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Abstract. Sentinel-2 is intended to improve vegetation assessment at local to global scales.
Today, estimation of leaf nitrogen (N) as an indicator of rangeland quality is possible using
hyperspectral systems. However, few studies based on commercial imageries have shown a
potential of the red-edge band to accurately predict leaf N at the broad landscape scale. We
intend to investigate the utility of Sentinel-2 for estimating leaf N concentration in the African
savanna. Grass canopy reflectance was measured using the analytical spectral device (ASD) in
concert with leaf sample collections for leaf N chemical analysis. ASD reflectance data were
resampled to the spectral bands of Sentinel-2 using published spectral response functions.
Random forest (RF), partial least square regression (PLSR), and stepwise multiple linear regres-
sion (SMLR) were used to predict leaf N using all 13 bands. Using leave-one-out cross vali-
dation, the RF model explained 90% of leaf N variation, with a root mean square error of 0.04
(6% of the mean), which is higher than that of PLSR and SMLR. Using RF, spectral bands
centered at 705 nm (red edge) and two shortwave infrared bands centered at 2190 and 1610 nm
were found to be the most important bands in predicting leaf N. © 2015 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.9.094096]
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1 Introduction

Copernicus, previously known as the Global Monitoring for Environment and Security, is a
European Union initiative established to facilitate the European capacity to provision and use
operational monitoring information for the environment and security. Within the Copernicus
program, the European Space Agency (ESA) is responsible for the development of the
“Space Component,” a fully operational space-based capability to supply earth-observation
data to sustain environmental information services.1 ESA has embarked on the development
of the Sentinel constellation, called the Sentinels (1 to 5). Among the Sentinels, Sentinel-2 com-
prises a high-resolution optical sensor to provide SPOTor Landsat type data for services such as
land management, including for the agricultural industry (food security), forestry, disaster con-
trol, and humanitarian relief operations.2

It is expected that this constellation will contribute to monitoring essential climate3 and bio-
diversity variables.4 For land surface, the essential climate and biodiversity variables include leaf
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area index, fraction of photosynthetically active radiation, biomass, fire disturbance (burned area),
land cover, fraction of vegetation cover, vegetation types, leaf chlorophyll, and leaf water con-
tent.1,5 This list of variables is not only important for climate and biodiversity related monitoring,
but also for local and global vegetation assessment. Sentinel-2 can achieve these because of its
spectral band configurations and improved spatial resolution. The spectral configuration of
Sentinel-2 is comparable with some commercial satellite data such as WorldView-2 and RapidEye
because of the presence of the red-edge band and is made even better by incorporating the short-
wave infrared bands. The common characteristic of Sentinel-2 and the commercial satellites is only
in the inclusion of the red-edge band, which is important for vegetation assessment and monitoring.

Leaf nitrogen (N) is one of the interesting variables for understanding the vitality and quality of
vegetation. Leaf N is known to relate to protein content in the plants,6,7 which is a major nutrient
requirement for animals.8 Leaf N is an indicator of rangeland quality and is crucial for the planning
and management of grazing areas, e.g., determination of carrying capacity, spatial zoning, and
grazing camps. Rangeland quality information is important for understanding ecosystem function
and services. Well managed and improved grazing areas lead to high livestock production, which is
a pillar of the rural economy and livelihoods. Proper management of the communal grazing lands
in the rural areas is more crucial than relying on costly improved or irrigated grasslands for grazing.
Conventional means of assessing leaf N over wider areas is costly in terms of labor and it is time
consuming, for example, to cover every square meter of the ground.9 Remote sensing provides a
proper and more efficient option for wide area assessment of leaf N.

Attempts to estimate leaf N have been successful using field and imaging spectroscopy or
airborne hyperspectral data.10–12 Using hyperspectral technologies, leaf N has been estimated
with acceptable accuracies using statistical analysis based on (1) vegetation indices, (2) full spec-
tra, (3) absorption features, and (4) integrated modeling (combining indices and environmental
variables).11–14 The challenge is that the hyperspectral imagery is only available at a local scale
and is costly. Regional assessment of leaf N has been lagging behind because of the paucity of
satellite data with spectral configurations which are appropriate to detect subtle leaf N variation.
Sensors such as WorldView-2 and RapidEye are among the first operational satellites with a red-
edge band. The red-edge band is known to have a positive relationship with chlorophyll and
nitrogen.15 The use of the red-edge band for the computation of vegetation indices is feasible
for estimating leaf N in peak productivity, when the interaction between biomass and leaf N is
minimal.16,17 On the other hand, Sentinel-2 has a combination of the red edge and shortwave
infrared bands and can accurately estimate leaf N during peak productivity (wet season).

Several statistical analysis techniques were used to estimate vegetation parameters such as
leaf N. Common and simple statistical techniques for estimating leaf N are simple and include
stepwise multiple linear regression (SMLR).16 The latter methods suffer from overfitting and
multicollinearity.18,19 To date, there are a series of machine learning techniques such as random
forest (RF)20 and artificial neural network (ANN) that are also applicable.13,17 These latter tech-
niques were found to be robust and they circumvent the overfitting and multicollinearity problem
when estimating vegetation parameters. Traditionally, machine learning techniques such as RF
and ANN were applied more for classification than for regression analysis.21 RF was found to be
more robust than other parametric regression techniques for estimating vegetation parameters.20

This study intends to test the applicability of all Sentinel-2 bands combined with the conven-
tional and machine learning techniques such as RF to estimate leaf N. The study focused on the
use of full Sentinel-2 bands, because vegetation indices only use the visible and near-infrared red
regions and exclude short-wave infrared. To our knowledge, Sentinel-2 spectral configurations
were not previously assessed to estimate leaf N as an indicator of rangeland quality. The objec-
tive of the study was to assess a potential for the spectral configuration of Sentinel-2 in estimat-
ing leaf N as an indicator of rangeland quality in the savanna ecosystem.

2 Materials and Methods

2.1 Study Area

The study area is in the northeastern part of South Africa in the Lowveld savanna (Fig. 1). The
Lowveld landscape is a low-lying area extending from the foot slopes of the Drakensberg Great
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Escarpment to the west and the Mozambique coastal plain to the east.22 The topography is gently
undulating with flat patches in localized areas and with an average height of 450 m above sea
level. The study area covers a land use transect ranging from protected areas such as the privately
owned Sabi Sands Game Reserve (SGR) and the state-owned Kruger National Park (KNP), to
communal lands in the Bushbuckridge region. The western part of the transect (communal areas)
receives higher mean annual rainfalls (800 mm∕year.) as compared with the eastern side of the
transect (580 mm∕year).22 The annual mean temperature is about 22°C. The dominant geology
includes granite and gneiss with local intrusions of gabbro.22

The gradients of soil moisture and nutrients are important in this area. The soil fertility of the
gabbro areas is higher than that of the granitic ones.22,23 The main vegetation communities
include the “granitic lowveld” and the “gabbro grassy bushveld.”24 In the gabbro patches, grass
species such as Setaria sphacelata dominate the crest while species such as Urochloa mosam-
bicensis dominate the valleys. The gabbro patches are dominated by grass species with a high
productive potential (e.g., U. mosambicensis) compared with the granite-derived soils (e.g.,
Eragrostis rigidior and Pogonarthria squarrosa). The gabbro sites are dominated by fine-leaved
tree species such as Acacia spp., while the granite sites are dominated by broadleaf tree species
such as Combretum spp. and Terminalia spp.22,25

2.2 Field Data Collection

The study area consisted of seven experimental sites which were placed along the land use gra-
dient: two sites in KNP (granite), one site in SGR (gabbro), and four sites in the communal areas
(gabbro, granite) (Fig. 1). The demarcation of the sites was done using 1∶250;000 geology maps
and 2008 SPOT 5 images.26 The site selection process captured the nutrient contrast from low to
high between granitic-derived soils to gabbro-derived soils, respectively, and along the rainfall
gradient. A line transect sampling design was used to collect field data27 in each site. To further
ensure grass biomass variability, transects were laid out to sample both valley and crest land
units. Grass biomass in the savanna ecosystems is also influenced by topography with valley
areas generally having higher grass biomass than crest areas. Along transects, a combination of
purposeful and systematic placement of the sampling plots was done. The distance between the

Fig. 1 Study area locality map with the indication of sites and their geological types.
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plots was between 500 and 1000 m, depending on the accessibility and homogeneity of the area.
The plot size was 30 m × 30 m. A total of 49 plots was surveyed and in each plot three to four
subplots (0.5 m × 0.5 m) were randomly selected to capture the plot’s variability. In each sub-
plot, data on the sample location were collected using the Leica®’s GS20 differential geographic
positioning system (DGPS), as well as the dominant grass species and grass samples. Grass
samples were dried at 80°C for 24 h. The DGPS points were postprocessed using Leica’s
GeoPro software and reference GPS data from the Nelspruit station to produce a less than
1 m positional accuracy. The fieldwork was undertaken in April 2009 toward the end of the
wet season (Table 1), when the grass biomass was at full maximum growth or peak productivity
to minimize the N and biomass interaction effects.17

2.3 Chemical Analysis

The dried grass samples were chemically analyzed at the South Africa’s Agricultural Research
Council-Institute for Tropical and Subtropical Crops-Nelspruit. First, the acid digestion tech-
nique was used, where sulfuric acid was used for retrieving foliar N concentrations.28–30

Second, the colorimetric method by autoanalyzer was used to measure foliar N (Technicon
Industrial Method 329-74 W; Technicon Industrial Systems, Farrytown, New York). For foliar
N measurements, an emerald-green color was formed by the reaction of ammonia, sodium
salicylate, sodium nitroprusside, and sodium hypochlorite. The ammonia-salicylate complex
was read at 640 nm. These extraction methods were successfully used for leaf N retrieval.11,12

2.4 Spectral Measurements

The reflectance spectra were measured in the field using an Analytical Spectral Device (ASD)
spectroradiometer, Fieldspec 3®. The ASD spectral domain ranges from 350 to 2500 nm, with a
1-nm band width. Within each plot, spectral measurements were made for each of the three to
four randomly selected subplots. In each subplot, five spectral measurements were taken and
later averaged to account for illumination and grass canopy structural differences as well as
bidirectional effects.31,32 The measurements were taken between 10:30 a.m. and 3:00 p.m.
on clear sunny days to minimize cloud effects and maximize illumination.33 A 25-deg field-
of-view fiber optic was used. The fiber optic pistol was held at 1 m above the ground and
at nadir to cover the entire subplot. A Spectralon reference panel was utilized before each meas-
urement to calibrate the sensor and convert the spectral radiance to reflectance.11

Table 1 Days for field sampling and spectral measurements.

Sample name Date Geology types Land use Measurementsa

L1 (G1-5) April 17, 2009 Granite Protected area X

L2 (G1-4) April 01, 2009 Granite Protected area X

L2 (G4-5) April 08, 2009 Granite Protected area X

L4 (G1-6) April 15, 2009 Gabbro Communal area X

L4 (G7-10) April 16, 2009 Gabbro Communal area X

L5 (G1-5) April 18, 2009 Gabbro Communal area X

L6 (G1-5) April 07, 2009 Gabbro Communal area X

L7 (G1-6) April 06, 2009 Granite Communal area X

L8 (G1-4) April 02, 2009 Granite Communal area X

L8 (G5-6) April 03, 2009 Granite Communal area X

L8 (G7-9) April 04, 2009 Granite Communal area X

aField sampling and spectral measurements were done concurrently.
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2.5 Data Analysis

A test for normality of leaf N was done using the Shapiro–Wilk normality test implemented in
R.34 The Shapiro–Wilk normality test was selected because it is commonly used.11 The spectral
measurement data acquired using the ASD were convolved to the spectral band configuration of
Sentinel-2 using the expected spectral response function of Sentinel-2.35 Band centers and
widths are presented in Table 2.

To predict leaf N and assess the Sentinel-2 data, several regression techniques were used,
RF,36 SMLR, principal component analysis (PCA), and partial least square regression (PLSR).
SMLR, PCA, and PLSR have been widely used for predicting vegetation parameters, including
leaf N.12,14,16 RF was implemented from the RF package programmed in the R statistical envi-
ronment.37 RF technique was successfully used with remote sensing to predict wetland species
biomass,20 plant water content,38 and for species classification.21,39,40 RF is a machine learning
method developed to improve the classification and regression trees method (CART) by using a
large set of decision trees. RF builds each tree by using a deterministic algorithm selecting a
random set of variables and a random sample from the calibration datasets. There are three main
variables that need to be parameterized: ntree, number of regression trees grown based on a
bootstrap sample of observation (the default value is 500 trees);mtry, number of predictors tested
at each node (default is the square root of the total number of variables); and nodesize, minimal
size of the terminal nodes of the trees (the default value is one). These variables need to be well
defined.20 In this study, RF parameterizations were as follows: ntree used was a default value ¼
500, nodesize was a default value ¼ 1, and mtry ¼ 1. The optimization of the number of var-
iables required to predict leaf N was determined using a recursive feature selection based on
leave-one-out cross validation (LOOCV)41 and the root mean square error (RMSE). The conven-
tional application of RF is outlined by Breiman36 and Mutanga et al.20 For RF, the variable of
importance was used to determine the importance of each predictor by measuring the percentage
increase in the mean square error when the out-of-bag data for each variable is permuted, while
the others are unchanged.20 These variable importance values are then used to rank the predictors
in terms of their relationship to response variables. The higher the variable of an importance
score or value, the higher is the importance of that particular variable in the model. For PLSR,
the optimum numbers of factors or latent variables used for predicting leaf N were achieved
through LOOCV, depicted with the lowest RMSE.12 For SMLR, significant variables were

Table 2 Band centers and spectral width for the Sentinel-2 sensor.

Bands Center λcenter (nm) Spectral width Δλ (nm)

1 443 20

2 490 65

3 560 35

4 665 30

5 705 15

6 740 15

7 783 20

8 842 115

8a 865 20

9 945 20

10 1375 30

11 1610 90

12 2190 180
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selected using the Akaike Information Criterion (AIC), based on the lowest AIC value.16 For
PCA, 10 principal components were derived from 13 wavelengths because they explained the
high variance of the data, and the first three components explained the most variance. Finally the
SMLR process was undertaken to estimate leaf N, as per Ramoelo et al.16

The RF, SMLR, PCA, and PLSR model validations were done using LOOCV because of the
small sample size. In cross validation, prediction of individual samples is estimated by the
remaining samples. For example, if there are 20 samples, each sample will be predicted by
19 samples iteratively to determine the performance of the model. Merits of the cross validation
are the capability to detect outliers and the ability to provide unbiased assessment of the pre-
diction error.42 The statistical measures of precision and accuracy such as the coefficient of deter-
mination (R2) and RMSE were determined.

3 Results and Discussions

The variability of leaf N is relatively low, with a coefficient of variation (CV) equal to 26%. The
average leaf N is 0.7, which is relatively low for grasses (see Table 3). The normality test was
done using the Shapiro–Wilk normality test implemented in R, and the results indicated that leaf
N is not normally distributed (W ¼ 0.9816, p ¼ 0.6347). Leaf N distribution is influenced by a
number of factors, including geology and soil types, topography, fire regimes, and climatic fac-
tors.14,22,43 For example, rainfall gradient from east (low) to west (high) could have played a
major role in the distribution of leaf N, and hence, the high variability of leaf N.

The Sentinel-2 convolved reflectance data and the RF model explained 90% of the variation
of leaf N with an RMSE of 0.04%, which is 6% of the mean (Fig. 2). The SMLR model
explained about 61% of leaf N variation, which is better than the PCA and PSLR models.
RF is a nonparametric model which makes no assumption about the data distribution. By the
nature of the model, a well-optimized RF minimizes overfitting and multicollinearity when pre-
dicting variables. These advantages make RF a predictor of superior performance and popularity
than the parametric predicting models. The performance of RF was tested for predicting several
vegetation parameters and showed superior results, e.g., wetland species biomass20 and plant
water content.38 The study used LOOCV as means for validating the models because of the
limited number of samples. Several studies used cross-validation techniques to evaluate models
and these are said to be an unbiased means of validation.41 Figure 2 also shows that lower values
were overestimated, while higher values were underestimated. Mutanga et al.20 discovered sim-
ilar patterns especially for higher values of biomass and indicated that there is a need to further
investigate this phenomenon. It is indeed true that further investigation is required to solve this
problem. The underperformance of PCA and PLSR could be due to the fact that only 13 bands
were used. Though almost 50% of the factors were optimally selected, the limited number of
bands could have influenced the results. PLSR and PCA techniques are developed for the analy-
ses with a high dimensionality of data, e.g., field and imaging spectroscopy. Ramoelo et al.11 and
Huang et al.10 found out that PLSR yielded a higher prediction capability as compared with
SMLR. In this study, SMLR yielded a higher prediction accuracy as compared with PLSR
solely because of the low dimensionality of data, which reduces the chances of overfitting
and multicollinearity.

Two of the most important variables for predicting leaf N is the red-edge band centered at
705 nm and the SWIR bands centered at 2190 and 1610 nm based on the RF model (Fig. 3).
SMLR picked similar bands excluding 1610 nm, including the second red-edge band. Hyper-
spectral studies demonstrated the utility of the red-edge inflation point for estimating leaf bio-
chemicals.15,44 This information is captured by the red-edge band featured in the multispectral

Table 3 Descriptive analysis of leaf nitrogen.

Min (%) Max (%) Average (%) SD CV (%)

Leaf nitrogen 0.34 1.06 0.7 0.19 26

SD = standard deviation; CV = coefficient of variation.
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sensors. In the multispectral sensors such as RapidEye, the red-edge band was crucial for assess-
ing leaf N at a regional scale.16 The red-edge band is related to leaf chlorophyll.15 On the other
hand, leaf chlorophyll is related to leaf N.15,45 The second red-edge band centered at 740 nm was
the least important variable for predicting leaf N. The first red-edge band (705 nm) is positioned
at the onset of the high reflectivity portion of the vegetation response and is crucial for plant
health estimation (e.g., leaf N or chlorophyll), while the second red-edge band is influenced by
the combined effects of plant health (e.g., leaf N or chlorophyll) and the vegetation structure
(e.g., leaf area index and biomass).15,46

Using RF, two Sentinel-2 shortwave infrared bands centered at 1610 and 2190 nm, were
selected as important bands (Fig. 3). The 2190 nm band was also selected using SMLR
(Table 4). According to the list of the known absorption features in Curran,18 1610 nm is
close to the feature around 1690 nm, which is related to lignin, starch, and protein, while
2190 nm is close to the feature around 2180 nm, which is associated with protein or nitrogen.
The 2190 nm band is more important than 1610 nm band as per ranking in Fig. 3, because the
2180 nm feature is mainly associated with protein and nitrogen. Leaf N is positively related to
protein.47 These absorption features have been successful in the estimation of leaf N using field
and imaging spectroscopy.11,17,19

Fig. 2 Leaf N prediction capability of Sentinel-2 and random forest (RF), which is the best perform-
ing model.

Fig. 3 Important variables in predicting leaf N using Sentinel-2 simulated data and RF.
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One to two decades of field and imaging spectroscopy or hyperspectral studies led to the emer-
gence of new sensors such as the planned Sentinel-2. These sensors (constellation, planned 2 sat-
ellites) are unique because of the strategic placement and configurations of the wavelengths to
characterize or sample the radiation. As with the commercial sensors on-board RapidEye and
WorldView-2, Sentinel-2 is planned to have two red-edge bands. In addition to this, two strategi-
cally placed bands in the short-wave infrared make it unique as compared with commercial sensors
such as RapidEye andWorldView-2. Interestingly, the strategically placed bands are crucial for the
assessment of the rangeland quality. Assessment of leaf N with high accuracy also proves that it
could be useful for crop health assessment. According to ESA, Sentinel-2 is likely to be free for
Africa, and this will provide opportunities to assess leaf N from regional to global levels.

4 Conclusions

This study demonstrated a potential for simulated Sentinel-2 reflectance data to estimate leaf N
using RF. Cross-validated statistics from RF showed that Sentinel-2 simulated data can explain
about 90% of leaf N variation. SMLR achieved the second best results in the estimation of leaf N
using Sentinel-2 data. PCA and PLSR yielded the lowest performances mainly because of the
low dimensionality of their data. PCA and PLSR perform better when exploratory variables are
in their tens to hundreds and even thousands, especially using spectroscopy or hyperspectral
data. Using RF and SMLR, both red-edge bands and SWIR were selected, showing the impor-
tance of these bands in the multispectral data. Currently, red-edge bands are only available in
commercial sensors such as WorldView-2 and RapidEye, but Sentinel-2 shall provide ease of
access of these data for vegetation assessment. Sentinel-2 will provide data with similar spectral
configurations as WorldView-2 and RapidEye, which are cutting edge technology, and this will
facilitate the estimation of leaf N as an indicator of rangeland quality at a wider scale and in a cost
effective manner. The emergence of Sentinel-2 data shall provide an opportunity to assess grass
quality for the planning and management of rangeland systems.
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