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Abstract 

An artificial neural networks-based methodology for the identification of road surface condition 

was applied to two different vehicles in their normal operating environments at two mining sites. 

An ultra-heavy haul truck used for hauling operations in surface mining and a small utility 

underground mine vehicle were utilised in the current investigation. Unlike previous studies 

where numerical models were available and road surfaces were accurately profiled with 

profilometers, in this study, that was not the case in order to replicate the real mine road 

management situation. The results show that the methodology performed very well in 

reconstructing discrete faults such as bumps, depressions or potholes but, owing to the inevitable 

randomness of the testing conditions, these conditions could not fit the fine undulations present 

on the arbitrary random rough surface. These are better represented by the spectral displacement 

densities of the road surfaces. Accordingly, the proposed methodology can be applied to road 

condition identification in two ways: firstly, by detecting, locating and quantifying any existing 

discrete road faults/features, and secondly, by identifying the general level of the road’s surface 

roughness. 
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1. Introduction

Current management techniques for the maintenance of mine haul roads, such as ad hoc blading, 

scheduled blading and maintenance management systems, have shortcomings in complex mining 

environments [1, 2, 3]. Too little road maintenance leads to excessive cost in the operation and 

maintenance of vehicles, whereas excessive road maintenance leads to greater cost but does little 

to reduce the cost of the operation and maintenance of vehicles [3]. Haul roads are subjected to 

variable traffic volumes, vehicle types and payloads. The standard systems for the management 

of haul-road maintenance are, in general, poorly suited to dealing with these complex and 

dynamic environments. Model-based road classification techniques have a greater potential to be 

very powerful, especially in an environment where details of the road characteristics are required 

[4, 5]. 

Road surface monitoring is one of the key functions of road maintenance management. A World 

Bank study [6] reports that the operating cost of vehicles and the cost of transporting goods rise 

as road roughness increases. Moreover, as the total operating cost of all vehicles on a road 

typically outweigh the agency’s cost of maintaining the road by tenfold to twenty-fold, minor 

improvements in roughness could yield high economic returns. In this paper, an artificial neural 

network (ANN) is used for estimating the condition of a road surface by giving approximations 
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of its profiles and their roughness classes by means of Displacement Spectral Densities (DSDs) 

[7]. 

The impetus for this study came from the seminal work of Thompson and Visser [1] where mine 

haul road management systems were developed and the need for the development of real-time 

maintenance and management systems was identified. Thompson, Visser, Miller and Lowe [2] 

attempted to lay the foundations of such a real-time management system by employing a vehicle 

vibration signature analysis technique, but the output was purely qualitative since it could not 

estimate the extent of the severity of road damage. Later, Hugo, Heyns, Thompson and Visser 

[3] developed a methodology for reconstructing the road profiles via an inversion of the vehicle 

numerical model. Though the approach offered practically acceptable approximations of road 

damage, it was onerous since it involved complex system characterization. Consequently the use 

of black box models, such as an artificial neural network where system characteristics would not 

be required, was deemed appropriate.  

This paper is therefore part of a series of works on the investigation of ANN-based methodology 

for monitoring the condition of the road surface. The work was undertaken in three main phases. 

The first phase [7, 8] consisted of applying the methodology to a numerical model which was 

simulated on artificially generated road profiles. The road profiles were generated by using a 

random function for calculating the road surface. Although the operating conditions were 

changed by varying the vehicle speeds, the payloads and by adding noise of different levels to 

the neural network inputs, everything was known and well-controlled. As a result, the ANN was 

trained and simulated with well-conditioned model-generated data. The findings of this 

numerical experiment were that the reconstructed road profiles and their DSDs had very high 

levels of fit for accuracy and for correlation. 
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The second phase [9] comprised the application of the methodology to an experimental Land 

Rover Defender 110, which is used for research into vehicle dynamics by the Vehicle Dynamics 

Group at the University of Pretoria. The Land Rover is permanently instrumented with sensors, 

has carefully controlled suspension properties, and was driven along specially constructed and 

accurately measured roads at Gerotek (a vehicle-testing facility located in Pretoria in South 

Africa). The vehicle’s suspension characteristics were switched between ride and handling 

modes, and the vehicle speeds were also varied between 14.5 km/h and 54 km/h. Different 

layouts of trapezoidal bumps and Belgian paving were used in the test. This study provided an 

opportunity to investigate further the performance of the methodology with different vehicle 

suspensions under controlled experimental conditions. The ANNs were trained by using vertical 

vehicle accelerations calculated by a numerical model of the Land Rover, simulated for variously 

altered versions of the test road profiles. The findings show that the quality of the reconstructed 

bumps is superior to that of the Belgian paving. The neural network performance for the Belgian 

paving was found to be better represented by the DSDs than the raw road profiles themselves. 

In the present phase, the methodology has been evaluated in field tests where the road surfaces 

were not as accurately constructed and measured as those at Gerotek. This was to replicate the 

actual situation in public rural roads and mine haul roads condition monitoring where accurate 

profilometers are both inapplicable and unavailable for profile measurement. In addition, there 

was far less control over the operation of the vehicle than there had been for the experimental 

Land Rover, and no numerical vehicle models were available for the two vehicles. For these 

reasons, the training data was selected from the test data only. The greatest challenge with this 

selection was the scarcity of data due to the many unknown random operating conditions. A 

substantial number of tests and measurements would have had to be performed if the acquired 
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data were to be completely representative of the vehicle’s real dynamic behaviour under every 

available operating condition. Furthermore, though vehicle control is a key input into the 

vehicle-road interaction system, there is no simple way to measure it quantitatively. The 

inconsistencies in the vehicle control over different road conditions introduced drastic variations 

in the quality of the measured data, in this way affecting the representativeness of the underlying 

vehicle dynamics. However, these challenges are what have made the present investigation 

unique. 

Sundin and Braban-Ledoux [10] assert that ANN applications to pavement management systems 

(PMS) have received significant attention since the early 1990s. From the outset these ANN 

applications have been used as support tools for management decision-making as they 

complement the already existing rule-based expert systems.  Sundin and Braban-Ledoux [10] 

identify three principal areas for the application of neural networks to PMS: the first area 

involves estimating the current pavement condition [11, 12, 13], the second, predicting the future 

pavement condition [14] and the third, assessing the pavement needs and selecting the best 

maintenance actions [15, 16]. In the estimation of current and also the prediction of future 

pavement condition, the neural network utilizes as inputs the different pavement characteristics 

and as targets, the pavement performance indicators such as ride quality or surface distress.  The 

pavement characteristics are obtained through visual inspections. These inspections are laborious 

and subjective, and are moreover often susceptible to high degrees of variability and systematic 

errors in the simulated results of the neural network, as introduced by different interpretations 

from different road experts. In the assessment of pavement needs and the selection of 

maintenance actions, the neural network uses the available data on pavement condition to 

identify the needs of the pavement and recommend the optimal maintenance actions. The 
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application utilizes the neural networks in combination with rule-based expert systems [10]. In 

all three applications, the neural networks have been used as pattern classifiers where the 

network inputs have been obtained from typically subjective procedures. 

In the present application, the inputs into the neural network were acquired through a more 

objective procedure where vertical vehicle accelerations were captured, using a computer-based 

data acquisition system. Furthermore, it was noted that, with a pre-trained neural network and for 

a given vehicle-road interaction system, the methodology could be implemented for a real-time 

road condition monitoring system. This paper shows that the methodology can be applied to 

vehicles operating in their normal environments with a minimal level of control during operation, 

and where the neural network is trained with barely sufficient data. Quite recently, two other 

groups of researchers used a similar approach and their preliminary results are quite encouraging.  

Kang, Lee and Goo [17] developed a road profilometer for unpaved courses by employing a 

momentum back-propagation neural network to estimate the road profiles.  Yousefzadeh, Azadi 

and Soltani [18] demonstrate a methodology where the vertical vehicle accelerations are 

determined through an ADAMS model, and a static feed-forward neural network is used for 

estimating the road profiles.  

Section 2 discusses the methodology that has been adapted to this practical application. It covers 

all the stages undertaken in the methodology, from vehicle and road selection up to the 

correlation of results.  The organisation of the measured data is presented in Section 3. Section 4 

presents and discusses the results and Section 5 gives the conclusions drawn from the study and 

makes recommendations, concluding the paper. 
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2. Methodology

A complete layout of the methodology is shown as a flow chart in Figure 1. The process begins 

with the vehicle and road preparations and extends to the tools used for the correlation of results. 

The methodology itself starts with a description and an understanding of the vehicles and roads 

used for the test. In this study, the choice of the vehicles and roads was based on the availability 

of the vehicles and roads for the duration of the planned duration, the operational 

representativeness of the actual vehicle-road system, and the possibility of introducing artificial 

defects to the roads with minimal interference in the hauling operations. The vehicles were 

instrumented and the roads profiled in preparation for the measurement of the responses. After 

measuring the vertical vehicle accelerations, the data was pre-processed for ANN training and 

simulation. Finally, the classes of road roughness were determined from the ANN-simulated road 

profiles. 

2.1 The test vehicles and roads 

The ultra-heavy mine haul truck (Figure 2(a)) is commonly used in surface hauling and the small 

utility underground vehicle (Figure 2(b)) in underground operations. The haul truck’s wheel-base 

measures about 5.7 m with a front height of 6.2 m and a tire diameter of 3.75 m (Figure 2(a)). It 

has four nitrogen-over-oil (hydro-pneumatic) suspension struts, each mounted above each wheel 

axle in front and linked at the rear by a trailing arm. This particular haul truck has a load carrying 

capacity of 300 tonnes. 
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The small utility underground vehicle has a gross vehicle mass (GVM) of about 0.5 tonnes with 

a tire diameter of 0.7 m. It has a wheel-base of 2.85 m and a vehicle width of 1.75 m (Figure 

2(b)). It is below the average human height in order to allow for easy underground operation. It 

has a very low centre of gravity and does not have the bounce-pitch coupling problems that the 

haul truck has. 

Figure 1.   Flow chart summarising the methodology adopted in the test application. 

Instrument vehicle: 

Accelerometers, GPS & 

infrared probe 

Road preparation: Construct 

defects, measure distances, 

position yellow reflectors 

Road profiling: Measure the 

profile & mark the reflector 

positions 

Vehicle operation and 

response measurements 

Data pre-processing 

Results correlation 

Network training and 

simulation 

Test vehicle and road 

Road profile, distances and 

defect locations 
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Figure 2. Haul truck (a) and small utility vehicle (b). 

(a) 

(b) 
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The haul truck was tested on a typical haul road where three different forms of artificial defects 

were constructed. The defects were constructed by using a road grader. The small utility vehicle 

was tested on four different types of roads: a paved track with speed bumps, a gravel track with 

depressions, a coal-ash compacted smooth track with a brick bump and an underground track. 

All these test roads were selected from the existing road networks at the mine sites. 

2.2 Vehicle instrumentation 

The two vehicles were instrumented differently. The haul truck had two Crossbow tri-axial 

accelerometers, each mounted on either side of the front spindle. They were powered by a 12-V 

battery which was affixed to the front bumper of the truck. An eDAQ-lite system was used as a 

data logger. A Panasonic Toughbook computer was used for data display and monitoring. The 

data was electronically transferred through the Toughbook computer to external storage. The 

infra-red position probe was used to identify the positions of the yellow reflectors that had been 

pasted along the road to mark the positions of the defects. 

The small utility underground vehicle was instrumented with three Crossbow tri-axial 

accelerometers, two on the rear axle and the third on the front axle. A position probe was 

mounted on the front bumper to pick up the positions of the yellow reflectors positioned along 

the road. The vehicle speed was calculated from the measured rotational speed of the engine 

shaft and the given wheel-engine speed ratio. The engine speed was measured by a shaft 

encoder. An eDAQ-lite data logger and a Toughbook computer were also used for data 

acquisition. 
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2.3 Road preparation 

In the haul road tests, three different defects were constructed along the road. The position of 

each defect was accurately marked by pasting a single line of yellow strips at the start and double 

lines of yellow strips at the end of the defect. Then the truck was driven in the opposite direction 

to traverse the defects in a return mode. Though the measurements were taken over the entire 

road length, the data for training and simulation was extracted from each defect length only. 

In the tests of the small utility underground vehicle, four different tracks were used: the first, was 

a 24-m long gravel track; the second, was a 24-m paved track; the third was a 10-m coal-ash 

compacted smooth track where a brick bump was placed in the middle; and the fourth, was the 

underground track. This paper reports the results obtained for these two vehicles over the first 

two tracks only. Heyns, Heyns and De Villiers [4, 5] report the findings for the same vehicles 

over the brick bump and underground roads. Yellow strips were similarly used to mark the 

depressions along the gravel section and the two speed bumps on the paved road. The two ends 

of the test road sections were also clearly marked by the yellow strips. 

2.4 Road profiling and roughness classification 

In this study, the roads were not profiled by using standard road profilometers. Rules, poles and 

strings were used for measuring the profiles in both tests. A string was tied between two poles 

erected at the ends of a road section.  The heights of the string from the ground were measured 

with a metre rule at different spacings, depending on the condition of the road surface. In both 
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tests, the roads were sampled at 1 m except over the bumps and other important features where 

they were sampled at 0.25 m. Figure 3 shows the simplified profiling set-up that was employed 

in this study. 

Figure 3.  Simple road profile measurement. 

The string in Figure 3 was regarded as a single variable. The height of the string at one pole was 

benchmarked as a reference point, hence that height was subtracted from each of the string 

heights at the other points along the road. The resulting values represent the deviations from the 

ground point at the selected pole. In order to determine the road profile, these deviations were 

simply sign-reversed. The profile data was stored as a data file that would be accessible in 

MATLAB for further processing. The other data that was recorded and saved, included the 

measurement points along the road and the positions of the yellow reflectors. This procedure has 

the main advantage of being simple and easy to perform without the need for specialised staff 

and equipment, and it is in line with most practices in the industry. However, it is understood by 

the investigators that it was performed at the expense of the accuracy of the measured profile. 
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The proposed road roughness classification is based on smoothed form of displacement spectrum 

density of road profiles [19,  20] fitted with a straight line through the least-mean-square method 

in the spatial frequency range from 0.011 cycles/m to 2.83 cycles/m [23]. However, this spatial 

frequency range was reduced to 1 cycle/m especially in haul truck tests since the distances were 

short and the vehicle was very large. The classification identifies eight road roughness levels 

ranging from class A to class H in increasing order of roughness. In the ISO classification [20], 

the fitted displacement spectral density  dG n  is given by

   0

0

.
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d d
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G n G n
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

 
  
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where  0dG n  is the displacement spectral density calculated at the reference spatial frequency

0 0.1 / ;n cycles m  n denotes spatial frequencies in / ;cycles m  and w is the exponent of the 

fitted displacement spectral density equal to 2 [19]. The subscript d in the formula denotes that 

the calculated power spectral density is associated with displacement. 

Figures 4 and 5 show averaged road profiles between the left and right wheel tracks, and their 

corresponding DSDs for the test on the haul truck and the test on the small utility vehicle.  In the 

haul truck test, the DSD plots show that the waviness in the roads was dominated by spatial 

frequencies from 0.1 to 1 cycles/m corresponding to wavelengths from 1 to 10 m. Accordingly, 

when the truck was travelling at the lowest nominal speed of 8 km/h, the road was capable of 

generating frequencies of excitation between 0.22 and 2.2 Hz, and at the highest nominal speed 

of 34 km/h, the excitation frequencies ranged from 0.94 to 9.4 Hz. 
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Figure 4.  Averaged road profiles and PSDs in (a) and (b) for Defect 1, in (c) and (d) for 

Defect 2 and in (e) and (f) for Defect 3 during the mine haul truck test. 

In the small utility vehicle test, Figure 5 shows the averaged gravel road profile in (a), its DSD in 

(b), the averaged paved road profile in (c) and its DSD in (d).  By inspection, these tracks present 

a wider range of excitation frequencies. The depressions over the gravel track were due to 

surface degradation though the bumps over the paved track were actually speed bumps which 

had been constructed to check the vehicle speeds near the fuel pumps. Therefore these tracks 

have spatial frequencies in the entire range, as shown in Figure 5(b) and (d). When the vehicle 

was travelling at the nominal lowest speed of 6 km/h and the highest nominal speed of 12 km/h, 

the corresponding temporal frequency ranges were: 0.25 to 8.3 Hz and 0.5 to 16.7 Hz. Once 

again, the lower vehicle speeds did not sufficiently cover the unsprung mass frequencies which 

were expected to lie between 10 and 15 Hz. 
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Figure 5.  Road profiles and PSDs for the gravel road in (a) and (b); and for the paved road 

in (c) and (d). 

2.5 Vehicle operation and response data measurements 

For each of the two different tests, one driver was chosen to operate the vehicle throughout the 

testing period, to ensure some level of consistency in driving behaviour. The haul truck was 

tested in both an unloaded and a fully-loaded state. It was driven to and fro over the defects, in 

this way creating three more defects with reversed geometries. By contrast, the small utility 

vehicle was driven in one direction only, in a cyclic manner. The intention was that the haul 

truck should be driven at the nominal speeds of 8, 12, 18, 28 and 34 km/h and that the speeds 

should remain constant throughout any particular test cycle. In the same way, the small utility 
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vehicle was intended to be driven at the nominal speeds of 6, 8, 10 and 12 km/h. However, 

subsequent analyses showed that there had been lapses during a particular test run where speed 

fluctuations were observed, and also across different test runs where it was observed that there 

had been no adherence to the given nominal speeds. For the haul truck, it was noted that any 

such loss of control during a particular test run led to the excitation of the pitch motion when the 

truck was travelling at speeds lower than 20 km/h. The haul truck showed no significant effects 

at the higher nominal speeds. 

In both tests, the accelerations were measured on the axles as stated in Section 2.2. The 

accelerations were captured at a sampling frequency of 400 Hz with an upper cut-off point at a 

frequency of 250 Hz. The data was recorded on a Somat eDAQ-lite data-acquisition system 

connected to the Toughbook computer used for monitoring the captured data. The integrity of the 

dc-coupled Crossbow accelerometers was verified on a high-frequency actuator and found to be 

highly accurate over the frequency range of interest [4]. 

2.6 Data pre-processing 

The captured data were processed in MATLAB. As shown, the vehicle axle accelerations and 

road profile data were measured at different times, by different processes and at different 

sampling frequencies. This implies that there was a need for data alignment, filtering and 

resampling before the data could be used for ANN training. The positions of the yellow 

reflectors were used for aligning the eDAQ-lite data with the road profile data. This was done 

manually in MATLAB by using the ginput function [21]. This function gathers the co-
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ordinates of a point on a graph through a mouse input. Therefore the eDAQ-lite data 

corresponding to the stored road profile data was extracted by picking up the points on the 

eDAQ-lite data that marked the yellow reflectors at the START and END of each type of track. 

An allowance was made for the relative distances between the positions of the infra-red sensor 

and the response pick-up points in order to align the START and END points perfectly. Owing to 

the inevitable changes in vehicle travelling speeds, it was also necessary to consider aligning the 

other yellow reflectors near the defects. 

After alignment, the eDAQ-lite data as well as the road profile data was resampled at 100 Hz and 

constant and linear trends in the data were removed. The acceleration data was low-pass-filtered 

at a cut-off frequency of 6 Hz for the haul truck and 30 Hz for the small utility vehicle. These 

cut-off frequencies covered the important vehicle frequencies and road wavelengths. However, 

the data had to be scaled to be applied to the ANN so that the inputs and targets fell within the 

same range. In both tests, the data was rescaled to the range [-1 1] by using mapminmax in 

MATLAB [21]. 

2.7 ANN identification and training 

The road-vehicle problem discussed in this paper is of a dynamic nature with non-linearities in 

the vehicle suspensions. Therefore, the Nonlinear AutoRegressive with Exogenous Inputs 

(NARX) [21] network presented in [7] was also used in this paper. However, there are some 

variations in the method of applying the NARX model in the present study. Unlike the earlier 

study [7], where the training and testing data were both acquired from numerical model 
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simulations and the actual road profiles were readily available during the training and testing of 

ANN, in this investigation, actual road profiles are only available during network training. This 

is in line with a practical testing scenario where it may be desirable to estimate the road profiles 

from “unseen” vehicle axle accelerations. Therefore the series-parallel NARX model 

(newnarxsp) [21] was only used during training and then converted into a parallel 

configuration by using the MATLAB function sp2narx [21] for simulation purposes. The 

resulting model does not require the actual road profiles to be fed forward during simulation. 

The ANN for the haul truck test is a 7-5-2 network, which implies that it has seven inputs with 

five tan-sigmoid neurons in the hidden layer and two linear neurons in the output layer. The 

seven inputs comprise: accelerations measured on the right-front and left-front axles, the 

calculated velocities and displacements, and the vehicle travelling speed. The velocities and 

displacements were further treated for low frequency drift by removing quadratic trends from the 

displacements and linear trends from the velocities.  Ideally, the inclusion of the velocities and 

displacements as inputs do not affect the quality of the correlation between simulated and actual 

profiles, but these so-treated displacements and velocities were observed to give more stability to 

the training process in terms of number of iterations taken to converge to the targets. This is, 

however, an observation that requires further investigation and cannot be considered conclusive. 

In order to cater for different payload scenarios, the accelerations were further rescaled according 

to the ratio of the unloaded truck mass to approximate the fully loaded truck mass. 

A 10-10-2 network was used for the small utility vehicle test, where the ten inputs comprise: 

accelerations measured on the right-rear, left-rear, and left-front axles; the numerically calculated 

velocities and displacements (similar to the haul truck case); and the vehicle travelling speed. 
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There is no need for rescaling the accelerations due to payloads, since all the tests performed in 

the unloaded state. It was found that three delays in the input and feed-forward output were 

satisfactory for both neural networks. The number of neurons in the hidden layer was obtained 

through trial-and-error testing whereas the choice of tan-sigmoid activation functions was purely 

dependent on their superior performance in regression problems [21, 22, 23]. Since the network 

was intended to yield a profile for each wheel track, two neurons in the output layer were 

specified. The Levenberg-Marquardt algorithm (trainlm) was used as a training function [21, 

22, 23]. It was chosen because of its superiority in solving regression problems and its 

computational efficiency, since it avoids the more costly evaluation of the Hessian matrix [23]. 

For any test in which the number of permutations of unique test scenarios is R, and the sampling 

points in each test is N, the input (p) and target (t) training data is organised as cell arrays in the 

form: 

          
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


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where  kix and  kiy  are column vectors containing input and output elements respectively, for 

the ith test scenario. Therefore in the case of the haul truck test, they are represented by, 

                T

i urf ulf urf ulf urf ulf i
k z k z k z k z k z k z k v k   x and, 

    T

irlrri zzky  ; where              , , , , , and urf ulf urf ulf urf ulfz k z k z k z k z k z k v k  are 

the accelerations, velocities and displacements measured and calculated on the right-front and 

left-front axles, and the vehicle speed at the kth sample point; and rlrr zz and are the road profile 

heights at the right and left wheel tracks respectively. The superscript T denotes the transpose of 
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the relevant matrix or vector. The input column for the small utility vehicle has ten elements, as 

previously mentioned in this section. 

The network is prescribed to train for a total number of 100 epochs but generalisation stops the 

training process much earlier at around 25 epochs. Generalisation is achieved through the use of 

a performance function, msereg [21],that minimises the sum of the square errors of the 

weights and biases [21, 22]. It is said that this performance function produces smaller weights 

and biases in the network, and forces the network response to be smoother and less likely to 

overfit the training data [22]. The performance ratio is set to 0.5, which implies giving equal 

weight to the mean square errors and the mean square weights. 

During simulation, “unseen” inputs are applied to the trained neural network models. These 

inputs are processed in a manner similar to that for the training data. The network yields 

normalised profile heights which are converted back into their actual values. The roughness 

classes represented by DSDs are subsequently computed from the transformed road profiles [20, 

24]. 

2.8 Assessing the validity of the results 

As a final stage in the methodology, the ANN-simulated profiles are compared with actual road 

profiles. In this paper, the bias error and correlation coefficient were used for assessing how 

close the simulated profiles were to the actual profiles. 
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2.8.1  Bias error 

The bias is measured by using the root mean square error (RMSE), which is given by 

100 %rms rms

rms

y t
RMSE

t


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tn are the nth ANN output value and target value, respectively. A value close to zero indicates 

little bias and that the reconstructed profiles are generally at the same levels of amplitude as the 

actual profiles. In this paper, RMSE values that were less than 25% were considered as being 

practically sufficient. 

2.8.2  Correlation of results 

This is a measure of profile-fitting accuracy. The correlation coefficient is determined by the 
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where  and n ny t are the nth neural network output and target values respectively; the quantities

(  and )y t  and (  and )y t   are the means and standard deviations of the neural network output 

and target values; and the n = 1,2,…,N represent the data sequence in the vectors y and t. In this 

paper R values greater than 0.5 are considered as being good enough. 

3. Measured data and selection of training data

This section presents the measured data from both tests. Section 3.1 presents the way that the 

data was organized and Section 3.2 presents the method employed for selection of training data.  

3.1 Organisation of the measured data 

The measured data for the haul truck test is classified as shown in Table 1 part (A). There are 

eleven test cycles, of which seven are for the unloaded haul truck. Test cycles (2) and (3) do not 

have data for the return test runs because the haul truck was not driven over the defects on return. 

The letters L, H and V appended to the test run numbers represent low, high and variable speed 

ranges, respectively. A test run is considered as being conducted at a low speed range if all its 

elements in the truck velocity vector are below 20 km/h and vice versa for a test run in the high 

speed range.  As test runs 3, 9 and 10 have elements in the velocity vector belonging to both 

ranges, however, they are labelled as variable speed test runs. 
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During fully loaded truck testing, the speed ranges alternated between low and high ranges from 

test cycle (8) to (11). Test cycle (8) was discarded because the results were spurious. The 

analysis of the data from this test cycle shows that the acquired accelerations did not indicate the 

existence of the any of the defects shown in test cycle (10), which was conducted under very 

similar conditions. 

Table 1.   Summary of how measured data was organised 

(A)  HAUL TRUCK TEST 

UNLOADED TRUCK FULLY LOADED TRUCK 

TEST CYCLE NOS. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

FORWARD 

Defect 1 1L 7L 10V  13L 19L 25H 31H 37L 43H 49L 55H 

Defect 2 2L 8L 11L 14L 20L 26H 32H 38L 44H 50L 56H 

Defect 3 3V 9V 12L 15L 21L 27H 33H 39L 45H 51L 57H 

RETURN 

Defect 3 4L --- --- 16L 22L 28H 34H 40L 46H 52L 58H 

Defect 2 5L --- --- 17L 23L 29H 35H 41L 47H 53L 59H 

Defect 1 6L --- --- 18L 24L 30H 36H 42L 48H 54L 60H 

AVERAGE 

SPEED 

(km/h) 

16 9 8 12 11 28 35 --- 28 9 25 

(B)  SMALL UTILITY VEHICLE TEST 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Gravel Road 1 3 5 7 9 11 13 15 17 
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Paved Road 2 4 6 8 10 12 14 16 

AVERAGE 

SPEED 

(km/h) 

6 8 11 12 12 10 10 12 12 

The remaining ten test cycles had 24 different test scenarios derived from different combinations 

of truck load condition (unloaded or fully loaded); defect type (defect 1, defect 2 or defect 3); 

speed range (low or high); and travelling direction (forward or return). The condition of different 

truck loads is addressed by “weighting” the measured accelerations with the two different ratios 

derived from the respective approximate weights of the truck during an unloaded and fully 

loaded state. This reduced the number of possible test scenarios from 24 to 12. Ideally the neural 

network should therefore be trained with 12 different sets of data, each representing a different 

test scenario. However, that holds true only if those 12 test scenarios are found to contain data 

that is linearly independent or not highly correlated. 

Table 1 part (B) summarizes the test data for the small utility vehicle test. The presented data is 

from nine test cycles, each cycle comprising travelling first over the gravel road and then over 

the paved road, giving a total of 17 test runs, since the last cycle was not completed over the 

paved road. The nominal vehicle speeds are shown below each test cycle. Each test track is 24 m 

long. Since all the speeds are clustered within the same range (from 8 km/h to 12 km/h) and the 

vehicle is unloaded throughout these tests, there are only two obvious test scenarios, i.e. tests 

over the gravel road and tests over the paved road. 
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3.2 Selection of training data 

The selection of training data is a crucial exercise owing to the desire to minimize computer 

training time in the presence of multiple candidates, as is the case for the haul truck test. The 

small utility vehicle test does not present as great a challenge because there are ideally only two 

obvious cases from which the training data can be selected, given that the vehicle speeds differ 

only marginally. Accordingly, only the haul truck test data is discussed in this section. 

The ANN may require 12 different sets of training data in order to achieve generalization over all 

possible different scenarios for the haul truck test if these test scenarios comprise data that is 

linearly independent. A number of different tools may be used to check linear the dependencies 

in data, but in this study, the Pearson’s correlation coefficient implemented in MATLAB [21] by 

the function corr was employed. In addition to the correlation coefficient matrix which 

indicates correlation between two column vectors, corr also returns a matrix of p-values for 

testing the hypothesis of no correlation against the alternative that there is a non-zero correlation 

[21].  Each element in the matrix is the p-value for the corresponding element in the correlation 

coefficient matrix.  Any two given data sets are considered insignificantly correlated if an 

element in the p-value matrix is greater than 0.05. 
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Table 2.   Number of training data combinations as determined by the use of p-values >= 

0.05 

Training 

Data Id. 
1L 31H 8L 26H 15L 27H 16L 28H 17L 29H 18L 30H 

1L 0.08 0.57 0.61 0.06 

31H 0.08 0.26 0.63 0.99 0.87 

8L 0.57 0.45 

26H 0.32 0.37 0.99 

15L 0.61 0.06 0.12 0.76 0.25 

27H 0.06 0.26 0.32 0.06 0.88 0.10 0.20 0.29 0.94 0.33 

16L 0.63 0.37 0.06 0.27 0.96 

28H 0.99 0.10 0.07 

17L 0.87 0.99 0.12 0.20 0.27 0.40 

29H 0.76 0.29 

18L 0.94 0.07 0..40 

30H 0.45 0.25 0.33 0.96 

No. 

Uncorr. 
4 5 2 3 6 10 6 4 7 3 3 5 
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The possible training data combinations are shown in Table 2 where the last row shows the 

number of uncorrelated data sets (abbreviated as No. Uncorr.) for a given data set. In order to 

minimise the computational overheads during training, it is recommended that combinations 

should be chosen that have a few number of data sets such as: {8L, 1L, 30H},  {26H, 27H, 16L, 

17L}, {28H, 31H, 27H, 18L},  {29H, 15L, 27H}, or {18L, 27H, 28H, 17L}. It was furthermore 

observed that the fewer the number of uncorrelated data sets (No. Uncorr.), the greater the 

influence of that data set in the combination. For example, in {26H, 27H, 16L, 17L}, 26H has 

the highest influence with only three uncorrelated data sets whereas 27H has the least influence 

with a total of 10 uncorrelated data sets. When using this combination, therefore, data sets 27 and 

17L (with a total of 7 uncorrelated data sets) may be dropped with a minimal risk of losing ANN 

performance. Therefore the results presented in Section 4 are based on the training data 

combination {26H, 16L}. 

4. Results and discussions

A total of 67 test results are presented here with 50 from haul truck tests and 17 from small 

utility vehicle tests. The accuracy of the simulation results for these two types of tests are 

presented in terms of the root mean square error (RMSE) and correlation coefficient (R), as 

given in equations (2) and (3), but both are expressed as percentages. The results of the haul 

truck tests are presented in Section 4.1 and section 4.2 presents the results of the small utility 

vehicle tests. 
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4.1. Haul truck tests 

The results for haul truck testing in Table 3 show that, except for a very few cases, bias errors lie 

below 25% and a good proportion of the test cases have their correlation coefficients above 50%. 

These are very encouraging results, considering the size of the truck and the shapes of the defects 

under investigation. The truck size and that of its tires make it almost practically impossible to 

detect the presence of small discrete obstacles or high-frequency undulations. This truck 

attenuates all axle accelerations at frequencies higher than its wheel hop, which in a similar truck 

studied by Hugo et al. [3] is reported to be in the range between 3 – 4 Hz. At the same time, the 

content of the low frequencies in the measured accelerations is limited by the lengths of the test 

profiles themselves, which are:  4 m long for defect 1, 6 m long for defect 2 and 10 m long for 

defect 3. 

For example, when the truck is travelling at the highest nominal speed of 34 km/h, it will be 

sensitive to a minimum road roughness wavelength of 
 min

34 2.4 ,
3.6 4

v m
f

   


 whereas 

at the lowest nominal speed of 8 km/h, the minimum detectable roughness wavelength is, 

 min
8 0.6 .

3.6 4
m  


 This implies that at the high truck speeds only a few wavelengths of 

surface roughness from 2.4 m to 4 m for defect 1, 2.4 m to 6 m for defect 2, and 2.4 m to 10 m 

for defect 3, effectively contribute to the axle accelerations, with the result that the reconstructed 

profiles are relatively smooth. At the low truck speeds, the wavelengths start from 0.6 m which 
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implies the participation of high frequencies in the axle accelerations, with the result that the 

reconstructed profiles have some undulations. 

The results in Table 3 show that the neural network is capable of learning the geometry of defect 

2 more accurately than of defect 1 and defect 3. As the space between the two main bumps in 

defect 1 does not allow for a complete settling of responses from the first bump, the transient 

responses from the first bump have more impact on the responses over the second bump. This 

problem may be aggravated by the difficulties encountered with controlling the operating 

conditions when the haul truck was traversing these two bumps. In relation to defect 3, defect 2 

has a more compliant shape with smoothly blended transitions between adjacent curves. Defect 3 

has rather more abrupt changes in gradients that may be more susceptible to instability during 

numerical integration. It is very encouraging to note from the results of the training data, 

however, that the bias error for defect 3 actually compares very favourably with that for defect 2. 

The results in Table 3 show the following order of accuracy in estimating the three defects: 

defect 2 in forward run, defect 2 in return run, defect 3 in return run, defect 1 in forward run, 

defect 3 in forward run and defect 1 in return run. The correlation coefficient results for defect 1 

in the return run can benefit from re-training the ANN with a representative “defect 1 in return 

run” test data. Unfortunately this was observed to have so adversely affected the simulation 

results of the other defects that, despite an improvement in the performance of the ANN on 

defect 1, there were significant decreases in its performance on the other two defects. This is an 

aspect of generalization that requires further investigation. 
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Table 3. Summary of results showing defect type and fitting errors as measured by the root 

mean square error (RMSE) and the correlation coefficient (R). 

Defect 1 Defect 2 Defect 3 

Test 

Run 

No. 

RMSE 

(%) 

Correlation 

Coeff., R 

(%) 

Test 

Run 

No. 

RMSE 

(%) 

Goodness 

of Fit, R 

(%) 

Test 

Run 

No. 

RMSE 

(%) 

Correlation 

Coeff., R 

(%) 

FORWARD 

1L 22.2 57.1 2L 8.9 65.2 12L 33 -44.9 

7L 5.5 63 8L 11.4 58.7 15L 27.6 -31.2 

13L 15.4 78.2 11L 8 56.6 21L 3.1 25.4 

19L 19.1 63.3 14L 11.6 67.1 27H 3.8 61.1 

25H 22.9 -36.9 20L 6.2 63.6 33H 10.4 62.4 

31H 9.8 -10.1 26H 3.3 89.1 45H 65.2 40.2 

43H 9.1 25.2 32H 11.4 85.9 51L 36.8 15.3 

55H 3.9 47.2 44H 23.1 71.8 57H 24.9 36 

--- --- --- 50H 19.9 74.2 --- --- --- 

--- --- --- 56H 23.9 85 --- --- --- 

RETURN 

6L 5.6 29.7 5L 13.3 37.6 4L 14.5 13.4 

18L 21.6 0.5 17L 15.6 66.3 16L 4.3 51.3 

24L 7.5 13.7 23L 6.9 63.3 22L 20.2 57.1 

30H 10.9 9.6 29H 2.6 68.6 28H 14.5 57.9 

36H 13.3 -6.8 35H 5 60.4 34H 8.9 59.1 
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48H 15.8 11.9 47H 20.1 66.3 46H 34.8 59.2 

54L 12.5 -18.1 53L 22.8 53.7 52L 1.8 -3.9 

60H 6.2 43.9 59H 22.7 77.1 58H 73.7 18.7 

The following three sections present the ANN simulation results for each defect. The test runs 

are identified simply by their numbers prefixed by the symbol “#” and the letters L, H and V 

have been dropped for simplicity. 

4.1.1 Defect 1 

Figures 6(a) and (b) show the correlation plots of the actual and reconstructed profiles in the 

forward and return runs respectively. In Figure 6(a), Test runs #1 and #7 represent the road 

profiles reconstructed from low-speed truck data whereas Test runs #25 and #31 have been 

reconstructed from high-speed truck data. The road profiles from the high-speed truck data 

appear smoothed out due to the filtering effects at high speeds.  In Figure 6(b), Test runs #6 and 

#18  for the return runs represent the simulations from the trucks at low speed whereas Test runs 

#36 and #60 represent those from the trucks at high speed.  All the low-speed results have some 

undulations which can be attributed to the participation of short wavelengths in exciting the axle 

accelerations. Test run #6 is flattened out over the second bump, presumably because the truck 

followed a different wheel track during the earliest stages of the test when the truck operator was 

still becoming familiar with the requirements of the test. The undulation over the second bump in 

Test run #60 was most probably caused by the superposition of pitch and accelerations from the 

increased sprung mass reaction on the axle on the measured axle accelerations. The sprung mass 
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bounce and pitch for the haul truck were coupled and observed to be excited when the vehicle 

was fully loaded.  However, the results show that the two prominent bumps of the defect were 

correctly identified in both the forward and return runs. The slight errors in the locations of the 

bumps were caused by a combination of data alignment and resampling disparities prior to the 

ANN training and simulation. 

Figure 6(c) shows the roughness classification for these reconstructed profiles compared to that 

of the actual road profile. All the test runs yielded similar roughness classifications between 

classes D and E for the spatial frequency range from 0.15 cycles/m to 0.4 cycles/m, 

corresponding to wavelengths between 2.5 m and 6.7 m. In the roughness classification plot, the 

dotted lines represent different roughness classes from A to G. In all the roughness plots 

presented in this paper, only classes A and G are labelled for the sake of convenience. 

Figure 6. Correlations over Defect #1 in forward run (a), in return run (b) and their 

corresponding DSDs (c):        Actual,         #1,   #7,       
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#31,  #25, #6,  #18,  #36, #60. 

4.1.2 Defect 2 

Figures 7(a) and (b) present the ANN simulation results for defect 2 in the forward and return 

runs, respectively. The results show an excellent correlation, particularly for Test runs #32 and 

#29, and all the other test runs correctly identify the two main bumps in this defect though there 

are variations in how they are able to reconstruct the intermediate saddle. Test runs #32 and #29 

are both for an unloaded truck travelling at high speeds. The roughness classifications in Figure 

7(c) show that defect 2 largely lies in the roughness classes between D and F. There is generally 

an excellent correlation in the roughness classifications from wavelengths of 2 m to 6.7m. 
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Figure 7. Correlations over Defect #2 in forward run (a), in return run (b) and their 

corresponding DSDs (c):         Actual,         #8,      #20,       

#32, #44, #5,  #17, #29, #59. 

4.1.3 Defect 3 

In Figures 8(a) and (b), Test runs #27 and #28 show an excellent correlation with the actual 

profiles, especially in identifying and locating the two prominent bumps in the profile. Both of 

these test runs are for an unloaded truck travelling at high speeds. The intermediate portion 

between the two bumps poses a challenge, in that the flat section and abrupt gradient changes 

introduce instabilities in the training algorithm, thus yielding a substantial number of 

undulations. The problem is actually aggravated in the unloaded truck, at low truck speeds in the 

return run, where the reconstructed profiles show very poor correlations. However, the road 

roughness classification in Figure 8(c) presents well-correlated DSDs of wavelengths between 2 

m and 6 m for the actual and reconstructed profiles, irrespective of the poor correlations for the 

raw profiles themselves. 
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Figure 8. Correlations over Defect #3 in forward run (a), in return run (b) and their 

corresponding DSDs (c):       Actual,            #12,    #21,       

#27,  #45, #22, #4,  #28,  #58. 

4.2. Small utility vehicle for underground mining 

This vehicle and its tires are much smaller in size than the haul truck and therefore it does not 

pose similar problems to the haul truck, yet it has its own unique challenges. Its tire size and 

contact patch area make it responsive to shorter road roughness wavelengths. In addition, its 

unsprung mass resonance is much higher than for the haul truck. Consequently, unlike the haul 

truck where DSDs in the higher frequency ranges are largely underestimated by the ANN, the 

DSDs for the small utility vehicle are overestimated due to the errors introduced by the crude 
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road profiling procedure as well as by the presence of high frequency noise in the ANN 

reconstructed profile. Consider the lowest speed of 6 km/h with a vehicle whose wheel hop 

frequency is 15 Hz. This vehicle is potentially sensitive to a minimum road roughness 

wavelength
 min

6 0.11 110
3.6 15

m mm   


 and at the highest speed of 12 km/h, the 

minimum road roughness wavelength is 220 mm. The shortest sample spacing during actual 

profiling is 250 mm, which automatically excludes the shorter wavelengths and therefore fails to 

account for the higher frequency content in the measured axle accelerations. Though this 

problem is dealt with by resampling, aligning and filtering the measured accelerations and road 

profiles, it is difficult to achieve perfect alignment and filtering without roll-off effects. 

The results in Table 4 show that only 6 out of 17 test runs have bias errors above 25% and 3 out 

of 17 test runs have correlation coefficients below 50%. The results show that the ANN generally 

performs better over the gravel track than the paved track in this test.  Although the results for 

the training data show that the paved track has a much lower RMSE at 2.3%, there are four test 

runs with RMSE above 25% compared to only two test runs for the gravel track. The 

performance of the ANN around depressions and bumps contributes significantly to the 

differences in performance between the two tracks. As mentioned earlier, abrupt changes in 

gradients at and around certain profile sections make the ANN unstable, thus generating an 

augmented transient behaviour that cannot be sufficiently accounted for by the attendant profile 

geometry. In this test, the paved track profile had such sudden changes in profiles, especially 

around its bumps and depressions. Moreover, the paved track’s harder surface made it harsher, 

especially at sufficiently high speeds, than the more flexible and tractable gravel track, which 

was wet on the day of the test. 
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Table 4.   Summary of results for the small utility vehicle. 

Gravel Road Section Paved Road Section 

Test Run 

No. 

RMSE 

(%) 

Correlation 

Coeff. R  (%) 

Test Run 

No. 

RMSE 

(%) 

Correlation 

Coeff. R (%) 

1 36.5 42.3 2 34.8 55.4 

3 27.2 56.7 4 14.5 64.4 

5 13.6 53.5 6 14.2 54.6 

7 10.7 66.4 8 27.1 68.6 

9 10.5 75.8 10 27 69.7 

11 20.2 65.3 12 29.1 39.5 

13 3 69.1 14 2.3 33.5 

15 2.2 66.9 16 6.4 50.5 

17 5.8 75.3 --- --- --- 

4.2.1 Gravel road 

The results in Figure 9(a) show a good correlation between the actual and reconstructed profiles, 

except for Test run #1 where the ANN locates depressions where there are no depressions. It is 

not known what might have caused this error. Test runs #3, #9 and #17 follow the actual profile 

very well, locating all the important depressions, even though Test run #3 underestimates the 

depressions and bumps. This underestimation may be due to the relatively lower speed at 8 km/h 

of the small utility vehicle. This led to a corresponding underestimation of the DSDs, especially 

on the lower frequency end, as shown in Figure 9(b). The higher frequency end from 2 to 5 

cycles/m (wavelengths from 0.2 m to 0.5 m) is overestimated by the ANN due to the disparities 
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between the measured profile and acceleration data sampling rates. However, the DSDs correlate 

very well between 0.4 and 2.0 cycles/m spatial frequencies for all the test runs. 

Figure 9. Comparison of actual with reconstructed profiles for Gravel Road Section (a) 

their corresponding DSDs (b):        Actual,  #1,   #3,   #9, 

#17.

4.2.2 Paved road 

In Figure 10(a), Test runs #2 and #4 show a good correlation with the actual profiles whereas 

Test runs #12 and #16 have extra bumps over a depression before the first bump. Both of these 

test runs are at slightly higher speeds and the ANN tends to generate unstable results due to the 
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nature of the profile in this region. As is the case with the gravel road tests, the DSDs are 

overestimated at the higher frequency end in Figure 10(b) but show very good correspondence 

within the same spatial frequency ranges from 0.25 to 2.0 cycles/m which correspond to 

wavelengths of between 0.5 m and 4.0 m. 

Figure 10. Comparison of actual with reconstructed profiles for Paved Road Section (a) 

their corresponding DSDs (b):        Actual,  #2,   #4,   #12, 

#16.
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4.3 Summary of test results 

The present paper indicates that the methodology has been applied successfully to the ultra-

heavy haul truck and small utility vehicle under normal operating conditions when exercising 

minimal control over their speeds only. The following points summarize the important findings 

obtained from the two tests. 

 The ANNs yield good profile correlations, particularly with respect to identifying the

prominent defects (i.e. bumps and depressions), on all road profiles for both tests. For the 

same ANN and vehicle type, the performance varies with the vehicle operating speeds 

and the geometry of the defects. 

 In both tests, the ANNs are observed to perform better at high vehicle operating speeds

than at low operating speeds. The reason is that, at the high speeds, enough dynamic 

energy is imparted to the vehicle structure while automatically eliminating the 

participation of non-essential short wavelengths from the test road profiles. 

 The quality of the estimated DSDs is very good within the spatial frequencies between

0.15 and 0.5 cycles/m (corresponding to wavelengths of 2.0 to 6.7 m) for all defects in 

the haul truck tests and from 0.25 to 2 cycles/m (corresponding to wavelengths of 0.5 to 

4.0 m) for the small utility vehicle tests. These ranges of wavelengths are noted to be 

influenced by the size of the vehicle and its tires. Smaller vehicles and tires give 

relatively better DSD definition in the shorter wavelengths (or high frequency) ranges. 

 The profile geometry influences the performance of the ANN. A gentler profile with

perfectly blended geometry allows a better ANN performance than profile geometry with 

abrupt curvature changes. For the haul truck test, defect 2, which is observed to be gentler 
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than defect 3, yields relatively better correlations. For the small utility vehicle, the less 

aggressive gravel track yields relatively better correlations than the harsher paved track. 

 The correlation method used in selecting the training data-sets has worked very well in

this application, but the ANN performance for defect 1 in the return run, in terms of 

correlation coefficients, imply that further refinement is required. 

5. Conclusions

A methodology for road profile reconstruction and road roughness identification has been 

applied successfully to two vehicles at different mine sites, where the vehicles were tested in 

their normal operating environment. The present study sought to concretize the findings of the 

two previous studies performed, initially on the numerical vehicle model using numerically 

generated road profiles, and later, on an experimental vehicle with adjustable suspension to 

which accurately measured road profiles were applied. In the investigation of the numerical 

model, road profiles were reconstructed to very high levels of fitting accuracy under all 

simulation conditions. By contrast, in the investigation of the experimental vehicle, its 

performance was noted to be affected by two main factors, namely the scarcity of the training 

data and consistency in following similar wheel tracks. Despite such difficulties, this 

investigation still benefitted from the available numerical model of the vehicle and the accurately 

measured profiles. Accordingly, the present study has the following unique problems: 

1. The non-availability of vehicle numerical models so that the training data does not

benefit from data that can be easily generated from the model. 
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2. Lack of control or minimal control over the operating conditions in the normal working

environment of the test vehicles. 

3. Lack of accurate road profiles. The profiles are measured by a procedure which is very

crude yet practically sound. 

4. Application to two characteristically different vehicles.

In view of these challenges, the findings summarized in Section 4.3 are highly encouraging and 

indicate that the methodology holds promise for practical application to road condition 

monitoring systems. Quite a large proportion of the tests yielded bias errors of less than 25% 

with correlation levels higher than 50%. Generally the methodology provides two fronts in the 

monitoring of road condition: firstly, detecting and locating any prominent road profile features 

such as imminent potholes or bumps, and secondly identifying the general roughness condition 

of the road network, which is particularly useful where the road surface is becoming degraded by 

increased random roughness rather than by the size of discrete obstacles. 

Caution should be taken regarding certain key issues when applying this methodology to a 

practical situation: 

1. Vehicle speeds should be sufficiently high to allow for the participation of prominent

road roughness wavelengths in the excitation of measured accelerations. 

2. The profiles and measured accelerations should allow for easier alignment.

3. In order to assist with making a reliable decision about maintenance, the final results

should come from averaged simulations so that some errors can be reduced. 

4. Profiles should be smoothed out by running a type of moving average filter over the

measured road profiles so that any abrupt profile changes can be eliminated. 
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For further work, it is recommended that the methodology should be investigated on a fleet of 

vehicles to determine whether a general structure for a neural network could be developed. 

Secondly, the generalization capabilities of the ANN and the requirements for its improvement 

should be investigated. Thirdly, an investigation should be done on how to refine the procedure 

for the selection of training data, which is proposed in this paper.  
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