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Whole-genome sequencing for prediction of Mycobacterium 
tuberculosis drug susceptibility and resistance: 
a retrospective cohort study
Timothy M Walker*, Thomas A Kohl*, Shaheed V Omar*, Jessica Hedge*, Carlos Del Ojo Elias, Phelim Bradley, Zamin Iqbal, Silke Feuerriegel, 
Katherine E Niehaus, Daniel J Wilson, David A Clifton, Georgia Kapatai, Camilla L C Ip, Rory Bowden, Francis A Drobniewski, Caroline Allix-Béguec, 
Cyril Gaudin, Julian Parkhill, Roland Diel, Philip Supply, Derrick W Crook, E Grace Smith, A Sarah Walker, Nazir Ismail†, Stefan Niemann†, 
Tim E A Peto†, and the Modernizing Medical Microbiology (MMM) Informatics Group‡

Summary
Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-
susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-
determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting 
drug resistance, or consistency with susceptibility, for all fi rst-line and second-line drugs for tuberculosis.

Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis 
genomes. For 23 candidate genes identifi ed from the drug-resistance scientifi c literature, we algorithmically 
characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. 
We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an 
independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those 
characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance.

Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these 
mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 
90·7–93·7) and 98·4% specifi city (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because 
uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had 
higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance 
determinants were identifi ed among mutations under selection pressure in non-candidate genes.

Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used 
clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically 
predicted. This approach could be integrated into routine diagnostic workfl ows, phasing out phenotypic drug-
susceptibility testing while reporting drug resistance early.
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Introduction
WHO’s target is to end the tuberculosis epidemic by 2035. 
Multidrug-resistant tuberculosis poses the greatest 
obstacle to success, with an estimated 480 000 cases 
worldwide in 2013 alone.1 Phenotypic drug-susceptibility 
testing for Mycobacterium tuberculosis can take many 
weeks, and access to the necessary laboratory facilities in 
countries with the greatest disease burden is often scarce.1 
Although genotypic assays are faster and have diag-
nostic usefulness in both high-income and low-income 
countries,2–4 these assays screen a small number of genetic 
loci commonly associated with drug resistance, but are not 
designed to identify or exclude resistance by other 
mechanisms.5,6 Culture-based drug-susceptibility testing 
thus remains the gold-standard assay for testing resistance.

Whole-genome sequencing enables the screening of 
known resistance-associated loci while also providing 

opportunities to characterise other loci as predictive of 
resistance or not.2,7,8 To assess whether data from whole-
genome sequencing can be used clinically to predict both 
drug resistance and drug susceptibility, we characterised 
the genetic variation in a large training set of samples 
and validated the fi ndings by predicting phenotypes in 
an independent dataset.

Methods
Sample selection and processing
We included 3651 M tuberculosis complex genome 
sequences from the UK, Sierra Leone, South Africa, 
Germany, and Uzbekistan, representing all seven global 
clades (appendix  1).9 We did phenotypic drug-susceptibility 
testing at reference laboratories in each of the countries 
(appendix 1) using the WHO-endorsed proportion 
method in an automated Mycobacterial Growth Indicator 
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Tube 960 system (Becton Dickinson), on solid Lowenstein-
Jensen media, or the resistance ratio method. UK samples 
were tested for routine patient-care purposes, and non-
UK samples for research. Drug-susceptibility testing for 
one or more of isoniazid, rifampicin, ethambutol, 
pyrazinamide, streptomycin, ciprofl oxacin, moxifl oxacin, 
ofl oxacin, amikacin, capreomycin, and kanamycin was 
available for each isolate. We prepared DNA for 
sequencing using the Nuclisens EasyMag (Biomerieux, 
France) following the manufacturer’s protocol, the Fuji 
Quickgene kit (Kurabo Biomedical, Osaka, Japan), or the 
cetyl tri methyl ammonium bromide method of DNA 
purifi cation (as previously described).10,11 We used 
Illumina (San Diego, CA, USA) sequencing platforms at 
the Wellcome Trust Centre for Human Genetics (Oxford, 
UK), the Wellcome Trust Sanger Institute (Hinxton, UK), 
the Forschungszentrum Borstel (Borstel, Germany);  
Genoscreen (Lille, France), and the National Institute for 
Communicable Diseases (Johannesburg, South Africa).

Paired-end reads were mapped with Stampy12 (version 
1.0.17) to the H37Rv (GenBank NC000962.2) reference 
genome, which was phenotypically susceptible to all 
drugs of interest. Repetitive genome sections were 
defi ned by self-self BLAST and masked. We excluded 
isolates with less than 88% mapped coverage of the 
reference genome (appendix 1). Base calls were made 
with SAMtools mpileup13 (version 0.1.18), requiring a 

minimum-read depth of 5 ×, including at least one read 
on each strand. Where an alternative base represented 
more than 10% of read depth, mixed base calls were 
made. These base calls were only included in the 
downstream analysis if, in at least one other isolate, they 
constituted more than 90% of read depth (ie, a non-
mixed base call). We identifi ed insertions and deletions 
with Cortex.14 One inconsistent base call was identifi ed 
across 202 technical replicates (error <1 × 10–⁹ per base). 
We used RAxML (version 8.0.5) to reconstruct the 
phylogeny under a general time reversible model with 
rate variation modelled by fi xed-rate categories.15 We 
estimated the frequency of each single nucleotide 
polymorphism arising in the phylogeny (ie, homoplasy) 
using maximum-likelihood ancestral site reconstruction.16 
No ethics approval was required for this study.

Characterisation of mutations
Identifi cation of resistance-causing single-nucleotide 
polymorphisms in clonal bacteria using genome-wide 
association studies is challenging.17 We therefore fi rst 
focused on 23 candidate genes and their promoter 
regions (fi gure 1), each with at least one previously 
described drug-resistance mutation (appendix 1). We 
devised an algorithm to characterise all mutations for 
these genes compared with the pan-susceptible reference 
genome at the level of single-nucleotide polymorphisms 
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Research in context

Evidence before this study
We searched the PubMed database for studies published before 
April, 2015, using the terms “whole genome sequencing”, 
“tuberculosis”, “drug resistance”, “drug susceptibility”, 
“prediction”, and “discovery”. Much of the scientifi c literature on 
drug resistance in tuberculosis up to 2010 has concentrated on 
identifying resistance-conferring mutations, and has been 
summarised in the Tuberculosis Drug Resistance Mutation 
Database. This database includes the small number of common 
drug-resistance mutations upon which the design of commercial 
molecular assays such as the Hain MTBDRplus line-probe 
(Nehren, Germany) and the Cepheid MTB/RIF GeneXpert 
(Sunnyvale, CA, USA) are based. As these assays only screen for 
phenotypic resistance, and not phenotypic susceptibility, 
expensive and slow phenotypic drug-susceptibility testing 
remains necessary to defi ne which drugs will eff ectively treat 
patients. Some studies have used DNA sequencing techniques to 
predict phenotypic resistance from a wider set of known 
genotypic-resistance mechanisms, and to discover new drug-
resistance mechanisms. One recent study made an important 
contribution by seeking to characterise each mutation in the 
pncA gene, relevant to the key fi rst-line drug pyrazinamide, as 
either conferring resistance or not conferring resistance, thereby 
raising the prospect of predicting both drug resistance and drug 
susceptibility from genetic data, and reducing the need for 
phenotyping for pyrazinamide.

Added value of this study
Our study expands on these fi ndings by examining mutations 
for all fi rst-line and second-line antituberculosis drugs. By 
using a large number of whole-genome sequences we were 
able to control for population structure and characterise 
mutations within relevant genes identifi ed in the scientifi c 
literature as either conferring resistance or consistent with 
drug susceptibility. We are also able to search the rest of the 
genome for additional genes of relevance to drug resistance. 
Through characterisation of all mutations, this approach can 
establish which drugs will be eff ective against clinical isolates 
and, because it is iteratively updatable, can result in fewer 
isolates needing phenotypic drug-susceptibility testing.

Implications of all the available evidence
The growing body of knowledge on mutations conferring 
drug resistance or consistent with susceptibility will provide the 
basis from which a near-defi nitive genotypic assay can be 
designed that will eventually bypass the need for phenotypic 
drug-susceptibility testing. Early results from this study have 
provided information for a pilot of drug-susceptibility testing 
based on whole-genome sequencing in the UK, and, as portable 
whole-genome sequencing platforms become available, could 
transform drug-susceptibility testing in low-income settings 
where many of the world’s patients with tuberculosis live, and 
where many still rely on empirical treatment regimens. 
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in promoter regions, aminoacids in genes, or insertions 
and deletions. We characterised mutations separately for 
each relevant drug without taking previous fi ndings 
about specifi c mutations from the scientifi c literature 
into account, and then used these results to predict drug-
susceptibility test results in other independent samples.

Samples were obtained in batches over time. We fi rst 
used a training set of 2099 samples from the UK, Sierra 
Leone, and South Africa to characterise mutations as 
resistance determining or not. We then obtained a 
validation set of 1552 samples from Germany, Uzbekistan, 
and South Africa, against which characterisations were 
assessed. To check for bias resulting from the composition 
of sets, we repeated analyses after switching training and 
validation sets, and then repeated a further 100 times, 
randomly allocating samples to equally sized training and 
validation sets (appendix 1).

To algorithmically characterise mutations in the training 
set, we fi rst assumed that synonymous and lineage-
defi ning mutations do not cause resistance, unless the 
lineage-defi ning mutations were associated with lineage-
specifi c resistance (eg, pyrazinamide in Mycobacterium 
bovis;18 appendix 1). After these mutations were labelled as 
benign and set aside, we assessed the remaining mutations 
within each group of genes relevant to each drug in turn, 
and generated hypotheses regarding associations with drug 
resistance (to be tested in the validation set). A mutation 
was characterised as resistance determining if it occurred 
as the only mutation across all relevant candidate genes in 
at least one phenotypically resistant isolate in the training 
set. Mixed-base calls were regarded as mutations rather 
than wild types. Since mutations that do not cause 
resistance can clearly co-occur with those that do, mutations 
were characterised as benign if they take place only in 
phenotypically susceptible isolates, or where all isolates 
were phenotypically susceptible when a mutation occurred 
alone. These benign mutations were then also set aside and 
the analysis repeated to potentially reveal further resistance-
deter mining mutations (appendix 1). Where resistance 
could not be accounted for by a charac terised resistance 
determinant, evidence of synergy between mutations, or of 

co-occurring compensatory mutations, was sought by 
manual inspection of sequences.

Validation-set isolates containing mutations charac-
terised in the training set as resistance determining were 
predicted resistant, and those containing no mutations, 
or only mutations characterised as benign, were predicted 
susceptible. Isolates containing uncharacterised 
mutations were hence not predicted unless co-occurring 
with resistance determinants. We then made a com-
parison with predictions based only on mutations probed 
by the Genotype MTBDRplus, MTBDRsl (HAIN Life-
sciences, Germany), and AID (AID Diagnostika, 
Germany) line-probe assays. Finally, all 3651 isolates 
were combined and the algorithm reapplied.

Because some resistant phenotypes might not be 
attributable to mutations in the 23 genes, the remaining 
genome was explored for potential explanatory 
mutations. Because resistance-causing mutations are 
likely to be under positive selection pressure, these 
mutations are also the most likely to arise repeatedly, 
independently in the phylogeny.8 Focusing our search for 
additional resistance determinants on these homoplasic 
mutations, we quantifi ed the frequency of homoplasic 
events for each mutation in the genome and compared 
the frequency recorded across the 23 genes and among 
characterised resistance deter minants to that among 
mutations in genes or open read ing frames and 
functional RNA molecules elsewhere in the genome.19 
Analyses were done with Stata 13.1 (StataCorp, Texas).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had fi nal responsibility for 
the decision to submit for publication.

Results
2099 M tuberculosis isolates were sequenced as a training 
set, within which 1414 independent strains could be 
identifi ed by clustering isolates within fi ve single-nucleotide 

Figure 1: Candidate genes and mutations
The number of potentially predictive mutations in genes relevant to each drug after lineage-defi ning and synonymous mutations have been set aside and are shown by susceptible and resistant 
phenotypes for 2099 training-set isolates. Genes from which one or more of the 120 resistance-determining mutations were algorithmically characterised are coloured red.
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polymorphisms of another.11 382 (18·2%) were 
phenotypically resistant to at least one drug, 91 (4·3%) 
were multidrug resistant, and four (0·2%) were 
extensively drug resistant, making a total of 701 (7·2%) 
resistant phenotypes. 8978 susceptible phenotypes were 
identifi ed. 

The individual steps in the mutation identifi cation 
algorithm are detailed in appendix 1. After all lineage-
defi ning and synonymous mutations were set aside, apart 
from pncA H57D and rpsA A440T because these were 
present in all M bovis isolates (intrinsically pyrazinamide 
resistant), 991 mutations (counting mutations more than 
once if relevant to more than one drug) were left for 
consideration. One mutation remained in 518 (74%) of 
resistant and 1111 (12%) of susceptible phenotypes, 
whereas no mutations remained for 7566 (84%) of 
susceptible and 33 (5%) of resistant phenotypes (fi gure 1). 
112 mutations were thereby classifi ed as resistance 
determining, and 772 were classifi ed as benign. After 
setting these benign mutations aside, six additional 
mutations were classifi ed as resistance determining, but 
no further mutations could be characterised by repeating 
the algorithm again. 101 mutations thus remained 
unclassifi ed, of which 60 co-occurred only with resistance 
determinants, com patible with a possible compensatory 
role (appendix 1). The 120 resistance-determining 
mutations (including pncA H57D and rpsA A440T) were 
spread across just 14 candidate genes (fi gure 1), with 
79 (66%) of 120 having previously been described as 
resistance determining in the scientifi c literature 
(appendix 1).

At least one resistance determinant was present in 
658 (93·9%) of 701 resistant training-set phenotypes. 
33 (4·7%) of 701 resistant phenotypes remained 
unaccounted for with no relevant mutations in relevant 
genes, and 10 (1·4%) of 701 could not be algorithmically 
unravelled because they contained more than one relevant 
mutation. Six of these contained mutations associated 
with resistance in the scientifi c literature (appendix 1).

We also noted resistance-determining mutations in 
121 susceptible phenotypes. Such phenotypic variability 
was most evident for isolates containing embB M306I 
and rpoB I491F. 34 (68%) of 50 containing embB M306I 
were phenotypically susceptible to ethambutol and 
19 (83%) of 23 containing rpoB I491F were phenotypically 
susceptible to rifampicin (appendix 1). Although 
mutations elsewhere in the genome might account for 
such variability through epistasis, a subset of eight 
ethambutol-resistant and three rifampicin-resistant 
isolates each had a genetically indistinguishable (ie, no 
single-nucleotide poly mor phisms) but phenotypically 
susceptible paired isolate. Such phenotypic changes 
without genotypic changes suggest poor phenotypic 
reproducibility for these mutations at least.20

To assess their accuracy, we used training-set charac-
terisations to predict phenotypes for an independent 
validation set of 1552 isolates that included 449 isolates 
that were phenotypically resistant to at least one drug, 
284 that were multidrug resistant and three that were 
extensively drug resistant (table, fi gure 2, appendix 1). 
58 (48·3%) of 120 mutations characterised as resistance 
determining in the training set, and 175 (22·7%) of 

Phenotypically resistant Phenotypically sensitive All Excluding uncharacterised Uncharacterised

Genotype Total Genotype Total Sensitivity Specifi city Sensitivity Specifi city

R Rx S0 SB U R Rx S0 SB U

Isoniazid 305 5 18 1 35 364 19 0 1065 52 52 1188 85·2
(81·1–88·7)

98·4
(97·5–99·0)

94·2
(91·1–96·5)

98·3
(97·4–99·0)

5·6%

Rifampicin 263 12 8 1 16 300 9 1 1200 4 38 1252 91·7
(87·9–94·5)

99·2
(98·5–99·6)

96·8
(94·1–98·5)

99·2
(98·5–99·6)

3·5%

Ethambutol 152 6 7 1 26 192 62 5 1003 79 210 1359 82·3
(76·1–87·4)

95·1
(93·8–96·2)

95·2
(90·7–97·9)

94·2
(92·7–95·4)

15·2%

Pyrazinamide 31 12 27 5 104 179 2 0 1218 67 83 1370 24·0
(17·9–30·9)

99·9
(95·5–100·0)

57·3
(45·3–68·7)

99·8
(99·4–100·0)

12·1%

Streptomycin 278 6 6 9 49 348 10 1 970 34 189 1204 81·6
(77·1–85·5)

99·1
(98·4–99·5)

95·0
(91·9–97·2)

98·9
(98·1–99·4)

15·3%

Ofl oxacin 2 3 4 2 0 11 0 0 489 134 38 661 45·5
(16·7–76·6)

100·0
(99·4–100·0)

45·5
(16·7–76·6)

100·0
(99·4–100·0)

5·7%

Amikacin 36 16 5 0 2 59 1 2 427 38 140 608 88·1
(77·1–95·1)

99·5
(98·6–99·9)

91·2
(80·7–97·1)

99·4
(98·1–99·9)

21·3%

Total 1067 60 75 19 232 1453 103 9 6372 408 750 7642 77·6
(75·3–79·7)

98·5 
(98·2–98·8)

92·3 
(90·7–93·7)

98·4 
(98·1–98·7)

10·8%

Total sensitivity and specifi city data are weighted means (95% CIs). We investigated each drug separately by comparing the phenotype for each across isolates with this data available. The unit of analysis was 
therefore not an isolate, but a phenotype. R=resistance-determining mutation. Rx =resistance determinant only as a mixed base call (heteroresistance). S0=zero mutations present. SB=only benign mutations 
present. U=uncharacterised mutations present in the absence of a resistance-determining mutation. Characterised mutations only exclude the U columns. To avoid double counting for several drugs from the 
same class, ofl oxacin and amikacin were included as representatives of their antibiotic classes, because these had the most resistant phenotypes. Results for ciprofl oxacin, moxifl oxacin, kanamycin, and 
capreomycin are in the appendix. 

Table: Phenotypic predictions for the validation set
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772 characterised as benign, recurred in validation-set 
isolates. These mutations predicted 89·2% of validation-
set phenotypes as resistant or susceptible with a mean 
92·3% sensitivity (95% CI 90·7–93·7) and 98·4% 
specifi city (98·1–98·7), using ofl oxacin and amikacin as 
representatives of their respective drug classes (table). 
The presence of uncharacterised mutations in validation-
set isolates prevented predictions for the remaining 
10·8% of phenotypes.

58 recurring resistance-determining mutations 
occurred across the resistant and susceptible validation-
set phenotypes (distribution listed in appendix 1). 
54 (93·1%), including 12 not described in the scientifi c 
literature, accurately predicted at least one resistant 
validation-set phenotype. The proportion of phenotypes 
accurately predicted resistant varied substantially by 
drug (table). Predictions for pyrazinamide were the least 
sensitive. Of 34 pncA mutations characterised in the 
training set as resistance determinants, 12 recurred in 

the validation set. Although 43 (97·7%) of 44 validation-
set isolates in which these mutations were noted were 
phenotypically resistant, these accounted for only 24% 
of pyrazinamide-resistant isolates in the validation set. 
Conversely, predictions for rifampicin were the most 
sensitive. 12 (66·7%) of 18 training-set characterised 
resistance determinants recurred in the validation set, 
success fully predicting phenotypic resistance in 
275 (96·5%) of 285 isolates in which these were noted, 
and accounting for 91·7% of rifampicin-resistant 
isolates in the validation set.

Of 1221 resistant phenotypes in the validation set, 
94 (7·7%) were incorrectly predicted susceptible. 
20 (21·3%) of 94 were due to mutations characterised as 
benign in the training set, and 74 (78·7%) of 94 had no 
relevant mutations, suggesting either a phenotypic or 
labelling error, or a resistance mechanism outside 
candidate genes. Of 6892 susceptible validation-set 
phenotypes, 112 (1·6%) were wrongly predicted resistant, 

Figure 2: Resistance determinants in training and validation sets
Mutations probed by a line-probe assay are coloured red. Mutations that were only noted once in the training set and not again in the validation set (ie, with no additional information to validate 
them) are not shown. Of the quinolones and aminoglycosides, only ofl oxacin and amikacin have been included as representatives of their class.
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55 (49·1%) of 112 contained mutations at embB M306, 
suggesting associated phenotypic variability. Eight (7·1%), 
however, contained katG S315T, which is more likely to 
represent a labelling error rather than a phenotypic error 
(appendix 1).2 To assess whether these results depended 
on the allocation of isolates to training and validation sets, 
we repeated the algorithm using the validation set as the 
training set, and vice versa, predicting 93·1% of 
phenotypes with mean 92·1% (95% CI 90·1–93·7) 
sensitivity and 97·9% (97·6–98·3) specifi city. We did a 
further 100 iterations of the algorithm, on each occasion 
randomly allocating samples to training or validation 
sets. Over these 100 iterations, the mean proportion of 
predictable phenotypes in validation sets was 92·7%, and 
the mean sensitivity and specifi city 92·4% (means are the 
same value as the medians; IQR 91·9–93·0) and 98·2% 
(98·1–98·3), respectively (appendix 1).

In view of the consistency of these results, we compared 
the original predictions for the validation set with 

predictions based on mutations probed by three line-probe 
assays. With the exception of pyrazinamide, for which no 
line-probe assay exists, these assays collectively predicted 
validation-set phenotypes with mean 81·6% (95% CI 
79·4–83·7) sensitivity and 98·0% (97·6–98·3) specifi city, 
compared with 85·1% (83·0–87·0) and 98·2% (97·9–98·6), 
respectively, for the algorithmically characterised muta-
tions based on whole-genome sequencing. However, 
unlike the line-probe assays, we could use the algorith-
mically identifi ed mutations to unambiguously distinguish 
between benign and uncharacterised mutations, allowing 
further improvement to the results by restricting 
predictions to the 89·2% of predictable validation-set 
phenotypes. For these, the mean sensitivity and specifi city, 
excluding pyrazinamide, were 94·6% (93·1–95·8) and 
98·0% (97·6–98·4), respectively (appendix 1).

The algorithm was rerun for all 3651 isolates, which 
increased the number of mutations characterised as 
resistance determining from 120 to 232, and as benign 
from 772 to 1634. Among the resistance-determining 
mutations were three that had remained uncharacterised 
in the original training set, and 16 originally characterised 
as benign but recharacterised because of additional 
samples from the phenotypically resistant validation set 
containing only those mutations. Eight (42·1%) of these 19 
mutations had been previously described as resistance 
determining in the scientifi c literature (appendix 1). 
Because all samples were included in this training set, no 
independent validation set remained, but predictions were 
made for the entire set itself. 96·1% of phenotypes could be 
predicted with mean 94·8% (95% CI 93·8–95·7) sensitivity 
and 98·0% specifi city (97·7–98·2; fi gure 3, appendix 1).

We assessed all nucleotide positions across the 
phylogeny of all 3651 isolate samples for homoplasy to 
explore fi rst whether characterised resistance deter-
minants were under selection pressure, and then to 
identify which mutations beyond the 23 candidate genes 
might be similarly under selection pressure, and 
therefore plausibly resistance determining. Across the 
23 concatenated candidate-gene sequences, 292 (0·8%) 
of 38 257 nucleotide positions were homoplasic. These 
aff ected 63 (52·5%) of 120 resistance determinants, 
17 (16·8%) of 101 uncharacterised mutations, and 
59 (7·6%) of 772 benign mutations, as characterised in 
the training set (fi gure 4). Outside the 23 candidate 
genes, 5427 (0·1%) of 4 373 275 nucleotide positions were 
homoplasic, involving 2341 (59·3%) of 3951 remaining 
genes in the genome.

To increase the probability of fi nding resistance-
determining mutations within this many genes, we 
identifi ed the most homoplasic by summing the maximum 
number of homoplasic emergences aff ecting mutations 
across each gene. For ten of 14 genes providing the 
120 resistance determinants in the training set there were 
a median 102 emergences (IQR 32–1070), placing them 
among the 34 (1·4%) of 2364 most homoplasic genes. This 
compared with a median of fi ve emergences (two to ten) 

Figure 3: Phenotypic and genotypic antibiograms for all 3651 isolates
The left-hand panel shows the phenotypes for seven drugs for the 3651 isolates. The right-hand panel shows the 
genotypic predictions based on the mutations characterised after applying the algorithm to all 3651 isolates. 
INH=isoniazid. RIF=rifampicin. EMB=ethambutol. PZA=pyrazinamide. SM=streptomycin. OFX=ofl oxacin. 
AK=amikacin. 
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for the other four of 14 genes, and four emergences 
(two to six) for the remaining genes in the genome.

We searched the 34 most homoplasic genes for non-
synonymous mutations that might account for any of the 
33 unaccounted-for resistant phenotypes in the training 
set. These mutations were however predominantly 
associated with susceptible phenotypes in other isolates 
(median 12·5% phenotypically resistant, IQR 9–28%) 
(appendix 1). Those most strongly associated with 
phenotypic resistance were rpoC G332R for ethambutol 
(fi ve of six resistant), and phoR P186L (three of fi ve) for 
isoniazid. However, all six isolates containing rpoC G332R 
were phenotypically resistant to rifampicin (all contained 
rpoB S450L), suggesting that rpoC G332R was more likely 
to be a compensatory mutation for rifampicin, than the 
cause of ethambutol resistance. The two other isoniazid-
resistant isolates containing phoR P186L both also 
contained the derived resistance determinant fabG1 G-17T. 
No additional convincing resistance determinants were 
therefore noted.

Discussion
We used a training set of 2099 M tuberculosis genomes to 
algorithmically characterise mutations across 23 can-
didate genes as either resistance determining or benign. 
These characterised mutations predicted 89·2% of 
pheno types for an independent validation set of 
1552 isolates with high sensitivity and specifi city of 
92·3% (95% CI 90·7–93·7) and 98·4% (98·1–98·7).

84% of susceptible phenotypes contained no relevant 
mutations compared with the pan-susceptible reference, 
and 74% of resistant phenotypes contained exactly one—
these fi ndings were key to the characterisation of 
mutations. Phenotypes were successfully predicted 
because the same resistance determinants happened 
repeatedly, independently across isolates. Results were 
therefore largely independent of training and validation-
set composition.

The characterisation of all mutations off ers advantages 
over line-probe assays and other commercial molecular 
assays. First, data from whole-genome sequencing can be 
screened for all resistance determinants, resulting in a 
higher sensitivity than for the mutations based on line-
probe assays alone.21,22 Second, although line-probe assays 
can suggest which drugs to avoid by screening a few key 
resistance-determining mutations, they leave some doubt 
about which drugs to give. By characterising mutations as 
benign, we can actively predict phenotypic susceptibility 
in some isolates, contrasting them from others containing 
uncharacterised mutations. Third, drug-susceptibility 
testing based on whole-genome sequencing can be done 
for additional and even novel drugs at no additional cost, 
contingent only on the knowledge base of characterised 
mutations. This wide application could be helpful when 
designing new treatment regimens.23,24

Despite the success of the algorithm, some mutations 
could not be correctly characterised, and some resistant 

phenotypes could not be ascribed a causative mutation. 
One reason is imperfect phenotypic drug-susceptibility 
testing,25,26 best shown by the weak association between 
embB M306I and ethambutol resistance noted both 
within and across study sites.20 Since the algorithm 
implicitly upweights single recordings of resistance over 
susceptibility, new samples could lead to the recharac-
terisation of mutations from benign to resistant, 
although rarely vice versa (appendix 1). Nevertheless, 
because whole-genome sequencing variant calling is 
highly reproducible,10,27 phenotypic variability around 
some mutations will become apparent in large datasets, 
including those with more resistance to second-line 
drugs, for which predictions could be recast within a 
Bayesian analysis framework.28 The reproducibility and 
robustness of sequencing data also has the potential for 
in-vitro phenotypic techniques to be recalibrated and 
reassessed. However, if further evidence for the eff ect of 
particular mutations is warranted, additional approaches 
such as in-vitro mutagenesis or crystallographic protein 
analysis might still be needed.8,29

Another possible reason is the presence of mechanisms 
of resistance outside candidate genes. The homoplasic 
signal of selection pressure has previously been used by 
Farhat and colleagues to associate genome-wide 
mutations with resistance.8 The ponA1 mutations they 

Figure 4: Training-set-characterised mutations
Numbers represent the number of mutations for each characterisation. *Among resistance determinants and 
benign mutations, 15 and 55 insertions and deletions, and 25 and 371 mutations seen in only one isolate 
respectively, were not or could not be assessed for homoplasy. †gyrA A384V defi nes the Indian Ocean lineage 
(all isolates in the lineage have this single-nucleotide polymorphism) but is also in one European American isolate. 
rpsA A440T defi nes Mycobacterium bovis but is also in one Central Asian isolate. Both are thereby homoplasic.

Resistance-determining mutations*

Homoplasic
mutations

Mutations
previously
described as
resistance 
determining
in the scientific
literature

32

Benign mutations*

11 106

55

238

11

2048

693

74

52

20
1

1

Phylogeny
defining
mutations†

Other uncharacterised
mutations



Articles

1200 www.thelancet.com/infection   Vol 15   October 2015

associated with rifampicin resistance were, however, not 
homoplasic in these data, and the only non-synonymous 
ponA1 mutation that was homoplasic (ponA1 D24N) was 
only present in fi ve isolates susceptible to rifampicin. 
Overall, in this much larger dataset we were not able to 
identify further resistance determinants associated with 
homoplasic nucleotide positions outside candidate genes.

Figure 5 suggests one approach to integrating the 
algorithm into a routine laboratory workfl ow. Here, 
pheno typic predictions based on whole-genome 
sequencing would be made for isolates containing 
resistance determinants, only benign mutations, or no 
relevant mutations. As data accrue, confi dence in the 
characterisation of each mutation will grow to the point 
where routine phenotyping can be restricted to isolates 
containing uncharacterised mutations that prevent 
phenotypic prediction. Phenotyping is likely to persist 
longer for some drugs than for others: although 
katG S315T and rpoB S450L were the dominant 
mutations for isoniazid and rifampicin, we identifi ed 
many infrequently occurring resistance-determining 
mutations in pncA, as also shown in another study.30

Limitations to this study include the few isolates that 
are phenotypically resistant to second-line drugs. 
Nevertheless, we show that the algorithm can be 
successfully applied across the full range of drugs studied, 
and that the characterisation of mutations as benign is as 

important as the characterisation of resistance 
determinants. A further limitation is that we did not have 
the resources to systematically rephenotype and 
resequence discordant isolates. However, the size of the 
study does allow the penetrance of mutations to be 
assessed across many isolates, mitigating the eff ects of 
phenotypic error. Moreover, because the presence of the 
high-level resistance determinant katG S315T in 
isoniazid-susceptible isolates has been proposed as a 
marker of sample mislabelling, our rate of nine (1·9%) of 
480 discordant isolates compares favourably with previous 
reports.2 Nevertheless, this limitation increases the 
diffi  culty of assessing the importance of drug-resistance 
determinants outside the 23 candidate genes versus 
phenotypic error or mislabelling to our false-susceptible 
predictions. Finally, the training and validation sets were 
drawn from diff erent populations as a consequence of 
availability at diff erent times. However, our simulation 
study showed the robustness of our approach.

Public Health England has started to do whole-genome 
sequencing in parallel to workfl ows to assess its 
suitability as a one-stop diagnostic platform for 
mycobacterial infections. Parallel phenotypic drug-
susceptibility testing will lend support to the status of 
some mutations, and characterise further ones. The 
cosmopolitan nature of tuberculosis in the UK will 
enhance our understanding of molecular determinants 

Figure 5: Proposed workfl ow for transition towards whole-genome sequencing-based drug-susceptibility testing
*The 30% CI width suggested is arbitrary, and represents how the precise proportion of isolates with a mutation is probably less relevant than understanding whether 
this proportion is very high, moderate, or low. However, the precise width could be determined by what is regarded as an acceptable degree of clinical risk, and could 
also vary by the estimate of proportion resistant. For example, with a targeting width of less than 30%, ten phenotypically resistant isolates of ten isolates with a 
mutation (100%) has a lower 97·5% CI of 69%, so mutations that are uniformly resistant would need to be phenotyped 11 times before confi rmatory phenotyping 
would stop. For a mutation associated with resistance in 50% of isolates, phenotyping would need to happen 48 times, and for a mutation associated with resistance 
in either 25% or 75% isolates, 36 times.
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(funded by Wellcome Trust grant 090532/Z/09/Z) for the generation of 
the sequencing data. All sequences are available in NCBI or ENA (or 
both), phenotypes and archive accession numbers are in the 
supplementary tables (appendix  2). This report is independent research 
by the NIHR. The views expressed in this publication are those of the 
authors and not necessarily those of the UK National Health Service, the 
NIHR, or the Department of Health. 
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