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Highlights 

• A non-parametric Singular Spectrum Analysis based causality test is proposed. 

• SSA-based causality test outperformed time and frequency domain causality tests. 

• The new non-parametric technique can capture the possibly existing nonlinearities. 

• Predictive ability is detected from sunspot numbers on global temperatures. 

 

 

ABSTRACT 

  

In a recent paper, Gupta et al., (2015), analyzed whether sunspot numbers cause global temperatures 

based on monthly data covering the period 1880:1-2013:9. The authors find that standard time 

domain Granger causality test fails to reject the null hypothesis that sunspot numbers does not cause 

global temperatures for both full and sub-samples, namely 1880:1-1936:2, 1936:3-1986:11 and 

1986:12-2013:9 (identified based on tests of structural breaks). However, frequency domain 

causality test detects predictability for the full-sample at short (2 to 2.6 months) cycle lengths, but 

not the sub-samples. But since, full-sample causality cannot be relied upon due to structural breaks, 

Gupta et al., (2015) concludes that the evidence of causality running from sunspot numbers to global 

temperatures is weak and inconclusive. Given the importance of the issue of global warming, our 

current paper aims to revisit this issue of whether sunspot numbers cause global temperatures, using 

the same data set and sub-samples used by Gupta et al., (2015), based on an nonparametric Singular 

Spectrum Analysis (SSA)-based causality test. Based on this test, we however, show that sunspot 

numbers have predictive ability for global temperatures for the three sub-samples, over and above 

the full-sample. Thus, generally speaking, our non-parametric SSA-based causality test outperformed 

both time domain and frequency domain causality tests and highlighted that sunspot numbers have 

always been important in predicting global temperatures.  

 

Keywords: Causality; Singular Spectrum Analysis; frequency domain; global temperatures 

predictability; sunspot numbers 
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1. Introduction 

 

Global warming, i.e., rising temperature of the earth’s surface, is undoubtedly the biggest 

topic of research amongst researchers working on environment. While, analyzing the impact of 

global warming cannot be ignored, but what factors drive it is perhaps more important, as it not only 

allows us to predict global warming, but also takes measures to control it. It is quite well-accepted 

that global warming is due to greenhouse gases, additionally, there is a large literature
1
 that relates 

the same with solar activity. However, the evidence from this literature is, at best, mixed. While 

there are studies (see for example, Lean and Rind, 1998, 2009; Scafetta and West, 2003, 2005; 

Scafetta et al., 2004; Scaffeta, 2009, 2011; Folland et al., 2013; Zhou and Tung, 2013) that find 

significant relationships between solar radiation and global temperatures, one one hand. On the other 

hand, there are some authors who claim that the two variables are unrelated (see for example, 

Pittock, 1978, 1983, 2009; Love et al., 2011; Usoskin, et al., 2004). Thus, there is no clear-cut 

consensus about the possibility of a relationship between solar irradiance and global temperatures.  

          Against this backdrop, using sunspot numbers as a proxy for solar activity, Gupta et al., 

(2015), recently analyzed whether sunspot numbers cause global temperatures based on monthly data 

covering the period 1880:1-2013:9. The authors find that standard time domain Granger causality 

test fails to reject the null hypothesis that sunspot numbers does not cause global temperatures for 

both full and sub-samples, namely 1880:1-1936:2, 1936:3-1986:11 and 1986:12-2013:9 (identified 

based on tests of structural breaks). However, frequency domain causality test detects predictability 

for the full-sample at short (2 to 2.6 months) cycle lengths. Interestingly however, the study could 

not detect any causality for the sub-samples. Gupta et al., (2015) thus, highlights the importance of 

analysing causality using the frequency domain tests, which, unlike the time domain Granger 

causality test, allows one to decompose causality by different time horizons, and hence, possibly 

                                                           
1
 The reader is referred to Gray et al. (2010) and Gupta et al., (2015) for further details. 



 
 

 

2 

detect predictability at certain cycle lengths even when the time domain causality test might fail to 

pick up any causality. However, given that there exists structural breaks in the sample, Gupta et al., 

(2015), suggests that the relationship could be spurious based on a full-sample analysis, since a full-

sample analysis assumes stability of the parameters of a VAR, which is clearly not the case in the 

presence of breaks, and which is also vindicated by the fact that there is no evidence of causality 

over the sub-samples. 

Given the importance of the issue of global warming, and more importantly the lack of 

evidence in favor of sunspot numbers leading to global temperatures in linear models, our current 

paper aims to revisit this issue of whether sunspot numbers cause global temperatures, using the 

same data set and sub-samples used by Gupta et al., (2015), based on Singular Spectrum Analysis 

(SSA) technique, which is a new nonparametric technique known for both time series analysis and 

forecasting (as discussed further in Hassani, 2007; Hassani and Thomakos, 2010; Hassani et al., 2009, 

2010, 2013a, 2013b; Hassani and Mahmoudvand, 2013). The reason behind using a nonparametric 

technique is to capture possible nonlinearities that could exist in the data generating processes of the 

global temperatures and sunspots, as well as, in the relationship between global temperatures and 

sunspot activity, for instance due to the structural breaks detected by Gupta et al., (2015). The SSA 

being a nonparametric method captures the possible nonlinearities using a data-driven approach, 

without specifying any known functional nonlinear model to the relationship, which in turn, could be 

incorrectly specified in the first place, just like the linear model, on which time domain and 

frequency domain Granger causality tests are based on. In light of this, the importance of the 

nonparametric SSA-based causality cannot be underestimated.  

The paper is structured as follows: Given that time and frequency domain causality tests were 

already discussed in Gupta et al., (2015), the details of the frequency domain causality test have been 

relegated to the appendix for the sake of completeness, with Section 2 introducing the SSA-based 
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causality test (following the works of Hassani and Mahmoudvand, 2013). Section 3 presents the data 

and empirical results. Finally, Section 4 concludes. 

 

2.         Methodology: The SSA-based causality test (MSSA) 

 

Multivariate singular spectrum analysis (MSSA) is an extension of the standard Singular Spectrum 

Analysis (SSA) to the case of multivariate time series (Hassani et al., 2013), in which SSA is a 

relatively new nonparametric technique known for both time series analysis and forecasting, detail 

description can be found in (Hassani, 2007). After Broomhead and King (1986) theoretically 

proposed the MSSA technique in the context of nonlinear dynamics for the first time, it has been 

widely applied on a range of different fields and a multitude of fairly precise results proved it as 

powerful and applicable technique, numerous applications and examples can be found in (Hassani, 

2007; Hassani et al., 2009, 2010, 2013a, 2013b; Ghodsi et al., 2010; Hassani and Thomakos, 2010; 

Hassani and Mahmoudvand, 2013). From the perspective of MSSA, two main concerns that make 

the problem more complex are: i) similarity and orthogonality among series play an important rule 

for selecting the window length L and the number of eigenvalues r, and ii) MSSA deals with a block 

trajectory Hankel matrix with special features rather than one simple Hankel matrix (Hassani and 

Mahmoudvand, 2013). Briefly descriptions of MSSA and causality criteria are listed in following 

subsections.  

 

2.1        Algorithm Description of MSSA 

In this subsection of brief description of MSSA algorithm, we mainly follow the paper by Hassani 

and Mahmoudvand (Hassani and Mahmoudvand, 2013). Consider M time series with different series 

length           

   
 (  
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      after this step. The above procedure for each series separately provides M different 

      trajectory matrices                 . To construct a block Hankel matrix, we need to 

have              . Therefore, we have different values of    and series length  , but 

similar  . The result of this step is                      . Hence, the structure of the matrix 

    
  is as follows:     

                         and the sum of           provides the new 

block Hankel matrix, which can be subsequently converted to a time series.  

 

2.2 Causality criteria based on forecasting accuracy 

Granger (1969) proposed and formalized the causality concept to address the question that whether 

one variable can help in predicting another. The criterion we use is based on out-of-sample 

forecasting, which is very common in the framework of Granger causality. Here, we compare the 

forecast values obtained by the univariate procedure, SSA and MSSA. If the forecasting errors using 

MSSA are significantly smaller than those of univariate SSA, we can conclude that there is a causal 

relationship between these series. Brief introduction is listed below which we mainly follow Hassani 

et al. (2010)
2
.  

Let us consider the procedure for constructing vectors of forecasting error for out-of-sample 

tests in a two variable case    and     by both univariate and multivariate SSA techniques 

respectively. In the first step we divide the series               into two separate subseries    

and                , where               and                 . Same procedure is 

conducted for    . The subseries    and    are used in the reconstruction step to provide the noise-

free series  ̃  and  ̃ . The noise-free series are then used for forecasting the subseries    and   with 

the help of the recursive formula using SSA and MSSA respectively. For variable   , two different 

                                                           
2
 The readers are referred to Hassani et al. (2010) for more details. 
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forecasting values of   ̂     ̂        ̂   by SSA and MSSA are then used for computing the 

forecasting errors accordingly, which will be the same process for variable    .  Therefore, in a 

multivariate system like this, the vectors of forecasts obtained can be used in computing the 

forecasting accuracy and therefore examining the association between the two variables.  

The length of out-of-sample does not have specific limitation, generally considering the 

simulation scenario, the length of time series for reconstruction will take 2/3 of the whole series and 

the rest 1/3 is considered as out-of-sample for constructing forecasting error. The separate point to 

define the out-of-sample size for different series can be chosen respectively, whilst it is important 

that when it goes to comparing the performances of different techniques based on constructed 

forecasting error of one specific series , the sizes of reconstruction and out-of-sample for all 

techniques should be identical. In addition, the choices of window length L and the referring options 

of numbers of eigenvalues r should also be carefully evaluated in practice of SSA-based causality 

test respectively. In order to conduct the most accurate causality detection results, all the possibilities 

of L and its referring choices of r should be applied for both univariate SSA and MSSA processes, 

then the optimal ones with best performance of forecasting will be chosen to construct the finally 

causality detection  procedure. 

Therefore, here we define the criterion                 corresponding to the  forecast of 

the series    in the presence of the series   . If       is small, then having information obtained from 

the series   can help us to have better forecasts of the series  . If       , we conclude that the 

information provided by the series   can be regarded as useful or supportive for forecasting the 

series   . Alternatively, if the values of        , then either there is no detectable association 

between   and   or the performance of the univariate SSA is better than of the MSSA (this may 

happen, for example, when the series   has structural breaks misdirecting the forecasts of  ).  
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3. Data and empirical results 

 

The data are at monthly frequency for global land-ocean temperatures (GT) and sunspot numbers 

(SS), and cover the period from January 1880 to September 2013, with the start and end-points being 

maintained the same as that of Gupta et al., (2015) for the sake of comparison. Empirical results, 

especially for the SSA tests, listed in this section are conducted by R programming based on source 

code. In terms of the data, the global temperatures were obtained from the National Aeronautics and 

Space Administration’s (NASA), Goddard Institute for Studies (GISS) 

(http://data.giss.nasa.gov/gistemp), while the sunspot numbers were obtained from the Solar 

Influences Data Analysis Centre (SIDC: http://www.sidc.be/sunspot-data). The data for temperatures 

are anomalies relative to the base period 1951-1980. Figures 1(a) and 1(b) plot the two variables. As 

can be seen, the plot of the global temperature seems to be non-stationary, though it could well be 

trend-stationary, while that of the sunspot looks stationary with a cyclical pattern completed at about 

10/11 years. 

 

Figure 1(a): Plot of Global Temperatures (1880:1-2013:9) 
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Figure 1(b): Plot of Sunspot Numbers (1880:1-2013:9) 

 

As in Gupta et al., (2015), we start off with unit root tests to verify whether the two series are 

stationary I(0) or not. As can be seen, based on the Kwiatkowski-Phillips-Schmidt-Shin (1992, 

KPSS), augmented Dickey-Fuller (1981, ADF), Dickey-Fuller test with Generalised least Squares 

detrended residuals (Elliot et al., 1996, DF-GLS) Phillips and Perron (1988, PP), and Ng and Perron 

(2001, NP) unit root tests, the null of a unit root is overwhelmingly rejected (except for KPSS test the 

null of being stationary, it cannot be overwhelmingly rejected), for the total sample of SS. However, 

for total sample of GT, while all the tests support that the variable is trend-stationary, the ADF and 

DF-GLS test tends to suggest non-stationarity of the series when the unit root test-equation has only 

a constant (or neither a constant and trend in case of the ADF test). The PP and the NP tests, though, 

indicate stationarity even under the assumption of constant only (and neither a constant and trend in 

case of the PP test). As Gupta et al., (2015) points out, among the unit root tests conducted, the NP 

test is believed to have overwhelmingly stronger power relative to the other tests, and hence, one 

would tend to rely on the results from this test. Also, given the nature of GT, it is evident that the unit 

root equation should in fact include a trend. In light of this as in Gupta et al., (2015), we can 
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conclude that GT is stationary as well, and hence, we do not need to transform the data further for 

either GT or SS. In addition, we do not need to account for the possibility cointegration, and hence 

error-correction, between the two variables. Note that Gupta et al., (2015) applied the Bai and Perron 

(2003) sequential and repartition tests on the GT equation to check for possible structural breaks and  

now since  structural breaks were detected in the full-sample at 1936:3 and 1986:12, we also 

conducted the unit root tests over the sub-samples, which are reported in Table 1. In general, for 

subsample A and subsample B we have overwhelming evidence of stationary (especially based on 

the results of NP test, which mentioned above that have stronger power compared to the other tests). 

For sample C, while GT is found to be stationary in general, the evidence of stationarity, 

surprisingly, is quite weak for SS, barring the PP and NP tests, at 10 % level of significance. But 

given the cyclical pattern of SS, it is very difficult to believe that the variable is non-stationary. In 

fact, we can conclude that the variable is weakly stationary for sub-sample C. In summary, for the 

full sample and all sub-samples, both variables are stationary.  

 

Table 1: Unit Root Test Results 

Sample 

Size 

Seri

es 

Metho

ds 

None Intercept Intercept and Trend 

Level 
Decisi

on 
Level 

Decisi

on 
Level 

Decisi

on 

Total 

Sample 

(1605 

Obs) 

1880:1-

2013:9 

GT 

KPSS ----------- 
--------

--- 

4.136*** 

(31) 
I(1) 0.638***(30) I(1) 

ADF -1.620 (17) I(1) -1.598 (17) I(1) 
-3.707** 

(24) 
I(0) 

PP 
-6.231

***
 

(12) 
I(0) 

-6.222
***

 

(12) 
I(0) 

-18.761
***

 

(23) 
I(0) 

DF-

GLS 
----------- 

--------

--- 
-1.539  (6) I(1) -6.868***(3) I(0) 

NP ----------- 
--------

--- 

-

33.684***(1

2) 

I(0) 
-537.250

***
 

(23) 
I(0) 

SS 
KPSS ----------- 

--------

--- 
0.494**(31) I(1) 0.119 (31) I(0) 

ADF -2.499**(3) I(0) -4.055***(3) I(0) -4.109***(3) I(0) 
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PP 
-3.457

***
 

(13) 
I(0) 

-6.488
***

 

(12) 
I(0) 

-6.800
***

 

(13) 
I(0) 

DF-

GLS 
----------- 

--------

--- 
-3.303***(3) I(0) -4.029***(3) I(0) 

NP ----------- 
--------

--- 

-

52.985***(1

2) 

I(0) 

-

81.5259***(

13) 

I(0) 

Subsam

ple A 

(674 

Obs) 

1880:1-

1936:2 

GT 

KPSS ----------- 
--------

--- 
0.455*(19) I(1) 0.430***(19) I(0) 

ADF 
-

2.710***(3) 
I(0) -7.207***(2) I(0) -7.228***(2) I(0) 

PP 
-

4.313***(2) 
I(0) 

-

13.397***(1

4) 

I(0) 

-

13.424***(1

4) 

I(0) 

DF-

GLS 
----------- 

--------

--- 
-6.325***(2) I(0) -7.076***(2) I(0) 

NP ----------- 
--------

--- 

-

234.149***(

14) 

I(0) 

-

275.304***(

14) 

I(0) 

SS 

KPSS ----------- 
--------

--- 
0.053(21) I(0) 0.051(21) I(0) 

ADF -1.819*(3) I(1) -3.451***(3) I(0) -3.447**(3) I(0) 

PP 

-

3.226***(1

8) 

I(0) -6.075***(8) I(0) -6.075***(8) I(0) 

DF-

GLS 
----------- 

--------

--- 
-3.043***(3) I(0) -3.322**(3) I(0) 

NP ----------- 
--------

--- 

-

52.499***(8) 
I(0) 

-

57.985***(8) 
I(0) 

Subsam

ple B  

(609 

Obs) 

1936:3-

1986:11 

GT 

KPSS ----------- 
--------

--- 
0.794***(17) I(1) 0.321***(16) I(1) 

ADF 
-

7.121***(1) 
I(0) -7.211***(1) I(0) -7.515***(1) I(0) 

PP 

-

12.979***(

13) 

I(0) 

-

13.102***(1

3) 

I(0) 

-

13.678***(1

3) 

I(0) 

DF-

GLS 
----------- 

--------

--- 
-3.287***(2) I(0) -6.454***(1) I(0) 

NP ----------- 
--------

--- 

-

92.270***(1

3) 

I(0) 

-

229.775***(

13) 

I(0) 

SS 

KPSS ----------- 
--------

--- 
0.061(18) I(0) 0.052(18) I(0) 

ADF -1.690*(2) I(1) -2.720*(2) I(1) -2.741(2) I(1) 

PP -1.932*(11) I(1) -3.600***(2) I(0) -3.614**(2) I(0) 

DF- ----------- -------- -2.718***(2) I(0) -2.754*(2) I(1) 
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GLS --- 

NP ----------- 
--------

--- 

-

24.056***(2) 
I(0) 

-

24.089***(2) 
I(0) 

Subsam

ple C 

(322 

Obs) 

1986:12-

2013:9 

GT 

KPSS ----------- 
--------

--- 
1.651***(14) I(1) 0.126*(12) I(0) 

ADF -0.682 (3) I(1) -4.604***(1) I(0) -6.618***(1) I(0) 

PP -1.203 (26) I(1) -6.835***(8) I(0) -9.997***(8) I(0) 

DF-

GLS 
----------- 

--------

--- 
-1.178*(3) I(1) -5.614***(1) I(0) 

NP ----------- 
--------

--- 

-

16.711***(8) 
I(0) 

-

106.142***(

8) 

I(0) 

SS 

KPSS ----------- 
--------

--- 
0.534**(15) I(1) 0.093 (14) I(0) 

ADF -0.936 (3) I(1) -1.812 (3) I(1) -2.415 (3) I(1) 

PP -1.497(12) I(1) -2.761*(2) I(0) -3.394*(2) I(0) 

DF-

GLS 
----------- 

--------

--- 
-1.138(3) I(1) -1.356(3) I(1) 

NP ----------- 
--------

--- 
-6.718*(2) I(0) -8.802(2) I(1) 

Notes: 
*, ** 

and 
*** 

indicates significance at the 10%, 5% and 1% level, respectively.  The critical 

values are as follows: 

- None: -2.566, -1.941 and -1.616 for ADF and PP at 1%, 5% and 10% level of significance, 

respectively. 

- Intercept: -3.434, -2.863 and -2.567 (-2.566, 1.941, 1.617) [-13.8, -8.1 and -5.7] {0.739, 

0.463, 0.347} for ADF and PP (DF-GLS) [NP] {KPSS} at 1%, 5% and 10% level of 

significance, respectively. 

- Intercept and Trend: -3.963, -3.412 and -3.128 (3.48, 2.89, 2.57) [-23.80, -17.3 and -14.2] 

{0.216, 0.146, 0.119} for ADF and PP (DF-GLS) [NP] {KPSS} at 1%, 5% and 10% level of 

significance, respectively. 

Numbers in parentheses for ADF, PP and DF-GLS tests indicates lag-lengths selected based on the 

Schwarz Information Criterion (SIC). For the NP test and the KPSS test, based on the Bartlett kernel 

spectral estimation method, the corresponding numbers are the Newey-West bandwidth.  

 

 

Though our primary interest is to analyze causality between global temperatures and sunspot 

numbers using the SSA approach, for the sake of completeness, we also present here the results in 

time and frequency domains, as used in gupta et al., (2015).  
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             As shown in Table 2 the null hypothesis that SS does not Granger cause GT cannot be 

rejected for both full and the sub-samples – a result also pointed out by Gupta et al., (2015). This 

result continues to hold when we also detrend GT.
3
  

 

Table 2. Time-Domain Granger Causality Test Results 

 

Sample and 

Number of 

Observation 

Total Sample  

(1605 Obs) 

Subsample A 

(674 Obs) 

Subsample B 

(609 Obs) 

Subsample C  

 (322 Obs) 

Referring Periods 1880:1-2013:9 1880:1-1936:2 1936:3-1986:11 1986:12-2013:9 

Causality Direction SS-->GT SS-->GT SS-->GT SS-->GT 

Tested 

Series 

Original 

F p-value F p-value F p-value F p-value 

1.010

7 
0.3642 0.947 0.3884 

1.137

4 
0.3213 

1.587

1 
0.2062 

De-

trended  

F p-value F p-value F p-value F p-value 

1.356

9 
0.2287 

1.234

3 
0.2949 

1.690

7 
0.1505 

0.920

1 
0.4525 

 

Next, we repeat and present the frequency domain causality results of Gupta et al., (2015) for 

the full and the sub-samples in Figures 2 through 5, with the same lag-structure as used in the time 

domain Granger causality tests. The figures depict the test statistics (solid line) along with their 5 

percent critical values (broken line) for all frequencies in the interval (0, π), to assess the predictive 

content of SS for GT.  For the full-sample (1880:1-2013:9), the null hypothesis of non-predictability 

is rejected for ω greater than 2.45 corresponding to a cycle length between 2 and 2.6 months.
4
 For 

the sub-samples 1 (1880:1-1936:2), 2 (1936:3-1986:11) and 3 (1986:12-2013:9), however, the null of 

no predictability cannot be rejected for any frequency. So, as in the time domain Granger causality 

tests for the sub-samples, the frequency domain tests too fail to reject the null that SS has no 

                                                           
3
 Given the weak evidence of stationarity for SS for sub-sample C, we repeated the Granger causality test with first 

differences of SS and GT without and with detrending. The null of non-causality still continued to hold with p-values of 

0.7279 and 0.6597, respectvely. Further details on these results are available upon request from the authors. 
4
 Recall that, the frequency (ω) on the horizontal axis can be translated into a cycle or periodicity of T months by T = (2π 

/ ω), where T is the period. 
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predictability for GT in the sub-samples. Since in the presence of structural breaks, the full-sample 

causality results cannot be relied upon, our frequency domain causality tests, as in Gupta et al., 

(2015), tend to suggest that there is no causality running from SS to GT  

 

Figure 2: Frequency Domain Causality of Total Sample (1880:1-2013:9) 

 

Figure 3: Frequency Domain Causality of Subsample A (1880:1-1936:2) 
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Figure 4: Frequency Domain Causality of Subsample B (1936:3-1986:11) 

 

 

Figure 5: Frequency Domain Causality of Subsample C (1986:12-2013:9) 

 

           As with the time domain tests, we also present below, in Figures 6 through 9, the results from 

the frequency domain test of GT after detrending. As can be seen, now there is no evidence of 

causality either for the full-sample or sub-samples any frequency. This result could imply that results 

based on trending GT series for the full-sample could have been spurious in the frequency domain as 

reported in Gupta et al., (2015).        
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Figure 6: Frequency Domain Causality with Detrended GT of Total Sample (1880:1-2013:9) 

 

 

Figure 7: Frequency Domain Causality with Detrended GT of Subsample A (1880:1-1936:2) 
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Figure 8: Frequency Domain Causality with Detrended GT of Subsample B (1936:3-1986:11) 

 

Figure 9: Frequency Domain Causality with Detrended GT of Subsample C (1986:12-2013:9) 

 

          Against this background of lack of evidence of causality in the time and frequency domains, 

we now next turn our attention to the causality using the SSA-based approach. As mentioned in 2.2, 

in order to conduct the SSA-based Causality Test for the sunspot and global temperature data, the 

out-of-sample size for each subsample series is 1/3 of the whole series. In addition, before the last 

step which determines causality by causality criterion         in 2.2, all the forecasting results of both 

SSA and MSSA steps are the optimal choice chosen respectively after considering all the 

possibilities of window length L and its corresponding choices of number of eigenvalues r. The 

following table summarizes the causality test results based on SSA technique. As what is mentioned 
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in 2.2, if the causality criterion         , then either there is no detectable association between    

and    or the performance of the univariate SSA is better than of the MSSA, this may happen, for 

example, when one of the series has structural breaks misdirecting the forecasts; If         , then 

we conclude that the information provided by the series   can be regarded as useful or supportive for 

forecasting the series  . According to the following table, when the whole sample is considered, the 

test statistics is very close to 1 and could not provide strong information to determine the causality 

between    and   . This is possibly affected by the structural breaks we detected in   , which 

misleads the forecasts. Comparing with the empirical evidence of Gupta et al., (2015), whereby the 

authors detected causality only in for the full-sample, our SSA-based causality tests, provides strong 

evidence of causality for all the-subsamples as well, to go on with the weak evidence of causality for 

the full-sample. In addition, considering the detrended GT series in comparison with using the GT 

with trend for our tests, the causality for all subsamples and the weak evidence for total samples still 

hold. Recall, when we repeated the frequency domain analysis for Gupta et al., (2015) using 

detrended GT, we could not detect causality even for the full-sample – a result also obtained for the 

time-domain version of the test.
4
 

 

Table 3. SSA-based Causality Test Results 

 

Sample and Number 

of Observation 

Total Sample  

(1605 Obs) 

Subsample A 

(674 Obs) 

Subsample B 

(609 Obs) 

Subsample C 

(322 Obs) 

Referring Periods 1880:1-2013:9 1880:1-1936:2 1936:3-1986:11 1986:12-2013:9 

Test Statistics                             

Series 
Original 0.998 0.284 0.399 0.308 

De-trended 0.967 0.400 0.800 0.465 

Note that        is the criterion of SSA-based causality test based on forecasting accuracy (see 2.2). 

 

4. Concluding remarks 
Global warming is undoubtedly the biggest topic of research amongst researchers working on 

environment. What drives global temperatures is understandably an interesting area of research. 

While greenhouse gases emissions are believed to be a major cause, there is also a large literature 

that tends to suggest that solar activity also drives global temperatures. However, the evidence in 

terms of the latter line of reasoning is mixed. Given this, in a recent paper, Gupta et al., (2015) 

analyzed whether sunspot numbers cause global temperatures based on monthly data covering the 

period 1880:1-2013:9, using not only time-domain, but also frequency domain causality tests. The 

authors find that standard time domain Granger causality test fails to reject the null hypothesis that 

sunspot numbers does not cause global temperatures for both full and sub-samples, namely 1880:1-

1936:2, 1936:3-1986:11 and 1986:12-2013:9 (identified based on tests of structural breaks). 

However, frequency domain causality test detects predictability for  the full-sample at short (2 to 2.6 

                                                           
4
 For a discussion of causality based on cross-spectrum analysis between GT and SS, as suggested by an anonymous 

referee, refer to the Appendix of this paper. 
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months) cycle lengths. As with the time domain results, no causality however, could be detected for 

the sub-samples. But since, full-sample causality cannot be relied upon due to structural breaks, as 

Granger causality tests assumes constancy of parameters during the sub-sample, which is of course 

not the case with structural breaks, Gupta et al., (2015) concludes that the evidence in favour of 

sunspot numbers causing global temperatures is weak, if not non-existent. Given the importance of 

the issue of global warming, our current paper aims to revisit this issue of whether sunspot numbers 

cause global temperatures, using the same data set and sub-samples used by Gupta et al., (2015), but 

now, based on an advanced new nonparametric technique --the Singular Spectrum Analysis (SSA)-

based causality test. Our nonparametric technique is able to capture possible nonlinearities that could 

exist in the data generating processes of the global temperatures and sunspots, but also, in the 

relationship between global temperatures and sunspot activity, for instance due to the structural 

breaks. The SSA being a nonparametric method captures the possible nonlinearities using a data-

driven approach, without specifying any known functional nonlinear model to the relationship, which 

in turn, could be incorrectly specified in the first place, as is possibly the linear model. Using the 

SSA-based causality tests, we show that sunspot numbers have predictive ability for global 

temperatures for the all three sub-samples, over and above the full-sample, even if the latter result 

can be ignored due to structural instability. Thus, the non-parametric SSA-based causality test 

outperforms both time domain and frequency domain causality tests, and, more importantly, 

highlights that sunspot numbers have always been important in predicting global temperatures. In 

other words, researchers working on global warming can predict movements of the global 

temperatures based on movements in sunspot activity, but for this, they need to rely on a nonlinear 

data-driven, i.e., nonparametric approach. Given the importance of global warming, two areas of 

future research would be: (1) Since there is evidence of causality in the full-sample, it is clear that 

there must be causality at certain specific points in time, even if it is not for the sub-samples 

identified based on structural breaks. In light of this, one needs to undertake a time-varying or rolling 

sub-samples based test of causality. Also, in this regard, it is important to analyze the direction or the 

sign of the effect of this causal relationship if it exists at specific points in time, to design 

environmental policies better, and (2) Here we analyze in-sample predictability, in the future it 

would be interesting to compare linear and nonlinear models in forecasting out-of-sample global 

temperatures based on sunspot numbers. This would provide information, ahead of time as to where 

global temperatures are headed given an existing set of information on sunspot numbers.  
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Appendix 

 

 

The Frequency Domain Causality Test 

 

Breitung and Candelon’ (2006) presented that in a two-dimensional vector of time series 

 ,t t tZ X Y observed at time 1,...,t T , where  tZ
 
is a finite-order VAR process, is of the form: 

     ,...,2,1t,Z)B( tt    (A1) 

where   11 ... p

pB B B      is a 2 2 lag polynomial with
k

t t kB Z Z 
. 

The error vector t is a 

white noise process, with   0tE  
 
and  t tE      , where   is a positive definite variance matrix. 

The VAR process may include a constant, a trend or dummy variables. The matrix  is then 

decomposed as 
1G G     where G  is the lower triangular matrix of the Cholesky decomposition. 

With the assumption that the system is stationary, the moving average (MA) representation of the 

process is, 
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where .G)B()B( 1 Then, the spectral density of X t can be expressed as: 
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Using the following measure of causality, as in Geweke (1982) and Hosoya (1991): 
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 Replacing (A3) into (A4) gives, 
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Note that, Equation (A5) is zero, if
2

i
12 )e(  =0, which implies that Y does not Granger-cause X at 

frequency ω. 

 The null hypothesis that Y does not Granger-cause X at frequency ω is then given as: 

     .0)(M:H XY0     (A6) 

The statistic  Y XM   is then obtained by replacing  11

ie  
 and   12

ie  
 in (A5) by the 

estimated values obtained from the fitted VAR. 

 

 

Cross Spectrum Analysis 

For the total sample and all subsamples, we performed the cross spectrum analysis on SS and GT, as 

well as on SS and detrended GT series for comparison. Briefly, the cross spectrum analysis is the 

Fourier transformation of cross-covariance of two series, which gives us the degree of relationship 

between two series at different frequency. For each case, i.e., SS and GT and SS and detrended GT, 

while conducting the cross spectrum analysis, two types of figures are provided: the squared 

coherency by frequency and the phase spectrum by frequency. If the squared coherency is large at 

some specific frequencies, it implies that we can probably consider linear relationship between two 

tested series at these frequencies. Therefore, we then refer to the figure of the phase spectrum by 

frequency at these frequencies with relatively large squared coherency. If the phase spectrum is 

approximately linear with a positive slope, it will suggest the first variable lead changes in the 

duration of the second variable. When we change the order of variables in the beginning, the final 

results will be identical for the squared coherency, but an opposite slope should emerge for the phase 

spectrum accordingly. Here we only provide the results where sunspots numbers is the first variable. 

As can be seen from the results below, we can generally conclude that, unlike the SSA-based 

approach, there is not much clear-cut evidence of SS causing GT based on the cross-spectrum 

analysis. 
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Total Sample (original series) 

 

Total Sample (detrended series) 

 

Subsample A (original series) 
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Subsample A (detrended series) 

 

Subsample B (original series) 
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Subsample B (detrended series) 

Subsample C (original series) 

 

Subsample C (detrended series) 
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