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Abstract

Three numerical methods have been used to solve two problems described by advection-diffusion equations with
specified initial and boundary conditions. The methods used are the third order upwind scheme [4], fourth order
upwind scheme [4] and Non-Standard Finite Difference scheme (NSFD) [9]. We considered two test problems.
The first test problem has steep boundary layers near x = 1 and this is challenging problem as many schemes are
plagued by non-physical oscillation near steep boundaries [15]. Many methods suffer from computational noise
when modelling the second test problem especially when the coefficient of diffusivity is very small for instance
0.01. We compute some errors, namely L2 and L∞ errors, dissipation and dispersion errors, total variation and
the total mean square error for both problems and compare the computational time when the codes are run on
a matlab platform. We then use the optimization technique devised by Appadu [1] to find the optimal value of
the time step at a given value of the spatial step which minimizes the dispersion error and this is validated by
some numerical experiments.
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1. Introduction

The advection-diffusion equation is one of the most challenging equations in science as it represents a super-
position of two different transport processes: advection and diffusion [11]. Thus, the numerical solution of
convection diffusion problems is important. In practical applications, the advection-diffusion equation has been
used to describe heat transfer in a draining film [7], water transport in soils [20], mass transfer [5], flow in porous
media [8].

The 3D advection-diffusion equation is given by:

∂u

∂t
+ βx

∂u

∂x
+ βy

∂u

∂y
+ βz

∂u

∂z
= αx

∂2u

∂x2
+ αy

∂2u

∂y2
+ αz

∂2u

∂z2

where βx, βy, βz are the velocity components of advection in the direction of x, y and z, respectively, and αx, αy,
and αz are diffusivities in the x, y and z directions, respectively.
In this study we solve the 1D advection diffusion equation

∂u

∂t
+

∂u

∂x
= α

∂2u

∂x2
, 0 ≤ x ≤ 1, 0 < t ≤ T, (1)

with initial condition

u(x, 0) = f(x), 0 ≤ x ≤ 1,

and boundary conditions

u(0, t) = g0(t), 0 < t ≤ T

u(1, t) = g1(t), 0 < t ≤ T.
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2. Organization of Paper

In section 3, we study the dissipative and dispersive characteristics of some numerical methods for the 1D
advection diffusion equation. Section 4 describes the two test cases considered in this paper. In section 5, we
show how to quantify errors from numerical results into dispersion and dissipation errors using the technique
by Takacs [12]. In sections 6-8, we obtain the stability of the three schemes using the approach of Hindmarsh
et al. [6]. Numerical results are presented in section 9. In section 10, we obtain the optimal temporal step
size using a technique devised by Appadu [1] to minimize the dispersion error at a given Reynolds number and
spatial step size and this is validated by some numerical experiments for problem 1. In section 11, we highlight
the salient features of the paper.

3. Numerical Dissipation and Dispersion

Finite difference schemes used to solve partial differential equations will often lose energy as time t progresses,
this property is called numerical dissipation [17]. In the case of dispersive schemes, oscillations are generated in
regions of discontinuity. We let the elementary solution of Eq. (1) be

u(x, t) = exp(γt) exp(Iθ x), (2)

where θ is a wave number and γ is dispersion relation. On plugging Eq. (2) into Eq. (1), we get

γ = −θI − αθ2 (3)

Hence

u(x, t) = exp
[

(−θI − αθ2)t
]

exp(Iθx). (4)

From Eq (4), we deduce that the partial differential equation given by (1) represents a wave with exponentially
decaying amplitude travelling at a constant speed. The exact amplification factor is obtained as

ξexact =
u(x, t+∆t)

u(x, t)
= exp((−Iθ − αθ2)∆t). (5)

The modulus of the exact amplification factor is then given by

|ξexact| = exp(−αθ2∆t). (6)

The numerical amplification factor, ξnum is obtained using von Neumann stability analysis. The relative phase
error (RPE) is obtained as

RPE =
arg(ξnum)

arg(ξexact)
= −

arg(ξnum)

θ∆t
= −

arg(ξnum)

c ω
, (7)

where c is courant number and ω = θh is phase angle, with h being the spatial step size.

4. Test Cases

In this paper, we consider two test problems to compare the performance of the three numerical methods,
namely third order, fourth order and NSFD.

4.1. Problem 1

We solve a problem from [16] which is described by the partial differential equation

∂u

∂t
+

∂u

∂x
=

1

Re

∂2u

∂x2
, 0 < x < 1, t > 0, (8)

with initial condition
u(x, 0) = 0, 0 < x < 1 (9)

and boundary conditions
u(0, t) = 0, u(1, t) = 1, t > 0. (10)
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The analytical solution to this equation can be obtained by using the method of separation of variables

u(x, t) =

[

exp(Re × x)− 1

exp(Re)− 1

]

+
∞
∑

m=1

{

(−1)mmπ

(mπ)2 + Re2

4

exp

(

Re× (x− 1)

2

)

sin(mπx) exp

[

−t

(

(mπ)2

Re
+

Re

4

)]

}

, (11)

where Re is Reynolds number.

In [15], they have used two values of Re, namely 100 and 10,000 and two values of step-size (for coarse and fine
grids), namely 0.1 and 0.025. The temporal step size was chosen as 0.01. This test case is quite challenging as
for instance at Re = 100, numerical solutions of Crank-Nicolson method show non-physical oscillations while
the scheme constructed by Ding and Zhang [18] is not accurate on coarse mesh. Moreover, for Re = 10000, the
scheme by Ding and Zhang gives inaccurate solutions due to dispersion.

In this work, we consider three values of Re, say 10, 100, and 10000, and two values of h, say 0.1 and 0.025. The
temporal step size is chosen as 0.01. We compute the L2, L∞,total variation, dissipation and dispersion errors
when the three schemes are used to solve problem 1 at time, T = 1. Table (1) gives the regions of stability of
the three schemes at some values of Re and h. The errors are shown in Tables (2) to (4) and the numerical and
exact plots are shown in Figs. (1a) to (1e).

4.2. Problem 2

We consider the advection-diffusion equation

∂u

∂t
+

∂u

∂x
= α

∂2u

∂x2
, 0 < x < 1, t > 0 (12)

with the boundary conditions:

u(0, t) = u(1, t) = 0,

and the initial condition

u(x, 0) = 3 sin(4 π x).

The exact solution of the problem is given by [19]

u(x, t) = exp

[

1

2α

(

x−
t

2

)] ∞
∑

j=1

ζj exp
(

−α j2 π2 t
)

sin(jπx),

where

ζj =
3

2α

[

1 + (−1)j+1 exp(−
1

2α
)

] [

1

( 1
2α )

2 + (j − 4)2 π2
−

1

( 1
2α )

2 + (j + 4)2 π2

]

.

In [19], they have used a one-parameter family of unconditionally stable third order time-integration scheme
with temporal and spatial step sizes being k = 0.25 and h = 0.05, respectively and compared their results with
Crank-Nicolson which is highly oscillatory. In this work, we consider four combinations of values of α and h;
namely α = 0.01, h = 0.1; α = 0.1, h = 0.05; α = 1, h = 0.05 and α = 1, h = 0.1 and display the numerical
results at time, T = 1. For each choice α and h, we consider four different values of the temporal step size for
which the methods are stable and the regions of stability are depicted in Table 6.

5. Quantification of errors from numerical results

In this section, we describe how Takacs [12] quantifies errors from numerical results into dispersion and dissi-
pation errors.
The Total Mean Square Error (TMSE) is calculated as

TMSE =
1

N

N
∑

i=1

(ui − vi)
2, (13)
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where ui represents the analytical solution and vi, the numerical (discrete) solution at a given grid point i and
N is the number of discrete points.
The Total Mean Square Error can be expressed as

1

N

N
∑

i=1

(ui − vi)
2 =

1

N

N
∑

i=1

(ui − ū)2 +
1

N

N
∑

i=1

(vi − v̄)2 +
2

N

N
∑

i=1

uiū+
2

N

N
∑

i=1

viv̄

−
1

N

N
∑

i=1

(ū)2 −
1

N

N
∑

i=1

(v̄)2 −
2

N

N
∑

i=1

uivi. (14)

The right hand side of Eq. (14) can be rewritten as

σ2(u) + σ2(v) + 2(ū)2 + 2(v̄)2 − (ū)2 − (v̄)2 −
2

N

N
∑

i=1

uivi,

where σ2(u) and σ2(v) denote the variance of u and v, respectively, ū and v̄ denote the mean values of u and
v, respectively. Then we have

TMSE = σ2(u) + σ2(v) + (ū − v̄)2 − 2Cov(u, v),

where Cov(u, v) = 1
N

∑N
i=1 uivi − ūv̄. The Total Mean Square Error can also expressed as

(σ(u)− σ(v))2 + (ū− v̄)2 + 2(1− ρ)σ(u)σ(v), (15)

where ρ = Cov(u, v)/(σ(u)σ(v)) is the coefficient of correlation. The expression 2(1− ρ)σ(u)σ(v) measures the
dispersion error and (σ(u)− σ(v))2 + (ū− v̄)2 measures the dissipation error.
We also obtain values of the L2 and L∞ errors which are obtained by the following formulae:

L2 =
√

h
∑N

i=1(ui − vi)2, (16)

L∞ = max |ui − vi|. (17)

Numerical methods must have monotone and Total Variation Diminishing properties. A numerical scheme is said
to be monotone if it produces a monotonic distribution after advection, given a distribution that is monotonic
before advection. Monotonic methods neither create new extrema in the solution nor amplify existing extrema.
Monotonic schemes are classified broadly into two classes: Flux-corrected transport (FCT) and Flax Limiter
Method (FLM).

In FCT, the advective fluxes are essentially a weighted average of a lower-order monotonic scheme and a higher-
order non-monotonic scheme. In FLM, the advective fluxes of a high-order scheme are modified so that the
total variation of the solution does not increase with time. This property is called Total Variation Diminishing
(TVD). The Total Variation (TV) of a function u is defined as

TV =

N−1
∑

i=1

|ui+1 − ui|.

A TVD scheme ensures that TV (un+1) ≤ TV (un) which signifies that the overall amount of oscillations is
bounded [21]. All monotone schemes are TVD. All TVD schemes are monotonically preserving methods.

6. Third Order Upwind Explicit Scheme

In [4], a third order upwind and fourth order upwind schemes have been used to solve a 1-D problem described
by a constant coefficient advection-diffusion equation with smooth initial conditions and quite good results with
high accuracy have been obtained. In section 6-8 we describe the three methods and obtain the order of accuracy
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and the region of stability. We now describe how the third order upwind scheme is constructed.

∂u

∂t

∣

∣

∣

∣

n

i

≃
un+1
i − un

i

∆t
, (18)

∂u

∂x

∣

∣

∣

∣

n

i

≃

(

2c2 + 3c+ 12s− 2

12

)(

un
i − un

i−2

2∆x

)

+

(

2c2 − 3c+ 12s− 2

12

)(

un
i+2 − un

i

2∆x

)

+

(

4− c2 − 6s

3

)(

un
i+1 − un

i−1

2∆x

)

, (19)

∂2u

∂x2

∣

∣

∣

∣

n

i

≃

(

6s− 12sc+ 2c− 2c3 + 3c2

6s

)(

un
i+1 − 2un

i + un
i−1

(∆x)2

)

+

(

12sc− 2c+ 2c3 − 3c2

6s

)(

un
i+2 − 2un

i + un
i−2

4(∆x)2

)

. (20)

where c = k
h and s = αk

h2 .
On substitution of Eqs. (18)-(20) into Eq. (1), we have the following:

un+1
i − un

i

∆t
+

(

2c2 + 3c+ 12s− 2

12

)(

un
i − un

i−2

2∆x

)

+

(

2c2 − 3c+ 12s− 2

12

)(

un
i+2 − un

i

2∆x

)

+

(

4− c2 − 6s

3

)(

un
i+1 − un

i−1

2∆x

)

= α

[(

6s− 12sc+ 2c− 2c3 + 3c2

6s

)(

un
i+1 − 2un

i + un
i−1

(∆x)2

)

+

(

12sc− 2c+ 2c3 − 3c2

6s

)(

un
i+2 − 2un

i + un
i−2

4(∆x)2

)]

.

On simplification we get

un+1
i =

1

24
[4c3 + 24sc− 4c]un

i−2 +
1

6
(6c− 3c3 − 18sc+ 6s+ 3c2)un

i−1+
[

1−
c2

4
−

1

12
(24s− 36sc+ 6c− 6c3 + 9c2)

]

un
i +

1

6
(−2c− c3 − 6sc+ 6s+ 3c2)un

i+1.

Therefore, the third order scheme is given by

un+1
i = A1 u

n
i−2 +A2 u

n
i−1 +A3 u

n
i +A4 u

n
i+1. (21)

where

A1 =
1

6
c(c2 + 6s− 1), A2 =

1

2
(2c− c3 − 6sc+ 2s+ c2),

A3 =
1

2
(2− 2c2 − 4s+ 6sc− c+ c3), A4 =

1

6
(1− c)(6s+ c2 − 2c).

The modified equation of the scheme is given by

ut + ux = αuxx +
1

24

h3

c

(

12sc2 − 2s− 2c3 + 2c+ 12s2 + 6c4 − c2 − 2cs
)

uxxxx + · · · , (22)

and the leading error terms are dispersive in nature. The scheme is consistent and is third order accurate in
space. The amplification factor of the scheme is given by

ξ = A1 e
−2Iω +A2 e

−Iω +A3 +A4 e
Iω. (23)

We use the Fourier analysis and the approach of Hindmarsh et al. [6] to obtain the stability region. When
ω = π on simplification of Eq. (23), we obtain

ξ = 1− 4s−
4

3
c+ 8sc− 2c2 +

4

3
c3. (24)

Then we have
2c+ 3c2 − 2c3 − 3 ≤ s(12c− 6) ≤ 2c+ 3c2 − 2c3. (25)

When ω → 0, using Taylor’s expansion and on neglecting higher order terms, we have

|ξ|2 ≃ 1− 2s(ω2), (26)

and therefore, we must have
s ≥ 0. (27)

Thus the scheme, is stable when both inequalities (25) and (27) are satisfied.
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7. Fourth Order Upwind Explicit Scheme

For this scheme the following approximations are used [4];

∂u

∂t

∣

∣

∣

∣

n

i

≃
un+1
i − un

i

∆t
, (28)

∂u

∂x

∣

∣

∣

∣

n

i

≃

(

12s+ 2c2 − 3c− 2

12

)(

un
i+2 − un

i

2∆x

)

+

(

12s+ 2c2 + 3c− 2

12

)(

un
i − un

i−2

2∆x

)

−

(

c2 + 6s− 4

3

)(

un
i+1 − un

i−1

2∆x

)

, (29)

∂2u

∂x2

∣

∣

∣

∣

n

i

≃

(

−c4 + 4c2 − 12s2 − 12sc2 + 8s

6s

)(

un
i+1 − 2un

i + un
i−1

(∆x)2

)

+

(

c4 − 4c2 + 12s2 + 12sc2 − 2s

6s

)(

un
i+2 − 2un

i + un
i−2

4(∆x)2

)

. (30)

On substitution of Eqs. (28-30) into Eq. (1), we have the following:

un+1
i − un

i

∆t
+

(

12s+ 2c2 − 3c− 2

12

)(

un
i+2 − un

i

2∆x

)

+

(

12s+ 2c2 + 3c− 2

12

)(

un
i − un

i−2

2∆x

)

−

(

c2 + 6s− 4

3

)(

un
i+1 − un

i−1

2∆x

)

= α

[(

−c4 + 4c2 − 12s2 − 12sc2 + 8s

6s

)(

un
i+1 − 2un

i + un
i−1

(∆x)2

)

+

(

c4 − 4c2 + 12s2 + 12sc2 − 2s

6s

)(

un
i+2 − 2un

i + un
i−2

4(∆x)2

)]

,

which after some algebraic manipulation gives

un+1
i =

1

24
[12s(s+ c2) + 2s(6c− 1) + c(c3 + 2c2 − c− 2)]un

i−2

−
1

6
[12s(s+ c2) + 2s(3c− 4) + c(c3 + c2 − 4c− 4)]un

i−1

+
1

4
[12s(s+ c2)− 10s+ ((c)2)2 − 5c2 − 4]un

i

−
1

6
[12s(s+ c2)− 2s(3c+ 4) + c(c3 − c2 − 4c+ 4)]un

i+1

+
1

24
[12s(s+ c2)− 2s(6c+ 1) + c(c3 − 2c2 − c+ 2)]un

i+2.

By rearranging, we get the following finite difference scheme

un+1
i = Aun

i−2 +B un
i−1 + C un

i +Dun
i+1 + E un

i+2, (31)

where

A =
1

24

(

12s(s+ c2) + 2s(6c− 1) + c(c− 1)(c+ 1)(c+ 2)
)

,

B = −
1

6

(

12s(s+ c2) + 2s(3c− 4) + c(c− 2)(c+ 1)(c+ 2)
)

,

C =
1

4

(

12s(s+ c2)− 10s+ (c− 1)(c− 2)(c+ 1)(c+ 2)
)

,

D = −
1

6

(

12s(s+ c2)− 2s(3c+ 4) + c(c− 2)(c− 1)(c+ 2)
)

,

E =
1

24

(

12s(s+ c2)− 2s(6c+ 1) + c(c− 1)(c+ 1)(c− 2)
)

.

The modified equation of the scheme is given by

ut + ux = αuxx +
h4

120

(

60s2 + 20sc2 + c4 − 5c2 + 4− 30s
)

uxxxxx + . . . . (32)
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The scheme is essentially dispersive as the leading error terms are dispersive in nature due to the presence of
the odd-order derivative term, uxxxxx. The scheme is consistent and is fourth order accurate in space. The
amplification factor of the scheme is given by

ξ = Ae−2Iω +B e−Iω + C +DeIω + Ee2Iω. (33)

Using the approach of [6], we obtain the region of stability as

0 ≤ s ≤
1

3
−

1

6
c2 +

1

6

√

4 + 6c4. (34)

8. Non-Standard Finite Difference Scheme (NSFD)

In this section, we describe how NSFD has been constructed by Mickens [10] for the 1-D convection-diffusion
equation.

The equation ut + ux = αuxx has three sub-equations [9] which are given by

ut + ux = 0, (35)

ux = α uxx, (36)

ut = α uxx. (37)

Eqs. (35) and (36) have known exact finite difference scheme which are

un+1
i − un

i

k
+

un
i − un

i−1

h
= 0, (38)

and

ui − ui−1

h
= α

(ui+1 − 2 ui + ui−1

αh(exp(h/α)− 1)

)

, (39)

respectively.

The NSFD is given by [9, 10]

un+1
i − un

i

k
+

un
i − un

i−1

h
= α

(un
i+1 − 2un

i + un
i−1

αh(exp(h/α)− 1)

)

, (40)

which on re-arranging gives

un+1
i = β1 un

i+1 + (1− c− 2β1) u
n
i + (c+ β1) u

n
i−1, (41)

where c = k
h and β1 = c

exp(h/α)−1 .

The modified equation of NSFD scheme is given by

ut + ux =
1

2
h

(

−c+
β1

c
+ 1

)

uxx +
h2

6
(6s+ c2 − 1)uxxx + . . . , (42)

and the leading error terms are dissipative in nature.
The square of the modulus of the amplification factor is given by

|ξ|2 =
(

(1− c− 2β1) + (c+ 2 β1) cos(w)
)2

+ (c sin(w))2. (43)

For stability, 0 < |ξ| ≤ 1 and this implies that 0 < |ξ|2 ≤ 1. We now obtain the region of stability using the
approach used in [6].

We consider the case when w = π. The square of the modulus of the amplification factor is given by

|ξ|2 = (1− 2 c− 4 β1)
2. (44)
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and therefore,
0 ≤ c+ 2 β1 ≤ 1. (45)

Since c and β1 are positive, we have c+ 2β1 ≥ 0. Hence, we have the inequality

c+ 2β1 ≤ 1. (46)

We next consider the case when w → 0. When w → 0, cos(w) ≈ 1− 1
2w

2 and sin(w) ≈ w and we get

c+ 2 β1 − c2 ≥ 0. (47)

Thus the scheme is stable if it satisfies inequalities (46) and (47).

Table 1 displays the regions of stability of the three schemes at three values of Re:10, 100, 10000 and also for
two values of h namely 0.1 and 0.025. The three schemes are stable at Re=100 and Re=10000, when h = 0.1
and 0.025, with k = 0.01. However, the fourth order and NSFD schemes are not stable at Re=10, h = 0.025
and k = 0.01.

9. Numerical Results

In this section, the numerical results obtained from the test problems, Problem 1 and Problem 2, at T = 1 are
presented. For each test problem, the numerical profiles obtained using the three methods; third order, fourth
order and NSFD are plotted and some types of errors are tabulated.

9.1. Problem 1

We tabulated the L2, L∞, dissipation, dispersion, Total Mean Square errors and total variation at temporal
step size 0.01 and Reynolds number: 10, 100 and 10000 for two values of h namely 0.1 and 0.025 for the three
different methods in Table (2) to (5). For each method, it is seen that the errors are larger at higher Reynolds
number for same values of h and k. The NSFD is by far the best scheme in terms of L2, L∞, dissipation and
dispersion errors followed by the third order and fourth order. The profiles from the three methods and exact
profile are shown in Figs. (1a) to (1e). At Re = 100 and Re = 10000, with h = 0.1 (coarse grid), the results
obtained from the third order and the fourth order are very oscillatory. However, the profile obtained using
NSFD is very close to the exact profile. With h = 0.025, the profiles are less oscillatory as compared to h = 0.1
as expected. Again the NSFD is the most efficient shock-capturing scheme.

From Table 5, one can observe that at Re = 100 and Re = 10000, the total variation obtained from the third
order and the fourth order are larger when h = 0.1 as compared to the case h = 0.025. In all cases considered
the total variation for the NSFD scheme is much less than for the other methods.

9.2. Problem 2

Test case 2 has been described in section 4.2 where we consider the following values of α and h:

(i) α = 0.01, h = 0.1

(ii) α = 0.1, h = 0.05

(iii) α = 1, h = 0.05

(iv) α = 1, h = 0.1

Fig. 2 compares the profile when α = 0.01, h = 0.1 at four different values of k. The fourth order scheme is
very oscillatory and the third order is quite oscillatory. Table 7 compares the errors. It is seen that the NSFD
performs the best in regard to L2, L∞ and Total Mean Square errors. The dissipation error is greater than
dispersion error for the third and fourth order schemes.

For the case α = 0.1 and h = 0.05, the exact profile is quite smooth as the coefficient of diffusivity is larger.
The results from NSFD are very close to the exact profile. There is some dispersion and an overshoot in the
peak from the third order and fourth order methods as shown Fig. (3). From Table 8, we can deduce the NSFD
is the most effective scheme.
When α = 1, the errors obtained using the three methods are very small as shown in Tables 9 and 10 and again
the NSFD performs the best.
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10. Optimization

From the numerical results obtained for Problem 1, it is observed that all errors obtained from NSFD are very
small. The results obtained from third order shows that the dispersive errors are much greater than the dissi-
pation errors for the case h = 0.1. In the case of fourth order upwind scheme both dispersion and dissipation
errors are very large and are almost the same in magnitude.

Our aim in this section is to find an optimal value of k that minimizes the dispersion error when h = 0.1 and
Re=100, using test problem 1. Tam and Webb [13], Bogy and Bailly [3] and Berland et al.[22] have implemented
techniques which enable coefficients to be determined in high order numerical methods for Computational
Aeroacoustics applications. In Appadu [2], these techniques were modified into equivalent forms so that the
optimal CFL is computed for some known numerical schemes where the parameters were CFL and the phase
angle.

The Dispersion-Relation-Preserving (DRP) scheme was constructed [13] such that the dispersion relation of the
finite difference scheme is formally the same as that of the original partial differential equation. The integrated
error is calculated as

E =

∫ η

−η

|θ∗h− θh|2d(θ h),

where the quantities θ∗h and θ h represent the numerical and exact wave numbers respectively. The disper-
sion and dissipation error are obtained as |ℜ(θ∗h)−θ h| and |ℑ(θ∗h)|, respectively. Tam and Shen [14] set η as 1.1.

In Appadu [2], the following integrals were defined namely,

IETAM =

∫ ω1

0

|1−RPE|2 dω,

IEBOGEY =

∫ ω1

0

|1−RPE| dω,

with ω1 = 1.1.

In Appadu [1], optimization techniques based on minimization of the dispersion error have been used to obtain
the optimal k at a fixed value of h for the Lax-Wendroff and NSFD discretising a 1-D advection-diffusion equa-
tion and these techniques have been validated.

In this work, we use the same approach as in Appadu [1]. The amplification factor of the third order scheme
approximating Eq. (1) with h = 0.1 is

ξThird = ℜ(ξ) + Iℑ(ξ),

and the relative phase error is given by

RPEThird =
−1

10kω
arctan(

ℑ(ξ)

ℜ(ξ)
),

where ℜ(ξ) and ℑ(ξ) are given by

ℜ(ξ) = 1− 5.33 k − 80k2 + 60k2 cos(ω) + 20k2 cos2(ω) + 333.33 k3 cos2(ω) + 8.67 k cos(ω)

− 666.67 k3 cos(ω) + 333.33k3,

ℑ(ξ) = 3.33 k sin(ω) cos(ω)− 13.33 k sin(ω)− 333.33 k3 sin(ω) cos(ω) + 20k2 sin(ω)

+ 333.33 k3 sin(ω)− 20k2 sin(ω) cos(ω).

3D plots of the exact RPE versus k ∈ [0, 0.1675] vs ω are shown in Figs. (6a) and (6b) and we have phase
wrapping phenomenon. We thus obtain an approximation for the RPE till the terms O(ω4) using Taylor’s series
for ω ∈ [0, 1.1]. The 3D plot of the approximated RPE vs k vs phase angle is shown in Fig. (6c).
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The approximated RPE is obtained as

RPEApprox = 1− (0.0333 + 5k2 − k + 50k3 − 333.3333)ω4.

The integrated error is obtained as

∫ 1.1

0

(RPEApprox − 1)2dω, (48)

and is a function of k. A plot of the integrated error vs k is shown in Fig. 8a. The integrated error decreases
as k increases from a value close to 0 to 0.05 and then it oscillates with local minimum near k = 0.1 and
k = 0.1414 and then increases again as as shown in Fig. 8b. The scheme is stable if k ∈ [0, 0.1675765067] and
using NLPSolve, the optimal value of k is 0.1.

Table 11 compares the TV, L2, L∞, dissipation and dispersion errors, Total Mean Square Error and CPU time
using the Third order upwind scheme at some different values of k with h = 0.1, Re= 100 and in Fig. (9), we
obtain the plots of these error vs k.

It is seen that the errors initially decreases and reach a minimum when k = 0.1 and then increases again. We
conclude that the variation of the integrated error in Fig. (8a) mimic the actual variation of the errors in Fig.
(9). We conclude that the time step, k = 0.1 is indeed the optimal time step size which allows the method to
perform at its best. Moreover, it can be observed from Table (11), there is no big change in CPU time when
different values of k are used.
We also plot the exact RPE vs ω ∈ [0, π] at five different values of k namely 0.001, 0.08, 0.1, 0.125 and 1

6 as
shown in Fig. (7) and it is seen that the scheme has best dispersion properties when k = 0.1.

11. Conclusion

In this paper, three numerical methods have been used to solve two test problems. The NSFD is much better
than third order and fourth order for all the cases considered. An optimization technique has been implemented
for the third order scheme when Re=100 and h is fixed as 0.1 to find an optimal temporal step that minimizes the
dispersion error. This optimal value is validated using numerical experiments. The computational time using
NSFD is in general less as compared to the times using the Fourth Order Upwind and Third Order Upwind
schemes.

Nomenclature

NSFD= Non-Standard Finite Difference scheme
TMSE= total mean square error
Diss. Error= dissipation error
Disp. Error= dispersion error
α = coefficient of diffusivity
Re=Reynolds number
h =spatial step size
k =temporal step size
θ h = phase angle
c = k

h = CFL number

s = αk
h2

ω = phase angle.
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Scheme Re h
Range of k
for stability

Fourth Order

10 0.1 [0,0.0541]

100
0.1 [0,0.1578]

0.025 [0,0.0237]

10000
0.1 [0,0.1995]

0.025 [0,0.0495]

Third order

10 0.1 [0,0.0760]

100
0.1 [0,0.1675]

0.025 [0,0.0275]

10000
0.1 [0,0.1996]

0.025 [0,0.0496]

NSFD

10 0.1 [0,0.0333]

100
0.1 [0,0.0833]

0.025 [0,0.0138]

10000
0.1 [0,0.0998]

0.025 [0,0.0248]

Table 1: Stability regions when Re= 10, Re= 100 and Re= 10000 for Problem 1.

h Re L2 L∞ Diss. Error Disp. Error TMSE
0.1 10 0.0012 0.0300 3.3114× 10−7 9.0556× 10−7 1.2370× 10−6

0.1 100 0.0635 0.1969 3.3448× 10−4 0.0033 0.0037
0.025 100 0.0011 0.0067 3.9951× 10−8 1.0893× 10−6 1.1293× 10−6

0.1 10000 0.1013 0.3052 9.0851× 10−4 0.0084 0.0093
0.025 10000 0.0252 0.1572 1.7086× 10−5 6.0090× 10−4 6.1798× 10−4

Table 2: Errors obtained from third order when k = 0.01, Re= 10, Re= 100 and Re= 10, 000 for Problem 1 at T = 1.

h Re L2 L∞ Diss. Error Disp. Error TMSE
0.1 10 0.0012 0.0030 3.5526× 10−7 8.8273× 10−7 1.2380× 10−6

0.1 100 0.1659 0.3973 0.0027 0.0224 0.0250
0.025 100 0.0029 0.0182 1.4444× 10−7 8.2459× 10−6 8.3904× 10−6

0.1 10000 0.3860 0.6031 0.0448 0.0906 0.1354
0.025 10000 0.0591 0.3102 1.4821× 10−4 0.0033 0.0034

Table 3: Errors obtained from fourth order when k = 0.01, Re= 10, Re= 100 and Re= 10, 000 for Problem 1 at T = 1.

h Re L2 L∞ Diss. Error Disp. Error TMSE
0.1 10 3.6413× 10−4 6.7422× 10−4 5.8429× 10−8 6.2106× 10−8 1.2054× 10−7

0.1 100 3.8220× 10−10 1.2086× 10−9 1.3293× 10−20 3.6701× 10−17 1.3280× 10−19

0.025 100 1.4133× 10−12 8.8194× 10−12 7.0285× 10−26 1.0591× 10−17 1.9488× 10−24

0.1 10000 0 0 0 0 0
0.025 10000 4.2204× 10−110 2.6692× 10−109 0 5.2836× 10−18 5.2836× 10−18

Table 4: Errors obtained from NSFD when k = 0.01, Re= 10, Re= 100 and Re= 10, 000 for Problem 1 at T = 1.
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(d) h = 0.1 and Re=10000
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Figure 1: Comparison of the numerical schemes when Re=10, Re=100 and Re=10000 for Problem 1 at T = 1.
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Numerical methods Re h Total Variation
CPU time to solve and CPU time

compute all errors to solve u

Fourth Order

10 0.1 1 4.246 0.016

100
0.1 3.1664 4.157 0.085
0.025 1 8.718 0.099

10000
0.1 7.6374 3.703 0.071
0.025 2.3420 4.186 0.081

Third Order

10 0.1 1 4.363 0.072

100
0.1 1.4902 4.106 0.084
0.025 1 8.521 0.098

10000
0.1 1.8783 3.545 0.074
0.025 1.3730 3.961 0.095

NSFD

10 0.1 1 4.127 0.084

100
0.1 1 4.262 0.073
0.025 1 8.754 0.078

10000
0.1 1 3.662 0.030
0.025 1 4.295 0.075

Table 5: Total Variation and CPU time for different values of h when k = 0.01 for Problem 1 at T = 1.

Scheme α h
Range of k
for stability

Fourth Order

0.01 0.1 [0,0.01578]
0.1 0.05 [0,0.0155]
1 0.05 [0,0.0016]
1 0.1 [0,0.0066]

Third order
0.01 0.1 [0,0.1675]
0.1 0.05 [0,0.0314]
1 0.05 [0,0.0012]
1 0.1 [0,0.0053]

NSFD

0.01 0.1 [0,0.0999]
0.1 0.05 [0,0.0122]
1 0.05 [0,0.0012]
1 0.1 [0,0.0049]

Table 6: Stability regions for three different values of α namely 0.01, 0.1 and 1 for Problem 2.
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Figure 2: Comparison of the numerical schemes when α = 0.01 and h = 0.1 for Problem 2 at T = 1.
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Scheme k L2 L∞ Diss. Error Disp. Error TMSE

T
h
ir
d
O
rd

er 0.001 0.1475 0.4226 0.0194 3.9638× 10−4 0.0198
0.005 0.1384 0.3958 0.0170 3.7389× 10−4 0.0174
0.01 0.1274 0.3636 0.0144 3.4468× 10−4 0.0147
0.025 0.0960 0.2733 0.0081 2.5683× 10−4 0.0084

F
o
u
rt
h
O
rd

er 0.001 0.3436 0.9866 0.0939 0.0134 0.1073
0.005 0.3133 0.9108 0.0780 0.0112 0.0892
0.01 0.2792 0.8215 0.0619 0.0090 0.0709
0.025 0.1944 0.5845 0.0297 0.0046 0.0344

N
S
F
D

0.001 0.0888 0.1696 0.0017 0.0055 0.0072
0.005 0.0868 0.1670 0.0016 0.0052 0.0069
0.01 0.0842 0.1630 0.0015 0.0049 0.0064
0.025 0.0748 0.1462 0.0012 0.0039 0.0051

Table 7: Comparison of the numerical schemes when α = 0.01 and h = 0.1 for Problem 2 at T = 1.
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Figure 3: Comparison of the numerical schemes when α = 0.1 and h = 0.05 for Problem 2 at T = 1.
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Scheme k L2 L∞ Diss. Error Disp. Error TMSE

T
h
ir
d
O
rd

er 0.005 2.1355× 10−4 3.7906× 10−4 3.6010× 10−8 7.4241× 10−9 4.3434× 10−8

0.00625 3.9782× 10−4 6.8387× 10−4 1.4248× 10−7 8.2386× 10−9 1.5072× 10−7

0.008 6.7694× 10−4 0.0012 4.2648× 10−7 9.9494× 10−9 4.3643× 10−7

0.01 0.0010 0.0018 9.7346× 10−7 1.2862× 10−8 9.8632× 10−7

F
o
u
rt
h
O
rd

er 0.005 6.4476× 10−4 0.0012 3.6733× 10−7 2.8590× 10−8 3.9592× 10−7

0.00625 0.0015 0.0026 1.9726× 10−6 1.0343× 10−7 2.0761× 10−6

0.008 0.0028 0.0050 7.2691× 10−6 3.49477× 10−7 7.6186× 10−6

0.01 0.0047 0.0086 2.0288× 10−5 1.0097× 10−6 2.1297× 10−5

N
S
F
D

0.005 1.1822× 10−4 3.3094× 10−4 1.4911× 10−9 1.1819× 10−8 1.3310× 10−8

0.00625 2.4401× 10−4 3.8193× 10−4 3.2902× 10−8 2.3803× 10−8 5.6706× 10−8

0.008 4.5680× 10−4 7.2895× 10−4 1.4871× 10−7 5.0027× 10−8 1.9873× 10−7

0.01 7.1049× 10−4 0.0011 3.8799× 10−7 9.2768× 10−8 4.8075× 10−7

Table 8: Comparison of the numerical schemes when α = 0.1 and h = 0.05 for Problem 2 at T = 1.
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(c) k = 0.0008
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Figure 4: Comparison of the numerical schemes when α = 1 and h = 0.05 for Problem 2 at T = 1.
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Scheme k L2 L∞ Diss. Error Disp. Error TMSE

T
h
ir
d
O
rd

er 0.0001 2.2371× 10−8 3.1736× 10−8 4.7587× 10−16 7.7443× 10−19 4.7665× 10−16

0.000625 5.7507× 10−9 8.4119× 10−9 3.1399× 10−17 9.7311× 10−20 3.1496× 10−17

0.0008 1.5026× 10−8 2.1688× 10−8 2.1497× 10−16 6.7603× 10−20 2.1504× 10−16

0.001 2.5597× 10−8 3.6796× 10−8 6.2384× 10−16 1.4553× 10−19 6.2399× 10−16

F
o
u
rt
h
O
rd

er 0.0001 1.1829× 10−7 1.6605× 10−7 1.3322× 10−14 3.8972× 10−18 1.3326× 10−14

0.000625 1.1035× 10−7 1.5428× 10−7 1.1593× 10−14 4.7517× 10−18 1.1597× 10−14

0.0008 2.1916× 10−7 3.0609× 10−7 4.5725× 10−14 1.8239× 10−17 4.5743× 10−14

0.001 3.7680× 10−7 5.2541× 10−7 1.3516× 10−13 5.6404× 10−17 1.3522× 10−13

N
S
F
D

0.0001 1.5801× 10−8 2.2254× 10−8 2.3752× 10−16 2.6164× 10−19 2.3778× 10−16

0.000625 1.5277× 10−9 2.2411× 10−9 1.9681× 10−18 2.5469× 10−19 2.2228× 10−18

0.0008 7.0858× 10−9 1.0205× 10−8 4.7565× 10−17 2.5241× 10−19 4.7818× 10−17

0.001 1.3492× 10−8 1.9322× 10−8 1.7311× 10−16 2.4982× 10−19 1.7336× 10−16

Table 9: Comparison of the numerical schemes when α = 1 and h = 0.05 for Problem 2 at T = 1.
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(c) k = 0.0025
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Figure 5: Comparison of the numerical schemes when α = 1 and h = 0.1 for Problem 2 at T = 1.
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Scheme k L2 L∞ Diss. Error Disp. Error TMSE

T
h
ir
d
O
rd

er 0.0001 1.0558× 10−7 5.0247× 10−15 5.3754× 10−18 5.0301× 10−15 5.0301× 10−15

0.0008 4.0576× 10−8 5.7541× 10−8 1.4946× 10−15 2.1423× 10−18 1.4968× 10−15

0.0025 4.0199× 10−8 5.7023× 10−8 1.4687× 10−15 3.8842× 10−19 1.4690× 10−15

0.004 1.0981× 10−7 1.5554× 10−7 1.0958× 10−14 4.3849× 10−18 1.0962× 10−14

F
o
u
rt
h
O
rd

er 0.0001 2.4713× 10−7 3.4362× 10−7 5.5504× 10−14 1.7528× 10−17 5.5522× 10−14

0.0008 1.5477× 10−7 2.1495× 10−7 2.1770× 10−14 7.3444× 10−18 2.1777× 10−14

0.0025 2.1010× 10−7 2.9041× 10−7 4.0109× 10−14 1.9375× 10−17 4.0128× 10−14

0.004 8.7923× 10−7 1.2089× 10−7 7.0240× 10−13 3.7892× 10−16 7.0278× 10−13

N
S
F
D

0.0001 5.1603× 10−8 7.2322× 10−8 2.4205× 10−15 2.8981× 10−19 2.4208× 10−15

0.0008 2.7793× 10−8 3.8923× 10−8 7.0193× 10−16 2.7971× 10−19 7.0221× 10−16

0.0025 2.7513× 10−8 3.8847× 10−8 6.8789× 10−16 2.5627× 10−19 6.8815× 10−16

0.004 7.3389× 10−8 1.0321× 10−7 4.8961× 10−15 2.3682× 10−19 4.8963× 10−15

Table 10: Comparison of the numerical schemes when α = 1 and h = 0.1 for Problem 2 at T = 1.

k TV L2 L∞ Diss. Error Disp. Error TMSE CPU time
0.0001 1.6291 0.0779 0.2393 5.1174× 10−4 0.0050 0.0055 4.807
0.00025 1.6267 0.0777 0.2386 5.0844× 10−4 0.0050 0.0055 4.333
0.0005 1.6228 0.0773 0.2375 5.0299× 10−4 0.0049 0.0054 4.198
0.0008 1.5156 0.0662 0.2050 3.6451× 10−4 0.0036 0.0040 4.178
0.001 1.6150 0.0765 0.2352 4.9227× 10−4 0.0048 0.0053 4.199
0.0025 1.5922 0.0742 0.2285 4.6152× 10−4 0.0045 0.0050 4.128
0.005 1.5560 0.0705 0.2176 4.1457× 10−4 0.0041 0.0045 4.140
0.01 1.4903 0.0635 0.1969 3.3448× 10−4 0.0033 0.0037 4.124
0.025 1.3333 0.0457 0.1429 1.7264× 10−4 0.0017 0.0019 4.139
0.05 1.1612 0.0237 0.0746 4.7694× 10−5 4.6144× 10−4 5.0914× 10−4 4.106
0.0625 1.1026 0.0155 0.0488 2.0753× 10−5 1.9668× 10−4 2.1743× 10−4 4.128
0.08 1.0426 0.0066 0.0209 3.8832× 10−6 3.5798× 10−5 3.9681× 10−5 4.138
0.1 1 1.4357× 10−5 4.5400× 10−5 1.8739× 10−11 1.6864× 10−10 1.8738× 10−10 4.126

0.125 1 0.0025 0.0079 5.6869× 10−7 5.0676× 10−6 5.6363× 10−6 4.165
1/7 1.0060 9.6247× 10−4 0.0030 8.3942× 10−8 7.5819× 10−7 8.4213× 10−7 4.125
1/6 1.1319 0.0196 0.0619 3.3062× 10−5 3.1675× 10−4 3.4981× 10−4 4.148

Table 11: Errors obtained from third order when h = 0.1, Re= 100 for different values of k for Problem 1 at
T = 1.
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Numerical methods α h k Total Variation
CPU time to solve and CPU time

compute all errors to solve u
F
o
u
rt
h
O
rd
er

0.01 0.1

0.001 3.7467 3.938 0.099
0.005 3.7467 3.938 0.030
0.01 3.7467 3.938 0.026
0.025 3.7467 3.938 0.020

0.1 0.05

0.005 0.1221 4.922 0.031
0.00625 0.1248 4.923 0.027
0.008 0.1291 4.947 0.026
0.01 0.1351 4.954 0.025

1

0.05

0.0001 1.4639× 10−6 6.238 1.382
0.000625 2.1045× 10−6 5.022 0.122
0.0008 2.4082× 10−6 4.979 0.096
0.001 2.8468× 10−6 4.970 0.084

0.1

0.0001 1.0875× 10−6 4.576 0.683
0.0008 1.3444× 10−6 3.896 0.070
0.0025 2.3537× 10−6 3.910 0.029
0.004 4.1907× 10−6 3.838 0.021

T
h
ir
d
O
rd
er

0.01 0.1

0.001 1.7159 3.757 0.062
0.005 1.6560 3.749 0.030
0.01 1.5843 3.751 0.020
0.025 1.3859 3.775 0.018

0.1 0.05

0.005 0.1206 4.892 0.037
0.00625 0.1213 4.866 0.039
0.008 0.1223 4.874 0.034
0.01 0.1234 4.846 0.032

1

0.05

0.0001 1.8595× 10−6 6.336 1.356
0.000625 1.7792× 10−6 4.915 0.122
0.0008 1.7526× 10−6 4.915 0.101
0.001 1.7224× 10−6 4.913 0.084

0.1

0.0001 1.9841× 10−6 4.310 0.653
0.0008 1.8880× 10−6 3.769 0.048
0.0025 1.6603× 10−6 3.771 0.021
0.004 1.4648× 10−6 3.824 0.013

N
S
F
D

0.01 0.1

0.001 0.5743 3.738 0.055
0.005 0.5869 3.747 0.018
0.01 0.6034 3.739 0.017
0.025 0.6563 3.740 0.017

0.1 0.05

0.005 0.1199 4.864 0.040
0.00625 0.1196 4.868 0.033
0.008 0.1190 4.847 0.032
0.01 0.1184 4.859 0.015

1

0.05

0.0001 1.8405× 10−6 6.058 1.305
0.000625 1.7916× 10−6 4.954 0.116
0.0008 1.7756× 10−6 4.936 0.097
0.001 1.7573× 10−6 4.910 0.077

0.1

0.0001 1.9179× 10−6 4.365 0.638
0.0008 1.8511× 10−6 3.814 0.061
0.0025 1.6960× 10−6 3.768 0.036
0.004 1.5673× 10−6 3.762 0.016

Table 12: Total Variation and CPU time for different values of h and k for Problem 2 at T = 1.
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(a) Exact RPE versus k vs phase angle for 0 ≤ ω ≤ π (b) Exact RPE versus k vs phase angle for 0 ≤ ω ≤ 1.1

(c) Approximated RPE versus k vs phase angle for
0 ≤ ω ≤ 1.1

Figure 6: Plots of RPE vs k vs ω for the Third Order Upwind scheme for problem 1 with Re= 100 and h = 0.1.
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Figure 7: Plots of Exact RPE vs ω ∈ [0, π] when k = 0.001, 0.08, 0.1, 0.125 and 1
6 for the Third Order Upwind

scheme.
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(a) Integrated error versus k (b) Integrated error versus k zoomed plot of (8a)

Figure 8: Integrated error versus k for Third Order Upwind scheme when Re=100 and h = 0.1.
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(a) L2, L∞ errors and TV versus k
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(b) Dissipation, dispersion errors and TMSE versus k

Figure 9: Computed errors versus k for Third Order Upwind scheme when Re=100 and h = 0.1 at T = 1.
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