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Abstract 

The study focus on the analysis of extreme precipitation events of the present and future climate over southern Africa. 

Parametric and non-parametric approaches are used to  identify and analyse these extreme events in data from the 

Coordinated Regional Climate Downscaling Experiment (CORDEX) models. The performance of the global climate 

model (GCM) forced regional climate model (RCM) simulations shows that  the models are able to capture the 

observed climatological spatial patterns of the extreme precipitation. It is also shown that the downscaling of the present 

climate are  able to add value to the performance of GCMs over some areas and depending on the metric used. The 

added value over GCMs justify the additional computational effort of RCM simulation for the generation relevant 

climate information for regional application.  In the climate projections for the end of twenty-first Century (2069-2098) 

relative to the reference period  (1976-2005), annual total precipitation is projected to decrease while the maximum 

number of consecutive dry days increases. Maximum 5-day precipitation amounts and 95th percentile of precipitation 

are also projected to increase significantly in the tropical and sub-tropical regions of southern Africa and decrease in the 

extra-tropical region. There are indications that rainfall intensity is likely to increase. This does not equate to an 

increase in total rainfall, but suggests that when it does rain, the intensity is likely to be greater.  These changes are 

magnified under the RCP8.5 when compared with the RCP4.5 and are consistent with previous studies based on GCMs 

over the region.  
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1 Introduction 

Increases in atmospheric greenhouse gas concentrations are expected to result not only in changes in mean climate, but 

also to changes in climate variability and extreme weather conditions (Seneviratne et al, 2012). Countries in southern 

Africa are  particularly vulnerable to extreme (weather or climate) event such as droughts, floods,  tropical cyclones and 

heat waves because of low adaptive capacity due to limited  access to information, finances, technology, and capital 

assets. Disasters caused by  extreme events in southern Africa are estimated to have caused in around US$ 10 billion of 

economic losses since 1970-2012 (WMO, 2014). Thus, understanding the  changes in extreme events that may occur 

under future climate is an important input  for adaptation planning and policy making. There is increasing evidence 

from observed trends that extreme precipitation events are becoming more frequent and more  severe (e.g. Alexander 

and Arblaster, 2009; Groisman et al, 2005; Donat et al, 2013). For example, Fauchereau et al (2003) identified regions 

of South Africa which experienced more extreme precipitation events in the later decades of the 20th Century. 

Groisman et al (2005) empirically assessed the observed changes of very heavy precipitation (upper 0.3% of daily 

precipitation events) during 1906-1997 over eastern  parts of South Africa. The authors found a statistically significant 

increases in the  frequency of very heavy precipitation. Kruger (2006) found an increase trends in the  number of 

extreme rainfall days in the Eastern Cape, southern Free State and parts  of KwaZulu-Natal. And results from climate 

models suggest that these trends will  continue worldwide under enhanced greenhouse conditions (e.g. Kharin and 

Zwiers,  2000, 2005; Shongwe et al, 2009; Sillmann et al, 2013b). Mason and Joubert (1997)  using a global climate 

model (GCM) found an increase in the magnitude of extreme  daily rainfall events with return periods of 10 and 30 

years over the entire southern  Africa. Results were similar for changes in the frequency and intensity of precipitation 

extreme events of five-day duration even in areas where decreases in mean annual  rainfall were simulated. Shongwe et 

al (2009) and Shongwe et al (2011) using an ensemble of 12 GCMs found projected increases in in heavy precipitation 

intensity and  mean precipitation rates in east Africa, more severe precipitation deficits in the southwest of southern 

Africa, and enhanced precipitation further north in Zambia, Malawi, and northern Mozambique. However, robust 

information on changes in the characteristics of future extreme precipitation to be used at local scales remains uncertain 

because the spatial distribution of rain gauges is not adequate enough to allow the description of local and regional 

characteristics of daily precipitation. In addition to this model grid resolution are often too coarse to resolve extreme 

precipitation causing systems convective in nature, primarily due to dynamics and parameterizations related to their 

coarse spatial resolutions (Wilby and Wigley, 1997; Hudson and Jones, 2002). Thus, a regionalization process to 

resolve small scale weather events can improve the ability to model extreme precipitation. This is usually achieved 

through either statistical or dynamical downscaling (Hewitson and Crane, 1996). And in order to sample the uncertainty 

associated with future projections of climate, multi-model GCM/RCM/statistically downscaled ensembles are required 

(Hewitson et al, 2013).  

In recent years, the World Climate Research Program (WCRP) Coordinated Regional Downscaling Experiment 

(CORDEX) (Giorgi et al, 2009) has been established in order to provide a global coordination of regional climate 

downscaling to explore the future climates of the defined regions, and to contribute to the information needs of climate 

change adaptation and impact assessment. Within CORDEX, an ensemble of RCMs for Africa, forced by ERA-Interim 

reanalysis has been completed at grid resolutions of 0.44 degrees (about 50 km). The first set of present-day CORDEX 

simulations using ERA-Interim reanalysis and GCMs at the boundaries has been analyzed in detail by Nikulin et al 

(2012); Endris et al (2013); Kalognomou et al (2013); Kim et al (2013); Hernandez-Diaz et al (2013); Panitz et al 

(2014); Gbobaniyi et al (2014), which they focused mostly on precipitation climatology. These authors confirm the 

ability of the RCMs to capture the broad precipitation characteristics, however biases remain and are found to be 
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specific to individual models, regions and seasons. Their results show that the multi-model average generally 

outperforms any individual simulation and that the RCMs significantly improve the precipitation climate. Klutse  et al 

(2015) analysed some characteristics of daily rainfall and also found that the multi-model ensemble average 

outperforms most of the individual RCM members in terms of mean precipitation climatology, intensity, and frequency 

of wet days and to a lesser extent the 95th percentile. In this study we evaluate the ability of the CORDEX RCMs to 

simulate precipitation extremes and present the projections for the end of 21st Century over southern Africa. This study 

is the first one focusing on the assessment/projections of extreme precipitation using data form two CORDEX RCMs 

publicly available at the time of the analysis. The paper is organized as follows: section 2 gives a brief description of the 

models, observational dataset and methodology used. In section 3, comparisons between observed and simulated 

precipitation with  respect to climate indices and return values and future changes are presented. In section 4, we present 

the conclusions.  

2 Datasets 

Model data 

We analyse downscaled daily precipitation from two RCM simulations that were available at the time of analysis in the 

CORDEX project. The Rossby Center (SMHI) regional climate model (RCA4, Dieterich et al (2013)) and the 

Consortium for Small-scale Modeling (COSMO) Regional Climate Model (COSMO-CLM, Panitz et al (2014)) were 

used to downscale four GCMs from the new CMIP5 global climate projections, namely, CNRM-CM5, EC-EARTH, 

HadGEM2-ES, and MPI-ESM-LR. All simulations were performed at a grid resolution of 0.44°x 0.44°over the same 

Africa domain (see auxiliary material, Figure S1). For a more detailed description of the models the reader is referred to 

Dieterich et al (2013) and Panitz et al (2014). The GCMs projections are forced by the Representative Concentration 

Pathways (RCPs, Moss et al (2010)). The RCPs are prescribed greenhouse-gas concentration pathways throughout the 

21st century, corresponding to different radiative forcing stabilization levels by the year 2100. Two RCPs are available, 

RCP4.5 and RCP8.5, which represent a mid and a high-level emission scenario respectively. RCP4.5 corresponds to a 

radiative forcing after 2100 of approximately 4.5 W/m2 , equivalent to ~650 ppm CO2 , which is larger than that in the 

SRES (Special Report on Emissions Scenarios) B1 scenario (~550 ppm) and lower than that in the SRES A1B scenario 

(~720 ppm). RCP8.5 corresponds to a rising radiative forcing pathway leading to 8.5 W/m2 in year 2100 equivalent to 

~1370 ppm CO2 (Moss et al, 2010). Common to all simulations is the use of ERA-Interim reanalysis (Dee et al, 2011) 

as driving data for the period of 1989-2008 to assess the structural bias of the RCMs (e.g. Nikulin et al, 2012;  

Kalognomou et al, 2013). 

Observations 

Due to scarce daily precipitation gauge datasets over Africa, few examples of work related to observed changes in 

extreme precipitation are available in the literature (e.g. New et al, 2006), and these observed dataset are insufficient for 

quantifying model biases as a consequence of limited spatial and temporal coverage of station. Gridded rainfall data 

based on gauge-satellite products are an alternative for evaluating climate models (e.g Shongwe et al, 2009; Sylla et al, 

2013; Nikulin et al, 2012). However, discrepancies exist across different datasets as a result of stations availability, 

extraction algorithms, merging and interpolation techniques (Sylla et al, 2013; Nikulin et al, 2012; Kalognomou et al, 

2013). Sylla et al, 2013 found that the satellite-derived precipitation dataset Global Precipitation Climatology Project 
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One-Degree Daily (GPCP 1DD Version 1.1, Huffman et al, 2001) and the 0.25° latitude-longitude resolution Tropical 

Rainfall Measuring Mission (TRMM 3B42 version 6, Huffman et al (2007) exhibit substantial systematic differences in 

mean rainfall and especially in frequency of wet days, intensity, and extremes as well as maximum length of wet and 

dry spells. And the GPCP 1DD Version 1.1 is more consistent with other observations and produces values within the 

range of other observational datasets. For model evaluation, we used the newer version GPCP 1DD Verion 1.2 dataset 

as reference available for the period 1997-2005. In addition the TRMM 3B42 version 7 available for the period 1998-

2005 was also used. Our model evaluation analysis is carried out by considering a common period across the 

observation and the simulations (1997-2005) and the two observed dataset were remapped through bilinear interpolation 

to the common grid ( 0.44°latitude-longitude) of the models. While the climate projections are for the end of 21st 

Century (2069-2098) relative to 1976-2005 period. 

 

3 Methodology 

For the study of extreme weather events we used both parametric and non-parametric approach. In the non-parametric 

approach extreme precipitation indices were estimated from the empirical distribution of the daily data. These indices 

characterize moderate extreme events with re-occurrence times of a year or less (Klein Tank et al, 2009). Six indices 

from the Expert Team on Climate Change Detection and Indices (ETCCDI) that are based on daily precipitation were 

selected and these have been widely used in detection, attribution, and projection of changes in climate extremes (e.g., 

Alexander and Arblaster, 2009; Donat et al, 2013; Sillmann et al, 2013b). Detail of these indices are shown in Table S1 

(See auxiliary material) , and a full descriptive list of the indices can be found on the ETCCDI website 

http://etccdi.pacificclimate.org/list_27_indices.shtml. All indices are calculated on an annual basis for both historical 

and scenario simulations. The parametric approach based on the Extreme Value Theory (EVT) (see Coles, 2001) 

complements the descriptive indices in order to evaluate the intensity and frequency of rare events that lie far in the tails 

of the probability distribution of weather variables (e.g. events that occur once in 20 years). The EVT approach has 

been used in hydrology (e.g., Katz et al, 2002), atmospheric science (e.g., Palutikof et al, 1999), finance and insurance 

(e.g., Embrechts et al, 1997) and many other fields of applications. In this study the EVT approach follows that of 

Zwiers and Kharin (1998) and Kharin and Zwiers (2000). Annual precipitation maxima at the selected durations (1 day) 

and return periods (20 years) were estimated using the generalized extreme value (GEV) distribution. The GEV 

distribution parameters for each grid cell over southern Africa are estimated by the method of L-moments (LMOM) 

(Hosking, 1990) with the feasibility modification of Dupuis and Tsao (1998). The approach based on LMOM is less 

biased toward outliers present in the dataset (Hosking, 1990). To examine whether the GEV distribution is able to 

represent precipitation annual maxima, a standard Kolmogorov-Smirnov (KS) goodness-of-fit is applied. Since the 

GEV distribution parameters are estimated from the data the critical values taken from statistical tables should not be 

employed (von Storch and Zwiers, 1999). In this case, more appropriate estimates of the critical values are determined 

by parametric bootstrap procedure (e.g., Kharin and Zwiers, 2000). In this procedure 500 samples of the same size as 

observed or modelled series of annual maxima are generated from the fitted GEV. Further analysis on the RCMs 

performance considered are the added value (AV), which is defined as a measure of the difference between the large 

scale forcing (BC) and the downscaled RCM squared errors (e.g. Di Luca et al, 2012) and 

was computed as:  

𝐴𝑉 =
(𝑋𝐵𝐶−𝑋𝑂𝐵𝑆)

2−(𝑋𝑅𝐶𝑀−𝑋𝑂𝐵𝑆)
2

𝑀𝑎𝑥((𝑋𝐵𝐶−𝑋𝑂𝐵𝑆)2,(𝑋𝑅𝐶𝑀−𝑋𝑂𝐵𝑆)2)
 (1) 
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where, XBC , XOBS and XRCM represents the index calculated from the BC (ERA-Interim or GCM), observation (GPCP), 

and RCMs, respectively. The normalization is introduced so that -1 ≤ AV ≤ 1 (e.g. Dosio et al, 2015). It is worth 

mentioning that for this analysis, only GPCP is used in the spatial distribution of the added value. A positive value of 

AV provides a measure of the added value afforded by dynamical downscaling with an RCM. Although RCMs are 

capable of adding value to the forcing global climate models, there is a limit to what can be corrected by the 

downscaling of imperfect driving conditions. For instance, Dosio et al (2015) showed that CCLM not always improves 

on the GCM seasonal climatology, but found that the number of consecutive wet days (i.e., daily precipitation > 1 mm) 

and dry days, and the number of intense precipitation events (i.e., number of rainy days when precipitation exceeds the 

95 th percentile) are better reproduced by CCLM. The centered pattern correlation coefficient (PCC) is also calculated, 

and it indicates how well the spatial pattern is captured. Both GPCP and TRMM are used to account for uncertainties in 

the observed daily precipitation products. 

4 Results 

Simulated precipitation extreme 

The spatial distribution of total annual wet-day precipitation (PRCPTOT) over southern Africa is shown in figure 1 for 

GPCP (fig. 1a), TRMM (fig. 1b), CCLM(ERA-INT) (fig. 1c), RCA4(ERA-INT) (fig. 1d), each of the ensemble 

members (fig. 1e,l) and the multi-model ensemble mean (fig. 1m). The multi-model ensemble mean is the average of 

the CCLM and RCA4 driven by the GCMs. The stippling in figures 1 and 2 represents areas where there is added value 

in the indices from the RCMs compared to the indices from ERA-Interim and GCMs for the reference period. In both 

observed data sets GPCP and TRMM, PRCPTOT maxima are located over the complex terrain of eastern part of South 

Africa, Mozambique and the northern parts domain along the Inter-tropical Convergence Zone (ICTZ). Differences can 

be found across the observation datasets with regard to the magnitude and spatial extent of PRCPTOT. GPCP shows 

higher PRCPTOT over northern Angola and northern Mozambique. The PCC exceeding 0.9 is found between GPCP 

and TRMM indicating a good level agreement in PRCPTOT patterns. Comparing both observed datasets with RCMs, it 

is found that the main features of the climatological pattern of PRCPTOT is reasonably captured. In particular the west-

east gradient in precipitation totals over South Africa and the band of relatively low precipitation that stretches from 

Namibia in the west over Botswana to Zimbabwe. The CCLM underestimates the actual magnitude of PRCP-TOT both 

in ERA-Interim and individual GCM forced runs, especially over the east part of the domain. This underestimation of 

PRCPTOT might be caused by the misplacement of the monsoon rainbelt by the driving GCMs and an underestimation 

of associated rainfall intensity (Panitz et al, 2014; Dosio et al, 2015). A common tendency to overestimate PRCPTOT 

over the Lesotho highlands and Drakensburg areas is found in all simulations, an area that is known to be problematic 

for RCMs due to the complex topography (e.g. Engelbrecht et al, 2009; Kalognomou et al, 2013). The RCA4 forced by 

individual GCMs generally overestimate PRCPTOT over most of southern Africa, and the effect of topography is more 

evident in this model. Over the northwest region rainfall is overestimated and is likely influenced by the simulation of 

the atmospheric circulation patterns over the region (e.g. Angola low), which could lead to an increased moisture input 

from the Atlantic Ocean into the domain. For the pattern correlation of PRCPTOT, averaging across models gives better 

PCC (0.76) with observations than any individual model as a result of the cancellation of spatial errors from the 

individual model simulations. This limited sample suggests that the use of multi-model ensembles using different 

RCMs driven by different GCMs might provide an optimal approach to the provision of climate change scenarios over 
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Fig. 1: Total annual wet day precipitation (PRCPTOT) for the period 1997–2005 for (a) GPCP, (b) TRMM 
(1998–2005), CCLM forced by (c) ERA-Int. and different GCMs (e–h), RCA forced by (d) ERA-Int. And 
different GCMs (i–l) and (m) multi-model ensemble mean of CCLM and RCA4 forced by GCMs. Stippling 
indicates grid points where there is added value by the dynamical downscaling. Squares in (a) indicate the 
locations of the evaluation regions. The top left number is the PCC with GPCP and the bottom left with TRMM
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Southern Africa. It is also observed that the downscaling by both CCLM and RCA4 improves the performance of the 

GCMs for most parts of southern Africa with the exception of the eastern region of the domain. For this particular 

region, GCMs produce reasonable precipitation pattern amounts as a result of overestimation of frequency of wet days 

(e.g. Sun et al, 2006). The RCM downscaled simulations improves the GCMs frequency of wet days (see auxiliary 

material, Figures S2). This supports the idea that RCM are able to resolve processes and feedbacks that operate at a sub-

grid scale GCM resolution (e.g. Giorgi, 1990; Di Luca et al, 2012). Although the RCMs offer some improvements in 

precipitation frequency compared to the driving GCMs, the best performances are captured in their ensemble mean with 

PCC of 0.89.   

The general pattern of the maximum number of consecutive dry days (CDD) is reasonably well represented in the 

simulations (see auxiliary material, Figures S3). However, the magnitude of CDD is overestimated over the central 

areas of the domain in both RCMs forced by ERA-Interim and the downscaling does not add value for this index. This 

is likely because the ERA-Interim captures synoptic states associated with dry days (e.g. high pressure systems) and 

consequently the precipitation field reflects observed CDD, whereas the RCMs may be overly responsive to high 

pressure forcing during the spring and autumn seasons. However, there is still added value in the downscaled GCM 

data. A comparison of model ensembles with observation data shows that both CCLM and RCA are closer to the 

TRMM data.  

The spatial distribution of heavy precipitation days (r10mm) (see auxiliary material, Figures S4) is similar to the spatial 

pattern of PRCPTOT. Both GPCP and TRMM indicate a good level of agreement with PCC exceeding 0.9. The r10mm 

events are generally underestimated/overestimated as described for PRCPTOT. 

The pattern of precipitation on very wet days (R95pTOT) is similar to that of PRCPTOT, showing a decrease from east 

to the very dry region in the west (Fig. 2). Although the magnitude of R95pTOT is overestimated compared to GPCP 

and TRMM, the RCM downscaled simulation improves the GCM results except in the central parts of the domain and 

southern Mozambique. The ensemble mean is closer to the TRMM data (PCC=0.82) than GPCP (PCC=0.78). The 

spatial distribution of the maximum 5-day precipitation (RX5day) (see auxiliary material, Figures S5) and precipitation 

intensity (SDII) (see auxiliary material, Figures S6) are generally better represented in RCA4 than in CCLM. Both 

indices are overestimated over the northern parts of the domain.  

Spatial patterns of the estimated 20-year return value for GPCP, TRMM, both RCMs driven by the ERA interim and 

ensemble mean of both RCMs driven by GCMs is shown in figure S7 in the auxiliary material. The Kolmogorov-

Smirnov goodness-of-fit test indicate that at the 5% significance level, there are no rejections grid boxes. This indicates 

that the GEV distribution is a reasonable approximation for a distribution of annual precipitation maxima. The PCC of 0 

indicate a poor level of agreement between GPCP and TRMM datasets. The magnitude of 20-year return value is 

generally higher in the TRMM than in GPCP. The spatial pattern from the downscaled  models show a complex 

structure defined by local topographical conditions. The individual RCMs driven by GCMs reproduce the 20 year return 

values with varying magnitude. However, they show a coherent spatial distribution of precipitation extreme and there is 

minimal spread between the members of the ensemble driven by the same RCM. The RCMs consistently simulates 

maximum 20-year return values  to the east of the region, whereas minima occur to the very dry region to the west. 

CCLM simulates maximum 20-year return values over the north of the continent which is not seen in neither the GPCP 

and TRMM data nor RCA4. The RCA4 forced runs are in good agreements with the observed 20-year return value 

estimated from the GPCP and TRMM data compared to the CCLM runs. The pattern correlation is lower compared 

with the pattern correlation of moderate extremes suggesting that rare extremes are not well captured by these models.  
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Fig. 2: Same as Fig. 1 but for annual total precipitation greater than or equal to the daily 95th percentile 
(R95pTOT)
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A more detailed regional analysis of moderate extremes is shown in figure S8 in the auxiliary material. Regional 

averaging were done taking into account only grid points over land for each sub-region. Three sub-regions are used as 

defined in Kalognomou et al (2013) and shown here in Fig. 1a. The magnitude of extreme precipitation indices decrease 

from region 1 to region 3 miming the west-east gradient of the total annual precipitation over the region. Both GPCP 

and TRMM represent each indices with varying magnitudes. For most indices, the difference between TRMM and 

GPCP is not as large as the intermodel spread. For R95pTOT and RX5day both GPCP and TRMM are similar and are 

generally overestimated by the models except for RCA4(ERAINT) and CCLM(ERAINT) over region 3. The ensemble 

median of r10mm is closest to GPCP. The largest difference between GPCP and TRMM is found in region 1 for CDD, 

PRCPTOT and r10mm. This might be due to the dry precipitation bias on the TRMM dataset in the entire north part of 

southern Africa during the wet season compared to GPCP (e.g. Nikulin et al (2012)). 

Projected changes in extreme precipitation 

In this section, the ensemble mean of the downscaled projected changes for the end of 21st century of precipitation-

based indices are discussed. Changes that are not significant at the 5% significance level are indicated by stippling. The 

significance of the changes was tested with a Student-t test. Changes in moderate extremes under RCP4.5 and RCP8.5 

are shown in Fig. 3 and 4, respectively. There are significant decreases in annual PRCPTOT projected over most of 

South Africa, southern Botswana and Zimbabwe under the RCP4.5 scenario. Under RCP8.5 the projected magnitude of 

the decrease is greater and covers a wider spatial area that also includes Namibia, Angola and Mozambique. In general, 

the maximum number of CDD is projected to increase over the entire subcontinent with longer dry spells projected over 

Namibia, Botswana, northern Zimbabwe and southern Zambia. Increases in CDD over southern Africa were also found 

in Giorgi et al (2014) for the period of 2071-2100 compared to 1976-2005. Reductions in PRCPTOT together with 

increases in CDD have implications for seasonal precipitation onset in southern Africa (e.g. Tadross et al, 2005) and is 

likely to have negative impacts in agriculture, particularly in the areas of traditional rain-fed agriculture and water 

resources. The R95pTOT and RX5day indices generally increase over the northern region of the domain but decrease in 

the south western parts of South Africa. R10mm are projected to decrease in most of southern Africa. Across most of 

southern Africa a significant increases in SDII is projected fot both scenarios with the spatial extent and magnitude 

greater under RCP8.5. 

The ensemble median of the projected changes in rare extreme precipitation (20- year return values) for the late 21st 

Century for both RCPs is shown if Figure S9 (see auxiliary material). The significance of projected changes is evaluated 

using the non-parametric Wilcoxon signed rank test, which tests whether the multimodel median change is zero. 

Changes that are not significant at the 5 ì significance level are indicated by stippling in the maps of projected changes. 

A general increase in the magnitude of the 20 year extreme precipitation event is projected over the central and eastern 

parts of southern Africa and a decrease over western parts of South Africa and central and southern Namibia. This 

pattern of change in extreme precipitation is projected consistently across both scenarios although the magnitude of 

increases are generally higher under RCP8.5 in areas where the change is positive. However, these changes are not 

statistically significant over southern Africa. The projected increases in return periods imply more frequent recurrence 

and less time between extreme events. 
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Fig. 3: Projected multi-model mean changes in moderate extreme events for the period of 2069–2098 under RCP4.5 emission scenario, relative to the 
reference period 1976–2005. Stippling indicates grid points with changes that are not significant (5 % significance level using t-test)

11



Fig. 4: Same as Fig. 3, but for RCP8.5 emission scenario
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Regional summaries of the projected changes by the end of 21st Century (2069-2098) for the three sub-regions on 

annual basis are are shown in Fig. 5. These figures show the model agreement on the sign of the change, and is assessed 

on the basis of the interquartile model spread (boxes) which correspond to an agreement on sign amongst at least 75% 

of models (Sillmann et al, 2013b). The percentage of median changes of all indices are almost the same for regions 1 

and 2 and the interquartile model spread is generally smaller in RCP4.5 compared to RCP8.5 probably due to different 

climate sensitivity in the models and feedback mechanisms. There is a general agreement on the sign of change of all 

indices independent of the region considered. Increases in CDD are projected in all regions followed by decreases in 

PRCPTOT and r10mm. Increases in R95pTOT, Rx5day and SDII are projected over region 1 and 2. Higher amount of 

change in PRCPTOT is found in region 3 together with decreases in R95pTOT, Rx5day and no change in median SDII. 

5 Summary and conclusions 

Using an ensemble of regional climate models from the CORDEX project we analysed climate projections in terms of 

precipitation extremes across southern Africa. The ensemble consists of two regional climate models, namely RCA4 

and CCLM4.8 forced by the ECMWF ERA-Interim reanalysis as perfect boundary conditions and four different GCMs. 

Our results are a comparison between a possible future climate (2069-2098) under the RCPs 4.5 and 8.5 with present 

(1975-2005) climate conditions. Comparisons of both observed data sets, GPCP and TRMM reveal that substantial 

differences exists between them. For moderate extremes we found that both observed show high level of agreement. On 

the contrast, for rare extreme there is no agreement between them and this adds a strong element of uncertainty in the 

model validation. Validation of the downscaled GCM and reanalysis ERA-Interim realizations under present conditions 

shows that the RCMs simulate the climatology of extreme precipitation over southern Africa reasonably well. Although 

the relative performance of an individual model may depend on the choice of the reference dataset. As a result of error 

cancellation between the different models, the ensemble mean of both RCMs driven by all GCMs compares better with 

observations than individual ensemble members, a phenomena found in many other studies (e.g Nikulin et al, 2011; 

Sillmann et al, 2013a). Extreme precipitation simulated by RCMs is found to be determined by the model physics and 

parameterizations rather than the large scale forcing provided by the driving GCMs. Also the downscaling of GCMs 

with the RCMs reduces biases across in certain regions which implies an added value through the downscaling, 

especially in areas of strong topographical forcing. 

The multi-model ensemble projections suggest that changes in the characteristics of precipitation over southern Africa 

region can be expected by the end of the 21st Century. We find a decrease in total annual mean precipitation but an 

increase in the magnitude of extreme precipitation events. Increases in CDD are accompanied by increases in 

R95pTOT, suggesting that dry spell duration becomes longer, but precipitation may be more extreme when it occurs. 

These changes are accompanied by a consistent inter-model agreement on the sign of the change. In addition the 

magnitude 20-year return period precipitation events are projected to increase over most regions of southern Africa. 

This suggests rising flood risk for the region, with implications for disaster management, development planning and 

local livelihoods. The radiative forcing (RCP) affects the magnitude of change in extreme events and to a lesser degree 

expands the spatial extent of patterns of these changes. The spatial distribution of changes in extreme precipitation 

events are largely in line with previous studies based on coarser-resolved models (e.g Sillmann et al, 2013b). It should 

be noted that the projected changes that are not classified as statistically significant may still be senstive to changes in 

radiative forcing given that (1) determining statistical significance is dependent on choice of analysis methods and (2) it 

is not clear that changes in precipitation that are not significant will have no detectable impact, because of different 

14



levels of sensitivity of each sector or system (McSweeney and Jones, 2012).  The results presented here give an 

overview of the changes in extreme precipitation projected by the CORDEX multimodel ensemble and motivates for 

further investigation to explore reasons for these changes. 
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Fig. S1 The CORDEX-Africa domain and southern Africa countries names

Supplementary material
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Fig. S2 Annual precipitation frequency for the period 1998-2006 for (a) GPCP, CCLM forced by (b)

ERA-Int. and different GCMs (e-h), RCA forced by (c) ERA-Int. and different GCMs (i-l) and (e) multi-

model ensemble mean of CCLM and RCA4 forced by GCMs. The numbers in the bottom right corner

show the pattern correlation. Stippling indicates grid points where there is added value by the dynamical

downscaling.
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Fig. S3 Same as Figure S2 but for maximum number of consecutive dry days (CDD).

24



Fig. S4 Same as Figure S2 but for heavy precipitation days (r10mm).
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Fig. S5 Same as Figure S2 but for maximum 5 day precipitation (RX5day).
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Fig. S6 Same as Figure S2 but for single daily precipitation intensity (SDII).
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Fig. S7 20-year return values of annual maximum daily precipitation (P20) for the period 1997-2006 for

(a) GPCP, (b) TRMM (1998-2005), CCLM forced by (c) ERA-Int. and different GCMs (e-h), RCA forced

by (d) ERA-Int. and different GCMs (i-l) and (m) multi-model ensemble mean of CCLM and RCA4 forced

by GCMs.
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Fig. S8 Box-and-whisker plots for precipitation indices calculated from CCLM and RCA4 forced by

GCMs. The boxes indicate the interquartile model spread (range between the 25th and 75th quantiles),

the black solid marks within the boxes show the multimodel median and the whiskers indicate the full

intermodel range. GPCP, TRMM, CCLM(ERAINT) and RCA4(ERAINT) are indicated in different shapes
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Fig. S9 Projected multimodel mean changes in 20-yr return values for maximum daily precipitation for

the period of 2069-2098 under (a) RCP4.5, (b) RCP8.5 emission scenario, relative to the reference period

1976-2005. Stippling indicates grid points with changes that are not significant at the 5� significance level.
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Table S1 Definitions of the indices of precipitation extremes used in this study.

Label Index Name Index definition Units

R10mm Heavy precipitation days Number of days (per year) with precipitation amount ≥ 10 mm. Let

PRi j be the daily precipitation amount on day i in period j. Count the

number of days where PRi j ≥ 10 mm

days

CDD Consecutive dry days Maximum (annual) number of consecutive dry days. Let PRi j be the

daily precipitation amount on day i in period j. Count the largest number

of consecutive days where PRi j ¡ 1 mm

days

Rx5day Highest 5-day precipita-

tion amount

Maximum (annual) precipitation sums for 5-day interval. Let PRk j be

the precipitation amount for the 5 day interval ending k, period j. Then

maximum 5 day values for periodj are: RX5day j = max (PRk j)

mm

SDII Simple daily intensity in-

dex

Annual average precipitation from wet days. Let PRw j be the daily pre-

cipitation amount on wet days, PR ≥ 1 mm in period j. If W represents

number of wet days in j, then: SDIIj = (∑W
W=1 PRw j)/W

mm/day

R95pTOT Very wet days Annual total precipitation from days with PR ≥ 95th percentile of the

distribution of daily precipitation amounts at days with 1 mm or more

precipitation in the 1976-2005 baseline period. Let PRw j be the daily

precipitation amount on a wet day w (PR ≥ 1 mm) in period i and let

PRwn95 be the 95th percentile of precipitation on wet days in the base-

line period (1976-2005). If W represents the number of wet days in the

period, then: R95p j = ∑
W
W=1 PRw j , where PRw j ¿ PRwn95

mm

PRCPTOT Total wet-day precipita-

tion

Annual total precipitation from wet days. Let PRi j be the daily precipi-

tation amount on dayi in period j. If I represents the number of days in

j, then: PRCPTOTj = ∑
I
i=1 PRi j

mm
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