan−1(m) (14)

m =

√
M2
∞ − 1 (15)
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Similarly, the exact oblique-shock equations of interest are manipulated from Pai (9) into the
forms below

p
p∞

=
1
e

(
2γ
γ − 1

M2
∞ sin2 θ − 1

)
(16)

V
V∞

=
sin θ

e sin(θ − δ)

(
2

γ − 1
1

M2
∞ sin2 θ

+ 1
)

(17)

where a closed-form expression for the shock angle was given by Mascitti (10) as

sin2 θ = −
c1

3
+


2
√

c2
1 − 3c2

3

 cos
(
ψ + 4π

3

)
(18)

where

cosψ =

(
9
2

c1c2 − c3
1 −

27
2

c3

)
/
(
c2

1 − 3c2

)3/2
(19)

c1 = −1 − γ sin2 δ − (2/M2
∞) (20)

c2 =
2M2

∞ + 1
M4
∞

+

[
(γ + 1)2

4
+
γ − 1
M2
∞

]
sin2 δ (21)

c3 = −(cos2 δ)/M4
∞ (22)

3.2 Relative Accuracy of Parametrised Expressions

The results given by Donov’s (4) expressions as applied to a wedge or an isentropic expansion
about a corner are compared to the exact solutions for these problems as given by the Rankine-
Hugoniot relations for oblique shocks and the Prandtl-Meyer solutions. The relative error in
the results using Donov’s equations is assessed for a range of Mach numbers and flow turning
angles for which shocks remain attached (δ < δdet) and for which vacuum is not reached (δ >
δvac). In considering the accuracy of the power-series expressions, it is worth keeping in mind
the correlation of the mathematical expressions with physical phenomena. In particular, the
pressure coefficient cp on a body is known to tend to a constant value in the hypersonic limit
– this is known as the Mach independence principle. The power-series form of Equation (1)
and Equation (5) for pressure on the aerofoil surface is seen to introduce terms which become
unbounded in the hypersonic limit when the series is developed to third-order or higher. The
region of the parameter space in which the isentropic relation of Equation (1) gives a trend
in cp consistent with physical phenomena (∂cp/∂M∞ ≤ 0) is illustrated in Fig. 6. It should
be noted that the pressure predicted by the relation outside of this range may still be close to
the exact value of the Rankine-Hugoniot equations, and may still yield valuable estimations
of the pressure despite yielding incorrect trends as the Mach number is increased further. An
approximate relation for departure from the Mach independence principle for Equation (1)
and Equation (5) may be estimated as values of the hypersonic similarity parameter M∞δ > 2.

The error in velocity given by Donov’s (4) series, Vdonov, relative to the flow velocity given
by the exact relations, Vexact, is shown developed up to third-order in Figs 7–9: for expansion
flows, Equations (2) and (12) are evaluated; for compression flows, Equations (8) and (17) are
evaluated. Similarly, the error in pressure given by Donov’s (4) series, pdonov, relative to that
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Figure 6. Limit of adherence of 3rd-order isentropic pressure equation to the Mach independence principle.

given by the exact relations, pexact, is shown in Figs 10–12: for expansion flows, Equations (1)
and (11) are evaluated; for compression flows, Equations (5) and (16) are evaluated.

It is seen from Figs 7–9 that the expressions of Donov (4) for flow velocity are accurate to
within 5% of the exact flow velocity for a large portion of the parameter space, while sig-
nificant errors are encountered for compression flows with moderate turning (δ > 20◦) near
shock-detachment and in the hypersonic limit. No significant differences in velocity predic-
tion are seen between the first-order and second-order expressions, except for near-vacuum
expansion flows. Improved prediction for compression flows is achieved by extension to third-
order expressions; however, this leads to the velocity in Equation (8) becoming unbounded in
the limit of M∞ → ∞ due to the introduction of the O(M8

∞m−7) term of Equation (56).
Similar unboundedness is observed in Equations (1) and (5) for the fluid pressure, once

again introduced from third-order terms through O(M8
∞m−7) in Equation (55); in the case

of the pressure series, however, unboundedness is also observed for expansion flows. No-
table improvement in the accuracy of the pressure series is seen in extension from first-order
(Fig. 10) to second-order (Fig. 11); the improvement in accuracy is lost at large values of
M∞ and δ when extension to third-order (Fig. 12) is made due to the divergence of the se-
ries. The relatively narrow band of the M∞-δ parameter space for which accurate pressures
are obtained from the relation between local fluid pressure and local velocity, particularly as
observed for Figs 10 and 11, is related to the assumptions made in similar methods employing
local relations for pressure and velocity (3), namely that the hypersonic similarity parameter
M∞δ < 1.

The relative error in Donov’s (4) expressions for flow velocity may be used to qualitatively
assess the accuracy of comparing the relative magnitudes of velocity perturbations in a poten-
tial flow formulation. As noted by Van Dyke (11), the calculation of the perturbation velocities
and of the perturbation pressure in a potential flow formulation are essentially two distinct op-
erations, and so the pressure equation does not need to be simplified to solve the flow. Thus,
the relative error in Donov’s (4) expressions for fluid pressure is not necessarily a reflection of
the accuracy of the full pressure equation for potential flows as given by Equation (44).

In conclusion, the relative-magnitude analysis of perturbation velocities in the full potential
equation to be conducted in the present work may be qualitatively estimated as valid for re-
gions of the parameter space for which good agreement is obtained in the velocity prediction.
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From Figs 8 and 9, the analysis is estimated as valid for flow turning angles of δ < 20◦; for
large Mach numbers and similar or larger flow turning angles, the inherently nonlinear region
of hypersonic flows is entered, and the analysis may be considered as qualitative at best.

4.0 TERMS IN NONLINEAR POTENTIAL FLOWS
4.1 Correlation to Preceding Expressions

The expressions of Donov (4) may be used to parametrise terms in a potential-flow framework
in terms of Mach number, M∞, and flow turning angle, δ, allowing the magnitude of the terms
to be quantified. The irrotationality assumed by a potential flow model may be consistently
adhered to for both expansion and compression flow by employing terms up second-order
in δ from Donov’s series. Extension of the parametrisation to third-order is mathematically
inconsistent with a potential-flow formulation when shocks are present; however, it allows an
estimate to be made of the effect of entropy and rotationality relative to an O(δ3) isentropic
formulation through Equation (9). In the present work, expressions will only be developed up
to the third-order. A steady planar flow in the x-z plane is considered as in Fig. 4; the velocity
components are formulated as

u = V∞ + φ̂x = V cos δ (23)
w = φ̂z = V sin δ (24)

where subscript notation denotes differentiation, and hat notation denotes perturbation quan-
tities. The trigonometric functions are expressed in series form as

cos δ = 1 − δ2/2 + O(δ4) (25)
sin δ = δ − δ3/6 + O(δ5) (26)

Substituting the above trigonometric relations and Equation (2) into Equations (23) and (24),
the perturbation velocities are parametrised as

φ̂x = V∞
[
b1δ + (b2 − 1/2)δ2 + (b′3 − b1/2)δ3 + O(δ4)

]
(27)

φ̂z = V∞
[
δ + b1δ

2 + (b2 − 1/6)δ3 + O(δ4)
]

(28)

4.2 Terms Considered in the Full Potential Flow Equation

In the absence of discontinuities in the flow, nonlinearity arises when velocity perturbations
may no longer be considered “small” and product terms such as φ̂xφ̂xx must be considered.
The full nonlinear potential equation for steady planar flows is

(a2
∞ − V2

∞)φ̂xx + a2
∞φ̂zz =

[
(γ + 1)V∞φ̂x + (γ + 1)φ̂2

x/2 + (γ − 1)φ̂2
z/2

]
φ̂xx

+
[
(γ − 1)V∞φ̂x + (γ − 1)φ̂2

x/2 + (γ + 1)φ̂2
z/2

]
φ̂zz

+2(V∞ + φ̂x)φ̂zφ̂xz (29)

The equation may be recast as follows, with terms leading to nonlinearity grouped together

(Lx − Nx)φ̂xx + (Lz − Nz)φ̂zz = C (30)
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where

Lx = −m2 (31)
Lz = 1 (32)
C = 2[M∞ + (φ̂x/a∞)](φ̂z/a∞)φ̂xz (33)
e = (γ + 1)/(γ − 1) (34)

Nx = eX1 + eX2 + Z (35)
Nz = X1 + X2 + eZ (36)
X1 = (γ − 1)M∞φ̂x/a∞ (37)
X2 = (γ − 1)φ̂2

x/2a2
∞ (38)

Z = (γ − 1)φ̂2
z/2a2

∞ (39)

The individual nonlinear terms are parametrised from Equations (27) and (28) up to third-
order as

X1 = (γ − 1)M2
∞

[
b1δ + (b2 − 1/2)δ2 + (b′3 − b1/2)δ3 + O(δ4)

]
(40)

X2 = (γ − 1)M2
∞

[
b2

1δ
2/2 + b1(b2 − 1/2)δ3 + O(δ4)

]
(41)

Z = (γ − 1)M2
∞

[
δ2/2 + b1δ

3 + O(δ4)
]

(42)

These sources of nonlinearity in the potential equation are seen to appear in the pressure
equation for potential flows. For isentropic flows,

p
p∞

=

[
1 +

γ − 1
2

M2
∞

(
1 −

V2

V2
∞

)]γ/(γ−1)

(43)

which upon substitution of equations (23, 24, 37–42) together with V2 = u2 + w2 yields

p/p∞ = (1 − X1 − X2 − Z)γ/(γ−1) (44)

It may be shown that upon expanding equation (44) into a power series, and substituting
Equations (40–42) and rearranging, that Donov’s (4) expression for the fluid pressure following
an isentropic expansion, as given by Equation (1), is recovered.

5.0 QUANTIFYING NONLINEARITY
The parametrisation of the perturbation velocities at the wall in a planar system allows the
terms that lead to nonlinearity in Equation (30) to be quantified. These terms (X1, X2, and
Z, scaled by e where appropriate) may be grouped together as an overall nonlinear term, Ni,
in the coefficient of φ̂ii. The magnitude of the term Ni relative to the magnitude of the linear
coefficient, Li, of φ̂ii may be perceived as a quantitative measure of the nonlinearity associated
with φ̂ii. This, in turn, provides a numerical basis from which linearisation of the full potential
equation at a particular range of M∞ and δ may be justified as mathematically consistent.
Linearisation of Equation (30) is formally defined through the simultaneous assumptions that

|Nx| � |Lx| (45)
|Nz| � |Lz| (46)
|C| � |(Li − Ni)φ̂ii| (47)
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where the final term in φ̂ii is the smaller of the streamwise and transverse terms. If a geometry
with sufficiently small curvature, δx = δx(x), is considered, then following from Equation (10),
the contribution of curvature terms to the perturbation velocity are O(δ3(0)δx(0)) and may be
neglected in favour of lower-order contributions; hence, the term associated with curvature
in the full potential equation, C, may be considered negligible compared to (Li − Ni)φ̂ii. In
considering the negligibility of the nonlinear terms Ni away from the asymptotic limits of
M∞ → 1 and M∞ → ∞ (in which linearised theory is invalid) the formal definition of “�”
must be dropped, and a quantitative threshold of acceptable “smallness” of the relative magni-
tudes of linear and nonlinear terms must be adopted. Let this smallness parameter be denoted
by ε. Having assumed that C will be negligible, linearisation of the full potential equation is
then defined by the simultaneous conditions that

|Nx/Lx| < ε (49)
|Nz/Lz| < ε (50)

Under these conditions, the full potential equation is reduced to the familiar linear potential
equation of

Lxφ̂xx + Lzφ̂zz = 0 (51)

The contours in the M∞-δ parameter space within which Equations (49) and (50) are simul-
taneously satisfied are shown for a range of values of ε in Figs 13–15, with the nonlinear
terms, given by Equations (40–42), evaluated up to the first three orders of δ. Once again,
the narrow band for which linearised theory is valid is observed along with the importance of
higher-order terms in δ, as evidenced by the noticeable shift in contours when extending the
analysis from O(δ) (Fig. 13) to O(δ2) (Fig. 14).

The contribution of the individual terms in the nonlinear groupings Ni relative to the linear
terms Li is shown in Figs 16–21, with the terms evaluated up to third-order in δ. It must be
noted that the signs of the individual nonlinear terms vary over the parameter space, and in
certain regions are not of the same sign. This is particularly significant in considering the
influence of |X1/Lz| (Fig. 19) and of |eZ/Lz| (Fig. 21); the terms are of similar magnitude,
but of opposite sign, and therefore the net contribution to the nonlinearity Nz of the otherwise
significant individual terms may be small. In this regard, caution must be exercised to consider
the relative magnitude of term groupings, rather than individual terms. Nonetheless, it may be
concluded that over the majority of the parameter space, the contribution of the terms |eX2/Lx|,
|Z/Lx|, and |X2/Lz| may be neglected in favour of the remaining terms in the corresponding
Ni. The familiar approximation for transonic small perturbations that Nx is dominated by eX1
is recovered from consideration of Figs 16–18, and is listed below as

Lxφ̂xx + Lzφ̂zz = eX1φ̂xx (52)

with the validity estimated for the simultaneous conditions∣∣∣∣∣ (eX2 + Z)
(Lx − eX1)

∣∣∣∣∣ < ε (53)

|Nz/Lz| < ε (54)

The approach adopted of quantifying nonlinearity and the relative magnitude analysis may be
used developing other simplified nonlinear formulations of the full potential equation.
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6.0 CONCLUSIONS
Expressions for perturbations to flow velocity and pressure in terms of M∞ and δ were devel-
oped by Donov (4) from the method of characteristics, accounting for entropy gradients and
rotationality in the flowfield between the aerofoil surface and the leading-edge shock. The
accuracy of the expressions relative to exact analytical solutions have been assessed in the
present work. The expression for the perturbation velocity has been used to parametrise terms
in the full potential equation in terms of M∞ and δ. This allows for the magnitude of terms
relative to one another to be assessed over the parameter space, and provides a numerical basis
for neglecting terms relative to one another. Using this approach, a quantitative estimate for
the validity range of the assumptions made in linearising potential flows (the basis for many
useful aerodynamic models) may be made. The analysis presented in this work is intended to
serve the engineer as a guide to the selection of lower-order aerodynamic methods, particu-
larly those based in linear potential flows, based on the expected Mach number and maximum
flow turning angle. The approach presented may also be used as a guide to inform the engi-
neer of which nonlinear terms are relatively more important when extending the mathematical
formulation from linear to simplified nonlinear potential flows. Key points from the work are
listed as follows:

• When developing a potential-flow formulation to O(δ3) or higher, the effects of rota-
tionality and entropy-gradients in the flowfield need to be considered. These may be
quantitatively assessed using the results of Donov’s (4) method.

• The accuracy associated expressions have been assessed over the parameter space:

– The relation for velocity perturbations is accurate to within 5% for flows with δ <
20◦, with improved accuracy at higher δ provided by extension to third-order.

– The relation for pressure perturbations is accurate within a narrow band of small
deflections, of the order |δ| < 5◦. Widening of this band is achieved with extension
to O(δ2) and O(δ3) for M∞ < 5.

– The pressure relation becomes unbounded in the hypersonic limit from O(δ3) and
higher. The relation violates the Mach independence principle for flows in the region
of M∞δ > 2.

• An a-priori estimate of the validity of linearised potential flow methods to a particular
configuration may be made using Figs 13 and 14. A guideline for the value of ε = Ni/Li

is given as ε ≈ 0.20.
• Insight into the relative dominance of nonlinear terms is given by Figs 16–21. The im-

portance of the term eX1, or (γ + 1)M∞φ̂x/a∞, in transonic flows is illustrated in Fig. 16.
• The analysis may be applied to estimate the validity range of simplified nonlinear formu-

lations of the potential flow equation, such as the transonic small-disturbance formulation,
which includes the eX1 term.
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Figure 7. Accuracy of the velocity series relative to exact flow relations: 1st-order.
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Figure 8. Accuracy of the velocity series relative to exact flow relations: 2nd-order.
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Figure 9. Accuracy of the velocity series relative to exact flow relations: 3rd-order.
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Figure 10. Accuracy of the pressure series relative to exact flow relations: 1st-order.
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Figure 11. Accuracy of the pressure series relative to exact flow relations: 2nd-order.
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Figure 12. Accuracy of the pressure series relative to exact flow relations: 3rd-order.
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Figure 13. Relative contribution of nonlinearity in the potential flow equation: 1st-order.
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Figure 14. Relative contribution of nonlinearity in the potential flow equation: 2nd-order.
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Figure 15. Relative contribution of nonlinearity in the potential flow equation: 3rd-order.
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Figure 16. Relative contribution of the X1 nonlinearity in the coefficient of φ̂xx: 3rd-order.
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Figure 17. Relative contribution of the X2 nonlinearity in the coefficient of φ̂xx: 3rd-order.
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Figure 18. Relative contribution of the Z nonlinearity in the coefficient of φ̂xx: 3rd-order.
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Figure 19. Relative contribution of the X1 nonlinearity in the coefficient of φ̂zz: 3rd-order.
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Figure 20. Relative contribution of the X2 nonlinearity in the coefficient of φ̂zz: 3rd-order.
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Figure 21. Relative contribution of the Z nonlinearity in the coefficient of φ̂zz: 3rd-order.
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APPENDIX

7.0 COEFFICIENTS IN DONOV’S ANALYSIS
7.1 Isentropic Flow Over a Shock-Free Aerofoil

The coefficients in Equation (1) from the first tier of Donov’s (4) analysis are given below

a1 = 2m−1

a2 = m−4
(
2 − 2M2

∞ +
γ + 1

2
M4
∞

)
a3 = m−7

[
4
3
− 2M2

∞ +
5
3

(γ + 1)M4
∞ +

2γ2 − 7γ − 5
6

M6
∞ +

γ + 1
6

M8
∞

]
(55)

a4 = m−10
(

1
3
−

2
3

M2
∞ +

19γ + 7
6

M4
∞ +

18γ2 − 43γ − 21
12

M6
∞

+
3γ3 − 8γ2 + 20γ + 15

12
M8
∞ +

2γ3 + 3γ2 − 20γ − 21
48

M10
∞

+
−γ2 + 2γ + 3

48
M12
∞

)
The coefficients in Equation (2) are

b′1 = −m−1

b′2 = −m−4
(

1
2

+
γ − 1

4
M4
∞

)
b′3 = −m−7

[
1
6

+
1
2

M2
∞ +

3
4

(γ − 1)M4
∞ +

2γ2 − 5γ + 3
12

M6
∞

]
b′4 = −m−10

(
1

24
+

5
8

M2
∞ +

29γ − 17
24

M4
∞ +

16γ2 − 19γ + 3
24

M6
∞

+
4γ3 − 5γ2 − 2γ + 3

32
M8
∞ +

2γ3 − 7γ2 + 8γ − 3
96

M10
∞

)

7.2 Flow Velocity Behind an Oblique Shock

The coefficients in Equation (3) from the second tier of Donov’s (4) analysis are given below

b1 = b′1 = −m−1

b2 = b′2 = −m−4
(

1
2

+
γ − 1

4
M4
∞

)
b3 = −m−7

[
1
6

+
1
2

M2
∞ +

3
4

(γ − 1)M4
∞ +

3γ2 − 12γ + 5
12

M6
∞ +

(γ + 1)2

32
M8
∞

]
(56)

b4 = −m−10
(

1
24

+
5
8

M2
∞ +

29γ − 17
24

M4
∞ +

12γ2 − 27γ − 1
24

M6
∞

+
γ3 − γ2 + 5γ + 5

16
M8
∞ +

3γ3 − 3γ2 − γ − 5
48

M10
∞

)
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The coefficients in Equation (4) are given as

l3 =
γ(γ2 − 1)

12
M6
∞m−3

l4 =
γ(γ2 − 1)

12
M6
∞m−6

[
4 + 2(γ − 2)M2

∞ − (γ − 1)M4
∞

]
The difference in third- and higher-order coefficients for velocity between the equation for an
oblique shock and the equation for isentropic compression may be written as

b3 − b′3 = −
M6
∞m−7

4

[
γ2 − 7γ + 2

3
+

(γ + 1)2

8
M2
∞

]
b4 − b′4 = −

M6
∞m−10

16

[
−4(γ + 1)2 +

−2γ3 + 3γ2 + 8γ + 7
2

M2
∞

+
4γ3 + γ2 − 10γ + 7

6
M4
∞

]

7.3 Rotational Flow Over an Aerofoil with a Leading-Edge Shock

The coefficients in Equation (6) and Equation (7) from the third tier of Donov’s (4) analysis are
given below

a1e = −2(b3 − b′3) −
2l3

γ(γ − 1)M2
∞

a2e = −2(b4 − b′4) +
4b2

b1
(b3 − b′3) −

2l4
γ(γ − 1)M2

∞

a3e = (b3 − b′3)
(
2m2b1 −

4b2

b1

)
+

2l3b1

γ − 1

a4e = −
3(γ + 1)

4
M4
∞m−3

[
(b3 − b′3) +

ml3b1

γ(γ − 1)M2
∞

]
The coefficients in Equation (9) and Equation (10) are

b1e = (b3 − b′3)

b2e = (b4 − b′4) −
2b2

b1
(b3 − b′3)

b3e =
2b2

b1
(b3 − b′3)

b4e =
3(γ + 1)

8
M4
∞m−3

[
(b3 − b′3) +

ml3b1

γ(γ − 1)M2
∞

]




