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SUMMARY 

1. Artificial night-lighting threatens to disrupt strongly conserved light-dependent processes in 

animals and may have cascading effects on ecosystems as species interactions become altered. 

Insectivorous bats and their prey have been involved in a nocturnal, coevolutionary arms race for 

millions of years. Lights may interfere with anti-bat defensive behaviours in moths, and disrupt a 

complex and globally ubiquitous interaction between bats and insects, ultimately leading to 

detrimental consequences for ecosystems on a global scale. 

 

2. We combined experimental and mathematical approaches to determine effects of light 

pollution on a free-living bat–insect community. We compared prey selection by Cape serotine 

bats Neoromicia capensis in naturally unlit and artificially lit conditions using a manipulative 

field experiment, and developed a probabilistic model based on a suite of prey-selection factors 

to explain differences in observed diet. 

 

3. Moth consumption by N. capensis was low under unlit conditions (mean percentage volume ± 

SD: 5.91 ± 6.25%), while moth consumption increased six-fold (mean percentage volume ± SD: 

35.42 ± 17.90%) under lit conditions despite a decrease in relative moth abundance. Predictive 

prey-selection models which included high-efficacy estimates for eared-moth defensive 

behaviour found most support given diet data for bats in unlit conditions. Conversely, models 

which estimated eared-moth defensive behaviour as absent or low, found more support given diet 

data for bats in lit conditions. Our models therefore suggest the increase in moth consumption 

was a result of light-induced, decreased eared-moth defensive behaviour. 
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4. Policy implications. In the current context of unyielding growth in global light pollution, we 

predict that specialist moth-eating bats and eared-moths will face ever-increasing challenges to 

survival through increased resource competition and predation risk, respectively. Lights should 

be developed to be less attractive to moths, with the goal of reducing effects on moth behaviour. 

Unfortunately, market preference for broad-spectrum lighting and possible effects on other taxa 

make development of moth-friendly lighting improbable. Mitigation should therefore focus on 

the reduction of temporal, spatial, and luminance redundancy in outdoor lighting. Restriction of 

light inside nature reserves and urban greenbelts can serve as dark refugia for moth-eating bats 

and moths, and may become important for their persistence. 

 

Keywords: arms race; Cape serotine bat; coevolution; eared moth; light pollution; Neoromicia 

capensis; predator–prey interactions; prey selection; Lepidoptera 

 

INTRODUCTION 

The nature of our planet’s orbit around the sun and rotation around its own axis are fundamental 

in contributing to the evolution of complex life on earth. Earth’s astronomical context, and the 

resulting fluctuations in ambient light, has led nearly all organisms to adapt to diel, monthly, and 

annual ambient light (solar, lunar, and celestial) cycles (Gaston et al. 2013). Extant ecosystems 

are therefore strongly governed by light and rely on historically consistent variations in ambient 

light for ecosystem function and stability (Kronfeld-Schor & Dayan 2003; Gaston et al. 2013). 

The recent introduction of artificial night-lighting by humans threatens to destabilise ecosystems 

by altering light-dependent biological processes for organisms as well as altering the availability 

of light and darkness as resources of energy, information, and refuge (Gaston et al. 2013). 
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Total night-time surface brightness on earth has nearly doubled from 1992 to 2012 

(calculated from: Elvidge et al. 2014). This alarming trend shows little sign of abating as an 

additional 1,527,000 km
2
 of land (an area more than three times the size of Madagascar) is 

predicted to be urbanised, worldwide, by 2030 (Seto et al. 2011). More alarmingly, at least 60% 

of this urban expansion is predicted to occur within 50 km of the boundaries of currently 

protected areas, as well as inside biodiversity hotspots (Güneralp & Seto 2013), making the 

spread of light pollution into previously unlit, and species-rich environments, inevitable. It is 

therefore pertinent to examine the effects of light pollution on vital ecosystem processes such as 

trophic interactions. 

Bats and their insect prey are nocturnal, near-ubiquitous in their global occurrence, and 

have evolved complex predator–prey interactions across a timespan of 65 million years (Conner 

& Corcoran 2012). Several groups of insects, most notably moths, evolved ultrasound-sensitive 

ears to detect bat predators (Conner & Corcoran 2012). Moth ears are most sensitive to 

echolocation calls of common, sympatric bat species (typically 20–50 kHz), allowing them to 

detect these predators and avoid predation through evasive flight-manoeuvres, aposematic 

signals, or echolocation-jamming calls (Conner & Corcoran 2012). Syntonic bats produce 

echolocation calls that are readily detectable by moths and therefore tend to consume very few 

moths as part of their diet (Schoeman & Jacobs 2003, 2011). Allotonic bats have evolved 

echolocation frequencies that fall outside peak sensitivity of moth hearing range, or are of such 

low amplitude that moths are unable to detect pursuing bats with enough time to successfully 

evade capture (Goerlitz et al. 2010). Allotonic bats are able to circumvent eared-moth defences 

and often consume moths as their main prey (Schoeman & Jacobs 2003, 2011). 
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Nocturnally flying insects use celestial cues to navigate (Warrant & Dacke 2011), and 

this behaviour is disrupted by irrelevant cues introduced by artificial lights, causing attraction to 

light sources (van Langevelde et al. 2011). Apart from the attractant effect of lights, some eared 

moths show reduced defensive responses to simulated echolocation calls when exposed to light 

(Svensson & Rydell 1998; Svensson et al. 2003). Bat–moth interactions may thus be altered by 

light pollution as it could interfere with eared-moth defences, allowing syntonic bats, which 

often exploit congregations of insects around lights (Rydell 1991), to more successfully prey on 

eared-moths. Although individual syntonic bats generally consume few moths, the collective 

historical predation pressure on moths by syntonic bats has been strong enough to maintain 

morphological and behavioural adaptions against bat predation (Conner & Corcoran 2012). 

Therefore, introduced light may increase already significant levels of predation, possibly 

reducing moth populations in lit areas. If moths are a limiting resource for allotonic bats, light 

pollution may also pose an indirect threat to their survival.   

To evaluate effects of light pollution on predator–prey interactions of bats and insects, we 

introduced an artificial light treatment in a naturally unlit area and measured differences in 

relative abundance of insect prey and relative prey consumption by bats between unlit and lit 

conditions. Although an in situ approach to test the effects of light pollution on community 

ecology is clearly warranted, such an approach limits the ability to directly measure predator–

prey interactions and the various factors involved in prey selection. We therefore supplemented 

our field experiment with a mathematical approach and developed a predictive model framework 

based on prey-selection theory. The prey-selection model computed outcomes of multiple, 

hypothetical prey-selection scenarios which were compared to actual prey selection. This 

allowed for insight into possible mechanisms that determined prey selection in our study, and 
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allowed us to determine whether light pollution could potentially disrupt predator–prey 

interactions and perhaps permanently alter the balance in a global coevolutionary arms race. 

 

MATERIALS AND METHODS 

Study Site: 

We conducted this study at Rietvlei Nature Reserve (RNR; 25°52'S; 28°15'E; ±1500 m.a.s.l.) in 

South Africa during late austral summer (February to April) of 2010 and 2011. There are no 

artificial light sources within the 40 km
2
 area of RNR at night. 

  

Experimental Design:  

We altered naturally dark conditions found at RNR by introducing artificial lighting. This 

resulted in two experimental conditions: unlit (control) and lit (light pollution treatment). We 

used mercury-vapour lamps (HWL 160 W 220 V, Osram, Munich, Germany, see Fig. S1 for 

spectral composition) for our light pollution treatment, as the emission spectrum of these lamps 

is broadly inclusive of those of most current and emerging lighting technologies. 

We placed one lamp on each of five lampposts with lights left on during lit conditions 

and switched off during unlit conditions (Fig. 1. a. i., 1b. vi). We alternated unlit and lit 

conditions in a six-day experimental cycle which was repeated 11 times (Fig. 1. d). We only 

collected data on day 1 and 4 of each cycle to allow bats to become accustomed to alternating 

conditions and avoid an overlap in insect remnants in bat digestive tracts between experimental 

conditions. Lit conditions were not induced within six days of full moon to avoid the decreased 

effect of lights on insect behaviour. 
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Figure 1. Graphical representation of the experimental design showing (a) the physical experimental layout and data 

collection techniques used, (b) equipment attached to each lamp post, (c) illustration of net sweeping procedure, (d) 

experimental schedule, and (e) experimental procedure details. The hand net (a. iii, c) had a 0.5 m diameter opening 

and was swept at a constant speed along a transect every 15 minutes. Omnidirectional traps (b. v) captured insects 

flying into clear Perspex® panes and funnelled them into collection jars above or below. We powered mercury 

vapour lamps (b. vi) with a quiet-operation generator (Honda Generator EU10i, Honda Motor Company Ltd., 

Berkshire, United Kingdom) placed outside the experimental area. The generator was also operational during unlit 

conditions to ensure similar acoustic conditions for both experimental conditions. We used an Anabat
TM

 SD2 (Titley 

Electronics, Ballina, Australia) to record echolocation activity (a. iv). 
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We captured syntonic Cape serotine bats Neoromicia capensis A. Smith 1829 (n = 11 

during unlit and n = 12 during lit) (peak echolocation call frequency: 39 kHz; call bandwidth: 

14.4 kHz; call duration: 5.1 ms) (Monadjem et al. 2010) in mist nets during both experimental 

conditions (Fig. 1. a. ii). We held bats in cloth bags for 1–3 hours, wing punched them for future  

identification, and assigned a unique reference code to faecal samples to allow blind analysis. 

We sampled insect abundance using two non-attractant methods: 1) a hand net (Fig. 1. a. iii, 1. 

d), and 2) five omni-directional impaction traps (Kunz 1988) at lampposts (Fig. 1. b. v). We 

recorded and analysed bat echolocation activity to confirm foraging by N. capensis during 

experiments (Fig. 1. a. iv) (see Appendix S1. a in Supporting Information for details). 

 

Data Processing and Analyses:    

Diet Composition 

We pooled faecal samples from individual bats (Whitaker, McCracken & Siemers 2009) and 

separated insect remains to order-level using a taxonomic reference text (Scholtz & Holm 1996) 

and comparison to insects caught during sampling. We estimated percentage volume 

composition of faecal contents to the nearest 5% for each insect order (Whitaker, McCracken & 

Siemers 2009). Dietary analyses based on faecal contents are influenced by biases related to 

digestibility of different prey items. However, the reliability of this methodology has been well 

established (Whitaker, McCracken & Siemers 2009), and results obtained are comparable to 

those obtained from molecular dietary analyses, which are theoretically robust to the effects of 

digestion (Goerlitz et al. 2010). Further, we do not expect digestibility of prey items to change 

between experimental conditions, and therefore, any bias should be the same between treatments. 
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Insect Abundance  

We pooled all insects sampled for each sampling night to allow direct comparison with dietary 

composition of bats caught on that night. We sorted sampled insects to order-level and calculated 

relative abundance (%) for each. Finally, we classified moths as eared/non-eared based on 

family-level presence of ears (Scoble 1992) and verified the presence of tympanic organs under a 

microscope. 

 

Statistical Procedures: 

All proportional data were arcsine-transformed. To test for statistically significant differences 

between unlit and lit conditions, we used two-sample, independent t-tests (two-tailed). We 

conducted all statistical analyses in SPSS Statistics 17.0 (SPSS Inc., Chicago, IL). 

 

Predictive Prey-Selection Model: 

Model Conception 

We built a theoretical model to predict diet of a bat based on five interacting factors: (1) relative 

prey abundance; (2) prey detectability and perception bias of the predator; (3) prey escape 

behaviour; (4) active selection of prey; and (5) physical handling constraints of prey. We 

predicted the representation of each insect order in each bat’s diet using a set of models built on 

combinations of prey-selection factors and their selection probabilities, calculated from data 

collected during experiments and from literature. Below we provide a brief account of our 

conceptualisation, methods and hypotheses for each prey selection factor. Detailed methods for 

the calculation of selection probabilities for each prey selection factor are outlined in Appendix 

S1. b. 
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Probability of Prey Encounter (R) 

A primary factor in prey selection is the probability that a predator will encounter specific prey 

during foraging (R) (Whitaker, McCracken & Siemers 2009). We hypothesised higher encounter 

rates of prey would increase the probability of those prey being consumed by a bat. Encounter 

probabilities for different prey orders were estimated from prey relative-abundance sampled 

during experiments (Appendix S1. b. i). 

 

Probability of Prey Detection (D) 

Sensory biases of predators affect the likelihood of different prey being detected (Safi & Siemers 

2010). We used echolocation models (Safi & Siemers 2010; Stilz & Schnitzler 2012) to calculate 

the maximum detection distance of prey as a function of prey size, echolocation frequency, and 

atmospheric conditions. Maximum detection distance for a prey order on a given night was 

translated to a probability of detection by echolocation (D(e)) (Appendix S1. b. ii). We 

hypothesised that increased detectability of prey through echolocation would result in an 

increased likelihood of consumption by bats. 

During lit conditions, increased light may allow bats to use visual information as well as 

echolocation to capture prey. We calculated the visual detection probability of prey during lit 

conditions using estimated visual acuity of N. capensis and prey size data (Appendix S1. b. ii). 

We combined visual detection probabilities of prey with probabilities of detection using 

echolocation to determine the overall detection probability for prey (D(ev)). If moths are more 

visually conspicuous than other prey, such as beetles, bats using vision in conjunction with 

echolocation under lit conditions may make moths more vulnerable to predation than other prey. 

We therefore also calculated the combined detection probability of prey orders, assuming moths 
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were three times more conspicuous than other prey (D(ev-lep3)). This assumption provides a robust 

means of testing whether increased visual information caused moths, in particular, to be more 

vulnerable to predation. We assume vision was not used for prey capture during unlit conditions.  

 

Probability of Capture Given Prey Evasive-Behaviour (E) 

The reduction in bat predation through eared-moth defensive behaviours is estimated at 40% 

(Conner & Corcoran 2012). However, this estimate is based on experiments which were 

conducted under the influence of artificial lights and only accounted for secondary defensive 

behaviours (e.g. drastic defensive manoeuvres or echolocation-jamming) and not primary 

defensive behaviours (negative phonotactic flight relative to approaching bats). As a result of this 

uncertainty, we hypothesised four percentage efficacy-estimates (ee) for E: 20%, 40%, 60%, 

80% (denoted as E(20), E(40), E(60), E(80)) and incorporated these into our calculation of probability 

of capture given prey evasive-behaviour, E (Appendix S1. b. iii). The different levels of efficacy 

allowed us to test our hypothesis that eared-moth defences are reduced under lit conditions by 

comparing the performance of models containing different E variables between unlit and lit 

conditions. We also hypothesised that eared-moth defensive behaviours may be absent (E(abs.)) 

(mathematically, models with no eared-moth defensive behaviours contain no selection 

probability for E). 

 

Probability of Prey Being Actively Selected by the Predator (A)  

Animals should select prey that maximise their net-energy gain (Emlen 1966; MacArthur & 

Pianka 1966). Since it is unlikely that bats have exact knowledge of prey energy-content, bats 

probably evolved a preference for sensory proxies of energy content such as taste or size 

(Schaefer, Spitzer & Bairlein 2008). Prey size is likely the simplest proxy bats could use for 
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prey energy-content. However, bats may also use other cues which would allow them to select 

more directly for prey energy-content. We thus considered both size- and energy-based 

selection in our models. 

We calculated preference for prey based on size from body-length measurements for 

each insect order sampled during experiments on a particular night (Appendix S1. b. iv). We 

hypothesised size-preference would scale positively and linearly with prey size (Cunningham, 

Ruggerone & Quinn 2013). We calculated preference for prey from energy-content estimations 

from field-collected and literature data (Appendix S1. b. iv). We hypothesised that energy-

preference would scale positively and linearly with prey energy-content. 

A predator foraging in a high-quality patch should be more selective than a predator 

foraging in a low-quality patch (MacArthur & Pianka 1966). Therefore, the strength of 

preference, based on night-specific patch quality, was combined with size- or energy-preference 

to calculate the probability of active selection based on prey size (A(s)) and energy (A(e)) 

(Appendix S1. b. iv). 

 

Probability of Prey Being Selected by the Predator Based on Handling Constraints (H) 

We hypothesised that physical handling constraints of prey would limit consumption of prey. We 

related prey dimensions, and estimated hardness of prey to gape-size and bite-force estimates, as 

well as forearm length of individual bats to calculate the probability of successfully handling and 

chewing different prey available to each individual bat (Appendix S1. b. v). 
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Model Structure 

Since selection probabilities were determined independently for each selection factor, we can 

combine them through simple multiplication to determine overall probability of different prey 

orders being consumed by bats. The complete model takes the following form: 

C(x,ia) = Ria × Dia × Eia × Aia × Hia    (eqn 1) 

Cx,ia is the probability of prey order i being consumed by bat a as predicted by model x. 

Following this, predicted percentage-volume consumption of prey order i by bat a was calculated 

as follows: 

          (
     

[                   ]
)         (eqn 2) 

where the probability of consumption of prey order i by bat a, predicted by model x (Cx,ia), is 

divided by the sum of probabilities of consumption of all other prey orders by bat a predicted by 

model x. This is multiplied by 100 to obtain a predicted percentage consumption value (Vx,ia) for 

prey order i.  

 

Models and Implementation 

Each selection probability represents one or more hypotheses for each factor of prey selection. 

We created an ecologically realistic model-set from the global model (equation 1) using various 

combinations of factors. In accordance with ecological realism, all models contained encounter 

rate, detectability, and handling as factors. We included variations of prey defensive behaviour 

efficacy (E(abs.), E(20), E(40), E(60), E(80)), active selection (A(e), A(s)) and probability of detection 

(D(e), D(ev), D(ev-lep3)) in different models. This resulted in a total of 15 models for unlit conditions 

and 45 models for lit conditions (Table S2). By calculating models for bat diets in lit and unlit 
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conditions separately, our model set allowed us to test multiple hypotheses regarding differences 

in diet between experimental conditions.  

Each prey-selection model predicted the probability of selection of a specific insect 

order for an individual bat (Fig. 2. a), and thus predicted volume consumption of each order for 

each bat (equation 10) (Fig. 2. a). To assess the fit of models, we calculated sum of squared 

prediction errors (SSE) as follows: 

        ∑  (         )
               

                    (eqn 3) 

where the squared difference between actual volume consumed of an insect order by a particular 

bat (Via), and consumed volume predicted for that insect order by model x (Vx,ia), is summed for 

all orders available to the bat in question. An SSE value was calculated for each bat (Fig. 2. b). 

SSE values were then averaged across all bats for each model to obtain the mean square error 

(MSE) for each model (Fig. 2. c). The entire analysis procedure described above was conducted 

for lit and unlit conditions separately. 

We used the MSE of each model to calculate the second-order variant of Akaike’s 

information criterion (AICc) for small sample sizes (Akaike 1973; Sugiura 1978) to assess 

model performance. We further assessed relative performance of models using AICc 

differences (                       ) and Akaike weights (wi)  for each model for 

unlit and lit conditions (Burnham & Anderson 2002). To interpret the relative importance 

of each factor in the model, we used the sum of wi for models which contained or excluded 

the factor of interest (Burnham & Anderson 2002). 
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Figure 2. Schematic diagram of prey-selection model implementation. Panel a: an example of model 12 

being computed for each insect order available to bat 4 on the night its diet was sampled; insect orders depicted by 

drawings are, from left to right: Lepidoptera, Coleoptera, Diptera, Trichoptera and others indicated by black dots. 

Panel b: Sum of squared errors (SSE) for each bat for a given model is obtained. Panel c: SSE values are averaged 

for a given model to estimate its overall prediction error and the resultant mean sum of squared prediction errors 

(MSE) are then analysed using the second order variant of Akaike’s information criterion (AICc). 
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Figure 3. Histogram summary of relative abundance, as well as actual, and model-predicted, 

consumption of different prey orders by the syntonic bat, Neoromicia capensis, during naturally unlit (n = 11; 

grey bars) and artificially lit conditions (n = 12; white bars). Top thick bars indicate actual consumption of 

different prey orders during unlit and lit conditions. Model-prediction bars are placed in ascending order of 

prey evasive behaviour efficacy (E), next to actual consumption (wide bars) for comparison. Bottom bars 

indicate actual relative abundance of different prey orders for unlit and lit conditions. Bars indicate mean 

percentage with standard deviation indicated by error bars. Independent, two sample t-tests (two-tailed) 

comparison results are indicated by cross bars (N.S. no significant difference, ** P < 0.01, **** P < 0.0001).  
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RESULTS 

Field Experiment  

Bat activity (activity index: Miller 2001), was detected during both unlit and lit conditions (mean 

activity index % ± SE: unlit = 19.60 ± 4.01; lit = 44.59 ± 9.78), but was significantly higher 

during lit conditions (t = 2.812, d.f. = 19, P = 0.011). Neoromicia capensis consumed mostly 

beetles (Coleoptera) under unlit conditions (Fig. 3). However, under lit conditions, bats 

consumed six times more moths than during unlit conditions (t = 4.784, d.f. = 21, P < 0.0001). 

Conversely, beetle consumption decreased significantly from unlit to lit conditions (t = 4.196, 

d.f. = 21, P = 0.004). 

Moth relative abundance was significantly lower during lit conditions (t = 2.945, d.f. = 

21, P = 0.008), whereas beetle relative abundance was not significantly different (t = 1.643, d.f. 

= 21, P = 0.115) (Fig. 3). Diptera were the most abundant prey but were not consumed in large 

numbers. Trichoptera were also present, but relatively scarce and consumed in small quantities 

only. Orthoptera, Hemiptera, Neuroptera, Hymenoptera, and Mantodea were present in small 

numbers and were not detected in bat diets. Eared moths comprised 92.9% (n = 637) of all moths 

sampled. Eared-moth abundance as a proportion of overall moth abundance was not significantly 

different between unlit (mean % ± SD: 89.67 ± 4.71) and lit (mean % ± SD: 92.94 ± 1.09) 

conditions (t = 2.077, d.f. = 21, P = 0.0503). 

 

Predictive Prey-Selection Model 

Model Predictions and Selection with AICc 

Overall, all models predicted prey selection well, with the worst models achieving mean absolute 

prediction errors of ~17% and the best models < 5%. During unlit conditions, a model predicting 
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eared-moth evasive-behaviour efficacy at 80% and including active selection based on energy 

content by bats was the best model and received nearly complete support (wi = 0.84) given our 

model-set (Table 1). Volume consumption predictions from this model closely matched actual 

consumption (mean absolute prediction error = 4.94 ± 3.48%), although it over- and 

underestimated Lepidoptera and Coleoptera consumption, respectively (Fig. 3). 

Table 1 

Summary of five best predictive prey-selection models for Neoromicia capensis diet, during unlit and lit conditions. 

Model structures* are shown with the number of parameters (K), mean absolute prediction error (MAPE), AICc values, 

ΔAICci = AICci - AICc min, Akaike weights (wi). Models are ranked by AICc values 

 Treatment 

and Model 

Number 

Model Structure 

 

Unlit: 
 

15 R × D(e) × E(80) × A(e) × H 

14 R × D(e) × E(60) × A(e) × H 

1 R × D(e) × E(abs.) × H 

7 R × D(e) × E(abs.) × A(e) × H 

13 R × D(e) × E(40) × A(e) × H 

Lit: 

 7 R × D(e) × E(abs.) × A(e) × H 

14 R × D(e) × E(60) × A(e) × H 

13 R × D(e) × E(40) × A(e) × H 

12 R × D(e) × E(20) × A(e) × H 

15 R × D(e) × E(80) × A(e) × H 

  

*R = probability of prey encounter; D = probability of detection (subscript brackets (e) indicates detectability of prey 

using echolocation); E = probability of capture given prey evasive-behaviour (subscript brackets indicate level of prey 

evasion efficacy); A = probability of prey being actively selected by the predator (subscript brackets indicate active 

selection based on energy (e) and size (s) of prey); H = probability of prey being selected by the predator based on 

handling constraints 

 

 For lit conditions, the best model predicted no eared-moth defensive behaviour (Table 1). 

Models that included active selection based on energy content, handling limitations, and various 
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levels of evasive behaviour were also moderately successful at predicting diet composition, 

although ΔAICc were > 3 in all cases. Models which included visual detection, including those 

which assumed moths were three times more visually conspicuous than other prey, were not well 

supported (wi < 0.03)  

Table 2 

The sum of Akaike weights (wi) for predictive prey-selection models, grouped by the 

presence or absence of prey-selection factors*, are shown for unlit and lit conditions. The 

summed Akaike weights (wi) show the relative importance of each factor in accurately 

predicting diet for Neoromicia  capensis under unlit and lit conditions 

Models grouped by prey selection 

factor 

 Sum of Akaike weights (wi) 

Unlit Lit 

   

E(abs.) 0.060 0.638 

E(20) 0.008 0.071 

E(40) 0.016 0.116 

E(60) 0.068 0.126 

E(80) 0.849 0.049 

   

A(s) 0.002 0.007 

A(e) 0.937 0.954 

   

D(e) 1.000 0.952 

D(ev) NA 0.046 

D(ev-lep3) NA 0.001 

   

*E = probability of capture given prey evasive-behaviour (subscript brackets indicate level 

of prey evasion efficacy);  A = probability of prey being actively selected by the predator 

(subscript brackets indicate active selection based on energy (e) and size (s) of prey 

 

Overall, models which included highly efficient evasive behaviour by moths (E(80)) were 

best at predicting diet for bats during unlit conditions (Table 2). Other levels of evasive 

behaviour by moths (E(abs., 20,40,60)) were not well supported by diet data for bats during unlit 

conditions. Conversely, the evidence in support of models without eared-moth defensive 
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behaviour (E(abs.)) were important in predicting diets of bats under lit conditions. The other four 

estimates of evasive behaviour received limited support for lit bat diet. Active selection based on 

energy (A(e)) was important during both unlit and lit conditions, whereas selection based on size 

(A(s)) received little support. Detection based on echolocation alone (D(e)), received 

overwhelming support for lit conditions while the combination of echolocation and vision was 

not well supported (D(ev) and D(ev-lep3)). 

 

DISCUSSION 

Neoromicia capensis consumed relatively few moths in natural darkness, likely because these 

bats are syntonic echolocators and thus audible to eared moths. Under artificially lit conditions, 

moth consumption increased drastically, although it is unclear from our experiment alone what 

drove this increase. Dietary composition clearly did not follow relative abundance of prey in 

either treatment, which confirms the need to assess other prey-selection factors to understand bat 

diets in our study. 

Our model allows us, for the first time, to address the relative importance of several 

factors affecting prey selection in insectivorous bats. Notably, eared-moth defensive behaviour in 

unlit conditions and the absence of it in artificially lit conditions were important factors in 

predicting diet composition in N. capensis. Specifically, models estimating eared-moth defensive 

behaviour as 80% effective described data collected during unlit conditions well. Under lit 

conditions, the best model included no eared-moth defensive behaviour. The second (ΔAICc = 

3.17) and third (ΔAICc = 3.34) most likely models estimated efficacy of defensive behaviour at 

60% and 40%, respectively. These three models, which have a collective AIC weight of 0.801, 

all estimate the efficiency of eared-moth defensive behaviours as being lower than the best 
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model for unlit conditions. From this, we infer that during lit conditions, eared-moth defensive 

behaviour was lower than during unlit conditions, and possibly absent. The hypothesis that 

vulnerability of moths around lights is a result of increased visual information, and in particular 

increased visual conspicuousness of moths relative to other prey, is not supported by our data. 

Active selection based on energy content was present in nearly all of the top models. This 

is unexpected as N. capensis are considered to be unable to distinguish among prey accurately, 

which is a logical prerequisite to energy-based selection (Barclay & Brigham 1994). 

Alternatively, N. capensis may still be selecting prey based on size, but their preference scales 

exponentially with increasing prey size, more closely approximating selection for energy than 

size, as mass, and therefore energy content scales exponentially with increasing body size in 

insects (Sabo, Bastow & Power 2002). Our modelling framework therefore provides strong 

inferential evidence that active selection capabilities in low-duty-cycle echolocating bats are 

more developed than previously thought. 

 

Ecological and Evolutionary Implications 

The increase in moth consumption by syntonic bats around artificial lights may have substantial 

impacts on bat–moth coevolutionary arms races globally. Increasing urbanisation (Güneralp & 

Seto 2013) and subsequent introduction of artificial lights into previously unlit environments 

may allow syntonic bats access to an historically unavailable resource in eared moths. This may 

result in markedly increased and unprecedented pressures on eared-moth populations, possibly 

leading to conservation problems for these species. Moth abundance has declined sharply in 

Europe over the last few decades, and this may be due in part to increased light pollution (Fox 

2013).  
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Although light pollution may benefit syntonic species, allotonic bat species may face 

increased resource competition because of their reliance on eared moths as a primary food 

resource (Schoeman & Jacobs 2003, 2011). Further, avoidance of lit environments has been 

found in several allotonic bat species (Rydell 1992; Stone, Jones & Harris 2009, 2012; Lewanzik 

& Voigt 2014). Light avoidance in bats is likely adaptive to avoid avian predation (Speakman 

1991). Allotonic bats tend to be small, slow-flying, and have echolocation calls adapted for 

cluttered habitats (Schnitzler, Moss & Denzinger 2003), possibly increasing their actual and 

perceived risk of predation in artificially lit environments. Light pollution may therefore pose a 

formidable threat to allotonic bat survival by: 1) allowing syntonic bats access to a resource 

primarily limited to allotonic species in the past; 2) attracting prey away from cluttered foraging 

habitats of allotonic bats; and 3) possibly increasing perceived predation risk for allotonic 

species, and thereby excluding them from foraging in lit areas. More analyses of the effect of 

light pollution on sympatric, syntonic, and allotonic species are clearly needed to explore these 

predictions. 

We provide the first experimental evidence, supported by prey-selection modelling, that 

even at a small scale, artificial light can have a significant, disruptive effect on trophic 

interactions between predators and prey, and may permanently alter a 65 million year old 

coevolutionary arms race involving more than 750 bat and 50,000 moth species (Wilson & 

Reeder 2005; Kristensen, Scoble & Karsholt 2007). Mitigation of the harmful effects of light 

pollution should be prioritised as a conservation measure for both eared moths and allotonic bats. 
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Policy and Management Recommendations 

Different lighting technologies have different spectral compositions, which may be more or less 

attractive to moths. We could not confirm from our study whether a reduction in defensive 

behaviour efficacy is coupled with moth attraction to light. However, attraction to, and 

subsequent flight around lights, is a logical prerequisite for light to have an effect on moth 

defensive behaviour. Moreover, disorientation caused by light, may itself contribute to decreased 

defensive behaviour efficacy. Lighting technologies which are less attractive to moths are 

therefore less likely to reduce moth defensive behaviours. It is commonly thought that ultra-

violet (UV) wavelengths are the cause of attraction to light in moths, but several recent studies 

have contradicted this notion (Pawson & Bader 2014; van Grunsven et al. 2014). Moths are 

strongly attracted to LED lights (no UV emissions) of various colour temperatures (Pawson & 

Bader 2014) as well as high-pressure sodium lights (negligible UV) (Perkin, Hölker & Tockner 

2014). These findings clearly indicate moth attraction to light is not simply caused by UV 

wavelengths. Current understanding of moth attraction to light is poor (van Grunsven et al. 

2014). With better understanding, lighting technologies which are less attractive to moths could 

potentially be developed in future, but these may still have detrimental effects on other taxa.  

 Consumers’ lighting preferences are more likely to drive development of lighting 

technology than are conservation concerns for moths and bats. Unfortunately, human visual 

characteristics overlap with a wide number of taxa (Davies et al. 2013), and demand for lighting 

is driven by human preference for ‘natural-looking’ light (broad-spectrum), so it may ultimately 

be impossible to develop lighting technologies which are both ecologically neutral for all taxa 

and acceptable for consumers. For example, LED lights with broad spectra are increasingly 

being favoured for their ‘white light’ and low power consumption, but may increase the 
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disruptive power of light pollution on a variety of taxa (Davies et al. 2013; Pawson & Bader 

2014). It seems clear that the development of lighting technologies with ecologically neutral 

spectra holds little promise, and should not be considered a priority conservation measure.  

We recommend mitigation efforts focus on reducing temporal, spatial, and luminance 

redundancy of outdoor lighting. The integration of motion-sensing technology with street 

lighting would substantially reduce redundant lighting (Kyba, Hänel & Hölker 2014) and its 

impact on animals. Simple motion-activated switches could likewise be employed for building 

security lights and lighting along walkways. Despite the simplicity of this concept and 

technology required to implement it, roads, walkways and buildings around the world often 

remain fully lit during times when not used, and hence when lights are not needed. 

Increasing lighting efficiency will reduce the energetic cost of lighting, but this may 

also allow for increased illumination at a lower costs. Legislation limiting light intensity needs to 

be established to avoid redundancy in brightness that is easily achievable with modern lighting 

technology (Kyba, Hänel & Hölker 2014). Careful planning and light-beam manipulation can 

reduce spatial redundancy in lighting and sky-glow. Dark refugia within the urban–rural matrix 

are likely important for the persistence of light-sensitive bat and moth species. Green belts and 

nature reserves should be kept free from lights to act as dark reserves at night. Careful planning 

and responsible use of lighting can simultaneously promote road, building and personal safety 

while minimizing energy costs and direct ecological impacts.  
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SUPPORTING INFORMATION 

 

Figure S1. Spectral composition of common outdoor lighting technologies compared to mercury 

vapour light 

Figure S2. Comparison of model estimated detection capabilities of N. capensis using vision and 

echolocation 

Appendix S1. Supplementary Methods 

Table S1. Body length, estimated energy content, estimated maximum detection distance, and 

sampling rate shown for all insects captured during unlit and lit conditions, respectively 

Table S2. Selection probability factors included in all models tested shown with number of 

parameters for each 
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Figure S1. Emission spectra of various common outdoor lighting technologies (black) compared to that of a 

mercury vapor lamp (translucent white). Emission spectra were obtained from Elvidge et al., (2010). 
 

Elvidge, C.D., Keith, D.M., Tuttle, B.T. & Baugh, K.E. (2010) Spectral identification of lighting type and 

character. Sensors, 10, 3961–3988. 
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Figure S2. Comparison of model-estimated target detection capabilities of N. capensis using vision or 

echolocation (Appendix S1. b. ii), showing actual sizes (when printed on an A4 size paper) of smallest 

targets detectable at a 3 m distance away from a bat. Detectability using echolocation is shown for typical 

atmospheric conditions during our field experiment (20°C; 102,300 Pa; relative humidity 60%). Visual 

detectability is assumed under ideal lighting conditions and strong visual contrast of target against 

background. 
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APPENDIX S1. SUPPLEMENTARY METHODS 

a. Echolocation recording and analysis 

We used an Anabat™ SD2 (Titley Electronics, Ballina, Australia) to record echolocation activity 

and AnaLookW™ software for all echolocation data processing. We identified echolocation calls 

as being produced by Neoromicia capensis A. Smith 1829 (Cape serotine bat) through 

comparisons to echolocation call reference data collected from bats caught during sampling and 

from Monadjem et al. (2010). Only two other species were identified via echolocation 

recordings: Tadarida aegyptiaca E. Geoffroy 1818 (peak echolocation frequency: 22.7 kHz) and 

Scotophilus dinganii A. Smith 1833 (peak echolocation frequency: 33.6 kHz). These three 

species are easily distinguishable by peak echolocation frequency. It is possible other species 

with echolocation characteristics similar to N. capensis may have been missed when identifying 

calls. However, we did not catch individuals of any other species with similar calls.   

To assess bat foraging activity, we applied an activity index wherein continuous 

echolocation recordings were subdivided into one-minute intervals (Miller 2001) and the number 

of one-minute intervals containing N. capensis echolocation calls were summed for the entire 

recording period. The activity index value was standardised for different nights by dividing it by 

the total time (min) of echolocation recording and multiplying it by 100. 
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b. Calculation of Selection Probabilities for Prey-Selection Factors 

i. Probability of Prey Encounter (R) 

If a representative sample of prey is taken from a predator’s foraging range, relative proportions 

of prey should theoretically equal encounter probabilities of different prey. We sampled prey 

abundance using relatively unbiased methods within bat-foraging range (confirmed by 

echolocation data) and assumed prey relative abundance approximated prey encounter 

probability, and calculated the probability of prey encounter as follows: 

    
   

(             )
                                                     eqn     

where subscript ia, here and hereafter, indicates the prey-selection factor probability and 

associated variables, calculated for insect order i on the night bat a’s diet was sampled; encounter 

probability (Ria) equals the number of individuals (Nia) of a prey order divided by the total 

number of individual prey sampled on the same night. The calculation of R contains no 

parameters. 

ii. Probability of Prey Detection (D) 

Prey body lengths were measured for all prey sampled on a night and categorised into body-

length classes to the nearest millimetre (sampled prey size ranged from 1–56mm). We then used 

a modified version of the echolocation model from Safi & Siemers (2010) to estimate 

detectability of insect orders (all variables are in dB SPL): 

                                                                         eqn     

where Eno attenuation is the energy of the returning echo without accounting for atmospheric or 

geometric attenuation; SL is the source level of the echolocation call which was assumed to be 

100 dB; TS is strength of the returned echo calculated from mean body length of a prey order 
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(equation 4: Safi & Siemers 2010); RAY is the sound-energy lost (negative) through Rayleigh 

scattering when the prey target is smaller than the wavelength of the echolocation call (equation 

5 and 6: Safi & Siemers 2010); DT is the detection threshold of the bat which was assumed to be 

20 dB SPL (Stilz & Schnitzler 2012). Unlike the model from Safi & Siemers (2010), we 

excluded the effect of the angle of the insect relative to the echolocation beam. We assumed 

echolocation calls were angled towards the insect to produce maximum sound reflection to allow 

us to compare different orders of insects to one another. 

Our goal was to determine maximum detection distance via echolocation for an insect 

order on the specific night on which a bat’s diet was sampled. We therefore had to determine the 

distance at which atmospheric and geometric attenuation was equal to Eno attenuation (i.e., the 

distance at which the echo is attenuated to the point where it cannot be heard by the bat). We 

calculated atmospheric attenuation (TLA in dB/m) for given atmospheric conditions on the night 

a particular bat’s diet was sampled using a free online calculator (Stilz 2012). Atmospheric 

conditions were estimated from historical weather data collected from a weather station, 2.59 km 

from our study site (www.wunderground.com). We calculated geometric attenuation (TLS) using 

equation (2) from Safi & Siemers (2010). We added TLA and TLS together to calculate the 

overall attenuation (TLO) for 0.1 m increments between 1–6 m from the echo target. We 

performed a natural log regression of echo target distance and TLO. We then combined Eno 

attenuation and TLO to calculate maximum detection distance (MDD). Maximum detection 

distances for each prey size-class for each sampling night were then standardised (range 0–1) and 

a regression of size-class and standardised detection distances was used to calculate detectability 

via echolocation (D(e)). The regression took the following form: 

             (   ̅̅̅̅ )                                                             eqn     
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where c and d were parameters that varied depending on the atmospheric conditions on a given 

night. The calculation of D(e) included two parameters. 

To estimate the probability of detection by vision (lit conditions), we used the estimated 

visual acuity of N. capensis, 54´ (0.9º) of arc (Rydell & Eklöf 2003), to calculate the maximum 

detection distance of different prey orders. We calculated maximum visual-detection distance of 

prey using a combination of the sine rule, and Pythagorean theorem on right-angled triangles: 

  √(  
    

    
)
 

  
 

 
                                                   eqn     

where h is the height of an isosceles triangle; c is the base, which is the insect’s body length; β is 

the base angle;  and γ the vertex angle, which is equal to the visual arc of N. capensis  (Fig. S2). 

Therefore, visual maximum detection distance for prey order i on the night bat a’s diet was 

sampled (MDD(v)ia) is calculated as follows: 

         √(  ̅   
        

      
)
 

  
 

 
 (  ̅  )

 
                             eqn     

The result was multiplied by 0.0001 to convert to millimetres to metres.  

The combination of echolocation and vision cannot increase the maximum detection 

distance of prey. The combined maximum detection distance of prey by bats using echolocation 

and vision, would simply be the higher of two maximum detection distances for vision and 

echolocation, respectively. It is therefore not logical to add maximum detection distances for 

vision and echolocation to get a maximum detection distance of prey for vision and echolocation 

combined. However, the amount of time a bat has to track and capture its prey is a function of 

maximum detection distance; longer detection distances would allow the bat more time to track 

and capture its prey. To be conceptually correct, we could convert maximum detection distances 
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for vision and echolocation to detection/tracking time by assuming bats fly at a constant speed 

and continuously track their target, and add visual and echolocation tracking time together, to 

represent the sum of time bats are able to detect prey using vision and echolocation. However, 

mathematically, this conversion is unnecessary: we can simply add maximum detection distances 

for vision (v) and echolocation (e) together and standardise the result by taking it as a proportion 

of the maximum combined detection distances for any prey available to bats during experiments: 

        
                 

   (               )
                                          eqn     

The probability of detection above assumes all prey targets have similar visual 

conspicuousness. If light from lamps serves as a visual background, this assumption may be 

valid, as insects would presumably appear as dark silhouettes against a light background. 

However, when a bat feeds around lights but is not looking in the direction of lights, darker 

insects may have lower visual contrast against visual backgrounds. Moths in our study were 

mostly medium to dark brown, while beetles were mostly dark brown. Moths may therefore be 

more visually conspicuous than beetles against dark backgrounds. However, beetles may reflect 

more light than moths as their elytra are shiny. Nevertheless, we included a probability of 

detection using vision and echolocation where moths were assumed to be three times as 

conspicuous, visually, as other prey orders (D(ve-lep3)). This assumption is likely unrealistic, but 

provides a robust means of testing whether increased visual information caused moths to be more 

vulnerable to predation, by testing the visual detection hypothesis in an exaggerated form. The 

calculation of D(ev) and D(ev-lep3) contained one and two parameters, respectively. 

iii. Probability of Capture Given Prey Evasive-Behaviours (E) 

The probability of capture given prey escape behaviours was calculated as follows: 
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     (     

  
   )

   
                                                eqn     

where Nia is the number of all individuals from an insect order; Neia is the number of eared 

individuals from that order; ee is the percentage efficacy-estimate of defensive behaviours (20, 

40, 60, 80). E(ee)ia is therefore the proportion of individuals in a prey order which are un-eared as 

well as eared-individuals for which defensive behaviours are expected not to be effective against 

predation.  

Some insects from orders other than Lepidoptera (e.g., Coleoptera, Mantodea, 

Neuroptera, Orthoptera) have also evolved ears and some are known to exhibit anti-bat defensive 

behaviours in response to ultrasound (Conner & Corcoran 2012). We used the same percentage 

efficacy values for all eared insects known to exhibit anti-bat defensive behaviours, but this 

assumption had very little impact on model outcome. The calculation of E contains one 

parameter. 

iv. Probability of Prey Being Actively Selected by the Predator (A) 

We assumed that preference for prey based on size would scale linearly with prey size 

(Cunningham, Ruggerone & Quinn 2013). We standardised this relationship by assuming the 

largest insect captured during prey availability assessment on all nights (body length of 56 

mm), was the prey item most likely to be captured by bats. Size-based preference based on size 

was calculated as follows: 

        (    
 

  
)                                                         eqn     

where mean size (body length (mm)) of an insect order was multiplied by 1/56.  
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To estimate energy content for different prey orders, we combined body-length 

measurements of prey sampled during experiments and body-length-to-mass regression models 

with mass-specific, energy-content data (Sabo, Bastow & Power 2002; Rumpold & Schlüter 

2013) to estimate mean energy content per capture for a specific insect order on a given night 

(see Table S1 for a summary of energy content for different insect orders). We then calculated 

prey preference based on prey energy content PP(e) as follows: 

         (
                                 

                                           
)               eqn     

A predator should become more selective for prey when foraging in a patch of high 

quality (MacArthur & Pianka 1966). It is therefore not sufficient to simply calculate probabilities 

of active selection based on preferences for prey size or energy content in isolation. The 

perceived quality of the patch within which the predator forages must be taken into account. 

When a predator perceives a patch as high quality, it should become more selective for high-

quality prey, thereby altering its prey-preference. We theorised that bats in our study would 

perceive patch quality as a product of prey density and prey size/energy-content. In the context 

of our experiment, patch quality refers to the density and quality of prey available to a bat as 

sampled at our experimental site, on the night a particular bat’s diet was sampled. We did not 

measure prey density directly. Instead, we used time-standardised sampling rate (sria: number of 

insects from order i sampled per hour on the night bat a’s diet was sampled  as a proxy for prey 

density on a given night. A simple metric for patch quality, in this case for size-based selection, 

could then be calculated as follows: 

       ∑          

              

                

                                       eqn      
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where patch quality (PQ(s)a) equals the sum of mean body-length (in the case of energy-based 

selection, mean energy content would be used instead) measured for prey order i on the night bat 

a’s diet was sampled, multiplied by the sampling rate (sria) for the same prey order on the same 

night. Patch quality is therefore a measure of the density and quality of all prey available to a bat 

on a particular night. To adjust bat preferences for prey given patch quality, we had to scale 

patch quality on a given night relative to the highest patch quality recorded for a night during 

experiments, for which we assumed selective preferences would be strongest. Relative patch 

quality, in this case based on size-based selection, was then calculated as follows: 

        
  (      )

  (         )
                                               eqn      

We take the natural log of patch quality as we expect selectivity to show a natural log 

relationship with density (Cunningham, Ruggerone & Quinn 2013). Relative patch quality for 

energy-based selection would be calculated as above but with energy-based patch quality 

metrics. Finally, the probability of active selection, in this case based on size, was calculated as 

follows: 

              
                                                         eqn      

where the probability of active selection of prey order i based on prey size (A(s)ia), is the 

preference for prey order i, based on its size, to the power of the relative patch quality (RPQ(s)a) 

on the night that bat a was foraging. In this way, the higher relative patch quality becomes, the 

more linear the relationship between preference for prey and prey size/energy-content becomes. 

Therefore, when patch quality is low, predators prefer medium- and high-quality prey relatively 

equally. When patch quality is high, the difference in preference between medium and high 

quality prey becomes more pronounced, and bats would be more likely to select only high 

quality prey. 
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v. Probability of Prey Being Selected by the Predator Based on Handling Constraints (H) 

The primary physical constraint to consumption is the ability of bats to chew and swallow prey. 

We therefore estimated gape-size for each bat and excluded all individual prey that were larger 

than a bat’s gape from further calculations of H for an insect order. We also adjusted for the 

reduced availability of prey which were too large for a bat’s gape within an order by creating a 

simple gape limitation index (h(g)) by which to adjust H. To estimate gape-size for bats, we used 

data from Monadjem et al. (2010) to calculate a relationship between cranial length and forearm 

length for male and female N. capensis, respectively. We then estimated cranial length for each 

bat using the following equations: 

          (
   

   
)                                                 eqn      

where estimated cranial length for bat a (CLa) is equal to mean cranial length for bat a’s sex  

(CLl), multiplied by the ratio between bat a’s forearm length  FAa) and mean forearm length for 

bat a’s sex  FAl). Therefore, estimated cranial length for bat a is an individual size-adjustment of 

mean cranial length taken from Monadjem et al. (2010). We further estimated the distance 

between the temporomandibular joint and apexes of the upper and lower canines, respectively by 

calculating the ratio between cranial length and both of the aforementioned distances from 

museum specimen photographs from Monadjem et al. (2010). We subsequently calculated the 

distance between upper and lower canines using standard trigonometric calculations for each 

individual bat. We assumed the maximum gape angle was 45° for all bats (Dumont 2003). All 

insects estimated to be larger than an individual bat’s gape size were excluded from further 

calculations of H for that bat. Apart from excluding them from further H calculations, the 

reduced availability based on gape constraints must be reflected in H. To do this, we created a 

simple gape limitation index (h(g)) by which to adjust H. The index was calculated as the number 
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of individuals in an order that fit inside the gape of a particular bat over the total number of 

individuals in that order caught on the night in question. Therefore, the fewer individuals that a 

bat was able to consume, the lower h(g)ia, and the lower the probability of H becomes. 

Insect hardness may also affect the ability of bats to consume prey, however, bite forces 

estimated for bats (Aguirre et al. 2002; Freeman & Lemen 2007) greatly exceeded forces 

required to chew insects in our study.  

The ability of bats to physically handle and manoeuvre prey in flight also needs to be 

considered. There are no reliable data on the maximum size of prey aerial-hawking bats are able 

to handle in flight. We therefore scaled handling difficulty of prey as the largest body dimension 

 length, height, or width  of the insect relative to a bat’s forearm length, resulting in the ease of 

handling index (h(h)) which was calculated as follows: 

          (
        

     
)                                                     eqn      

where the mean maximum dimension of an insect order (mm) was divided by twice the forearm 

length (mm) of the bat and then subtracted from 1. If the maximum dimension of an insect 

exceeded twice the forearm length, h(h) was zero. Finally, H was calculated as follows: 

                                                                         eqn      

The calculation of H contained four parameters. 
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Table S1. Body length, estimated energy content, estimated maximum detection distance, and sampling rate shown for all insects 

captured during unlit and lit conditions, respectively. Values are mean ± standard deviation. 

 

Body Length (mm) 

Estimated Energy Content per 

Individual (J) 

Estimated Maximum 

Detection 

Distance (m) 

Sampling Rate 

(individuals/hour) 

 Unlit Lit Unlit Lit Unlit Lit Unlit Lit 

Lepidoptera 17.4 ± 6.6 17.2 ± 4.6 565 ± 42 554.1 ± 16.0 3.46 ± 0.03 3.48 ± 0.04 6.2 ± 1.9 29.0 ± 8.7 

Coleoptera 15.6 ± 8.2 14.2 ± 3.7 1150 ± 212 893.6 ± 25.6 3.13 ± 0.08 3.21 ± 0.06 7.1 ± 2.5 25.7 ± 18.4 

Diptera 3.5 ± 1.9 3.45 ± 1.6 9 ± 2 9.4 ± 1.7 1.45 ± 0.13 1.52 ± 0.09 24.3 ± 4.1 207.2 ± 94.7 

Trichoptera 3.2 ± 0.4 3.5 ± 0.9 5 ± 0 6.5 ± 0.1 1.37 ± 0.00 1.42 ± 0.46 0.6 ± 0.5 16.6 ± 9.7 

Orthoptera 32.3 ± 2.3 32.0 ± 2.0 3861 ± 4 3769.7 ± 3.2 4.25 ± 0.00 4.27 ± 0.00 0.4 ± 0.7 0.1 ± 0.3 

Hemiptera 6.1 ± 3.5 5.8 ± 3.1 41 ± 7 34.5 ± 4.3 2.16 ± 0.24 2.09 ± 0.14 1.6 ± 1.8 3.5 ± 1.2 

Neuroptera 9.5 ± 2.2 10.8 ± 1.0 228 ± 5 317.3 ± 2.5 2.73 ± 0.00 2.98 ± 0.13 0.7 ± 1.2 0.3 ± 0.16 

Hymenoptera 5.9 ± 2.1 7.5 ± 2.2 184 ± 38 265.7 ± 38.3 2.19 ± 0.13 2.47 ± 0.06 1.3 ± 1.7 0.5 ± 0.3 

Mantodea 40.3 ± 4.5 42.5 ± 1.67 10276 ± 32 11791.6 ± 2.5 4.5 ± 0.00 4.23 ± 1.33 0.1 ± 0.2 0.5 ± 0.2 
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Table S2. Selection probability factors* included in all models tested shown with number of 

parameters for each 

  

Selection Probability Factors 

Model Number Number of Parameters R D E A H 

1 6 x e abs. - x 

2 7 x e 20 - x 

3 7 x e 40 - x 

4 7 x e 60 - x 

5 7 x e 80 - x 

6 8 x e abs. s x 

7 8 x e abs. e x 

8 9 x e 20 s x 

9 9 x e 40 s x 

10 9 x e 60 s x 

11 9 x e 80 s x 

12 9 x e 20 e x 

13 9 x e 40 e x 

14 9 x e 60 e x 

15 9 x e 80 e x 

1(ev) 7 x ev abs. - x 

2(ev) 8 x ev 20 - x 

3(ev) 8 x ev 40 - x 

4(ev) 8 x ev 60 - x 

5(ev) 8 x ev 80 - x 

6(ev) 9 x ev abs. s x 

7(ev) 9 x ev abs. e x 

8(ev) 10 x ev abs. - x 

9(ev) 10 x ev 20 - x 

10(ev) 10 x ev 40 - x 

11(ev) 10 x ev 60 - x 

12(ev) 10 x ev 80 - x 

13(ev) 10 x ev abs. s x 

14(ev) 10 x ev abs. e x 

15(ev) 10 x ev 20 s x 
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Table S2. Continued 

  

Selection Probability Factors 

Model Number Number of Parameters R D E A H 

1(ev-lep3) 8 x ev-lep3 abs. - x 

2(ev-lep3) 9 x ev-lep3 20 - x 

3(ev-lep3) 9 x ev-lep3 40 - x 

4(ev-lep3) 9 x ev-lep3 60 - x 

5(ev-lep3) 9 x ev-lep3 80 - x 

6(ev-lep3) 10 x ev-lep3 abs. s x 

7(ev-lep3) 10 x ev-lep3 abs. e x 

8(ev-lep3) 11 x ev-lep3 20 s x 

9(ev-lep3) 11 x ev-lep3 40 s x 

10(ev-lep3) 11 x ev-lep3 60 s x 

11(ev-lep3) 11 x ev-lep3 80 s x 

12(ev-lep3) 11 x ev-lep3 20 e x 

13(ev-lep3) 11 x ev-lep3 40 e x 

14(ev-lep3) 11 x ev-lep3 60 e x 

15(ev-lep3) 11 x ev-lep3 80 e x 

*R = probability of prey encounter; D = probability of detection (e indicates detectability of 

prey using echolocation; ev indicates detectability using a combination of echolocation and 

vision; ev-lep3 indicates detectability of prey using a combination of echolocation and vision 

with the assumption that Lepidoptera are three times more visually conspicuous than other 

prey orders); E = probability of capture given prey evasive-behaviour with percentage 

efficacy (abs., 20, 40, 60, 80) of defensive behaviours indicated in table; A = probability of 

prey being actively selected by the predator based on energy (e) and size (s); H = probability 

of prey being selected by the predator based on handling constraints 
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