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Abstract  
 

The prevention of torsional vibration-induced fatigue damage to turbo-generators requires determining natural frequencies by either 

field testing or mathematical modelling. Torsional excitation methods, measurement techniques and mathematical modelling are active 

fields of research. However, these aspects are mostly considered in isolation and often without experimental verification. The objective of 

this work is to compare one dimensional (1D), full three dimensional (3D) and 3D cyclic symmetric (3DCS) finite element (FE) method-

ologies for torsional vibration response. Results are compared to experimental results for a small-scale test rotor.  

It is concluded that 3D approaches are feasible given the current computing technology and require less simplification with potentially 

increased accuracy. Accuracy of 1D models is reduced due to simplifications but faster solution times are obtained. For high levels of 

accuracy model updating using field test results is recommended.  
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1.  Introduction 

Increasing demand for electrical energy worldwide places 

pressure on turbo-generator designers and operators to deliver 

more power more cheaply. Expanding transmission systems 

utilize series capacitor compensation or high-voltage direct 

current systems which all increase the risk of torsional vibra-

tion induced fatigue damage [1, 2]. Operators are required to 

ensure ever higher levels of reliability and availability in an 

environment where the reserve margins of installed capacity 

are decreasing, plant is aging and the opportunity for mainte-

nance is limited. The Electric Power Research Institute (EPRI) 

reports twelve confirmed cases of torsional vibration induced 

fatigue failures between 1971 and 2004 [3]. These include 

failures of turbo-generator shafts, low-pressure turbine blades 

and coil retaining rings. Tsai [4] refers to low pressure turbine 

blade failures within one year of commissioning that were due 

to super-synchronous resonance. 

The complexity of the models for describing these systems 

and to predict their vibrational response under various condi-

tions has always relied heavily on the available computing 

power [5, 6]. Although torsional vibration of turbo-generators 

has been identified and researched over many years, the accu-

racy of conventional models for the calculation of torsional 

vibration response remains unacceptable in some cases. Im-

proved models need to be developed [7, 8], notably for super-

synchronous resonance where blades may be affected. It has 

been concluded that the vibration response of blade-disk-shaft 

structures may be poorly modelled by conventional modelling 

techniques and by uncoupling the rotordynamic and bladed 

disk analyses [9]. 

Torsional excitation methods include the use of simple me-

chanical devices, hydraulic as well as electrical drives. The 

use of an alternating-current motor coupled to a servo drive 

for the rotation and torsional excitation of small test rotors has 

been investigated previously [10]. The cogging torque of 

brushless direct-current (DC) motors has also been used for 

torsional excitation [11, 12]. A DC motor and a digital control 

system for the rotation and torsional excitation of the test rotor 

were considered in the current work. The control system was 

optimized to ensure a fast transient and stable steady-state 

response. The vibration response of the drive system was 

characterized in order to consider its possible influence on the 

test rotor response and is discussed in Section 2. 

Although analytical models still have value when investi-

gating and understanding the principles of vibration response, 

it has been stated that the detailed 3D FE analysis of practical 

systems may offer the best approach to addressing real struc-

tures [13]. Due to the large number of degrees of freedom of 

3D models, some form of simplification or reduction tech-

nique may be required to ensure practical solution times on the 

available computer systems. 3DCS analysis has been pro-

posed as a solution [14]. 3D and 3DCS modelling are de-

scribed in Sections 3 and 4. 

1D torsional modelling requires simplification of the rotor 

geometry and other aspects. Although these simplifications 

result in models with fewer degrees of freedom which are 

readily solved with modern computers, they do tend to be less 

accurate. The features that require simplification and which 

could lead to inaccuracies include: participation of flexible 

low-pressure turbine blades in torsional modes, abrupt diame-

ter changes, the complexity and speed-dependent stiffness of 

generators, shrunk on disks typically used in low-pressure 



    

 

turbines, the stiffness of bolted couplings and the effective 

stiffness of blade-to-disk mountings. The modelling technique 

applied in the current work is discussed in more detail in Sec-

tion 5. 

The objective of this work was to conduct a consistent, 

comparative study of the one-dimensional (1D), full three-

dimensional (3D) and three-dimensional cyclic symmetric 

(3DCS) finite element (FE) methodologies used for calculat-

ing the torsional vibration response of bladed rotors. The accu-

racy of these methodologies relative to the experimental re-

sults obtained for a small-scale test rotor was investigated. In 

addition, relative solution times were directly compared and 

considered against the increase (or decrease) in accuracy, pre-

processing effort and expertise required. 

The small-scale test rotor was designed so that it contains 

the basic elements of a real turbo-generator train. This in-

cludes at least three large inertias representing the high-

pressure and two low-pressure turbines. Long and flexible 

blades sized so that they participate in the higher-order tor-

sional vibration modes were included. An electric machine, 

the DC motor, which has a complex construction with speed 

dependent vibration properties and which is influenced by 

electro-magnetic forces is representative of a generator. Sud-

den diameter changes from shaft sections to disks and cou-

plings as well as the effect of shrunk-on discs as found in tur-

bo-generator trains were also included. In order to demon-

strate the effect of the degree of blade mode participation in 

shaft torsional vibration modes, the effective torsional stiff-

ness of the blades can be changed by varying the stagger angle 

of the blades. 

 

2. Experimental setup and modal testing  

2.1. Test rotor design and drive system characterization 

A test rotor was designed and built for laboratory testing 

and measurement, consisting of a shaft, three disks, eight 

blade holders with blades, a drive end (DE) coupling and a 

DC motor. Blades can be fitted in the 0°, 45° or 90° position, 

known as the blade stagger angle, where 90° is the position 

with the blade width aligned in the tangential direction (or 

perpendicular to the shaft centre line) as shown in Fig. 1. Ro-

tational drive and torsional excitation were accomplished  

 

 

 

through a drive system consisting of a 3 kW DC motor and a 

digital control system which allows for fully reversible opera-

tion i.e. the motor can act to drive or brake the test rotor. The 

rotor was coupled to the DC motor with a flanged coupling 

and was supported by two self-aligning roller element bear-

ings. Based on the initial performance tests, a decision was 

taken to use speed control instead of torque control, as this 

provides a faster transient response as well as a more stable 

constant speed operation. Speed feedback based on armature 

voltage was used. A typical speed step response is shown in 

Fig. 2. A ±10 V signal (iOut) proportional to the armature 

current was available from the control system as an output. A 

rotary shaft encoder was attached to the NDE side of the mo-

tor, and has a resolution of 1000 pulses per revolution. It was 

used to generate an analogue ±10 V speed signal which is 

equivalent to ±3000 rpm (nOut).  

The polar moment of inertia of the motor armature was de-

termined experimentally by using the torsional pendulum 

approach and a torsional laser vibrometer (TLV) as 7.8 mg.m
2
.  

Using the control signal as reference and the speed response 

measured using the TLV, the frequency response functions 

(FRFs) for sudden speed steps of 250 rpm from various mean 

speeds were calculated. A control system natural frequency 

was detected at 2.5 Hz, which does not change with rotational 

speed (Fig. 3).  
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Fig. 2. Response of optimized drive system to a speed step change. 

Fig. 1. Test rotor with blades at a 90° stagger angle. 
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An average drive system damping coefficient of 0.90 

N.s/deg was calculated, using the half-power method. Damp-

ing was also calculated using the log decrement method and 

found to be approximately 0.95 N.s/deg. No significant 

change in damping with speed was noted, although the calcu-

lated values at speeds >1000 rpm were more consistent. 

To determine the typical background noise generated by the 

motor and control system, Fast Fourier Transforms (FFTs) of 

nOut and IOut (Fig. 4) were calculated with the motor running 

freely. Frequency content was detected at multiples of running 

speed and line frequency as well as at 300 Hz and multiples 

thereof.  Similar frequency content was also seen in the FFTs 

of the speed signal. This proved to be problematic as one tor-

sional mode was found to be close to 300 Hz, depending on 

the blade stagger angle. 

 

2.2. Static modal testing of the test rotor 

Two full Wheatstone bridges and a 1 kHz bandwidth telem-

etry system were used for measuring the torque and bending 

strain of the shaft and blade #1. Strain gauge pairs were ap-

plied in-board of disk #2 on the rotor shaft and just above the 

blade #1 holder (Fig. 5). 
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Modal tests of the rotor were conducted with blades in the 0°, 

45° and 90° positions as well as with no blades, using the 

TLV to measure angular speed response. Excitation was ac-

complished by tangential impacts on a nut mounted on the DE 

coupling (at a diameter of 59 mm) using an instrumented im-

pact hammer. The linear vibration response of the rotor was 

confirmed by identifying reciprocity in the response of the DE 

coupling/disk #3 impact and measurement position pair (Fig. 

6). Five torsional modes were measured but only the latter 

four (referenced as F1 to F4) are reported here as the first 

mode was not detected for the dynamic case (see Table 1). 

Frequencies of modes F1 and F3 are affected by the blade 

stagger angle whereas modes F2 and F4 are not affected. 
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Fig. 3. Frequency response magnitude of drive system for 

various rotational speeds. 

Fig. 5. Strain gauges used to measure blade bending (left) and 

shaft torsional (right) response. 

Fig. 6. Reciprocity shown for shaft torsional response shown for impact 

DE/measure disk #3 (top) and impact disk #3/measure DE (bottom). Fig. 4. FFT of motor current signal with motor running freely. 
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Table 1. Summary of measured static torsional frequencies. 
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2.3. Dynamic modal testing 

A random noise signal with a bandwidth of 1 kHz and a 

peak level of 100 mV was generated and connected to the 

analogue input of the digital control system. FRF plots of the 

shaft strain gauge response with the armature current signal as 

reference were calculated at speeds of 250, 500, 750 and 1000 

rpm (Table 2). The FRF plot for a rotor speed of 750 rpm and 

with a blade stagger angle of 0° is shown in Fig. 8. It should 

be noted that the natural frequencies for the dynamic case (i.e. 

motor field and control system active) for modes F2 and F3 

reduce by approximately 4% and 5% respectively with respect 

to the static condition (i.e. with motor field and control system 

off). Modes F1 and F4 do not appear to be affected by this. 

This phenomenon is believed to be due to the electro- 

 

Table 2. Measured torsional frequencies for random excitation. 

 

magnetic forces created in the DC motor, affecting the stiff-

ness of the motor. 

Similar to the static case, changes in blade orientation re-

sulted in significant frequency changes in mode F3 but less so 

in mode F1. Modes F2 and F4 were not affected.  

A second set of tests were done to confirm the results of the 

random excitation tests. Using a function generator, single 

short-duration square waves were generated and coupled to 

the analogue input of the control system for impulse torque 

loading of the rotor (Fig. 9). Tests were conducted at mean 

speeds of 250, 500, 750 and 940 rpm with the blades at 0°, 45° 

and 90°. The results were similar to those obtained through 

random excitation. A slight speed dependency was noted only 

in mode F2 for a blade stagger angle of 45°, similar to the 

finding for random excitation (Fig. 10). 

No significant centrifugal stiffening effect was measured in 

the speed range tested (up to 1000 rpm). 

 

 

Blade 

stagger angle 
F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) 

no blades  200 351 534 

0° 152 198 336 534 

45° 149 199 315 533 

90°  199 303 533 

Blade 

stagger 

angle 

Speed 

(rpm) 

F1 

(Hz) 

F2 

(Hz) 

F3 

(Hz) 
F4 (Hz) 

0° 

250 151.88 190.00 320.00 530.63 

500 151.25 189.38 323.75 531.88 

750 153.75 191.25 322.50 531.25 

1000 153.75 188.75 322.50 532.50 

45° 

250 148.75 193.13 310.63 530.63 

500 147.50 191.25 305.63 530.6 

1000 148.75 191.50 302.50 530.00 

90° 

250  188.75 293.13 530.63 

500  184.38 292.50 531.25 

750  187.50 293.13 530.00 

1000  186.25 291.25 530.00 

Fig. 8. FRF at 750 rpm with stagger angle at 0° with random excitation. 

Fig. 7. Variation of torsional frequencies with blade stagger angle. 

Fig. 9. Typical torque impulse loading and response with blades at 0°. 
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3. Full 3-dimensional finite element analysis (3D FEA) 

The complete rotor with couplings, coupling bolts, blades, 

holders and disks was modelled in 3D and meshed, using the 

commercial software Ansys. Hexahedral elements were used 

for the shaft sections, blades and where practical. More com-

plex geometries such as the disks, couplings and blade holders 

were meshed using tetrahedral elements. Both couplings were 

attached by bonded contact up to the points of effective con-

tact. For the NDE coupling of disk #3, this was taken as the 

length from the outboard face up to the centre of the NDE 

coupling grub screw. Effective contact for the DE coupling 

was taken as starting at the coupling key. 

The shaft sections of the armature were modelled as steel 

sections with an elastic modulus and density of 207 GPa and 

7850 kg/m
3
, the same as for all the other steel parts.  For the 

larger diameter winding and commutator sections which have 

a complex construction of a steel base, copper windings and 

laminated plates, the density and stiffness were calibrated to 

represent the measured total armature polar moment of inertia 

and to minimize the difference between the calculated and 

measured frequencies.  
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Coupled rotor frequencies for a range of densities and elas-

tic moduli were calculated by 3D FEA and a composite error 

index was defined as the average of the absolute differences 

between the calculated and measured frequencies of modes F1 

to F4. The meshing of the complete rotor model resulted in 

71016 elements and 131282 nodes. A density of 3855.5 kg/m
3
 

was used to ensure that the modelled polar moment of inertia 

was equal to the measured value. Based on this density, the 

minimum error index occurs for an elastic modulus of 4.3 GPa. 

Calculated shaft mode shapes are depicted in Fig. 11 and 

the 3D plots of the mode shapes are shown in Fig. 12. In all 

cases, the blade tip movement is out of phase with the rotor 

and the blade mode shape is the first bending mode. 

In the 3D static case good correlation with the measured da-

ta was found (Table 3). The average solution time for the 3D 

static modal analyses was found to be 100s. 

A pre-stress modal analysis of the rotor with the blades at 

0°, 45° and 90° was done for speeds ranging from 0 to 6000 

rpm. Although the maximum tested speed was only up to 

1000 rpm (for safety reasons), calculations were done up to 

the higher speed to show that some modes are affected by 

centrifugal stiffening (Fig. 13). The results of the analysis 

indicate that torsional frequencies are affected only by rota-

tional speed from approximately 2000 rpm. Modes F2 and F4 

do not appear to be affected by speed. A consistent non-linear 

speed dependency is seen for modes F1 and F2. The average 

solution time for pre-stressed modal analyses is 110s. 

 

 
Table 3. 3D FEA error in static torsional frequencies relative to exper-

imental results. 

 

Blade 

stagger angle 
F1 (%) F2 (%) F3 (%) F4 (%) 

0° -0.7% 0.2% -0.6% 0.0% 

45° -0.1% -0.5% 0.2% 0.1% 

90°  -0.7% -0.5% 0.1% 

no blades  -0.9% -0.8% 0.1% 

Fig. 12. 3D FEA mode shapes of the test rotor. 

Fig. 11. Shaft mode shapes calculated by 3D FEA. 

Fig. 10. Frequency change with blade stagger angle for random 

(ran) and impulse (imp) excitation at a mean speed of 250 rpm. 
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4. Three dimensional cyclic symmetric model (3DCS) 

A 45° cyclic symmetrical model of the rotor was developed, 

maintaining all full 3D model geometry features and including 

one blade. Cyclic symmetrical faces were defined on both 

sides of the segment before meshing to the same level of re-

finement as for the full 3D models. A reduction of more than 

80% in model size was achieved i.e. 10271 elements and 

22401 nodes were defined. Bonded contact was used between 

the rotor and armature shafts and the couplings as was mod-

elled in the full 3D case.  

The properties of the material were kept the same as for the 

full 3D case, including the density and elastic modulus of the 

armature winding and commutator sections. 

The calculated torsional frequencies were similar to those 

obtained by full 3D analysis (Table 4) but required significant-

ly lower solution times i.e. 5 s for the static case and 22 s for 

the pre-stressed case, a reduction of  >80%. 

 

5. One-dimensional FEA approach 

The conventional method used to determine torsional natu-

ral frequencies in bladed rotors is based on what is called the 

one-dimensional finite element approach. This approach re-

quires a significant simplification of the geometry and other 

aspects such as sudden diameter changes, shrunk-on disks and 

flexible blades. Based on previous findings [15], disks were 

assumed to be integral with the shaft. Shaft sections were de-

fined to include additional virtual shaft lengths due to sudden 

diameter changes, as well as taking into consideration the 

effective coupling contact lengths. The densities and elastic 

moduli for the various shaft, disk and motor winding sections 

were based on the same values as those used in the 3D models. 

 

5.1. Shaft sections and sudden diameter changes 

Shaft sections were modelled by using a distributed pa-

rameter approach and finite element discretization. To account 

for sudden changes in diameter, the approach of the British 

Internal Combustion Engine Research Association (BICERA) 

was applied. In this approach, a virtual shaft length (Lv) is 

added to the shaft with the smaller diameter (D1) based on the 

ratio of the shaft diameters (D2/D1) and the ratio of the fillet 

radius to the smaller shaft radius (r/R1). The solid markers in 

Fig. 14 are the discretized points obtained from an original 

BICERA graph provided in [16]. A third-order polynomial 

fitted to these points to obtain the data points shown by open 

 
Table 4. 3DCS FEA error in static torsional frequencies relative to 

experimental results. 

Blade 

stagger angle 
F1 (%) F2 (%) F3 (%) F4 (%) 

0° -0.7% 0.0% -0.6% 0.0% 

45° 0.0% -0.5% 0.0% 0.2% 

90°  -1.0% -0.7% 0.2% 

no blades  -1.0% -1.1% 0.2% 

Fig. 13. Campbell diagrams for rotor with blade stagger angles 

of 0° (a), 45° (b), and 90 ° (c). Correlation between measured 

(meas) and 3D FEA (3D) calculations at 1000 rpm (d). 

(a) 

(b) 

(c) 

(d) 
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markers. The BICERA data is however only provided up to a 

diameter ratio of 3 whereas the disk-to-shaft ratio for the test 

rotor approaches 5. 

3D FEA was used to extend the r/R1 = 0 curve to a diameter 

ratio (D2/D1) of 5. Small differences between the BICERA 

and 3D FEA data were noted in the diameter ratio range of 2 

to 3 (Fig. 15). This may be due to mesh refinement or other 

unknown geometric or measurement factors in the BICERA 

data. Nonetheless, the fit is considered acceptable for this ap-

proach. 

 

5.2. 1D Modelling of blades 

Euler-Bernoulli beam theory with finite element discretiza-

tion was used for modelling the blades and for the component 

mode synthesis approach of coupling blade vibration modes to 

the rotor. Each element has two nodes, each with a transla-

tional and rotational degree of freedom. The elemental mass 

[M] and stiffness [K] matrices are shown below in equations 

Error! Reference source not found. and Error! Reference 

source not found. [17], where me is the elemental mass, L is 

the element length, E is the elastic modulus and I is the area 

moment of inertia. 

The attachment DOFs, xsa and θsa are assumed to be fixed 

for the calculation of the internal modes of a blade (Fig. 16).  

Equations of motion are solved to obtain the eigenvectors and 

eigenfrequencies of the blade substructure from equation (3). 

The resultant eigenvector matrix Φ is an n by g matrix, 

where n is the number of DOFs of the blade substructure and 

g is the number of blade modes used to synthesize the compo-

nent mode/s. 

The transformation matrix, Wi which was used to transform 

the mass and stiffness constraint mode matrices (attachment 

DOF included) from the absolute to the modal coordinate 

system is of the form as presented in equation (4). 

 

(a)  Actual shaft-disc-blade system. 

 

(b) Discretized model. 

 

(c) Coordinate system for model. 

Fig. 14. BICERA compensation factors for sudden diameter change. 

NOTE: Solid markers are discretized points from the original graph and 

the open markers are fitted points. 

Fig. 15. 3D FEA extension of BICERA data for r/R1 = 0. 



    

 

Fig. 16. Discretization of shaft-disk-blade system 
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Φi is the eigenvector of mode i to be transformed and ψ is a 

vector describing the displacements of the internal DOFs of 

the substructure for a unit displacement of the attachment 

DOF. In this case all the blade DOFs, xBn and θBn have to be 

written in terms of the rotor angular DOF, θsa, located at the 

centreline of the shaft by: 

 

 xjnsaBnsaBn Rxx    (5) 

 jnsaBn    (6) 

 

where RBn is the radial distance of node n from the shaft cen-

treline and α is a modal scaling factor. The modal mass (Mrj), 

and stiffness (Krj) matrices for a single transformed mode j are 

obtained from the blade substructure mass and stiffness matri-

ces [MBC] and [KBC] by [18]: 

 

rjjBC

T

j MWMW   (7) 

rjjBC

T

j KWKW   (8) 

 

where the non-diagonal modal mass matrix is of the form: 
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where mtx is the total blade inertia in the x coordinate, mtθ is 

the total blade inertia in the θ coordinate, mri is the modal mass 

for mode j, mcx is the coupled modal inertia in the x coordinate, 

mxθ is the inertia cross-coupling and mxθ is the coupled modal 

inertia in the θ coordinate. A transformation matrix ξ is re-

quired in order to transform the modal properties of mode j 

from the modal to the absolute coordinate system. Let θ
*
R1 be 

the DOF to which the equivalent blade mode will be attached: 
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Setting y equal to the ratio of mcθ and mrj and applying the 

transformation to Mrj the following is obtained when the trans-

lation DOF is also ignored [19]: 
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where y
2
mrj is the equivalent blade inertia (meq) and mtθ-y

2
mrj 

is the residual blade inertia (Δm) 

The same process is conducted for each blade mode and the 

equivalent mode/s inertia and stiffness are attached to the rele-

vant torsional system DOF. The total residual inertia is added 

to the torsional system DOF inertia to which the mode/s are 

connected. Multiple blades are accounted for by neglecting the 

“rigid” shaft modes, i.e. assuming that blades are tuned and 

respond in phase with one another. The blade stagger angle (β) 

is accounted for in the torsional analysis by coupling only the 

tangential components of the eigenvector using the blade sub-

structure mass matrix with attachment DOFs fixed (MB) as 

follows: 

tjB

T

jc Mm     (14) 
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The first two blade modes were coupled and the variation of 

the equivalent inertias and the residual inertia with blade stag-

ger angle are presented in Fig. 17. The equivalent inertia con-

tribution from the first bending mode is significantly more 

than that for the second bending mode. As expected, the 

equivalent tangential inertias for an orientation angle of 90° is 

zero as there is no blade participation in this case. 

 

5.3. Qualitative representation of blade participation 

Small equivalent inertias are calculated in cases where a 

blade vibration mode couples lightly with a shaft torsional 

mode. Moreover, due to numerical errors, very small inertias 

and stiffness values can be calculated in cases where no cou-

pling should exist. In these cases the resultant relative dis-

placement of these blade mode DOFs can be very large and a 

simple plot of the eigenvector will not be representative of the 

level of blade mode participation. It is proposed that the level 

of participation of a blade equivalent inertia at DOF i for 

eigenmode j should be represented on the basis of the relative 

momentum Pij of the vibrating DOF as follows: 
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ij

P

P

1

   (16) 

jijiij FJP    (17) 

 

where n is the total number of DOF, Jiis the inertia in DOF i. 

θij is the torsional displacement if DOF i for mode j and Fj is 

the frequency of mode j. The blade participation factor, γij, is 

then used to scale the blade mode DOF in the normalized 

eigenvector. 

 

5.4. Calculated results 

The calculated frequencies (Table 5) for the cases investi-

gated correlate well with the experimental results (Table 6) as 

well as with the 3D FEA results (Table 7). Frequency change 

with blade stagger angle is shown in Fig. 18. Mode shape 

diagrams for the investigated cases are shown in Fig. 19. The 

relative participation levels of the blade modes B1 and B2 (1
st
 

and 2
nd

 bending) in the shaft modes are indicated by the dark 

vertical lines at the disk #1 position. These lines may extend 

above or below the shaft mode-shape lines and represent 

modes B1 and B2 respectively. The length of the line/s from 

the attachment node (disk #1) is an indication of the level of 

blade participation. 

The solution times for the 1D static modal analyses were 

found to be in the order of 0.3 seconds. 

 

 
Table 5. Calculated frequencies for rotor using 1D approach. 

Blade 
stagger angle 

F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) 

no blades  197.4 347.5 534.9 

0° 151.4 197.6 333.3 534.1 
45° 148.4 197.2 315.3 533.6 

90°  196.8 301.3 533.3 

     
     

 

 

Table 6. Error in 1D model frequencies relative to experimental results. 

Blade 

stagger angle 
F1 (%) F2 (%) F3 (%) F4 (%) 

no blades  -1.3% -1.0% 0.2% 

0° -0.4% -0.2% -0.8% 0.0% 

45° -0.4% -0.9% 0.1% 0.1% 

90°  -1.1% -0.6% 0.0% 

     

     

 

 

Table 7. Error in 1D model frequencies relative to 3D FEA results. 

Blade 

stagger angle 
F1 (%) F2 (%) F3 (%) F4 (%) 

no blades  -0.3% -0.1% 0.0% 

0° 0.2% -0.2% -0.2% 0.0% 

45° -0.4% -0.4% -0.2% -0.1% 
90°  -0.6% 0.1% 0.0% 
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Fig. 18. Frequency reduction vs. blade stagger angle for static  

conditions. 

Fig. 17. Equivalent inertia for coupled blade modes. 
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Fig. 19. Mode-shapes of rotor using 1D analysis 

 

6. Conclusions 

The drive and torsional excitation of small-scale test rotors 

can be successfully conducted using a DC motor and digital 

control system. The characterization of the drive system is 

essential to determine its torsional vibration response and the 

possible effects of such a response on rotor tests. Confidence 

in the accuracy and repeatability of measured vibration fre-

quencies can be gained by measuring the response to multiple 

excitation types. The activation of electro-magnetic fields 

causes a shift in torsional frequencies. This requires dynamic 

testing to ensure that all relevant aspects affecting torsional 

vibration behaviour are captured. The damping of rotor tor-

sional modes is affected by blade stagger and by rotational 

speed. Torsional frequencies are also affected by the blade 

stagger angle as well as high rotational speeds.  

Torsional frequencies calculated with full 3D models with a 

high degree of geometric detail agree well with the measured 

results for static and dynamic conditions. The 3DCS models, 

obtained by simplifying the full 3D models, result in similar 

accuracy (Fig. 20) but have lower solution times. The visuali-

zation of torsional modes is enhanced by 3D modelling which 

also includes rigid shaft modes not available in the 1D ap-

proach. 

Further reduction to 1D models requires a number of sim-

plifications which result in smaller models with low solution 

times but also have a generally reduced accuracy. Blade tor-

sional participation can be accomplished in the 1D approach 

using Euler-Bernoulli beam theory and the component mode 

synthesis technique.  

It is concluded that all three of the FE techniques employed 

in this study are useful, depending on the required accuracy, 

and the available information and resources. In cases where a 

high level of accuracy is required, direct field measurements 

should be used for calibrating or updating the model. 
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Fig. 20. FE model errors relative to experimental results. 
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