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Development of an optimal operation approach in
MPC framework for heavy haul trains

Lijun Zhang and Xiangtao Zhuan

Abstract—An operation control approach for heavy haul trains
to optimize their performance, including operation safety, service
quality and energy consumption, is proposed. Following a model
predictive control method, the controller is capable of scheduling
a train to operate optimally during a long section of the rail
track. In the cost function, two penalty factors are presented,
one for the braking forces and one for coupler damping effects.
The penalty for braking forces is employed to reduce energy
waste incurred by braking. The penalty for coupler damping is
introduced to alleviate the cyclic vibration of couplers, which link
adjacent cars in the train. The damping penalty is also expected
to reduce energy wasted by coupler damping and corresponding
maintenance/replacement cost of the dampers. In addition, the
weight of the velocity tracking term in the objective function is
modified to vary dynamically according to the train’s velocity
to improve the train’s overall performance. Simulations verify
the effectiveness of the proposed control approach. Discussions
over the impacts of the two penalty factors and dynamic weight
method are provided together with some suggestions on their
applications.

Index Terms—Operation control, heavy haul trains, model
predicative control, penalty factors, dynamic weighting.

I. INTRODUCTION

Operating railway systems in a safe and energy-efficient
way has drawn a lot of attention since the beginning of the
railway industry. In particular, demand for energy saving and
environmental conservation has brought about a new upsurge
of researches addressing the energy consumption of railway
vehicles. Efforts have been made in roadside facility improve-
ment [1], [2], train scheduling under complex networks [3],
[4], [5], train operation control [6], [7], etc. The focus of
this paper is to develop an optimal train operation strategy
which optimizes the train’s performance while reducing its
operational costs (energy cost and maintenance/repair cost).
The train performance indicators used in this study include
operation safety determined by in-train forces, service quality
in terms of punctuality characterized by velocity tracking [8],
coupler fatigue characterized by its cyclic vibration, and
energy consumption.

This investigation focuses on heavy haul train, capable of
electronically controlled pneumatic braking and independent
distributed power (ECP/iDP) operation mode, similar to the
one described by [9]. In the scope of control of trains, many
existing approaches formulate such a control problem into
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various optimization problems with different concerns. Most
of them minimize the train’s energy usage during its travel,
regardless of the control approach employed [10].

In 1982, the in-train dynamics of trains were studied [11].
Closed-loop control method is employed to optimize the
interplay between in-train forces and speed tracking in order to
optimize the speed tracking and energy consumption [12]. In
2006, a closed-loop controller was proposed, which considered
the train’s operation safety in terms of in-train forces and
service quality in terms of velocity tracking into account [13].

Before 2006, in-train dynamics were usually ignored in
controller design. There are two reasons why many researchers
ignored in-train dynamics of a train, which is actually a very
important aspect of a train’s operation safety. The first reason
is that the train lengths were much shorter in the past years,
when locomotives in the train can apply sufficient power to
pull/push the train to keep the in-train forces in safe range.
The second reason is that since energy consumption was the
main concern, most of those researchers modeled the trains as
a single mass point because in-train dynamics are not directly
related to energy consumption [7]:{

ẋ(t) = v(t),

v̇(t) = f(u(t), v(t))− r(x(t), v(t)),
(1)

where x(t) and v(t) are the position and velocity of the
train at time t, u(t) is the control output (power or force),
f(u(t), v(t)) is the acceleration/deceleration with respect to
u(t), and r(x(t), v(t)) is the deceleration with respect to
the resistance. It is clear that the velocity and position are
dependent on time, however, this dependence is omitted in
the remaining parts of this paper for the sake of simplicity.

Control methods using model (1) tend to optimize a train’s
performance by optimizing the switching time between differ-
ent operation modes, (such as power, coast and brake), without
considering in-train dynamics [7], [10], [14], [15], [16], [17].

Based on the single mass model (1), a cost function in the
optimization problem is usually defined as

J =

∫ T

0

pdt,

where p is the power of the train, and [0, T ] denotes the travel
time interval. From this cost function, it can be seen that only
energy consumption is taken into account in the optimization.
The existence of an optimal operation strategy of a train is
proved by [18] also with the single mass point model. In the
later study of Li et al. [19], carbon emission has been taken
into account, to optimize the train’s performance in view of the
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carbon emission trading scheme formulated by the European
Union; but no in-train dynamics were considered.

Heavy haul trains in operation today normally consist of
more than 200 cars, and in-train forces are the direct cause of
coupler damages which may lead to train operation disasters
like derailment. Thus the in-train forces should be considered
and manipulated with care in order to reduce a train’s main-
tenance cost, and most importantly to ensure operation safety.
It was verified in Zhuan’s Ph.D thesis [20] that using a single
mass point model in a long train leads to unreasonable power
distribution throughout the train and results in unacceptable
in-train forces. It is concluded in [20] that the single mass
model results in large in-train forces when the train is running
over the top of a hill where the front part of train is running
downhill while the rear part is running uphill. In view of this,
the so called cascade mass point model was employed by [21],
which models the whole train as individual masses (cars) inter-
connected by couplers{

miv̇i = ui + fini−1 − fini − fai , i = 1, . . . , n,

˙xin = vi − vi+1, i = 1, . . . , n− 1,
(2)

where n is the number of cars in the train, mi is the i-th
car’s mass and, vi and ui are the speed and effort of the i-
th car. The variable fai = faeroi + fpi , in which faeroi =
mi(c0i + c1ivi + c2iv

2
i ) is the i-th car’s rolling resistance and

aerodynamic force, and fpi = fgi +fci is the force due to the
track slope and curvature on which the i-th car is running. The
variable fini = kixini+diẋini is the in-train force between the
i-th and i+1-th cars, in which xin is the relative displacement
of the i-th and i+ 1-th cars and ki and di are the elastic and
damping coefficients of coupler i.

Taking advantage of model (2), heavy haul trains’ operation
controllers minimizing in-train forces, velocity tracking errors,
and energy consumptions were studied [13], [9], [22]. The
highlight of these studies is that they not only address the
energy consumption aspect of heavy haul trains, but other
safety and service quality related aspects are also considered.
The cost function defined in those studies are similar to the
following one:

J =

∫ tf

t0

(
n−1∑
i=1

Kff
2
ini

+
n∑

i=1

Keu
2
i +

n∑
i=1

Kv(vi−vr)
2)dt, (3)

where Kf , Ke and Kv are weights and vr is reference speed,
[t0, tf ] denotes the optimization interval.

Closed-loop controllers proposed in those papers have made
full use of the train’s capabilities to improve performance. For
instance, ECP/iDP operation strategy, which is verified to give
the best performance compared to other train brake/traction
strategies, is adopted so that manipulation of the train can be
most effective [13].

However, it is noticed that all those studies schedule a train
according to its current running condition including velocity,
position and track information. It is desirable to optimize the
train’s operation during a long travel rather than at a specific
position such that the future states of the train and the incom-
ing track information are accounted for. In view of this, model
predictive control (MPC) approaches were introduced in [23]

and [24] to optimize the trains behavior over a chosen period
taking into account all physical and operational constraints.
The MPC approach, with its intrinsic advantages of tackling
constrained operation control problem and optimizing system
behavior by looking ahead, has been successfully applied
to many industrial systems [25], [26], [27], [28]. The work
presented in [23] and [24] show the resultant improvement in
train performance in terms of velocity tracking, in-train force
minimization and energy consumption reduction.

Further, there are three factors not considered in previous
works including [7], [9], [23] and [24]. Firstly, it is concluded
in [29] that statistically, 10-20% of the energy consumed by
a train is used to compensate kinetic energy loss resulted
from braking. This implies that during a train’s operation,
the control strategy must take energy dissipated by braking
into consideration. Secondly, cyclic vibration of couplers, as
the main cause of coupler fatigue [30], was not addressed
in [7], [9], [23]. Only the maximum absolute value of in-
train forces were accounted for. Thirdly, the weight factors
for different train performance indicators are all fixed values,
whereas it is necessary to change the factor Kv , corresponding
to the velocity tracking status. This is because if Kv is fixed,
the optimization tends to direct the train to stop under some
circumstances (see details in Section II-B).

To tackle the above-mentioned issues, two penalty factors
Kb and Kd are presented in this paper to balance braking
forces and coupler damping effects of a train. Also, a dynam-
ically varying weight factor is applied to the velocity tracking
indicator. The advantages of those three modifications, includ-
ing reduced energy consumption, reduced maximum in-train
force and reduced coupler cyclic vibration of the train, are
verified by simulations.

Although the speed profile of a train on a given track should
and can be optimized as done in [31] and [32], it is out of the
scope of this paper and is not discussed. Only speed tracking
with respect to a given reference speed profile is investigated.

The remainder of this paper is organized as follows: train
optimal control problem is presented in Section II and an
MPC approach with penalty factors, and dynamically varying
Kv is given in Section III. Simulation results are shown in
Section IV to demonstrate the effectiveness of the proposed
approach, while hints on the application of the presented
penalty factors and dynamic Kv are provided in Section V.
Section VI concludes this paper.

II. PROBLEM

The optimal control problem of heavy haul trains is dis-
cussed in this section. Firstly, a general problem formulation
is given with the objective to minimize the train’s energy
consumption while the operation safety and service quality are
ensured. Then the cost function of the problem is modified
to take some other key aspects of the train operation into
consideration.

A. Problem in general

The train model and operation constraints are the same as
detailed in the previous works [23], [24], [33]. The cascade
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mass point model (2) and operation constraints described by
(4) are used.

ul
i ≤ ui ≤ uu

i , i = 1, 2, . . . , n

∆ul
lj ≤ ∆ulj ≤ ∆uu

lj , j = 1, 2, . . . ,m

f l
k ≤ fink

≤ fu
k , k = 1, 2, . . . , n− 1

(4)

where ul
i, u

u
i are lower and upper limitations of the ith car’s

effort (control variable), the variables ∆ul
lj

and ∆uu
lj

are the
lower and upper bounds of the jth locomotive’s power change
within one sampling period. The variable lj , j = 1, 2, . . . ,m
denotes the jth locomotive’s position in the train, and f l

k, fu
k

are the lower and upper bounds for the kth in-train force.
The train model is further transferred by denoting a new

control variable u′
i = ui − (mic0i + mic2iv

2
i + fpi) that

make the train dynamics to take origin as an equilibrium point.
Then with damping effect ignored (let di = 0), the model is
linearized to be as follows{

miv̇i = u′
i + ki−1xi−1 − kixi −mic1ivi, i = 1, . . . , n,

ẋini = vi − vi+1, i = 1, . . . , n− 1.

Choosing x = [v1, v2, · · · , vn, xin1 , xin2 , · · · , xinn−1 ]
T as

state variable, and u′ = [u′
1, u

′
2, . . . , u

′
n]

T as decision vector
(control variable), the transferred dynamical equation becomes
linear and can be written as follows

ẋ = Apx+Bpu
′,

where Ap =

[
A11 A12

A21 A22

]
, Bp =

[
B11

0n×n

]
. To be exact,

A11 = −diag{c11 , c12 , · · · , c1n}, A22 = 0n×n, B11 =
diag{ 1

m1
, 1
m2

, · · · , 1
mn

},

A12 =


− k1

m1
0 · · · 0

k1

m2
− k2

m2
· · · 0

...
...

. . .
...

0 0 · · · kn−1

mn

 , and

A21 =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1

 .

Then the above continuous time domain state-space equa-
tion can be discretized by the zero-order hold method with
sampling period Ts to have the following form

x(k + 1) = Ax(k) +Bu′(k), (5)

where x(k) consists of all car’s current velocities and the
relative displacements of neighbouring cars in a train, x(k) =
[v1(k), · · · , vn(k), xin1(k), · · · , xinn−1(k)]

T and u′(k) =
[u′

1(k), u
′
2(k), . . . , u

′
n(k)]

T are the decision vector. The system
matrices are: A = eApTs and B =

∫ Ts

0
eApτdτBp.

With the state space train model (5), with constants and
higher order terms eliminated, the cost function (3) can be
transformed into its approximated form as follows

J =

Np∑
k=1

xTQxx+ u′TRu′ + FT
1 x+ FT

2 u′, (6)

where Np is the optimization horizon,

Qx(i, i) =

{
Kv, i = 1, . . . , n,

Kfk
2
i−n, i = n+ 1, . . . , 2n− 1,

FT
1 = −2Kvvr[

n︷ ︸︸ ︷
1, . . . , 1,

n−1︷ ︸︸ ︷
0, . . . , 0], FT

2 = 2Ke[m1c01 +
fp1 , . . . ,mnc0n + fpn ], and R = KeIn×n.

In summary, the optimal heavy haul train operation problem
is to minimize cost function (6) subject to train dynamics (5)
and operational constraints (4).

B. Updates of the cost function

The cost function of the train operation problem suggests
that it is a weighted sum optimization problem. So changing
the weights can result in a different performance. In addition,
there are some other factors that have impacts on the optimized
performance but are not included in (3) [34]. In accordance
with the scope of this paper stated in Section I, the following
updates are applied to the cost function (3).

1) A penalty factor Kb is introduced to penalize the wagon-
s’ braking efforts because as stated in [29], statistically
10− 20% of the energy consumed by a train is used to
compensate kinetic energy loss resulted from braking.

2) A factor Kd is adopted to penalize the cyclic vibration of
couplers in order to alleviate coupler fatigue as well as to
bring down energy consumed during coupler damping.

3) A dynamically varying Kv with respect to the train’s
current speed tracking state is used instead of a fixed one
as in [22], [23] to improve the train’s performance. The
velocity tracking related term in (3) is

∑n
i=1 Kv(vi −

vr)
2. While vr is a constant, the minimization of J tries

to minimize vi when
∑n

i=1 Kv(vi − vr)
2 is relatively

larger compared to the other parts of (3). This causes the
optimization to bring the train to a standstill (vi = 0). In
such a way, the train’s performance regarding velocity
tracking and other aspects would all deteriorate. There-
fore, it is desirable to change Kv dynamically according
to the train’s speed tracking status, in order to improve
the train’s overall performance.

From this point onward in this section, the focus will be on
mathematically representing the three updates of the objective
function given above.

1) Braking penalization: Introducing a braking penalty Kb

is straightforward. Applying the following updates to the
energy related term in the cost function:

n∑
i=1

Keu
2
i → Ke(

m∑
j=1

u2
lj +Kb

n∑
i=1,i ̸=lj

u2
i ), (7)

will add a braking penalty factor Kb for wagons in the train.
It can be seen that if Kb = 1, this modification is removed
and no extra penalty for braking is presented. The reason
why the penalty factor does not apply to locomotives is that
locomotives can be capable of regenerative braking which
can use the energy generated during braking in the next
acceleration and is energy-efficient already.
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2) Damping penalization: As for Kd, a new term is added
in the cost function:

Kd

n−1∑
i=1

ẋ2
ini

= Kd

n−1∑
i=1

(vi − vi+1)
2

= Kd

n−1∑
i=1

(v2i + v2i+1)− 2Kd

n−1∑
i=1

vivi+1

= xTQdx,

(8)

where
Qd =

[
Dn×n 0
0 0

]
− 2KdP

T
1 PT

2 ,

in which D is a n× n diagonal matrix with elements

D(i, i) =

{
2Kd, i = 2, 3, . . . , n− 1;

Kd, otherwise;

and

P1 =

[
0 I2n−2×2n−2

1 0

]
, P2 =

[
In−1×n−1 0

0 0

]
.

It is noted that if Kd is set to 0, no penalty for the coupler’s
damping effect is applied.

3) Dynamic velocity tracking: In this subsection, a
Gaussian-like function is introduced to adjust Kv dynamically
according the train’s current velocity tracking result, i.e.,
applying the following change to the Kv in the cost function:

K ′
v = Kv(1− e−

(v−vr)2

c2 ), (9)

in which c determines the rate of change of K ′
v.

Ultimately, applying changes introduced in (7), (8), and (9),
the cost function (3) is rewritten as follows

J =

Np∑
k=1

(
Kf

n−1∑
i=1

f2
ini

+K ′
v

n∑
i=1

(vi − vr)
2

+Ke(
m∑

k=1

u2
lk
+Kb

n∑
i=1,i̸=lk

u2
i ) +Kd

n−1∑
i=1

ẋ2
ini

)
.

Similarly, with the discrete-time train model (5), the above
cost function is transformed into

J =

Np∑
k=1

xT (Qx +Qd)x+ u′TRu′ + FT
1 x+ FT

2 u′, (10)

where R is a n× n diagonal matrix in which

R(i, i) =

{
Ke, i = lj , j = 1, 2, . . . ,m;

KbKe, otherwise;

Qx(i, i) =

{
K ′

v, i = 1, . . . , n;

Kfk
2
i−n, i = n+ 1, . . . , 2n− 1;

while FT
1 and FT

2 are the same as in equation (6).
Consequently, the cost function in the optimization problem

of the train operation is changed from the general one (6)
to the updated one (10). This problem can be solved by a
quadratic programming (QP) method as can be seen that it
has a quadratic cost function.

III. MPC’S APPLICATION TO HEAVY HAUL TRAINS

An MPC approach for heavy haul trains has been proposed
in our previous study [23] in order to optimize the trains’
operation during a long journey. The MPC controller manipu-
lates the traction/braking forces for the train by solving an
optimization problem that minimizes the chosen indicators
over a predicted interval. At each time when a control is
required, the controller predicts future states of the train,
according to information available, for a chosen interval. After
the prediction is done, the optimization problem is solved,
which yields a sequence of control signal. The first element
in this sequence is then applied to the train and the rest
are discarded. When the next control instance arrives, the
procedure comprising state prediction, solving of optimization
problem, and implementation of the first control element, is
repeated. By using a properly chosen optimization horizon,
the optimized result is locally optimal and smooths the train’s
performance over a long travel.

The MPC controller, as stated above, requires prediction of
the train’s states in an optimization horizon and solving of a
properly formulated optimization problem. The scheme of s-
tate prediction based on the train’s dynamics, and optimization
problem formulation in the predicted horizon are presented in
the following.

State prediction is done as follows

X = Fx(k) + ΦU, (11)

where X = [x(k + 1|k)T , x(k + 2|k)T , . . . , x(k +Np|k)T ]T
and U = [u′(k)T , u′(k + 1)T , . . . , u′(k + Nc − 1)T ]T are
predicted state vector and corresponding optimal control signal
based on the current state, and

F =


A
A2

...
ANp

 ,Φ =


B 0 . . . 0
AB B . . . 0

...
... · · ·

...
ANp−1B ANp−2B . . . ANp−NcB

 .

To formulate the optimization problem, the objective func-
tion and constraints must also be extended to incorporate the
predicted train states. With help of (11), the trains’ operational
constraints in the optimization horizon are formulated. This is
detailed in [24], and a brief description is given below.

Regarding the constraints on in-train forces, with the as-
sumption that the relationship between in-train forces, fin,
and relative displacement of two adjacent cars, xin, is fini =
kixini , the constraints on in-train forces is actually constraints
on the state variables because

xin(k) = Zx(k), (12)

where Z =
[
0n−1×n I(n−1)×(n−1)

]
.

As for constraints on the amplitude and the variation of the
control variable, they are both related to the control variable
u′. It is true that the limits of variation of locomotives’ efforts,
∆ulj , can be represented by limits of the amplitude of ulj , if
uu
lj

and ul
lj

were updated to a proper value according to the
limit of ∆ulj before each loop of the optimization problem.
In such a way, the constraints on the amplitude and the rate of
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change of ulj can be merged and represented by constraints
on the amplitude of u′ only.

Therefore, using (12) together with (11), the train’s opera-
tional constraints (4) are finally formulated as

MU ≤ γ, (13)

where

M =


I(nNc×nNc)

−I(nNc×nNc)

Φx

−Φx

 , γ =


UU
(nNc×1)

−UL
(nNc×1)

XU
(n−1)Nc×1 − Fxx(k)

−XL
(n−1)Nc×1 + Fxx(k)

 ,

Fx =


A
A2

...
ANc

 ,Φx =


ZB 0 . . . 0
ZAB B . . . 0

...
... · · ·

...
ZANc−1B ZANc−2B . . . ZB

 ,

in which UU , UL, XU and XL are the upper and lower bounds
of u′ and xin in the optimization horizon, respectively.

Meanwhile, it is seen in equation (6) that F1 is related to
speed profile, vr, and F2 is related to fp. These two are directly
related to the train’s position at a given track. Denote the
velocity elements in the state variable x(k+i|k) as v(k+i|k),
and the position of the train at time k as p(k), the train’s
position at time k + i can be approximately calculated as

p(k + i|k) = p(k) + 0.5Ts

i∑
j=1

(v(k + j − 1|k) + v(k + j|k)).

Note that v(k + j|k) can be obtained according to (11).
Then, the matrix F1 and F2 can be calculated during the

prediction procedure owing to the fact that both vr and fp are
only dependent on p.

As a result, in the optimization, prediction of F1 and F2

could be done as follows

F̄1 = [F1(k)
T , . . . , F1(k +Np)]

T = h(p),

F̄2 = [F2(k)
T , . . . , F2(k +Np)]

T = g(p).

where F1(k+i) and F2(k+i) are the discrete values of F1 and
F2 in equation (6), respectively. The functions h(·) and g(·)
stand for the mapping from p to F̄1 and to F̄2, respectively.

In summary, the train operation optimization problem in the
MPC framework is given as follows,

minimize
J = UTHU + 2UT f (14)

subject to train dynamics (5) and constraints (13), where

H = ΦT Q̄Φ+R̄, f = ΦT Q̄Fx(k)+
1

2
(ΦT F̄1+ F̄2), in which

Q̄ = diag[Qx +Qd, . . . , Qx +Qd], R̄ = diag[R, . . . , R].
The MPC algorithm for solving this problem works as

follows
MPC Algorithm: Input (x(0), ul, uu,∆ul,∆uu,

f l, fu, vr, Ts and track information).
1) Let k = 0.
2) Feedback x(k), and apply QP method to find the optimal

control sequence which contains Nc control variables
Uopt = {u(k), u(k + 1), · · · , u(k +Nc − 1)}.
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Fig. 1: Track information

3) Implement u(k) at the time interval [kTs, (k+1)Ts) to
the train dynamics (2). Update the train’s current state
including velocity, in-train dynamics and position at the
track. Update current time k = k+1, and go to step 2).

IV. SIMULATION

The train’s configurations are the same as in [13]. The
rail track information from Spoornet, a South African train
operation company, is used (see Fig. 1, in which abscissa is
train’s relative position on the track). The length of the track is
17 km. There are four locomotives in the train, two of which
are located at front, and the other two at the rear of the train.
Between those locomotives, 200 wagons are connected one-
by-one in the middle. The maximum/minimum absolute value
of in-train forces is set to ±2000 kN, with regard to the train’s
operation safety. Simulations are run to investigate impacts of
the penalty factors Kb and Kd and impacts of dynamic Kv in
the scheduling. The train performance indicators, as described
in the cost function, are in-train forces, velocity tracking,
coupler fatigue, and energy consumption. The variable c in
(9) is set to 2 for investigating the impacts of dynamic Kv

method. Ts = 20s is used as sampling period for the controller.
The optimization and control horizons, Np and Nc, chosen
here are for demonstration purpose only as these values can
be selected by following standard MPC controller tuning
procedures. More detailed comparison of train performance
change with regard to Np and Nc settings can be found in [24].

The MPC controller is implemented as described in Sec-
tion III, where the QP problem formulated is solved by
following Hildreth’s quadratic programming procedure [35].
The newly developed fast convex optimization approach [36]
was also tested. In this study, due to the fact that the opti-
mization horizon and control horizon are chosen to be short,
the computation time from the Hildreth’s approach and the
one presented in [36] does not differ much. Computation time
required to solve the problem by Hildreth’s procedure is given
in the following context.

Simulation results with different configurations are summa-
rized in Table I. Regarding the weights in the cost function as
well as optimization horizons, Kv = 60, Ke = 10, Kf = 10,
Np = 4, and Nc = 2 are fixed in simulations owing to the
fact that the focus here is to investigate impacts of the penalty
factors and dynamic Kv method. In Table I, |δv| is the absolute
value of the difference between the reference velocity and the
mean value of all the cars’ velocities, |f in| is the mean value
of the absolute values of all the couplers’ in-train forces, E
is the energy consumption calculated by E =

∫ T

0
|uv|dt, and
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Fig. 3: Performance comparison with different Np and Nc

while Kb = 10

∑
ẋ
2
in is the summation of the mean rate of change of all

couplers’ length in the train over the whole travel.
First of all, to verify that the MPC approach designed with

cascade mass point train model is practically applicable, the
following simulations are conducted. The computation time
for solving the optimization problem at each sampling instant
during the simulation with configuration Kv = 60, Ke = 10,
Kf = 10, Np = 4, Nc = 2, Kd = 0 and Kb = 10 is
shown in Fig. 2, which explicitly shows that the computation
time is much less than one second. In comparison to the
sampling period Ts = 20s, the computation time is very short
which means that the MPC approach is practically applicable
regarding its time complexity.

A. Impacts of Kb

From Table I, it can be seen that a Kb larger than one leads
to great improvement of the train’s performance. Simulation
is done when the optimization and control horizons are set to
Np = 4 and Nc = 2. Compared to the results when Kb = 1,
both the train’s energy consumption and maximum absolute in-
train force decrease a lot with a negligible sacrifice of velocity
tracking ability when Kb is increased to 10. Specifically, 17%
energy saving (from 25278.58MJ to 20952.39MJ) and 43.5%
decrease of the maximum in-train forces(from 1122.7kN to
638.08kN) are achieved while no considerable change of the
velocity tracking indicator is observed.

The above impacts of Kb can be explained as the presence
of Kb punishes wagons’ braking forces in a train, which leads
to two most noticeable performance changes

1) By punishing the braking forces of wagons, energy
dissipated during braking is reduced. For instance, when

Kb = 10 is applied, energy dissipated by wagons’
braking is reduced from 15877.28MJ (Kb = 1) to
13684.21MJ. A reduction of 13.8% is reached.

2) The maximum absolute value of in-train forces and the
rate of coupler length change reduce, and as a result,
braking occurs less frequently with a large Kb.

However, it is not always desirable to reduce brake forces.
Reasonable brake forces must be applied to a train when
necessary. Otherwise, the train’s speed tracking performance
will deteriorate. For instance, sufficient braking is required
when the train runs down a hill. The MPC approach, however,
can schedule the train’s brake/traction power, to slow down the
train before where large braking forces are required to do so
taking advantage of its predicted control. If the optimization
horizon is long enough, the energy consumed by braking can
be reduced as much as possible by the MPC controller.

This feature of MPC gives a way to reduce braking efforts
of the train and makes it possible to compensate the speed
tracking deterioration resulting from braking penalization, by
means of optimizing the train’s operation in a long run. As
shown in Fig. 3, if the windows are increased from Np = 2
and Nc = 1 to Np = 4 and Nc = 2, the train’s speed tracking
deterioration caused by applying Kb, especially when the train
is required to slow down, reduces significantly. In the case
shown in Fig. 3, the train applies more effective braking to
bring the train down to the set speed at position 12 km, much
faster with a larger Np.

B. Impacts of Kd

Comparing the results between the first row (Kd = 0) and
the third row (Kd = 10) in Table I, it can be seen that,
while velocity tracking results are almost the same, other
two indicators change remarkably. On the one hand, energy
consumption decreases when a nonzero Kd is presented. On
the other hand, the maximum absolute in-train forces, increase
significantly when Kd = 10 compared to that when Kd = 0.
Comparing the second and the third row of Table I, it is
manifest that the energy consumption reduction resulted from
punishing coupler damping is less than that resulted from
reducing braking forces. The coupler cyclic vibration indicator
reduces from 0.199 m2/s2 to 0.177 m2/s2 when Kd increases
from 0 to 10.

Primarily, Kd prevents the cyclic length change of couplers
in the train in order to alleviate coupler fatigue and reduce the
chance of coupler damage. As such, a nonzero Kd results in
slow length change of couplers, which implies that energy
dissipated during coupler damping is reduced and coupler
fatigue is alleviated. By increasing Kd = 10, comparing to
the base case where Kd = 0 and Kb = 1, an 11.1% reduction
in the rate of coupler length change is achieved. More data
supporting this result are shown in Table II. A nonzero Kd,
in contrast, also leads to the result that in-train forces get
larger compared to when a zero Kd is adopted. This is because
release of in-train forces by coupler damping becomes more
difficult when a nonzero Kd is used.
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TABLE I: Performance comparison while Kv = 60, Ke = 10, Kf = 10, and f = 10

|δv| (m/s) |f in| (kN) E (MJ) ∑
ẋ
2
in (m2/s2)Kd Kb max mean std max mean std wagon total

no dynamic Kv

0 1 8.06 1.79 2.17 1122.70 275.03 76.46 15877.28 25278.58 0.199
0 10 8.05 1.44 2.21 634.08 147.37 36.67 13684.21 20952.39 0.158
10 1 8.04 1.70 2.11 1279.44 255.94 82.83 - 21795.41 0.177
10 10 7.97 1.52 2.19 1039.82 207.08 67.04 - 21326.38 0.138

dynamic Kv 10 10 8.76 1.82 2.33 810.43 269.29 56.63 12943.80 19767.77 0.131

TABLE II: Kd’s impact on coupler fatigue indicator
Kd 0 10 40 60∑

ẋ
2
in 0.1988 0.1773 0.1628 0.1549

C. Combination of Kb and Kd

As analyzed in the section above, it can be seen from Table I
that

1) the maximum absolute in-train force becomes larger
when a nonzero Kd is used;

2) the maximum absolute in-train forces gets smaller when
a larger Kb is introduced; and

3) introduction of both Kb and Kd leads to reduction in
energy consumption.

Therefore the potential for improving train performance by
combining Kb and Kd is investigated, results of which are
given in the fourth row of Table I. It can be concluded ac-
cording to the first four rows in this table that the performance
indicators on velocity tracking, in-train forces, and energy
consumption are the best when only Kb is presented. However,
according to the coupler fatigue indicator, the rate of change
of the coupler length sums up to 0.158 m2/s2 when Kd = 0,
which is higher than 0.138 m2/s2 when Kd = 10. Thus a
compromise leads to the most acceptable result, with both Kb

and Kd employed. In summary, combining the braking and
damping penalization can yield better train performance than
solo use of each of them. It is up to the train operator’s decision
whether a larger Kd is to be used or the results with Kb only
are the best. A trade-off must be done.

D. Impacts of dynamic Kv

The idea of dynamically varying Kv is to change the
weight of velocity tracking according to the train’s present
velocity tracking state. If the train’s velocity tracking indicator
is good enough, then the weight on this indicator should be
reduced accordingly, so that the other indicators of the train
performance can be improved. In addition, the optimization
tends to schedule the train to stop in some circumstances
when Kv is always large owing to the fact that the velocity
tracking related term in the cost function can be minimized by
minimizing vi, i = 1, . . . , n. This is the motivation of applying
the dynamic Kv.

The last two rows in Table I gives a comparison between
the results with and without dynamic Kv. It is evident that
with a dynamically varying Kv, the train’s velocity tracking
result deteriorates a little while the other two performance
indicators get much better. The maximum absolute in-train
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Fig. 4: Results with dynamic Kv and Kd = Kb = 20

force gets smaller (a reduction of 22.0% was seen) and energy
consumption gets less (reduced by 7.3%).

As summary of this section, simulations verified that the
train’s performance can be improved as expected by only
presenting a braking penalty or only presenting a damping
penalty. However, combining those two penalties can yield
better results. A trade-off must be done when selecting the
values of Kb and Kd. In addition, the train’s performance can
be further improved by a dynamic Kv. Fig. 4 shows the results
when dynamic Kv is applied together with both Kd and Kb set
to 20 (the optimization and control horizons are set to Np = 6
and Nc = 4). It is clear that the performance of the train is
better in this case than that shown in Fig. 3.

E. Performance on a long uphill track

The results presented in the simulations above could be
unconvincing as it is intuitive that more brake effort is required
for a train when it is running on a downhill track than
on a uphill track. Therefore, the energy saving and other
performance improvement on an uphill track, which is adopted
from [15], is investigated in this subsection. The track has a
fluctuated upward trend in this case and is much longer than
the downhill one used earlier in this section.

The reference speed profile is also adopted from [15]. The
train’s speed tracking result by the approach presented in this
paper and the track information are depicted in Fig. 5. It is
seen that the train does not track the speed profile designed
in [15] with zero error. The reason is that the speed profile
was designed according a single mass point train model where
no in-train dynamics are considered while the train operation
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Fig. 5: Performance on a upward track

controller presented in this study schedules the train with in-
train forces accounted for. It is clear from Fig. 5 that the
biggest deviation from the set speed is observed when the train
is running over a hill. This also verifies that the train operation
strategy, based on the single mass point model, can lead to
unreasonable results. It also confirms that in-train dynamics,
such as in-train forces, are of great concern, especially when
the train is running over the top of a hill. The speed deviation
at the beginning of the schedule shown in Fig. 5 is due to the
limit on rate of change of the train’s locomotive power.

To demonstrate the advantages of the method presented in
this study, the train’s performance indicators with and without
braking penalty, coupler damping penalty, and the dynamic
weighting for speed tracking are compared on this uphill
section. It is shown by simulations that the approach proposed
yields better results in terms of the mean speed tracking
error, in-train force, energy consumption and coupler fatigue
indicators, when compared to our previous work [24] where
no penalties and dynamic weighting methods are employed.
In particular, the control proposed in this study reduces |f in|
by 21.85% from 1353.57 kN to 1057.84 kN; the energy
consumption E is also reduced remarkably by 24.87% from
72014.79 MJ to 54104.54 MJ; the coupler fatigue indicator,∑

ẋ
2
in, decreases from 0.163 to 0.133 (18.40% reduction) as

well. Meanwhile, mean velocity tracking error increased a
little by 0.64% from 11.21 m/s to 11.28 m/s.

The results shown in this subsection verify that the the pro-
posed approach is able to achieve better train performance with
regard to the performance indicators considered, regardless of
the rail track condition.

V. DISCUSSION

In this section, the proposed penalties and dynamic Kv

method are further analyzed, together with some suggestions
on their applications.

As for the braking penalization, it is always recommended
to add a larger Kb if the train is running on a relatively
flat track or on a track with a slight downward gradient, in
order to reduce energy consumption and reduce the mainte-
nance/replacement cost of braking linings. A moderate value
of Kb should be used if a train is running on a fluctuating
track, because the train can make use of the track profile to

slow itself down under such circumstances. On the contrary, if
the train is running down a steep continuous downward track,
one should use a small value of Kb so that the train can operate
safely.

Regarding the penalty factor for coupler damping, the
choice of Kd is indirectly related to the damping coefficients,
d, of couplers in use (refer to [21] for details). A larger d
means the coupler can dissipate more energy by damping.
Therefore, adding Kdẋ

2
ini

in the cost function offsets the effect
of d. This suggests that when the damping effects of couplers
mounted on a train are large, a large Kd can be used without
jeopardizing the train’s other performance, while reducing its
energy consumption and relieving coupler fatigue. Otherwise,
if damping effects of couplers are weak (i.e. d is small), a
small Kd should be used to prioritize the train’s operation
safety (maintain in-train forces within the safe range).

When it comes to dynamic Kv, the maximum value of
K ′

v = Kv can be chosen as done by [22] to consider the
trade-offs between different aspects of the train performance.
It is the rate of change of K ′

v that is the concern here.
This relies on the specified tolerable speed tracking error. For
instance, if one sets the maximum tolerable speed tracking
error |v − vr| to M , which means that K ′

v = Kv apply when
|v − vr| ≥ M , then Kv can vary according to |v − vr| when
|v− vr| < M . Firstly, it is clear from (9) that if |v− vr| → 0,
then K ′

v → 0 regardless of the value of c. Secondly, according
to the settings, if |v − vr| ≥ M then K ′

v = Kv . In view of
the above two points, one gets

lim
|v−vr|→M

Kv(1− e−
(v−vr)2

c2 ) = Kv.

This further implies that e−
M2

c2 = 0, which is not possible.
If this equation is modified, from an engineering perspective,
to be e−

M2

c2 < 10−3, one can immediately get c2 < M2

6.9 .
Therefore, if one chooses M = 6, then c2 should be less than
5.22. This provides a way to find a proper value of c2. In such
a way, one can choose M first and then determine a suitable c.
The presence of c, together with Kv , gives flexibility for users
to specify the train’s speed tracking performance. However, the
key contribution of dynamic Kv is that the velocity tracking
term in the cost function becomes nearly zero when speed
tracking is good enough. This offers more opportunities for
improvement of the train’s overall performance.

VI. CONCLUSION

An MPC approach for heavy haul trains’ operation is
presented. Two penalty factors are introduced to improve the
trains performance in terms of energy consumption, speed
tracking, operation safety, and coupler fatigue. One penalty
factor is introduced for the braking forces of wagons in the
train and the other for the couplers’ damping effects. In
addition, a dynamic weighting method is proposed for the
weight of the train’s velocity tracking indicator term in the
cost function of the problem, to improve the train’s overall
performance.

As is verified by simulations, the penalty factors and the
dynamically varying Kv method presented can improve the
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train’s performance in terms of velocity tracking, coupler
fatigue alleviation, maximum in-train forces reduction and
energy consumption minimization. It also shows that the
train’s performance can be further improved if the penalty
factors and the dynamic Kv are employed together.
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