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Abstract 

 

In this paper, we address the question whether the technical efficiency of a fishing industry is 
affected by the determinants of ambient water quality of the aquatic ecosystem. Using zone specific 
data from 1998 – 2007 for the Connecticut Long Island Sound lobster fishery and an approach 
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and Censored Quantile Regression to assess the impact of the environmental variables on different 
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impacts given the contextual variables may vary among high and low efficiency periods. 
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1. Introduction 

The returns to marine fishing are heavily dependent on the water quality of the aquatic 

system. At any given time, there are multiple ways in which water quality affects marine 

life. For example, changes is ambient water quality can impact the growth and mortality 

rate of different species in the ecosystem. Spatial differences in water quality can induce 

species to migrate from one area to another within the system. The impact is further 

complicated by the response of individual species, which depend not only on the direct 

impact of water quality on the species but also on its effect on other species that can 

indirectly affect a related species (for example,  species that are related through the food 

chain).  

 

The factors outlined above can all affect the economic return to fishing through 

direct and indirect effects on the catch per unit of fishing effort (CPUE). The CPUE 

indirectly reflects the abundance of the stock, the true size of it being unknown. In case of 

commercial fisheries, changes in ambient water quality can affect both firm level and 

industry level profit earnings through the impact on the marginal cost of harvesting. Given 

that ambient water quality is determined by factors outside fishers’ control, it is a source of 

the randomness to aggregate harvest. Water quality that is conducive to proliferation of 

stock may be considered as a composite input that fishers do not have to pay for explicitly. 

However, fishers may end up paying an implicit price, either through an increase in cost 

and/or loss in profit, for any degradation in terms of ambient water quality.  

 

An environmental problem that currently affects the ambient water quality in many 

aquatic systems worldwide is marine hypoxia, a condition of low dissolved oxygen in the 
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water that makes it difficult for aquatic species to survive. Among other factors, hypoxic 

conditions can be generated as a result of increase in nutrients, such as nitrates and 

phosphates, in the water. When these nutrients get added to the water body, typically 

through fertilizers in agricultural runoff and sewage materials, it leads to a response by the 

ecosystem referred to as eutrophication.5 Eutrophication can lead to rapid growth in 

phytoplankton such as algae. When these organisms die, dissolved oxygen is used up in the 

bacterial decomposition, thereby reducing the oxygen level in the water. The severity of the 

hypoxic conditions developed in the water system depends on a number of factors such as 

the volume of annual nutrient loadings, the specific nature of the aquatic system, the 

location of the water body, differences in surface and bottom level water temperature and 

oceanographic phenomenon such as upwelling and downwelling etc. The presence of 

hypoxic conditions has resulted in many dead zones in different parts of the world’s oceans 

where marine life cannot be supported because of depleted oxygen levels (Breitburg, 2002). 

The presence of hypoxic water zones and in extreme cases dead zones highlight the need to 

better understand the impact of environmental variables on both marine life and 

commercial fisheries that depend on it. Ambient water quality can potentially affect the 

relative competitiveness of fishing industries through impact on stock and harvest.  

 

In this paper, we focus on the relationship between ambient water quality and 

technical efficiency of a fishery. Our premise is that we view the optimal range of ambient 

water quality as an input in the production process. It depends on components such as 

dissolved oxygen, nitrogen, salinity, temperature etc. The optimal range of ambient water 

quality can be defined simply as the condition in which species in the ecosystem can grow 

                                                            
5 For definitions of eutrophication, see http://toxics.usgs.gov/definitions/eutrophication.html. 
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at their natural growth rate consistent with ecological sustainability of the species. Any 

significant deviation from that range can result in an adverse impact on stock and possibly 

on harvest. For example, a significant drop in dissolved oxygen in the water body implies a 

shift away from the ideal water quality. Moderate to severe hypoxia exists when the 

dissolved oxygen level is between 4 mg/l and 2 mg/l while severe hypoxic conditions exist 

when the oxygen level drops below 2mg/l.  

 

We focus on the Long Island Sound (LIS) ecosystem, which experiences hypoxic 

water conditions every year. The sound is home to a number of New England fisheries 

where fishers from New York, Connecticut and Rhode Island fish every year. The water 

quality of the sound is crucial for the viability of the economies that thrive on it. We focus 

on the Connecticut Long Island Sound lobster fishery. The industry has a license 

moratorium implying lobstermen who held a license between 1995 and 2003 can renew 

their licenses annually. However, new fishing licenses are not issued implying the industry 

sized is regulated by the state.6 The lobster industry has long been one of the most 

commercially valuable fishing industries in the state. However, it has been struggling in 

recent years primarily because of a steep drop in total landings. Lobster is a bottom 

dwelling slow moving species known to be sensitive to hypoxic water conditions. 

 

We use monthly industry level data from 1998 to 2007 for the lobster industry to 

estimate the technical efficiency of the fishery for the three contiguous fishing zones where 

the industry operates. Using data envelopment analysis (DEA) combined with a 

                                                            
6 This information was obtained from personal communication with Matthew Gates at Connecticut 
Department of Energy and Environmental Protection. 
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bootstrapping technique, we obtained estimates of technical efficiency of three fishing 

zones where Connecticut lobstermen fish. The bootstrapped-DEA results were then 

combined with Censored Quantile Regression (CQR) to assess the impact of the 

environmental variables on different efficiency percentiles. The performance of the fishing 

zones is evaluated with respect to distinct efficiency percentiles assessing how the different 

contextual (environmental) impact high and low efficiency fishing zones and phases 

differently. This paper contributes to the fisheries economics literature on productivity 

analysis by adopting a two-stage bootstrapped DEA-CQR approach. To the best of our 

knowledge, it is the first paper to use an approach that combines bootstrapped DEA with 

CQR to evaluate zone specific efficiency level of any fishing industry and analyze the 

relationship between zone specific technical efficiency of the industry and the 

environmental variables that characterize the ambient water quality of the ecosystem. It is 

also the first study that focuses of an efficiency analysis on the Connecticut Long Island 

Sound lobster fishery using spatially differentiated data. The rest of the paper is organized 

as follows: Section provides the conceptual background and discussion of the related 

literature, while Section 3 presents the methodology. Section 4 discusses the data and the 

results. Finally, Section 5 concludes.  

 

2. Conceptual Background and Related Literature 

 

Technical efficiency (TE) may be defined as an indicator of the distance between actual 

production level and the maximum feasible production level, given available factors of 

input and technology. Alternatively, TE can be a measure of the minimum level of inputs 

needed to produce a given level of output. In other words, TE captures the extent of 
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inefficiency in the production process. In the context of fisheries, TE indicates the 

maximum harvest level attainable by a production unit, given inputs and technology, or the 

minimum level of inputs that are necessary to attain a certain harvest level, given available 

fishing technology. Assessing technical efficiency of fisheries is essential for both 

sustainable management of the renewable resource and for understanding the scope of 

performance improvement of commercial industries. The process is complicated because of 

the stochastic nature of the production process. Also, lack of detailed input data often poses 

a challenge for accurate assessment. There are three primary approaches to measuring 

technical efficiency: (1) a nonparametric programming approach also known as data 

envelopment analysis (DEA), (2) a parametric programming approach, and (3) a parametric 

statistical approach commonly referred to as stochastic frontier analysis or SFA (Kirkley, 

Squires, and Strand, 1995). Both DEA and SFA, the more commonly used methods, are 

frequently used by economists for constructing best-practice frontiers for various 

production processes. However, they differ fundamentally in the way the best-practice 

frontiers are generated. 

 

The DEA approach has its roots in mathematical programming whereas the SFA 

approach is much more directly linked to econometric theory. Given that, while the slack 

analysis of DEA provides insight for increasing or reducing input resources to improve 

efficiency scores, the SFA method focuses on the economic justification of a given 

production function and subjecting it to further hypothesis testing (Lin and Tseng, 2005). 

The SFA method being a parametric approach has some advantages and disadvantages over 

DEA, mainly related to the assumption of a stochastic relationship between the inputs used 

and the output produced. Data envelopment analysis developed over 30 years ago (Cook 
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and Seiford, 2009). It is considered to be a powerful tool for measuring efficiency, above 

all for its capacity to simultaneously process multiple inputs and outputs, thereby aiding 

managers in decision-making. In conjunction with multivariate data analysis techniques, 

DEA enables the impact of contextual variables on efficiency levels to be measured 

(Cooper, Seiford, and Tone, 2007). On the other hand, although SFA handles only one 

output each time, it is possible to adapt the techniques developed for the estimation of a 

stochastic production frontier in the single-output case to the estimation of a stochastic 

output distance function in the multiple-output case. One possibility is to consider the 

dependent variable as the reciprocal of the norm of the output vector. 

 

In the context of fisheries, the first technical efficiency study was by Hannesson 

(1983) who estimated a deterministic frontier using a single input. Since then both DEA 

and SFA have been used to assess technical efficiency of fisheries. In a seminal paper, 

Kirkley, Squires and Strand (1995) used stochastic frontier analysis to estimate technical 

efficiency for the period 1987 – 1990 for a sample of sea scallop vessels operating in the 

mid-Atlantic region. While many have relied on SFA on technical efficiency estimation in 

fisheries (for example, see Sharma and Leung, 1998; Vestergaard et al. 2002; Kompas et 

al., 2003;  and Vinuya, 2010) primarily because of the inherent stochastic nature of the 

harvesting process, Felthoven (2002) and Walden (2006) have used DEA for estimation of 

technical efficiency.  In fact, Walden (2006) addresses a key limitation of DEA as a method 

to estimate technical efficiency in fisheries. Because DEA is a deterministic approach, it is 

often criticized for its inability to account for the randomness in the fisheries data. Walden 

(2006) addresses this issue by presenting a bootstrapped DEA model as way of constructing 

a stochastic version of the traditional DEA model. In this paper, we estimate zone specific 



8 
 

aggregate TE for CT LIS lobster fishery using data envelopment analysis using a similar 

approach. We extend the fisheries literature by using quantile regressions to study the 

impact of environmental variables on the efficiency scores. Traditional linear regression 

method illustrate the causal relationship between the dependent variable and a set of 

regressions based on the conditional mean of the dependent variable as a function of the 

exogenous variables. Quantile regression allows researchers to identify the relationship 

between the dependent variable and the regressors by using either the conditional median or 

other quantiles of the dependent variable. In our context, application of quantile regression 

helps to address the question whether environmental variables impact technical efficiency 

differently in high efficiency or low efficiency periods.  Below we specify our model in 

detail.  

 

3. Methodology: 

 

Our decision to focus on zone level technical efficiency using industry level data is a result 

of both data limitation and choice. We have industry level zone specific data on harvest and 

inputs provided by Connecticut Department of Energy and Environmental Protection, the 

state department that oversees CT marine fishing. Fishermen level data were not available 

to us. In our case, given our interest lies in understanding the spatial impact of 

environmental variables such as dissolved oxygen and nitrogen on the technical efficiency 

of the industry as a whole, we are able to specify the DEA model treating each fishing zone 

as the decision making unit (DMU). 

 

3.1 Data Envelopment Analysis (DEA)  
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In a DEA model, efficiency is defined as the ratio of the sum of weighted output to the sum 

of weighted inputs. For example, given k outputs and l inputs, the efficiency level for each 

zone i at time t  ( ite ) can be calculated as: 
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where p  and js are two sets of weights that will be obtained through a maximization 

process.  

It is worth noting that nonparametric efficiency estimators such as DEA typically 

rely on linear programming techniques for computation of estimates, and are often 

characterized as deterministic, as if to suggest that the methods lack any statistical 

underpinnings (Simar and Wilson, 2004). Applied studies that have used these methods 

have typically presented point estimates of inefficiency, with no measure or even 

discussion of uncertainty surrounding these estimates (Cesaro et al., 2009). Indeed, many 

papers contain statements where efficiency is described as being computed or calculated as 

opposed to being estimated, and results are frequently referred to as efficiencies rather than 

efficiency estimates (Ray, 2010; Zarepisheh et al., 2010). 

 

The choice of terminology in describing the nonparametric efficiency approaches 

and their results is perhaps understandable given (until very recently) the lack of a “tool 

box” with aids for diagnostics, inference etc, such as the one available to researches using 

parametric approaches (Simar and Wilson, 2004). To solve these problems, bootstrap 
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techniques have been introduced into DEA analysis (Cesaro et al., 2009). The bootstrap 

technique permits the sensitivity of efficiency scores relative to the sampling variation of 

the frontier to be analyzed, avoiding problems of asymptotic sampling distributions. DEA 

results, in fact, may be affected by sampling variation in the sense that distances to the 

frontier are underestimated if the best performers in the population are not included in the 

sample. To account for this, Simar and Wilson (1998, 2000) originally proposed a 

bootstrapping method allowing the construction of confidence intervals for DEA efficiency 

scores which relies on smoothing the empirical distribution. This technique consists of a 

simulation of a true sampling distribution by mimicking a data generating process, using 

the outputs from DEA. In this way, a new dataset is created and DEA is re-estimated using 

this dataset. Repeating the process many times allows a good approximation to be achieved 

of the true distribution of the sampling (Cesaro et al, 2009). 

 

The method used in this research departs from that presented by Simar and Wilson 

(2004), which adapted the bootstrap methodology to the case of DEA efficiency estimators 

and uses a Gaussian kernel density function for random data generation. All the 

computations were carried out with R codes developed by the authors; 1000 bootstrap 

replications were performed on model (1), following the discussion presented by Simar and 

Wilson (1998, 2004) and Curi et al. (2011) on deriving statistical properties for each fishing 

zone vis-à-vis bias estimation, and central tendency correction. 

 

3.2. Censored Quantile Regression (CQR) 
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 Traditional regression models cannot answer an important question: “do 

environmental variables influence high and low efficiency in fishing activity in different 

ways?". A more comprehensive picture of the effect of the contextual variables on the 

efficiency levels can be obtained via CQR. Quantile regression models the relation between 

a set of contextual variables and specific percentiles (or quantiles) of the response variable. 

It specifies changes in the quantiles of the efficiency. As a matter of fact, the quantile 

regression parameter estimates the change in a specified quantile of the response variable 

produced by a one unit change in the predictor variable. This allows comparing how some 

percentiles of the efficiency levels may be more affected by certain environmental or 

contextual variables than other percentiles. This is reflected in the change in the size of the 

regression coefficient. 

 

According to Leng and Tong (2013), the quantile regression was introduced by 

Koenker and Bassett (1978) and has become an increasingly important tool in statistical 

analysis. They have actually introduced the general quantile regression (QR) estimation that 

became the most popular approach (Chernozhukov and Hong, 2002).Contrary to the usual 

model for the conditional mean, it provides distributional information on the dependence of 

T on Z. The Ƭth conditional quantile function of the dependent variable T given covariates 

Z, QT (Ƭ|Z), is defined as QT (Ƭ|Z) = inf{v: F0(v|Z) ≥ Ƭ}, where F0 is the cumulative 

conditional distribution function of T given Z. Correspondingly, a quantile regression 

model for QT (Ƭ|Z) with Ƭ ∈ (0, 1) can be denoted as 
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QT (Ƭ|Z) =  Z.          (2) 

In our context, since our DEA efficiency scores between 0 and 1, the dependent 

variable is censored. When data are subject to censoring, statistical estimation and inference 

for quantile regression is more involved. Indeed, a naive procedure that completely ignores 

censoring may give highly biased estimates (Koenker, 1987). Equivariance to monotone 

transformations is an important property of quantile regression models (Powell, 1986). 

 

Powell (1986, 1984) first studied Censored Quantile Regression (CQR) with fixed 

censoring. For random censoring, Ying et al. (1995) proposed a semiparametric median 

regression model. Despite the simplicity of their method, this procedure requires the 

unconditional independence of the survival time and censoring time. This assumption is 

often restrictive as conditional independence, given the covariates, is more natural 

(Kalbfleisch and Prentice, 2002). In addition, the estimating equation approach proposed in 

Ying et al., (1995) involves solving non-monotone discrete equations, creating difficulty for 

optimization. As a consequence, inferential procedures such as the resampling approach in 

Jin, Ying and Wei (2001), or the bootstrap method, can be prohibitive computationally.  

 

Chernozhukov and Hong (2002) argue that the CQR models allow covariates to 

shift location, scale, and the entire shape of the distribution and permit distribution-free 

specifications. As such, CQR models compare favorably to the normal Amemiya-Tobin, 

Cox, Buckley-James, and other approaches. According to the authors, in this model, the 

latent variable  is left censored by the observable, possibly random, censoring points Ci, 

and we observe 
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Yi =   ˅ Ci ,  Xi ,   Ci ,  σi = 1 (Yi = Ci)   (3) 

 is assumed to be conditionally independent of the censoring point Ci ; that is, for all y ∈ 

IR, where IR is the set of real numbers, iX is the set of explanatory variables, iC is the set 

of censored values, and i  is the right censoring for the efficiency scores (censoring at 1). 

P (Y* <  y|Xi, Ci) = P(Y* < y|Xi), so that  (T|Z) =  Z    (4) 

Conditioning on Ci, equation (4) and the equivariance transformation yield the 

following CQR model (Powell, 1986): 

 QYi |Xi, Ci (T|Z) =  Z ˅ Ci        (5) 

 

4. Data and Results  

 

Our dataset contains monthly observations from 1998 - 2007 for each of the three fishing 

zones – western LIS, central LIS and eastern LIS. The data for the aggregate monthly 

lobster harvest, price, inputs variables and all environmental variables used in the study 

have been collected and provided by the Connecticut Department of Energy and 

Environmental Protection (CT DEEP). The environmental data have been collected at 

various stations in the sound where monitoring stations are located. Data for the 

environmental variables are typically collected once every month. Sometimes during the 

summer months, data were collected twice with a gap of 15 days in the same month. For 

those months the average of the two observations was used. Each data point corresponds to 

a fishing zone (western, central or eastern LIS) and a particular month in the chosen time 

period. Because of missing data for some variables, we include 315 observation in our 
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analysis. Table 1 shows the descriptive statistics for the inputs, outputs, and the contextual 

or environmental variables in the sample. 

 

[Insert Table 1 here] 

 

In table 1, the statistics for each variable are presented for the entire Long Island Sound. 

The variables, aggregate fishing days and number of fishermen, are our aggregate measures 

of inputs. They were used to obtain the technical efficiency estimates for the fishing zones. 

The variable aggregate fishing days refers to the total number of fishing days recorded for 

all the fishers fishing in that zone in any given month. Number of fishermen for each zone 

refers to total number of fishermen operating in that zone in a particular month. For the 

environmental variables, we use both surface level and bottom level estimates for each of 

the variables – oxygen and nitrogen levels, salinity, and temperature. The dissolved oxygen 

level is measured in mg/l. The nitrogen level includes both dissolved nitrogen in the water 

column and particulate nitrogen (for example, found algal cells). The temperature is 

measured in Celsius and the salinity level is measured in Practical Salinity Units, a standard 

measure for ocean salinity levels. 

 

4.1. Discussion of results from bootstrapped DEA and CQR models 

 

The efficiency levels calculated for 3 fishing zones from 1998 to 2007, using 

bootstrapped-DEA and considering different grouping criteria, are given in Figs. 1, 2a-c, 
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and 3. More precisely, in Fig. 1, bootstrapped-DEA scores are grouped by year (top), 

month (middle), and fishing zone (bottom). Kruskal-Wallis tests for median differences 

revealed significant results within these grouping schemes, suggesting not only that there 

are significant differences in efficiency with respect to each fishing zone, but also that 

efficiency in fishing is seasonal. Although there are significant differences in efficiency 

among the years, it is not possible to affirm that there is a long run tendency towards higher 

efficiency levels. 

A clear picture emerges when contextual variables are grouped by fishing zone and 

month (cf. Fig. 2a, 2b, and 2c). While Kruskal-Wallis tests reveal significant differences 

only in nitrogen and salinity levels within the three fishing zones (top), an analysis grouped 

per month reveal that dissolved oxygen, nitrogen and salinity levels, temperature, and 

harvest price are seasonal phenomena (middle and bottom), as long as they significantly 

differ over the course of the year. This suggests the eventual impact of these contextual 

variables that may be embedded within the grouping schemes: fishing zone and month. 

Fuel prices did not vary significantly within both grouping schemes. 

 

Nevertheless, the correlogram presented in Fig 3. reveals several issues. First, 

surface and bottom measures for each one of the environmental variables dissolved oxygen, 

nitrogen, temperature, and salinity are strongly correlated. These measures should be, from 

now on, substituted by their averages, in order to avoid collinearity problems. Second, 

bootstrapped DEA scores are positively correlated to dissolved oxygen and nitrogen levels, 

and negatively correlated to temperature and salinity.  

 

[Insert Fig. 1. here] 
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 Results for the CQR of the efficiency scores on these averaged environmental 

variables for oxygen, nitrogen, temperature, and salinity are presented for selected 

efficiency percentiles in Table 1 (tau = 0.20, 0.40, 0.60, and 0.80). The full set of results for 

these percentiles is given in the Appendix and depicted in Fig. 4. Significances and 

bootstrapped lower and upper confidence intervals can also be found in the Appendix. The 

standard errors and confidence limits for the CQR coefficient estimates were obtained with 

asymptotic and bootstrapping methods. Both methods provide robust results (Koenecker 

and Hallock, 2001), with the bootstrap method preferred as more practical (Hao and 

Naiman, 2007). Therefore, the bootstrap results derived originally for the DEA scores were 

also used to bootstrap for the CQR coefficient estimates. 

 

 As one can easily note from Table 2, the signs of the relationships between the 

contextual/environmental variables and the efficiency levels do not change for different 

quantiles - although the same cannot be affirmed with respect to their significances as 

illustrated in Fig. 4. It is worth noting that the magnitudes of the coefficients vary from 

quantile to quantile. As a matter of fact, this effect happens because rather than predicting 

the mean of the dependent variable, CQR looks at the quantiles of the dependent variable. 

By choosing tau = 0.4 or 0.6, the 40th and 60th percentiles of the data are being used to 

compute the regression. Therefore, CQR allows answering the question: “For which type of 

fishery - high or low efficiency -the impact of a given contextual/environmental variable 

prevails?”  
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[Insert Fig. 2a. here] 

[Insert Fig. 2b. here] 

[Insert Fig. 2c. here] 

 

[Insert Fig. 3. here]  

 

[Insert Table 2 here] 

  

 

The CQR results presented in Table 2 above indicate that temperature and salinity present a 

straightforward interpretation with respect to their impact on fishery efficiency: higher 

temperature and salinity, lower efficiency. On the other hand, however, the impacts of 

oxygen and nitrogen are counterintuitive. It appears that efficiency is low when oxygen is 

superabundant, and that the reverse is true in case of nitrogen. One possible explanation is 

that when environmental conditions are favorable for fishery (e.g. high oxygen levels), 

proportionally more inputs (fishing days and fishing men) are allocated for a given harvest 

that is generated. On the other hand, when environmental conditions are not so favorable 

(e.g. high nitrogen levels), proportionally less inputs are allocated for a given harvest or 

output generated. This dichotomous attitude towards risk-taking and parsimony in light of 

different environmental conditions may explain this unexpected behavior of efficiency 

levels. 

 

 More precisely, the effect of a higher oxygen levels and lower nitrogen levels has a 

larger negative impact on the higher quantiles of fishery efficiency in Long Island. The 
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same occurs with the negative effects of temperature and salinity: larger in higher quantiles 

of fishery efficiency than in lower ones. It is important to note in Fig. 4 that the CQR 

coefficients for the environmental variables cross the horizontal "effect equals zero" axis in 

some quantiles. A rigorous interpretation of this effect would suggest that the effects of 

nitrogen and salinity, previously discussed, may not be significant to all range of quartiles.  

 

 The results presented here suggest a number of policy implication for the lobster 

fishery in Long Island and, more generally, any fishery. There are different possible courses 

of action both for fishing companies and the fishing regulatory agency. For example, 

decisions regarding rebalancing the workload - number of fisherman and fishing days - in 

light of environmental conditions, accurate assessment and analysis of water quality 

conditions, and establishing decision support systems for resource dimensioning. Since 

individual fishers may not often have a clear view on these environmental indicators and 

how they impact the productivity of fishing activity, we deem necessary the accurate 

measurement of these conditions at the sea level so that resource dimensioning in the case 

of the inputs would not be decided without an empirical basis. 

 

[Insert Fig.4. here] 

 

 

5. Conclusion  

 

The performance and profitability of commercial fishing industries depend on the ambient 

water quality of the aquatic ecosystems in which the harvesting activities take place. This 
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raises the question whether there exists any relationship between the efficiency levels at 

which an industry operates and the environmental factors that influence the ambient water 

quality. The technical efficiency of a fishing industry can vary both temporally and 

spatially across fishing zones. In this paper, we presented a novel two-stage approach based 

to estimate the zone specific technical efficiency of Connecticut Long Island Sound lobster 

industry and analyze the relationship between industry level efficiency and a range of 

environmental variables that affect the ambient water quality of Long Island Sound system. 

The technical efficiency levels calculated for the three contiguous fishing zones for the 

period 1998 to 2007, using bootstrapped-DEA and considering three different grouping 

criteria - by year, month, and by fishing zone. Quantile regressions were then used to 

analyze the impact of environmental variables such as bottom and surface level dissolved 

oxygen, nitrogen, water temperature and salinity on the efficiency scores. The results show 

that the effect of a higher oxygen levels and lower nitrogen levels has a larger negative 

impact on the higher quantiles of fishery efficiency indicating the complexity of the 

relationship between ambient water quality and the technical efficiency of a fishery. A 

better understanding of the relationship between technical efficiency and the determinants 

of ambient water quality has important policy implications. Specifically, our results 

emphasize the role of the government in accurate periodic assessment of water quality 

conditions and taking into account such information in the context of sustainable fisheries 

management. Specifically, the question that arises is how do environmental variables affect 

the cost of fishing across seasons and zones given the seasonal and spatial differences in 

their effects on technical efficiency. This is an area that warrants further research 

particularly because fishery managers worldwide are associated with using policy tools to 
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reduce economic inefficiencies such as excess harvesting capacity and bycatch that often 

lead to unnecessarily higher production costs and ecological damage. 
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Table 1. Descriptive Statistics 

Variable Type Min Max Mean SD 

Contextual 

and 

Environmental 

Variables 

Trend 

Year 1,998.00 2,007.00 2,002.50 2.88 

Month 1 12 6.5 3.46 

Time 1 120 60.5 34.69 

Location Zone 1 3 2 0.82 

Prices and 

Costs 

Price 2.98 8.95 4.63 0.92 

Average_Diesel_Price_NE 1.06 3.59 1.86 0.66 

Average_Diesel_Price_Eastern 0.97 3.39 1.77 0.65 

Environment 

Dissolved_Oxygen_Bottom 2.53 13.01 8.43 2.23 

Dissolved_Oxygen_Surface 5.4 14.04 9.24 1.66 

Nitrogen_Bottom 0.1 0.61 0.28 0.09 

Nitrogen_Surface 0.1 0.99 0.31 0.1 

Temperature_Bottom -0.82 22.1 11.29 6.75 

Temperature_Surface -0.68 24.26 12.07 7.21 

Salinity_Bottom 13.49 32.11 28.48 1.98 

Salinity_Surface 12.73 31.73 25.58 4.32 

Inputs and 

Outputs 

Outputs 
Harvest 98 512,439.00 34,347.17 57,892.16

Inputs 

Aggregate Fishing_Days 8 1,231.00 238.22 226.3 

Number of Fishermen 4 117 32.49 20.38 
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CQR results: 

 

Table 2. Coefficients for the CQR for selected percentiles 

 

                      tau= 0.2     tau= 0.4     tau= 0.6     tau= 0.8 

(Intercept)         0.507371207  0.640751569  0.611847706  0.797330829 

Oxygen             -0.024614520 -0.028467184 -0.025659464 -0.034007465 

Nitrogen            0.039804947  0.036306909  0.181778732  0.240886886 

Temperature        -0.007656111 -0.008919842 -0.007914481 -0.010375697 

Salinity           -0.003826074 -0.005664683 -0.006146372 -0.008348809 
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CQR results 

 

tau: 0.2 

 

Coefficients: 

                               Value    Lower Bd Upper Bd Std Error T Value  Pr(>|t|) 

(Intercept)                    0.50737  0.19134  0.82341  0.16070   3.15733  0.00173 

Average Dissolved Oxygen      -0.02461 -0.04341 -0.00582  0.00955  -2.57610  0.01040 

Average Nitrogen               0.03980 -0.08864  0.16825  0.06531   0.60945  0.54262 

Average Temperature           -0.00766 -0.01245 -0.00287  0.00244  -3.14292  0.00181 

Average Salinity Interaction -0.00383  -0.00837  0.00071  0.00231  -1.65757  0.09829 

 

tau: 0.4 

 

Coefficients: 

                              Value    Lower Bd  Upper Bd Std Error T Value  Pr(>|t|) 

(Intercept)                    0.64075  0.50101  0.78049  0.07105   9.01788  0.00000 

Average Dissolved Oxygen      -0.02847 -0.03818 -0.01876  0.00494  -5.76545  0.00000 

Average Nitrogen               0.03631 -0.04919  0.12181  0.04347   0.83512  0.40421 

Average Temperature           -0.00892 -0.01166 -0.00618  0.00139  -6.40959  0.00000 

Average Salinity Interaction  -0.00566  -0.00811 -0.00321  0.00125  -4.54693  0.00001 
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tau: 0.6 

 

Coefficients: 

                              Value    Lower Bd Upper Bd Std Error T Value  Pr(>|t|) 

(Intercept)                    0.61185  0.32140  0.90229  0.14768   4.14298  0.00004 

Average Dissolved Oxygen      -0.02566 -0.04289 -0.00843  0.00876  -2.92846  0.00363 

Average Nitrogen               0.18178  0.00041  0.36315  0.09222   1.97108  0.04949 

Average Temperature           -0.00791 -0.01249 -0.00334  0.00233  -3.39952  0.00075 

Average Salinity Interaction  -0.00615  -0.01045 -0.00184  0.00219  -2.80896  0.00525 

 

tau: 0.8 

 

Coefficients: 

                                Value   Lower Bd Upper Bd Std Error T Value  Pr(>|t|) 

(Intercept)                    0.79733  0.44625  1.14841  0.17851   4.46651  0.00001 

Average Dissolved Oxygen      -0.03401 -0.05836 -0.00965  0.01239  -2.74585  0.00634 

Average Nitrogen               0.24089  0.03059  0.45119  0.10693   2.25270  0.02489 

Average Temperature           -0.01038 -0.01725 -0.00350  0.00350  -2.96716  0.00321 

Average Salinity Interaction  -0.00835 -0.01771  0.00101  0.00476  -1.75484  0.08015 
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Fig. 1. Efficiency levels grouped by year, month, and fishing zone 
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Fig. 2a. Contextual Variables grouped by fishing zone 
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Fig. 2b. Contextual variables grouped by month 
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Fig. 2c. Contextual variables grouped by fishing zone and month.
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Fig. 3. Correlogram for the DEA boostrapped efficiency scores and the contextual variables 
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Fig 4. Censored Quantile Regression Coefficients Plots. The solid blue line indicates the quantile regression point estimates, the lighter 

blue region is a pointwise 95% confidence band. X-axis represents the quantiles and Y-axis represents the coefficients for each 

contextual variables. 

 




