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Abstract 

This paper reports the performance of an Artificial Neural Network based road 

condition monitoring methodology on measured data obtained from a Land Rover 

Defender 110 which was driven over discrete obstacles and Belgian paving. In a 

previous study it was demonstrated, using data calculated from a numerical model, that 

the neural network was able to reconstruct road profiles and their associated defects 

within good levels of fitting accuracy and correlation. A nonlinear autoregressive 

network with exogenous inputs was trained in a series-parallel framework. When 

compared to the parallel framework, the series-parallel framework offered the 

advantage of fast training but had a shortcoming in that it required feed-forward of true 

road profiles. In this study, the true profiles are not available and the test data are 

obtained from field measurements. Training data are numerically generated by making 

minor adjustments to the real measured profiles and applying them to a full vehicle 

and vehicle dynamic responses.doc
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model of the Land Rover. This is done to avoid using the same road profile and 

acceleration data for training and testing or validating the neural network. A static feed-

forward neural network is trained and consequently tested on the real measured data. 

The results show very good correlations over both the discrete obstacles and the Belgian 

paving. The random nature of the Belgian paving necessitated correlations to be made 

using their displacement spectral densities as well as evaluations of RMS error percent 

values of the raw road profiles. The use of displacement spectral densities is considered 

to be of much more practical value than the road profiles since they can easily be 

interpreted into road roughness measures by plotting them over an internationally 

recognized standard roughness scale. 

Keywords: Road condition monitoring, Artificial neural networks, Vehicle model, Ride 

comfort, Handling, Road roughness assessment, Four state semi-active suspension, 

Road profile reconstruction, Displacement spectral density 

1  Introduction 

This work is a continuation of an ongoing study on road condition monitoring 

undertaken by the Dynamic Systems Group at the University of Pretoria. The seminal 

work was done by Hugo, Heyns, Thompson and Visser [1] on mine haul roads. Hugo et 

al. [1] employed an inverse tire model of the haul truck to calculate road profiles which 

would provide input into the development of a real time road maintenance management 

system for mine haul roads. As pointed out by Ngwangwa, Heyns, Labuschagne and 

Kululanga [2], the methodology’s reliance on extensive system characterization limits 

its practical feasibility. Ngwangwa et al.  [2] therefore proposed a neural network-based 

methodology of reconstructing the road profiles. 
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The advantages of such a methodology cannot be overemphasised. Hugo et al. [1] 

discuss the need for development of optimal maintenance strategies. The existing 

maintenance techniques fail to optimize the cost function and they have potential to 

generate excessive costs due to over- or under-maintenance [1]. Too little maintenance 

leads to excessive vehicle operation and maintenance costs while excessive road 

maintenance generates extremely high costs that may not be justified against its benefit 

in reducing vehicle operation and vehicle maintenance costs. 

Heyns, De Villiers and Heyns,  [3] further note that the existing methods are time-

consuming and subjective with the effect that they may not be well-suited for use on 

road networks such as mine haul roads. Existing methodologies require too much 

management input through their need for costly regular inspections and subjective 

assessments of road segments and rather strict adherence to fixed schedules. The present 

methodology however, has the potential for development of a real-time maintenance 

management system which may require minimal subjective assessment. There is no 

need for stopping operations and data can be captured while operating. 

In the previous paper [2], an eight degree-of-freedom (8-DOF) linear pitch-plane model 

with four degrees of freedom representing vehicle motions and additional four degrees 

for seat and driver vibrations, was employed for the investigation. Eight road roughness 

classes having well-known displacement spectral densities (DSDs) on the International 

Organization for Standardization power spectral density (ISO PSD) classification of 

road roughness [4] were applied to the model to calculate corresponding sprung mass 

and axle accelerations. The accelerations, serving as inputs, and the corresponding road 

profiles, serving as targets, were applied to a Non-linear Auto-Regressive with 

eXogenous inputs (NARX) network having 20 hidden neurons and one output neuron 

[2]. 
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The vehicle model was subsequently simulated with different sets of road profiles 

which were generated by a random road surface function to calculate corresponding 

sprung mass and axle accelerations. The accelerations were accordingly applied to the 

trained NARX network to obtain the road profiles. The simulated road profiles were 

compared with the actual road profiles. These evaluations were performed for different 

road roughness conditions (based on the ISO PSD roughness scale [4]), different vehicle 

speeds, growing road defects, noisy conditions, and different vehicle payload conditions 

[2]. It was noted that the methodology was able to reconstruct the road profiles to within 

an error margin of 20 % with a minimum correlation of 94 % [2]. 

In this paper, the methodology is applied to field test data using an experimental Land 

Rover Defender 110. This vehicle has been extensively used by the Vehicle Dynamics 

Group at University of Pretoria and has a great deal of instrumentation permanently 

mounted on it [5]. It has been adapted for suspension tests to allow for suspension 

settings to be safely switched between ride comfort and handling modes [5], a system 

that is known as four state semi-active suspension (4S4) [4]. The vehicle response 

measurements used in this paper were carried out by Breytenbach [6,  7] using an eDAQ 

lite measurement system while the road profiles were measured by Becker [8,  9] using 

a ‘can-can’ machine. The tests were performed at Gerotek, a world class vehicle testing 

infrastructure in Pretoria, South Africa. The tests were conducted over discrete obstacles 

and Belgian paving with the driving conditions changing between different 

combinations of two speeds and suspension settings from one test run to another. These 

would typically yield four possible test scenarios, namely, ride comfort mode at low 

speed, ride comfort mode at high speed, handling mode at low speed and handling mode 

at high speed though some of these combinations were not performed over the discrete 

obstacles. 
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One of the most crucial issues with the use of neural networks in non-linear regression 

or function approximation is its generalization capabilities. The data used in this study 

was obtained to validate a mathematical model of the Land Rover and since most 

evaluations of vehicle vertical dynamics are generally conducted over discrete obstacles 

and random road surfaces [6], there was no need, in that study, for more road profile 

data other than the discrete obstacles and Belgian paving. However, in this study, such 

scarcity in the measured profile data poses a challenge as far as ensuring network 

generalization is concerned. This has been addressed in this paper by generating slightly 

altered versions of the actual measured road profiles which are applied to a full-vehicle 

seven degree-of-freedom model (7-DOF) of the Land Rover as formulated by 

Breytenbach [6,  7]. The numerically generated data is used for training the neural 

network while the measured data is used for validating and testing the neural network. 

The following section presents the properties of the Land Rover, its suspension forces 

and the numerical model which is used in generating the accelerations that serve as 

inputs when training the neural network. 

2  Land Rover properties, suspension and numerical model 

2.1.   Geometry and inertial properties 

The Land Rover geometry and inertial properties used in the study were characterized 

by Uys, Els, Thoresson, Voigt, and Combrinck [10] in a laboratory environment. The 

determination of the mass moments of inertia and the location of the vehicle’s centre of 

gravity were of particular interest and were carried out by using the rotational vibration 

of a rigid body about a pivoting point, with a restoring force provided by a spring. Uys 

et al. [10] developed an ADAMS model of the Land Rover based on these properties 

which was later validated with field results by Els [5]. The details of these 
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measurements and the procedures that were employed can be found in reference [10]. 

Table 1 summarises these vehicle inertial properties and geometry. 

Table 1   Summary of vehicle inertial properties and geometry. 

Land Rover Property and Dimensions Quantity 

Sprung mass 1734 kg 

Sprung mass pitch moment of inertia 2440 kg.m
2

Sprung mass roll moment of inertia 688 kg.m
2

Front unsprung mass 229 kg 

Front unsprung mass roll moment of 

inertia 

33.1 kg.m
2

Rear unsprung mass 229 kg 

Rear unsprung mass roll moment of inertia 33.1 kg.m
2

Centre of mass longitudinal position from 

front tire centre 

1.395 m 

Centre of mass height 1.19 m 

Wheel track width 1.5 m 

Suspension track width 1.1 m 

2.2   The tire 

The tire is the most important component of the vehicle model as it acts as the interface 

between the vehicle and the road [1,  6,  11]. Ideally it must maintain traction on the 

road as it absorbs the road irregularities and because of the range of functions the tire 

must perform, it is also equally difficult to model. In most vehicle simulations, the tire 

imposes the largest limitation to achieving correlation with measured results [1].  In this 
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study the tire is modelled as a point follower with a parallel linear spring and damper of 

250000 N/m and 1200 Ns/m respectively [6]. 

2.3   The suspension forces 

Owing to its complex fluid dynamics and need to optimize vehicle performance 

between ride comfort and handling modes, the suspension dynamics of the 4S4 could be 

oversimplified if it is assumed that suspension forces are directly proportional to 

suspension displacements and velocities [5,  6]. There are several mathematical models 

proposed in the literature for complex damper behaviour but this study adopts the 

approach employed by Breytenbach [6,  7] where empirical models are employed. The 

suspension forces are considered to comprise five main contributing components 

namely: hydro-pneumatic spring forces, hydraulic damping force, friction force in the 

4S4 suspension struts, bushing force in the vehicle trailing arms and bump stop forces 

[6]. The Land Rover’s hydro-pneumatic spring is modelled as a polytropic gas 

compression process with constant area in eq. (1).  [6] 

pn

stat
s stat

x
F p A

x

 
  

 
(1) 

where sF  is the force in the hydro-pneumatic spring; statp  is static pressure (2.167 

MPa); A is the bore cross-section area (1.963×10
-3

 m
2
 equivalent to 50 mm diameter

bore); statx  is the static displacement (0.0509 m for handling mode and 0.255 m for ride 

comfort mode); x is the hydro-pneumatic spring displacement; and pn  is the polytropic 

gas constant equal to unity. The polytropic constant of unity represents an isothermal 

process and it was found that it adequately predicted the spring force in most tests [6]. 

The other four forces in the 4S4 suspension are nonlinear and could not be modelled as 

linear functions as is often assumed. They were modelled empirically using MATLAB's 
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interpolation function ppval.m [12]. Figure 1 shows the behaviour of these forces 

over some typical operating suspension displacements and velocities. 

Figure 1.   The 4S4 suspension forces: (a) hydraulic damping forces for ride 

comfort (dashed) and handling mode (solid) (b) Friction forces (c) Bushing forces 

and (d) Bump stop  forces for front struts (solid) and for rear struts (dashed). 

Figure 1 (a) shows larger damping forces in the handling mode than in the ride comfort 

mode at all suspension velocities. This behaviour is uniform in all the suspension struts, 

though in practice, small variations within manufacturing tolerances have led to varying 

characteristics [6]. Figure 1 (b) shows that friction forces within the 4S4 suspension are 

lower than the damping forces but its limiting static value is higher than the dynamic 

friction forces. The value of 0.02 m/s is ideally too large for stick-slip velocity. This is 

caused by the participation of viscous damping effects on damper blocks in the valve 

assembly of the laboratory suspension strut.  This fact was verified by another 

9



laboratory suspension strut which had no damper blocks in the valve assembly and it 

exhibited near-zero threshold velocity in the stick-slip transition region [6]. Since the 

suspension strut on the actual Land Rover under test has damper blocks, the former 

friction characteristic was utilized.  Stribeck curves were consequently fitted to the 

measured ride and handling friction curves and averaged over the velocity range ±0.05 

m/s [6, 7].  Thus Figure 1(b) represents a generalised friction curve which is a result of 

averaging ride and handling friction curves. However during the actual simulations, 

specific ride and handling friction curves were employed. 

The bushing forces in the trailing arms are also much lower than the damping forces for 

suspension displacements between -0.1 m and +0.05 m, yet increase almost 

exponentially outside these limits (Figure 1 (c)). By design, the rear suspension struts 

have greater working space than front struts as shown in Figure 1 (d). 

2.4   The Vehicle Model 

The development of the full-car model of the Land Rover Defender 110 and validation 

against measured data was carried out by Breytenbach [6]. The model comprises 

translational motion in the vertical direction and rotational motions in the roll and pitch 

directions for the sprung mass as well as translational motion in the vertical direction 

and rotational motion in the roll direction for each of the unsprung masses (front and 

rear solid axles). 

The full development of the model can be found in reference [6]. In this paper, only the 

seven equations of motion for each degree of freedom are presented and briefly 

discussed for clarity. 
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The equation of motion for the sprung mass can be represented by eq.2.  

srfslfslrsrrbbb FFFFgmzm  (2) 

where bm is the vehicle body mass, bz  is the vertical body acceleration measured at its 

centre of gravity and srrF , slrF , 
srfF  and 

slfF are the suspension forces measured on the 

struts at the right rear, left rear, right front and left front positions.  Force of gravity on 

the sprung mass bm g is included to model sprung mass’s free body motion in the 

vertical direction since occasionally the tires lose contact with the ground. 

The forces in the suspension struts were modelled empirically using MATLAB's 

interpolation function ppval.m [12]. This function constructs a polynomial that fits 

the best line to the experimental data. The total suspension force in each strut is 

therefore determined by adding the spring forces, damper forces, friction forces, bump 

stop forces, and bushing forces. The force equation at the front axle is given by eq. 3 

slfsrfufstftlfrlftlfrlftlfstftrfrrftrfrrftrf

tlfuftlftlfuftlftrfuftrftrfuftrfufuf

FFgmkzczkkzczk

cczcckzkcczcckzkzm











 ...
(3) 

where, 
ufm is the mass of the front solid axle; , ,  and uf uf ufz z z are the displacement, 

velocity and acceleration of the axle's center of gravity;  and trf tlfk k are the right and left 

front tire stiffnesses; c is the wheel track half width;  and trf tlfc c are the right and left 

front tire stiffnesses;  and    are the roll angle and velocity of the front axle; st is the 

tire static deflection which is assumed 10 mm in this study; and ,  ,   and rrf rrf rlf rlfz z z z are 

the profile heights and their time rates of change on the right and left front axle. 

In eq.3, besides the suspension forces on the left and right hand sides, the axle 

experiences the gravitational forces due to its own mass 
ufm g ; the forces from the road 
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input on the tires and the static forces due to tire deflection 
stf . Similarly the force 

equation of motion on the rear axle is given by, 

slrsrrurstrtlrrlrtlrrlrtlrstrtrrrrrtrrrrrtrr

tlrurtlrtlrurtlrtrrurtrrtrrurtrrurur

FFgmkzczkkzczk

cczcckzkcczcckzkzm











 ...
(4) 

where the quantities are similar to those already defined in eq.3 but, in this case, they 

refer to the rear axle. 

The moment equations on the sprung mass in the roll and pitch directions are given by 

eq.5 and eq.6 respectively. 

   dFFdFFI srfsrrslfslrXX  (5) 

   aFFbFFI slrsrrsrfslfYY  (6) 

where andXX YYI I are the moments of inertia of the vehicle body in the roll ( )  and 

pitch    directions respectively; d  is half the distance between left and right front

suspension struts;  and a b are the distances of the rear and front axles from the vehicle's 

centre of gravity respectively. 

The moment equations on the front and rear axles are given by eq.7 and eq.8 

respectively. 

 slfsrfstftrfrrftrfrrftrfstftlfrlftlfrlftlf

trfuftrftrfuftrftlfuftlftlfuftlfaXX

FFdckzcczckckzcczck

cczcckczckcczcckczckI











 ...2222

_

(7) 

 slrsrrstrtrrrrrtrrrrrtrrstrtlrrlrtlrrlrtlr

trrurtrrtrrurtrrtlrurtlrtlrurtlraXX

FFdckzcczckckzcczck

cczcckczckcczcckczckI











 ...2222

_

(8) 

where 
aXXI _ is the mass moment of inertia of each axle. 
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The equations may now be rewritten in the matrix form 

fKzzCzM   (9) 

where the matrices and vectors in eq.8 are given in References [6,  7]. 

Eq. 9 is a stiff differential equation owing to the existence of the nonlinear suspension 

forces and the resulting nature of its stiffness and damping matrices. Hence it is solved 

by using the low-order routine ode23s.m implemented in MATLAB, which is suited 

to such stiff differential equations [12]. The standard ODE solver ode45.m in 

MATLAB encounters convergence problems especially in the presence of higher 

damping, friction and bushing forces. This fact was also noted by Breytenbach [6]. 

3   Nominal road profiles 

In the previous study [2], half-sine waves were used to represent road bumps and 

random road profiles were generated in a purely mathematical way using the well-

known one-dimensional random profile function [2,  13]. In this study, two kinds of 

road profiles are used: trapezoidal-shaped bump profiles and Belgian paving. The 

unique feature is that these profiles are based on real measured road surfaces [8,  9]. The 

bump profiles were made of trapezoidally shaped steel blocks whose dimensions could 

be obtained using a one meter rule. The distances along the road were measured using 

measuring tapes. 

The measurements over the Belgian paving were more complicated and therefore 

required a better profilometer. The profile measures were taken by Becker [8,  9] using 

three different methods: ‘can-can’ machine, photogrammetry and laser scanner, which 

are shown in his work to be accurately correlated [8,  9]. It is however reported that the 

‘can-can’ machine provided a better profile measuring tool due to its ease in setting up, 

operation and data pre-processing. The ‘can-can machine’ is a light weight, right-angled 

triangular structure with a wheel at each of its corners, designed in such a way that one 
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wheel is in front and is used for steering the apparatus and controlling its speed during 

profiling, whereas the other two wheels are at the rear carrying the measuring beam. 

The rear beam is 4.5 m long and it carries 30 pivoting arms positioned and spaced to 

cover a 3 m wide road section. It is reported that when a ‘can-can’ machine is properly 

used it is capable of achieving profiling errors of less than a few millimetres [8,  9]. 

This accuracy is very satisfactory for the purposes of this study where small bumps may 

be neglected due to the tire filtering effect [8,  9]. The vehicle tires tend to cushion the 

vehicle from the impacts of surface undulations whose wavelengths are less than its 

contact patch width. A detailed description of the profiling procedure and the equipment 

used can be found in Becker's work [8,  9]. 

3.1   Trapezoidal bumps 

The trapezoidal bumps are used here to represent discrete-obstacle type of defects such 

as potholes, bumps and stones [6]. Though the real-life discrete obstacles on the road 

may not often be in that shape, trapezoidal bumps are popularly used in vehicle model 

validation tests [8,  9,  14] due to their ramp-type of rise and fall thereby impacting mild 

harshness to the vehicle structure in driving. Two trapezoidal bumps of different sizes 

(small bump with 100 mm height and large bump having a height of 150 mm) were 

placed along the tracks in three different layouts as shown in Figure 2. 

The bump layouts are shown in the picture in Figure 2 (a) with the Land Rover 

traversing the bumps. The spacing between the bumps is depicted in Figure 2(b) to (d). 

The first layout had two smaller trapezoidal bumps placed symmetrically along each 

wheel track. This was ideal for testing the vehicle’s vertical motion. The second layout, 

Figure 2 (c) had the large bumps placed symmetrically along each wheel track followed 

by the small bumps similarly laid out and positioned at a distance of 10.4 m from the 

large bumps in the direction of travel. This layout was ideal for testing of both vertical 
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and pitch motions. The third layout Figure 2 (d) comprised one large bump on the left 

hand side of the wheel track followed by the small bump at a distance of 10.4 m placed 

on the right hand side of the wheel track. This layout was ideal for testing vehicle’s 

vertical, pitch and roll motions. 

Figure 2.   Bump layouts in picture (a) and in schematic form showing the 

distances in: (b) symmetric small bump (c) symmetric large-then-small bump (d) 

asymmetric large-then-small bump. 
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3.2   Belgian paving 

The Belgian paving is often used to evaluate vehicle dynamics typically experienced 

when traversing random rough terrains [8,  9,  14]. Its surface is made up of cobbles 

which are firmly cemented together in the pavement. Figure 3 shows the Belgian paving 

in picture (a), its displacement spectral density (DSD) in (b) and the Land Rover 

traversing its stretch in (c) at Gerotek. Becker [8,  9] noted that the peak at a spatial 

frequency of 6 cycles/meter in frame (b) corresponds to a wavelength of 167 mm which 

is the average length of the cobbles (a) in the direction of vehicle travel. 

Figure 3.   Belgian paving (a) in picture (b) Displacement Spectral Density plot (c) 

vehicle on the Belgian paving. 

4. Generating the training data

The training data is generated by applying slightly adjusted road profiles to the 

numerical model of eq. 9 in section 2.4. Ideally, the training data should be as 

representative as possible in order to achieve good network generalization over the 

testing domain. In this study, the network is to be tested on two geometrically different 
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road surfaces and for computational expediency the alterations are applied to these two 

profile. 

For the bumps, the geometrical shapes remain trapezoidal, while the heights (h) and 

average lengths (x) shown in Figure 4 are resized by a factor of 0.1 and the spacing 

between the bumps as shown in layouts (c) and (d) shown in Figure 2 are reduced from 

10.4 m to 8 m. Thus the dimensions used in the training algorithm are x 0.1x m and

 0.1h h m  for the average widths and heights respectively. This only yielded

geometrically similar trapezoidal bumps with equal corresponding angles, which of 

course rather simplified the test for network’s generalization capabilities over different 

bump profiles. It is however recommended that in order to achieve better network 

generalization capabilities over different geometries of bumps, it would be necessary to 

alter the geometrical shapes and their internal angles besides merely rescaling the 

heights and widths of the bump blocks. 

Figure 4.   Trapezoidal bump showing height (h) and average length (x). 

For the Belgian paving, a Gaussian noise with a noise-signal ratio of 0.1 and a 1-m 

delay are added to the spatial profile. The RMS of the Belgian profile is calculated and a 

noise level equivalent to 10% of the original spatial profiles’ RMS is added to the 

Belgian paving. 

These altered road profiles are applied to the vehicle model under the case scenarios 

tabulated in Table 2. For each case scenario in Table 2, a matrix consisting of 
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accelerations calculated on the front right, rear left and rear right sides of the vehicle 

body are stored. The accelerations are calculated on corresponding positions of the 

model to those where accelerometers were positioned on the actual Land Rover. Due to 

some technical difficulty during the experiments, the accelerations on the left front 

could not be measured. The stored accelerations are processed to remove any constant 

trends and low-pass filtered with a cut-off frequency of 25 Hz to cover the important 

frequency range for vehicle ride vibrations. The accelerations (inputs) with their 

corresponding road profiles (targets) provide the training data for the neural network. 

Table 2   Summary of road profiles and conditions for generating training data 

Case 

Scenarios 

Profile type 

Vehicle 

suspension mode 

Vehicle speed 

(km/h) 

1 Symmetric small bump Handling 14.5 

2 Symmetric large-then-small bump  Handling 14.5 

3 

Asymmetric large-then-small 

bump 

Ride 14.5 

4 

Asymmetric large-then-small 

bump 

Handling 14.5 

5 Belgian paving Ride 14.5 

6 Belgian paving Handling 14.5 

7 Belgian paving Ride 54 

8 Belgian paving Handling 54 
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As shown in the Table 2, there are four case scenarios each under discrete obstacles and 

under the Belgian paving. It was possible to increase the number of cases for the 

discrete obstacles according to combinations of suspension settings and vehicle speeds, 

but that has been intentionally avoided in this study to reduce the resulting 

computational cost during network training and simulation. In cases of unavailability of 

a priori knowledge of the test demands, it might be necessary to include as many 

conditions as possible when generating the training data. 

However, the use of such simulated data implied that the performance of the neural 

network in this paper is largely influenced by the accuracy of the numerical model itself 

and the quality of the training process. If the training process does not induce much 

larger errors it might be easier to make some inferences on how the physical parameters 

of the vehicle system itself impact the final results from the neural network otherwise 

such inferences may remain hidden and hard to fathom. 

The next section presents the neural network and its training function. 

5   ANN architecture and training 

A feed-forward neural network with 50 tan-sigmoid neurons in the hidden layer and two 

linear neurons in the output layer is used. The network is trained with simulated data 

from the vehicle model for each of the eight case scenarios presented in Table 2. The 

architecture of the static feed-forward neural network employed in this study is shown 

in Figure 5. This is a departure from the dynamic layer-recurrent NARX used in the 

previous paper [2]. The reason for the change is that the NARX network requires feed-

forward from true road profiles which unfortunately may not be available in real test 

situations. 
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Figure 5.    Static feed-forward ANN architecture. 

The input tp  contains three sets of sprung mass accelerations with 3964 data points. 

This two-layer neural network can be mathematically represented by [12,  15] 

  2 2 1 1 1 2

t  a f W f W p b b (10) 

where      
T

srf slr srrx x x   tp z z z    is a matrix of sprung mass simulated 

accelerations for the training process on right front, left rear and right rear sides of the 

vehicle body;  W
1
 and b

1
 are a 50×3 weighting matrix and a 50-element column bias 

vector respectively;  f
1
 comprises 50 sigmoid activation function (tansig.m), in the 

hidden layer [12] where     tansig 2 1 exp 2 1x x    ;  while W
2
 and b

2
 are 2×50

weight matrix and a 2-element column bias vector respectively being acted on by 2-

linear activation functions operating in parallel in f
2
. The activation in MATLAB 

function, f
2
 is implemented by function purelin.m [12]:  purelin x x . The network

output  
T

l rz za represent the road profiles on the left and right wheel tracks 

respectively. If f
2
 is dropped the network output is represented by eq.11 so that the 

network output may be rewritten as 

 1 2

t  2 1 1
a W f W p b b (11) 

Roll velocities are not used despite their importance as reported by Breytenbach [6] due 

to the fact that the numerical model's accuracy in predicting roll velocities is not good. 

However the application of accelerations from both sides of the vehicle is deemed 
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satisfactory to capture the roll effect. The Land Rover had accelerometers instrumented 

on the vehicle body only at the rear and above the right front suspension strut. This may 

impose a limitation to the performance of the technique since a position on the chassis 

does not experience as much excitation as that on the axle. However, in the previous 

study [2] where all data were generated from the numerical model it was relatively easy 

to use axle accelerations, and achieve excellent matches between simulated and actual 

profiles. This presents a further challenge to the application of the methodology in the 

present set up and, of course, in the real test situation. 

In summary, there are a number of important issues to be noted when evaluating the 

performance of the methodology in the present application against its former application 

in previous study [2]: 

1. A static feed-forward neural network with 50 neurons in the hidden layer and

two neurons in the output layer is employed as opposed to the dynamic recurrent 

NARX network that was employed in the previous study. This is because the 

NARX network required a feed-forward of true road profiles which are not 

available in the current application. 

2. The network is trained with simulated data generated from altered versions of

the real measured road profiles and later tested on measured data. This is done to 

avoid using the same data in both training and testing the neural network; hence 

providing a real test to the methodology. 

3. The acceleration data used in this investigation are calculated (training data) and

measured (testing data) on the vehicle body and not on the vehicle axle. This 

might provide a limitation on the quality of correlation between simulated and 

actual road profiles due to the suspension’s isolation characteristic. 
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4. The network is trained with data at two different speeds and two different

suspension settings. 

5. The neural network uses the Levenberg-Marquardt algorithm as its learning

function. This requires that weights and biases are continuous functions. 

6. The accuracy of the calculated accelerations which are used for training the

network is limited by the numerical model’s deficiencies in predicting roll 

velocities. 

6  Response measurements 

All the vehicle tests were conducted by Breytenbach [6,  7] on Gerotek’s suspension 

track for wheeled vehicles. These tracks are used to perform repeatable and comparative 

suspension tests under simulated conditions in order to monitor the structural integrity 

of body structure, body mountings, suspension, axles, steering, chassis and driveline. 

Besides, the tests assist in determining and monitoring specific properties, e.g. 

suspension, steering and structural characteristics. 

An eDAQ-lite data acquisition system was used as a data logger. The Crossbow ±4g tri-

axial accelerometers with model number CXL04GP3, were used because of their good 

response definition at low frequencies, given that important vehicle ride dynamics fall 

below a frequency of 25 Hz. A sampling frequency of 1 kHz was used with a linear roll-

off anti-aliasing filter set at 333 Hz. In the test, several quantities were measured, but for 

the purpose of this study, only the vertical accelerations and vehicle speeds are of 

interest. Table 3 shows the parameters of interest. The vehicle speeds were measured by 

three different methods to ensure repeatability. Right front accelerometers were located 

on the vehicle strut mount 120 mm away from the right front axle centre line, while the 

rear accelerometers were mounted 620 mm away from the rear axle centre line. It was 

practically difficult to mount the accelerometers directly on axles near wheel centres. 
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Some of the surfaces on which the vehicle was tested were very rough and mounting the 

accelerometers directly on the axles without a firmer attachnment would compromise 

the accelerometers themselves. On the other hand, the firmer attachments would 

necessitate that the accelerometer mounting blocks be bolted into the axle members 

which would also compromise its structural integrity. But if conditions permit, it is 

strongly recommended that the accelerations be measured on the vehicle axles. 

Table 3   Summary of measured quantities on the Land Rover 

Parameter Transducer 

Time eDAQ-lite built-in 

Vehicle speed VBOX GPS, eDAQ-lite GPS, and Proximity 

probe measuring drive shaft speed 

Left rear (LR) vertical acceleration Crossbow triaxial-accelerometer (±4g) 

(CXL04GP3) 

Right rear (RR) vertical acceleration Crossbow triaxial-accelerometer (±4g) 

(CXL04GP3) 

Right front (RF) vertical acceleration Crossbow triaxial-accelerometer (±4g) 

(CXL04GP3) 

The tests were carried out in random order to reduce the effects of systematic errors in 

the measurements [6]. The Land Rover was carefully maintained at a constant speed by 

driving the diesel powered Land Rover against the engine governor in gear [6]. 

Breytenbach [6] further showed that the tests were repeatable for tests conducted under 

each case scenario of Table 2. Thus, for testing the neural network in this study, it is 

satisfactory to select only one test run for each test case. The test data are presented in 

Table 4. 
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Table 4   Summary of test data 

Test 

No. 

Case 

Scenario 

Test Description Suspension Setting Speed (km/h) 

27 1 

Bump course, 

layout (a) 

Handling 14.5 (low range, 1st gear) 

22 2 

Bump course, 

layout (b) 

Ride comfort 14.5 (low range, 1st gear) 

33 3 

Bump course, 

layout (c) 

Ride comfort 14.5 (low range, 1st gear) 

34 4 

Bump course, 

layout (c) 

Handling 14.5 (low range, 1st gear) 

10 5 Belgian paving Ride comfort 14.5 (low range, 1st gear) 

12 6 Belgian paving Handling 14.5 (low range, 1st gear) 

11 7 Belgian paving Ride comfort 54 (low range, 4th gear) 

13 8 Belgian paving Handling 54 (low range, 4th gear) 

Each test in Table 4 belongs to a particular case scenario presented in Table 2. It can be 

noted that no data was available for the higher speed on the bump course, due to the 

severity of the test bump at 54 km/h. 

7   Simulations, results and discussions 

This section discusses the performance of the network on the real test data. The use of 

model simulated data for training the network have significant advantages during 

research and development where models are often used to enhance understanding of 

underlying complex physical phenomenon and/or optimize system behaviour and 
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performance. In the present case however, simulated data have been used to avoid the 

problem of having to use same data for training and testing or validating the neural 

network. In sections 6.1 and 6.2 the performance of the network over discrete obstacles 

and Belgian paving respectively, is presented. 

7.1   Discrete obstacles 

The discrete obstacles are evaluated according to the performance of the methodology 

over the four bump case scenarios (Table 2 and Table 4), namely:  symmetric small 

bumps in handling mode at vehicle speed of 14.5 km/h; symmetric large-then-small 

bumps in ride comfort mode at 14.5 km/h; asymmetric large-then-small bumps in ride 

comfort mode at 14.5 km/h; and asymmetric large-then-small bumps in handling mode 

at 14.5 km/h. The bump tests were all carried out at low vehicle speed, to avoid the 

excessive tire dynamics that may accompany such speeds upon traversing a hard bump 

such as the one under study. There was also the difficulty of maintaining the vehicle 

speed when traversing the bump. 

For the symmetric small bump, no data is available for the vehicle suspension in ride 

comfort mode. It has been mentioned previously, that the second bump test scenario 

provides an ideal situation for testing the vehicle’s pitch behaviour. This is true if the 

distance between the front and rear bumps does not coincide with the vehicle’s 

wheelbase. The third and fourth bump test scenarios excite the vehicle’s roll motion and 

it was carried out for both ride comfort and handling modes. This scenario provides the 

toughest test in this study since the numerical model does not accurately simulate the 

vehicle roll dynamics due to its inability to accurately capture the friction in the 

suspension [6]. 

The actual bump geometries and layouts are given in Figure 2. The symmetric small 

bump layout is shown in Figure 2(b) and has a height of 0.1 m. The neural network is 
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simulated with the accelerations measured in Test No. 27 in Table 4 to observe its 

outputs. The reconstructed profiles are shown in Figure 6(a) and (b). The solid lines 

represent the actual profiles while the dashed lines show the reconstructed profiles. The 

neural network correctly reconstructs the bumps up to a height of about 0.08 m after 

which the simulated profiles exhibit some waviness. The waviness also occurs around 

the base where the bumps start and end. This network behaviour at and around corners 

can be expected due to the difficulties associated with numerical integration at and in 

the neighbourhood of such discontinuities. The cause for the differences in the quality 

of the reconstructed bump between the left wheel track in Figure 6(a) and right wheel 

track in Figure 6(b) is not clear at this stage. The minor attenuation in the amplitudes 

may have been caused by the tire enveloping effect that is not properly taken into 

consideration in simulation model by the point-follower tire model as well as the 

averaging effect of the numerical filter applied to the simulated profile. Besides, the 

point-follower tire model with a parallel linear spring and damper does not accurately 

represent the tire spring and its non-linear effect wheel hop as well as changes in tire 

pressure, thereby contributing to some error on the steady-state part of the discrete 

bumps. Furthermore, this tire model does not accurately simulate the change in 

tire/ground contact point. However, these shortcomings are tire model-dependent which 

can be improved if more comprehensive models were used.  
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Figure 6.   Simulated bumps (dashed) correlated with actual bumps (solid) on the 

left hand track (a) and right hand track (b) for Case Scenario 1 for Test No 27 in 

Table 4 (Handling mode at 14.5 km/h). 

Figure 7 shows the results of the network simulations over symmetric large-and-then-

small bumps at the vehicle speed of 14.5 km/h when the vehicle suspension was set to 

ride comfort mode as in Case Scenario 2 Test No. 22 in Table 4. The left hand wheel 

track is represented by Figure 7(a) and the right hand wheel track is shown in Figure 

7(b). The reconstructed bumps correlate very closely with the actual profiles on both 

sides of the wheel tracks. Moderate undulations occur at the corners especially at the 

bases of the bumps. However, the quality of the reconstructed profiles in terms of 

heights and general curve fitting is much superior to the Case Scenario 1. Breytenbach 

[6] noted that the larger number of uncertainties associated with the harder suspension 

setting in handling mode, affected more adversely the quality of the correlation between 

simulated and actual vehicle responses than in the more compliant ride comfort mode. 
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Figure 7.   Simulated bumps (dashed) correlated with actual bumps (solid) on the 

left hand track (a) and right hand track (b) for Case Scenario 2 Test No. 22 in 

Table 4 (Ride comfort mode at 14.5 km/h). 

The performance of the network over asymmetric large-and-then-small bumps are 

presented in Figure 8 for Case Scenario 3 and in Figure 9 for Case Scenario 4. The 

reconstructed bumps on the left hand wheel track exhibit better correlation than on the 

right hand wheel track for both test cases. Though this has been observed in the 

previous test cases, it is clearly more magnified in these two cases by the fact that the 

underlying numerical model fails to model roll motion with sufficient accuracy as to 

allow its attendant neural network to reproduce any form of motion with acceptable 

level of accuracy, in which roll plays a significant part. Breytenbach noted that the 

model over-predicted roll velocity and investigated the causes of this error through 

sensitivity analyses. It was concluded that roll stiffness in suspension bushings, which 

was not considered in the model, might be culpable for the over-prediction of roll 

velocities. Frame flexibility was also considered to be a contributor but not necessarily 
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the main cause. It is, however, not clear at this stage why these effects seem to affect the 

ride comfort mode case in Figure 8 more than handling mode case in Figure 9, 

especially on the right hand wheel tracks. The reconstructed bump in ride comfort mode 

(Figure 8(a)) does not suffer from a similar energy spill over at the location 

corresponding to the location of the right hand bump as is observed in Figure 9(a) for 

handling mode. This might be due to relatively more accurate modelling in the ride 

comfort mode as compared to more demanding handling mode. 

Figure 8   Simulated bumps (dashed) correlated with actual bumps (solid) on the 

left hand track (a) and right hand track (b) for Case Scenario 3 Test No. 33 in 

Table 4 (Ride comfort mode at 14.5 km/h). 
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Figure 9.    Simulated bumps (dashed) correlated with actual bumps (solid) on the 

left hand track (a) and right hand track (b) for Case Scenario 4 Test No. 34 in 

Table 4 (Handling mode at 14.5 km/h). 

In this section the performance of the network over different layouts of the discrete 

obstacles have been presented and discussed. It is observed that the quality of the 

correlation between the reconstructed and actual bumps is generally better in ride 

comfort mode than in handling mode. This is a property that is inherited by the neural 

network from the numerical model that is used to generate the training data. The causes 

for the differences in the quality of correlations between the left hand and right hand 

wheel tracks are not clear. There could be a number of factors that may influence this 

anomaly including vehicle manoeuvre over the bump, inaccuracies in representation of 

measurement points and slight suspension strut manufacturing disparities. 

There are also some errors observed on the steady-state part of the bumps. This may be 

due to the tyre being modelled as a point follower model with a parallel linear spring 

and damper. The non-rolling dynamic tire stiffness and damping properties were 
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experimentally determined by using a pendulum type tire tester at 200 kPa inflation 

pressure for a range of vertical loads over tires up to 1600 kg. As a result, a linearized 

tire stiffness of 250 kN/m and linearized damping constant of 1.2 kN.s/m were 

recommended for vertical loads of tires below 700 kg. Thus the tire spring and its non-

linear effect wheel hop plus the changes in tire pressure during the actual test are not 

properly represented by the model thereby contributing to some error on the steady part 

on discrete bumps. Also the change in tire/ground contact point is not properly 

simulated by the model. 

However the fact that the methodology is still able to yield very good results in the 

presence of all these uncertainties makes it more practically feasible. The methodology 

is able to locate the bumps where they occur and is able to estimate the sizes of bumps 

with maximum discrepancies as shown in Figures 8(b) and 9(b) that might be 

acceptable for road condition monitoring. It is expected that if the measured data were 

to be used for training the network some of these offending factors might be eliminated 

and the methodology would presumably yield better results. 

7.2   Belgian paving 

In the case of Belgian paving tests, it makes more practical sense to correlate their 

statistical values and DSDs rather than the raw profiles themselves. Heyns, et al. [16] 

noted that data scarcity may often render profile estimation difficult and as such they 

proposed the use of a metric calculated from vehicle accelerations. Specifically, Heyns, 

et al. [16] developed a technique for cost-effective condition monitoring of mine haul 

roads based on speed normalised response type road roughness measuring systems 

(RTRRMS) by using a Bayesian framework. Basically they used a Bayesian framework 

to extract speed normalised RMS acceleration from measured vehicle vibration data. 
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The DSDs are used in this study due to their ability to be interpreted as a measure of 

road roughness [4,  17]. It is also relatively easy to translate DSDs into International 

Roughness Indices (IRIs) which themselves are popular measures of road roughness. A 

similar approach was employed by Kang, Lee and Goo [18] except that they used the 

DSDs computed from profilometer measured data which might be quite demanding. 

The approach proposed in this study takes advantage of the current trends in vehicle 

information systems where vehicles are increasingly being mounted with sensors for 

optimization of suspension systems. 

Figure 10 shows simulated raw profiles plotted over the actual measured profiles. The 

plots show a limited road section, for clarity purposes only, since the actual training and 

testing processes were carried out over the entire 100 m length. 

Figure 10.    Simulated profiles (dashed) correlated with Actual profiles (solid) for 

near-optimal and stable training process. 
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In this analysis, the RMS error percentage was used to demonstrate correlation between 

the simulated and the actual road profiles. The RMS error percentages are indicated on 

top of each plot in Figure 10.  The errors are calculated by 

%100
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
rms

rmsrms

rms
y

ay
 (12) 
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i
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


1

2
;  xy  and  xa are the measured

and simulated profile elevations , respectively, at a distance of x metres along the road; 

N is the total number of sample points in the measured profile; and M is the total 

number of sample points in the simulated profile. 

The errors in RMS estimations in Figure 10 are below 15 % with ride comfort mode 

exhibiting both the best correlation of 10.2 % RMS error at the lower vehicle speed of 

14.5km/h (Figure 10(b)), and the worst correlation of 14.8 % RMS error at the higher 

speed of 54 km/h (Figure 10(c)). The performance of the ANN in handling mode lies 

between these two extremes at 12.8 % for lower vehicle speed (Figure 10(a)) and at 

14.2 % for higher vehicle speed (Figure 10(d)). It is observed that the extents of the 

RMS errors are much higher than those obtained from the numerical model itself, and 

also, that the relative performance of the ANN model over the Belgian paving did not 

always agree with the accuracies as obtained from the numerical model. For example 

there is a ripple effect on the RMS error percentages and the higher vehicle speed does 

not always yield better correlations than the lower vehicle speed as was the case with 

the numerical model. 

This might be attributed to the rather perverse interplay between the training data and 

the numerical model itself. The target data for training the ANN was measured from a 

100 m long Belgian paving and that could not be long enough to contain all the 
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necessary low frequency information. Furthermore, the numerical model that was used 

to generate the input data (vehicle body accelerations) had two main deficiencies: first, 

the implementation of point-follower tire model made the model prone to inducing 

appreciable levels of higher frequency noise in the calculated accelerations, and 

secondly, the disregard of wheel-base filtering overestimated spectral energies at some 

of the frequencies. The combined effects of these two factors negatively affected the 

stability and convergence abilities of the ANN. 

Figure 11 shows the DSDs for the ANN simulated and actual (measured) road profiles 

plotted over each other for each combination of vehicle suspension mode and speed on a 

road roughness scale. The results show that the DSDs are very well correlated above a 

wavenumber of 0.2 cycles/m (corresponding to a wavelength of 5 m). The DSDs on the 

lower frequency portion are relatively poor due to insufficient low frequency data 

content in the 100 m long road. The roads are consistently classified as D in the mid-

frequency range between 0.2 to 3.0 cycles/m and C to A in the higher frequency ranges. 

The exception exists at and around the wavelengths corresponding to the cobble width 

of 0.17 m where the DSDs are amplified. 
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Figure 11.    Simulated DSDs (dashed) correlated with Actual DSDs (solid) for 

near-optimal and stable training process. 

The ANN training and simulation processes were carried out on a Dell XPS L502X 

laptop with Intel Core i7 CPU at 2.2GHz having a random access memory (RAM) of 

8GB and running on a 64-bit Windows. It has a hard drive disk (HDD) storage of 750 

GB. The total duration in training and simulation of the ANN was measured as 65s out 

of which 2s was for simulation. Thus for a pre-trained ANN the short duration in 

simulation can benefit an online condition monitoring system. 

8  Conclusions 

In this paper a methodology for estimating road profiles and roughness classes has been 
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demonstrated by simulating an artificial neural network on measured data. The neural 

network was trained with data calculated by a numerical model of the Land Rover. This 

was deemed necessary due to lack of sufficient data to be used for both training and 

testing the neural network. The training data was obtained by applying altered versions 

of the real road profiles to the numerical model. This presented an opportunity to test 

the network with data that were different from the data that was used to train it and 

hence test its generalization capabilities. 

Eight different test cases were drawn from a combination of road profiles, vehicle 

suspension modes and speeds. The road profiles comprised discrete obstacles, from 

which three different layouts were constructed, and the Belgian paving. The vehicle 

suspension was adjusted between ride comfort and handling modes while the vehicle 

was either driven at 14.5 km/h or 54 km/h. For all bump layouts, the vehicle speed was 

kept at the lower speed of 14.5 km/h. 

The methodology has been applied differently to the two road profiles without 

necessarily departing from the central theme of the study of providing a means for road 

condition monitoring. The ANN reconstructed profiles were correlated with actual 

measured profiles for both discrete obstacles and the Belgian paving. However in the 

discrete obstacles, only overlay plots of the simulated and actual bump profiles were 

found satisfactory, while for the Belgian paving, overlay plots as well as RMS error 

percentages were used to provide a measure of accuracy in correlation. The overlay 

plots of discrete obstacles show very good correlations between ANN simulated bumps 

and actual bumps for all cases under investigation. The results showed superior quality 

in the reconstructed bumps for ride comfort as compared to handling mode. However, 
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the overall network performance over bumps was observed to be marred by the poor roll 

motion estimation capabilities of the numerical model as well as its use of the point-

follower tire model. This shortcoming shrinks the validity area but it is only model-

dependent. If, on the other hand, a more comprehensive vehicle model is used, the 

validity area is effectively enlarged. 

The Belgian paving however presented its own peculiar challenges due to combined 

effects caused by the deficiencies in the training data and the numerical model that was 

used to generate the data. Thus ANN training was carried out in the absence of 

sufficient training data. As a result, three typically different cases were identified from 

the simulated results (see Appendix A):  first case, the ANN could achieve near-optimal 

state where the RMS error percentages were all below 15%;  second case, the ANN 

could only manage to converge to an overly sub-optimal state where the RMS error 

percentages were largely between 15 and 25 %;  and third case, the ANN could be 

trapped in an unstable region and the resulting RMS error percentages were largely 

above 25 %. 

For the first case (with stable and near-optimal training process), the simulated profiles 

matched the actual profiles very well and the evaluated RMS error limit of 15 % lies 

within the error margin of 20 % as per the findings of the previous study[2] by the 

author. The simulated profile DSDs showed perfect correlation with the actual profile 

DSDs for all frequencies above 0.2 cycles/m. In the second case, the ANN would either 

yield very good correlations over the entire range of frequencies above 0.2 cycles/m as 

in the first case, or it would yield poor estimations of the spectral densities at 

frequencies higher than 1.8 cycles/m. Besides converging to sub-optimal weights that 

might yield underestimation of some of the outputs; neural network generalization 

might have enforced high frequency filtering on the simulated profiles. The third case 
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was characterized by spiky spectral densities at the higher frequency end particularly 

beyond 2 cycles/m. 

However, these two problems are not viewed as absolutely debilitating to the 

application of the methodology to road condition monitoring. The findings in this study 

show that the methodology has a lot of potential. Firstly, the methodology is able to 

locate the bumps where they occur and is able to estimate the sizes of bumps with 

practically acceptable maximum discrepancies. Secondly, the consistency with which 

accurate estimations of the DSDs for the Belgian paving, have been made in the 

frequency range between 0.2 cycles/m and 1.8 cycles/m, for all three cases, is an 

extremely encouraging result. Though such stable frequency ranges may vary from one 

vehicle-road test scenario to another, it might yet be useful to identify such frequency 

ranges for any given specific test scenario so that practically useful road roughness 

estimations could be made irrespective of the state of the training process. In this study, 

the errors would have been alleviated if the attendant numerical model was made more 

accurate by replacing the point follower tire model with a more accurate tire model. 

Then low-frequency data scarcity due to short Belgian paving would have been dealt 

with by generating the training data from much longer road lengths (600 – 1000 m) that 

closely resembled the Belgian paving. 
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Appendix A 

It was very hard to consistently converge to the same or approximately similar weights 

and more so, to a stable region during different training sessions. In order to deal with 

this problem in this study, several training sessions were run and typical results are 

plotted in Figures A.1 – A.6. The specific impacts of each vehicle suspension mode are 

not clear owing to the relatively higher magnitudes of the RMS errors introduced by the 

training process itself. 

The results shown in Figure 10 represent the case of near-optimal performance for the 

ANN training process. However two more different cases were identified. The first case 

is where the neural network converged to an overly sub-optimal state where some of the 

resulting RMS error percentages lay between 15 % and 25 %. In the second case the 

neural network could not achieve any convergence but it would simply be trapped in an 

unstable region where the resulting weights yielded impractically high output values 

(RMS error percentages above 25 %). The overly sub-optimal performance was typified 

by the results as shown in Figures A.1 – A.4 while Figures A.5 and A.6 represent the 

unstable performance.  
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Figure A.1.    Simulated profiles (dashed) correlated with Actual profiles (solid) for 

sub-optimal and stable training process. 

Figure A.1 shows results that are similar in nature to Figure 10 except the differences in 

the magnitude of the RMS error percentages. The simulated profiles are better 

correlated at lower vehicle speeds (Figures A.1(a) and A.1(b)) than higher vehicle 

speeds (Figures A.1(c) and A.1(d))  for both vehicle suspension modes. The ANN 

exhibits much better performance for ride comfort mode (Figure A.1(b)) than handling 

mode (Figure A.1(a))  at lower vehicle speed while, at higher vehicle speed, better ANN 

performance was obtained from handling mode (Figure A.1(d))  than ride comfort mode 

(Figure A.1(c)). 
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Figure A.2.    Simulated DSDs (dashed) correlated with Actual DSDs (solid) for 

sub-optimal and stable training process. 

Despite overly sub-optimal performance in the training process, the DSDs for the 

simulated profiles in Figure A.2 are very well correlated with the DSDs for actual 

profiles. There are insignificant differences from the DSDs plotted in Figure 11. Similar 

low frequency errors as shown in Figure 11 and already discussed in Section 7.2 occur 

in Figure A.2. This is where the application of ANN and DSD evaluations to road 

maintenance decision making could be potentially useful. The DSDs are not too 

sensitive to errors introduced by small amount of sub-optimality in the training process 

of the ANN.   
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Figure A.3.    Simulated profiles (dashed) correlated with Actual profiles (solid) for 

sub-optimal and stable training process. 

 

Figure A.3 shows different ANN performance from that shown in Figures 10 and A.1. 

The neural network produces better correlated results at higher vehicle speed (Figure 

A.3(c) and A.3(d)) than  at lower vehicle speed (Figure A.3(a) and A.3(b)) and the 

neural network yields better correlations in handling mode (Figure A.3(a) and A.3 (d)) 

than ride comfort mode (Figure A.3(b) and A.3(c))  at both vehicle speeds. With the 

exception of the latter observation, this seems to agree well with the performance of the 

numerical model itself but as pointed in Section 7.2 it might be hard to fathom specific 

vehicle suspension influences given the magnitude of error induced by the training 

process itself. 
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Figure A.4.    Simulated DSDs (dashed) correlated with Actual DSDs (solid) for 

sub-optimal and stable training process. 

Figure A.4 exhibits a potential shortcoming of the DSD analysis. Despite the better raw 

profile correlation at higher vehicle speeds as shown in Figure A.3, the resulting DSDs 

in Figures A.4(c) and A.4(d) are not as well correlated at higher frequencies (above 1.8 

cycles/m). However one can still use the information from mid-frequency range 

between 0.2 cycles/m to1.8 cycles/m and then apply a linear extrapolator to the higher 

frequencies to estimate their corresponding spectral densities. 
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Figure A.5.    Simulated profiles (dashed) correlated with Actual profiles (solid) for 

unstable training process. 

Substantial RMS error percentages occurred at higher vehicle speeds for the unstable 

training process shown in Figure A.5. The ANN performed reasonably well for ride 

comfort mode at lower speed only (Figure A.5(b)). DSD plots show that the problem 

affected certain high frequencies (Figures A.6(c) and A.6(d)). The range between 0.2 

and 1.8 cycles/m remain unaffected by this problem such that it is also possible to apply 

the linear extrapolator, as in the previous case, for estimation of the spectral densities at 

the higher frequencies. 
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Figure A.6.    Simulated DSDs (dashed) correlated with Actual DSDs (solid) for 

unstable training process. 
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