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ABSTRACT 
Lately, the Lattice Boltzmann Method (LBM), as a 

mesoscopic numerical approach, has received more attention in 
studying complex fluid flows and transport phenomena. 
Because of its distinctive advantages over conventional 
numerical methods, the LBM has achieved great success in a 
variety of fields since its emergence. The major advantages are 
referred to its intrinsic linear scalability in parallel computing, 
and its capability of easily handling complex geometry and 
boundary conditions. In this study our proposed LB-BGK 
model, for multi-fluid flows, has been first validated by 2 
benchmark problems: 2D Poiseuille flow problem and lid-
driven cavity flow. Following these simulations, a discussion 
on the accuracy and the performance of the model is given. 
Good agreement is obtained with the analytical solution of 
Poiseuille flow problem, and with the available literature results 
for 2D lid-cavity. On the other hand, the accuracy of LBM is 
usually moderated by several factors; hence the effect of 
different factors is investigated. Among those, we studied the 
effect of boundary conditions, spatial resolution, Mach number, 
and that of the choice of relaxation factors. Consequently, LBM 
was found to be highly dependent on the physical problem, the 
numerical implementation, and the used models and 
correlations. In light of the obtained results, we can point out 
that the LBM may possess high potential in studying fluid 
flows with complex geometries. 

 
INTRODUCTION 

Lattice Boltzmann methods (LBMs) are mesoscopic particle 
based approaches to simulate fluid flows. Interest for LBMs has 
been growing continuously in the last 20 years [1], they are 
becoming a serious alternative to traditional methods for 
computational fluid dynamics (CFD) [2]. The method is 
historically originated from a Boolean fluid model known as 
the Lattice Gas Cellular Automata (LGCA), which simulates 
the motion of fluids by particles moving and colliding on a 
regular lattice [3]. Unlike traditional numerical methods, which 

solve for the macroscopic variables, the LBM is based on the 
kinetic equation for the particle distribution function. Hence, 
the macroscopic quantities are obtained through moment 
integration of the distribution function, and the averaged fluid 
variables are shown to satisfy the Navier-Stokes equations [3]. 
Due to the sampling of the particle velocities around zero 
velocity, LBM is limited to the low-Mach number (nearly 
incompressible) flow simulation. However some attempts have 
been made to extend the LBM to the compressible flow regime 
[4,5,6]. The interested reader can refer for example to [2,7,8,9] 
for details on this approach. Furthermore, LBMs are especially 
well suited to simulate flows around complex geometries [10], 
and flows in porous media; moreover they are straightforwardly 
implemented on parallel machines [11] due to their local 
nature. 

NOMENCLATURE 
 

f [-] Density distribution function 
e [lu/ts] Lattice velocity 
ω [-] Weight factor 
τ [-] Relaxation parameter 
ρ [mu/lu2] Macroscopic density 
u [lu/ts] Macroscopic velocity 
ν [lu2/ts] Kinematic viscosity  
Re [-] Reynolds number  
Ma [-] Mach number 

 
Subscripts 
i  Velocity direction of lattice 
w  Wall boundary 
max  Maximum  
0  Reference parameter 
 

The availability of different LBMs made the choice of the 
type of model highly dependent on the competence of its 
accuracy over the computational speed. Among these types, we 
can cite the single relaxation-time lattice model, also called the 
Bhatnagar-Gross-Krook (BGK model), which is the most 
popular one for its simplicity. In order to effectively apply the 
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LB-BGK model; it seems crucial to achieve its limitations 
under variety of situations. Benchmarking a model under 
several well-known analytical solutions to physical problems is 
the best way to find and understand the accuracy and 
limitations of any computational scheme. In the first part, we 
propose and outline an LB-BGK model for multi-fluid flows. 
The model can simulate up to five fluids in a system. We then 
benchmark it, in the second part, via two different problems 
namely Poiseuille flow and 2D lid-cavity. In the last part, we 
intend to evaluate the accuracy of the model, is usually 
moderated by several factors. Of these, we examine the effect 
of boundary conditions, the spatial resolution, the Mach 
number, and that of the choice of relaxation factors. 

 
BGK LATTICE BOLTZMANN MODEL 

The starting point in the LBM relies on the transport 
Boltzmann equation, whose discrete form in the BGK 
approximation of the collision operator, reads as [12], 

!!!
!"
+ 𝑒! .∇𝑓! = − !

!!
(𝑓! − 𝑓!

!")         𝑖 = 1,2,… ,𝑁   (1) 

where 𝑓! is the particle velocity distribution function, 𝑒! is the 
velocity along the ith direction, and N is the number of different 
velocities. 

 
Figure 1. 2DQ9 lattice model 

In the work, we employ the two-dimensional nine velocity 
(D2Q9) which is illustrated in Fig. 1. In Eq. (1), the 𝑓!" is the 
local equilibrium distribution function, and it is defined as 
follows, 

𝑓!" = 𝜔!𝜌[1 +
! !!.!
!!

+ ! !!.! !

!!!
− !!!

!!!
] (3) 

where 𝜔! =
4 9                           𝑓𝑜𝑟  𝑖 = 0
1 9       𝑓𝑜𝑟  𝑖 = 2,4,6,8
1 36   𝑓𝑜𝑟  𝑖 = 1,3,5,7

   

and     𝑒! =

(0; 0)                                𝑓𝑜𝑟  𝑖 = 0
(0;±1)                  𝑓𝑜𝑟  𝑖 = 2,4
±1; 0                     𝑓𝑜𝑟  𝑖 = 1,3
±1;±1 𝑓𝑜𝑟  𝑖 = 5,6,7,8

   

are, respectively, the weight factor and the velocity vector of 
the D2Q9 model. The macroscopic quantities [12], such as 
density, 𝜌 and momentum density, 𝜌𝑢, are defined as moments 
of the distribution function, 𝑓!, as follows, 

𝜌 = 𝑓!!   and  𝜌𝑢 = 𝑓!𝑒!!   (4) 

BOUNDARY CONDITIONS 
To apply boundary conditions to a Lattice Boltzmann 

method, the distribution functions 𝑓! at boundary lattice points 
have to be modified or replaced during each time step to give 
the required fluid velocity. There are different types of 
boundary conditions that can be easily handled in LBM, which 
constitutes a major advantage for this method. We state below 
some of these boundary conditions that will be used in this 
work. 

On-grid bounce-back 
The on-grid bounce-back condition applies a no-slip condition 
(i.e. zero fluid velocity) at a boundary that lies halfway between 
grid points. This is applied after the propagation process by 
reversing the distribution functions sitting on each wall node 
𝑥!, i.e. 

𝑓! 𝑥! , 𝑡 = 𝑓!(𝑥! , 𝑡)  (5) 

where j is the opposite lattice link to i, i.e. 𝑒! = −𝑒!. The 
reflection of distribution functions occurs on-grid. Note that on-
grid bounce-back is a first-order approximation of the boundary 
condition. Thus, the error is proportional to the lattice spacing 
∆𝑥, while remaining completely local (i.e. only uses 
distribution functions at the wall node). 

Mid-grid bounce-back 
The mid-grid bounce-back condition also applies a no-slip 

condition at a boundary halfway between lattice points [2]. This 
is applied by assigning post-collisional distribution functions to 
the wall node based on those values at neighbouring points, i.e. 

𝑓! 𝑥! , 𝑡! = 𝑓!(𝑥! + 𝑒!∆𝑡, 𝑡!) (6) 

This method essentially applies the actual reflection 
halfway between time-steps and is a spatially second-order 
method, although it is weakly non-local due to its use of 
distribution functions from neighbouring nodes. 

Constant pressure/velocity 
To specify either velocities or densities (pressures) at planar 

boundaries, the Zou-He method [13] is used. This is based upon 
applying the bounce-back rule to the non-equilibrium 
distribution functions, i.e. 

𝑓!
(!) 𝑥! , 𝑡 = 𝑓!

(!)(𝑥! , 𝑡)         (7) 

where 𝑓!
(!) = 𝑓! − 𝑓!

!", with the equilibrium distribution 
function 𝑓!

!" as a function of density and velocity. This 
function can be used to determine the missing wall velocity or 
density along with the known distribution function values. For 
instance, for a top edge with a known velocity 𝜐! using the 
D2Q9 lattice scheme, the wall density and missing distribution 
functions (all for the boundary node at  𝑥!) are given as: 
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𝜌! =
!!!!!!!!!!(!!!!!!!!

!!!!,!
                                            (8) 

𝑓! = 𝑓! −
!!!!!,!

!
                                             (9) 

𝑓! = 𝑓! +
!
!
𝑓! − 𝑓! − !

!
𝜌!𝜐!,! −

!
!
𝜌!𝜐!,!  (10) 

𝑓! = 𝑓! −
!
!
𝑓! − 𝑓! + !

!
𝜌!𝜐!,! −

!
!
𝜌!𝜐!,!  (11) 

 
BENCHMARKING THE LB-BGK MODEL 

The current LB-BGK model was benchmarked using 
different physical problems and compared with the known 
analytical solutions [14] or the available numerical results of 
past works [15,16,17]. 
 
2D Lid driven cavity 

The Lid driven cavity flow is one of the most common 
benchmark test problems.  

 
Figure 2. Geometry of lid driven cavity 

The simplicity of the geometry of the cavity flow makes the 
problem easy to code and apply boundary conditions [18]. 
Briefly as shown in Fig. 2, a square cavity is filled with an 
incompressible fluid, which is governed by the Navier-Stokes 
equations where the flow is driven by the moving top wall. 
Furthermore, velocities at other boundaries are set to zero and 
non-slip boundary conditions are applied elsewhere. A 
characteristic of the 2D cavity flow is the emergence of primary 
vortex in the center of cavity, while with higher Re, secondary 
vortices appear in the lower corners.  In our example, we 
choose a problem of Re=100 and compare the results with 
available data in the literature. The profiles of the velocities in 
both x and y directions for the centreline, displayed in Fig. 3, 
resemble the available profiles from previous works. Moreover, 
the positions of the primary and secondary vortices are within 
acceptable conjunction with the available results as can be 
inferred from Table 1. 

Pressure driven Poiseuille flow 
The 2D pressure driven Poiseuille flow is another classical 

benchmark case. The pressure difference is accounted for by a 
density difference since they are proportional as per the 
equation of state. For our study, the following parameters, in 
lattice units, are adopted: the inlet and outlet pressures are 

1.1mu/ts2 and 1mu/ts2 respectively, the channel width W is 
50lu, the channel length L is 350lu, the relaxation factor 𝜏! is 
fixed at 1.5, the kinematic viscosity is 𝜈=0.333lu2/ts, and the 
reference density is taken equal to 3mu/lu2. 

 

Figure 3. Velocity profiles at horizontal centreline of the 
cavity 

Besides, for the left and right sides, constant pressure/velocity 
are used as boundary conditions while on-grid bounce back is 
used for the top and bottom sides. It is useful to recall that the 
analytical solution is, 

𝑈 𝑦 = !!"!!!"#
!!!!!

(𝑌 − 𝑌!"##"$)(𝑌!"# − 𝑌) (12) 

and 

𝑈!"# =
!!"!!!"# (!!"##"$!!!"#)!

!!!!!
              (13) 

Note that, in our model, ∆𝑡 = !
!!(!!!!.!)

        𝑎𝑛𝑑        ∆𝑥 = !!
!  (!!!!.!)

  

So by choosing 𝜈 = 1.5𝑒!!𝑚!/𝑠, ∆𝑡 = 5.144𝑒!!! and 
∆𝑥 = 4.81𝑒!!.  It should be noted that this induced value of 𝜈 
has no physical effect. In other words, it just serves in the 
calculation of ∆𝑥 and ∆𝑡 and thus the physical width and time. 
In all cases the obtained results correspond to the steady state. 
Fig. 3 shows a comparison between the analytical and 
numerical solutions. The numerical results match the analytical 
solutions while the discrepancy is thought to be due to the 
choice of relaxation factor and boundary conditions. If the 
relaxation factor is changed to 5, the numerical results remain 
approximately the same as the analytical results (see Fig. 4). 
This issue will be thoroughly discussed later. 

Re=100 
Primary 
Vortex 

Lower Left 
Vortex 

Lower Right 
Vortex 

x y x y x y 
A 0.6188 0.7357 0.0375 0.0313 0.9375 0.0563 
B 0.6172 0.7344 0.0313 0.0391 0.9453 0.0625 
C 0.6196 0.7373 0.0392 0.0353 0.9451 0.0627 
D 0.6161 0.7373 0.0404 0.0404 0.9370 0.0606 
Table 1. Locations of vortices of the lid-driven cavity flow at 
Re=100. A: Vanka [15], B: Ghia et al [16], C: Hou et al [17], D 
current work. 
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 (a)     (b) 

 
Figure 4. Comparison between analytical and numerical 
solutions for pressure driven Poiseuille flow 
𝑎 𝜏 = 1.5, 𝑏 𝜏 = 5 

Different simulations have been performed for different 
Reynolds numbers, where 𝑅𝑒 = !!!

!
, 𝑈! being the reference 

velocity which is based on the imposed pressure gradient [19] 
as 𝑈! =

!!"!!!"# !!

!!"
. As shown in Fig. 5, the maximum 

velocity increases with the increase in Re, and that is provoked 
by an increase in error when compared to the analytical 
solution. Such an error becomes significant after Re=2083, 
which points to the passage into a turbulent regime.  

 

Figure 5. Comparison between numerical solutions of pressure 
driven Poiseuille flow for different Re 

EVALUATING THE ACCURACY OF THE CURRENT 
LB-BGK MODEL  

The increased use of the lattice Boltzmann method for the 
computation of fluid flow has generated the need for more 
rigorous documentation on the errors associated with the LBM. 
An important and significant source of error stems from the 
boundary conditions, the choice of relaxation factors, the 
geometry, the Mach number, and hence the Reynolds number 
that is affected by the mentioned parameters and by which 
different physical behaviours can be generated. In this section 
we study the accuracy for the above pressure driven Poiseuille 
flow problem with on-grid bounce back boundary conditions at 
top and bottom. We thus define the relative error to be [19], 

 

  𝑒𝑟𝑟! =
!!(!"#$%&'())!!!(!"!#$%&'!#)

!!
  (14) 

The relaxation parameter effect 
It is known that the relaxation parameter defines the lattice 

viscosity. Hence, its choice affects the physical behaviour of 
the fluid, and it should be always > 0.57 to insure the stability 
of the model when using Zou/He boundary conditions. For the 
above problem we vary the relaxation factor 𝜏 from 1 to 20 
while maintaining the same number of lattices (W=50), and 
investigate the impact on the accuracy of the model keeping in 
mind that we are also changing Re and Ma. In real parameters, 
the increase in 𝜏 will result in a decrease in both ∆𝑥 and ∆𝑡, 
hence a change in space and time discretization. Accordingly in 
real physics this will mean a decrease in the width of flow and 
the reference velocity.  

 

 
Figure 6. Error variation with the relaxation factor 

 
The results show that increasing 𝜏 and hence decreasing ∆𝑥 

will moderately decrease the error (𝑒𝑟𝑟!) until a certain factor 
(𝜏 = 5) after which the error will start increasing rapidly (Fig. 
6). In lattice parameters, this means increasing the lattice 
viscosity 5 times to reach the optimum accuracy for a lattice 
width of 50. Nevertheless, in real physics this corresponds to 
decreasing the space discretization 6 times to reach the 
optimum accuracy for a discretization of 50 lattices, after that 
the model discretization is too small and the accuracy is lost. 
This leads us to an important factor which is the discretization 
in space and time. As concluded from the above, there are 
limits for decreasing ∆𝑥 and ∆𝑡 to insure better accuracy for a 
given with W. It is observed that as W increases, the optimum 
value of 𝜏 decreases. Further studies will be performed in the 
next paragraph on the effect of W on the optimum 
discretization. 

 
The lattice width effect 

When keeping a constant relaxation factor, thus constant 
discretization parameters, the increase in W will result in a 
decrease in errors until a certain value of W after which the 
errors increase again. This can be explained, as the previous 
results, by the fact that the discretization should be neither too 
small nor too big for the domain. Increasing the domain insures 
that Umax is far enough form the boundary walls, which are the 
min source of errors, but afterwards the domain will become 
too big to preserve the needed accuracy.  On the other hand, for 
each W simulated, we found the optimum 𝜏, and realized that as 
W increased the optimum 𝜏 also increased linearly by a 
regression equation obtained with R-squared of 98.4%, and 
expressed as, 
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𝜏!"#$%&% = 0.0451𝑊 + 2.4855  (15) 
 

Hence, for a given Reynolds number Re, the optimum (𝜏, W) opt 
can be chosen satisfying (15) and (16) 
 
𝑅𝑒 =

!!"#!

!
= !!"!!!"# !!

!!!!
= ! !!"!!!"# !!

!!(!!!.!)!
  (16) 

 
Consequently, for the pressure driven Poiseuille flow, we 

can, by using the above equations, optimize the accuracy by 
choosing the discretization domain. Similar optimization 
procedure can be undertaken for different benchmark problems 
with known numerical or analytical solutions. 

 

 
Figure 7. 𝜏!"#$%&% calculated for different values of W 

 
Accuracy variation with Mach number 

Recall that the LBM is a simplified version of the 
continuous Boltzmann equation as it is fully discrete in time 
and phase space. Due to the sampling of the particle velocities 
around zero velocity, LBM is limited to the low-Mach number 
(nearly incompressible) flow simulation. Nevertheless, recently 
many attempts have been made to extend the LBM to the 
compressible flow regime [4,5,6].   
 

To study the effect of Ma on accuracy we performed a set of 
simulations for 𝜏 = 2, 3.5, 5, 6 and we varied Ma for each 
between 0.02M, 0.05M, 0.07M, 0.1M, 0.2M, 0.3M, 0.4M, 
0.5M, 0.6M, where M is a characteristic constant for each set, 
for example M=0.5144 for τ=5 and then Ma ranges from 0.01 
and 0.3. Generally, the accuracy increases as the Mach number 
decreases (such that it remains less than ). This is clearly 
encountered when we varied the pressure difference for a given 
(𝜏 = 5, W=50) and hence fixed Re/Ma. The errors undergo a 
parabolic increase with the increase of Ma as shown in Fig. 8a. 
However, it is noted that for lower relaxation factors, the effect 
of Ma is negligible, and for higher relaxation factors, for 
acceptable errors, the influence is less significant. 
Consequently, we regard this issue to the presence of low 
compressibility effect and hence low compressibility errors, 
which highly dependent on the Ma number. Moreover, for 
lower 𝜏, the compressibility errors are too small in comparison 
with discretization errors and hence the effect of Ma is 
negligible. Besides for high 𝜏, both compressibility and 
discretization errors are high, but the latter is the dominant. So 
the effect of Ma is found to be low in that case. Furthermore, 
we define the compressibility error to be [20], 

𝜌!"" = (∆𝑥)! !!!
!"

!
+ !!!

!"
!!!
!"

  (17) 

Clearly, the compressibility error depends on the grid 
spacing and the variation of velocity between neighboring 
lattices. Likewise, this analysis can provide information about 
the compressibility error independently from the discretization 
error. For τ=5, a change in error of ux is noticed as X goes far 
from the vertical boundaries and an increase in error is noticed 
as Y approaches the centerline (Fig. 8a). This increase, hence, 
induces the increase in the velocity profile as it reaches its 
maximum in the centerline. Thus, for this case, the major 
source of error is the compressibility effect since the 
discretization error is too small and hence is highly affected by 
the variation in Ma, while for lower relaxation numbers the 
error is approximately constant with the variation of Y as 
indicated in Fig; 8b. However, the compressibility error 
remains small with respect to the discretization error and that is 
the reason why it is clear when choosing (τ ,W)opt, and thus 
choosing a certain Re/Ma. On the other hand, for (τ ,W) far 
from optimum, the major source of error is therefore the 
discretization in time and space whereas the compressibility 
error and the effect of Ma variation are negligible in 
comparison with it.  

 (a)         (b) 

 

Figure 8. (a) Variation of error for (𝜏 = 5, W=50) with the 
increase in Ma, (b) Variation of error along Y for τ=2 
 
Summing it all up 
Till this level, we have discussed the effect of each parameter 
alone. So as a summing up, we plotted errors in our simulations 
versus 𝑆 = log  (1000 !.!

!".!"
) to evaluate the global effect on the 

accuracy. As inferred from Fig. 9, when S<4.87 (an estimated 
inflection point), the errors are low and acceptable. Afterwards, 
the errors start increasing exponentially and thus will reach 
unacceptable results. Therefore as long as !.!

!".!"
< 74, the 

errors are limited and acceptable. Otherwise, the errors will 
start increasing highly and the model looses its accuracy.  
 
THE EFFECT OF BOUNDARY CONDITIONS ON THE 
ACCURACY  

It is well known that the boundary conditions are the main 
source of errors in a model as unknown distribution functions 
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originated from the undefined nodes external to the flow 
domain are encountered during the streaming operation. 
 

 
Figure 9. Variation of the error with the defined value S 

 
In this section, the effect of changing boundary conditions is 

studied. The left and right boundary conditions in the pressure 
driven Poiseuille flow are always handled by fixed 
pressure/velocity boundary conditions. Our discussion will be 
mainly for the non-slip top and bottom sides where the velocity 
should be zero. We first simulate, for different relaxation 
factors, and thus discretization parameters, the model with on-
grid bounce back boundary conditions. We then used the mid-
grid boundary conditions described in the first section, and 
afterwards we simulated the model with fixed velocity with 
v=0 on top and bottom.  

 
Figure 10. Comparison between Umax for different boundary 

conditions with the analytical solution 
 

When comparing these three types of boundary conditions 
in the code, it is noted that there is very little difference in 
accuracy between the on-grid bounce back and the mid-grid 
bounce back. Nevertheless, if the bounce-back boundary 
condition is implemented on the boundary nodes, where the 
wall resides, the bounce-back boundary condition only gives 
first order accuracy, whereas if the bounce-back boundary 
condition is employed with the wall located at half-grid-spacing 
between a flow node and a bounce-back node, the scheme is 
shown to produce second-order accuracy. On the other hand, 
when using fixed velocity boundary conditions, the errors 
decrease and this is more significant for low relaxation factors. 
The maximum velocities for different Reynolds number are 
plotted for the three types of boundary conditions and 

compared to the analytical solution. The results of fixed 
velocity boundary conditions coincide with the analytical 
results as shown in Figure 10, while a small discrepancy is 
observed with the on-grid and mid-grid boundary conditions, 
which in return coincide with each other. Since the variation of 
errors is not substantial, we plotted the log of the errors versus 
the inverse of 𝜏 to better understand its variation.  

(a)     (b) 

 
(c)     (d) 
 

 
Figure 11 Comparison of the errors at centerline and 
boundaries for different boundary conditions and for selected 
positions of X 
  

Fig. 11(a,c) shows a comparison between errors in bounce 
back and fixed velocity boundary conditions for Umax, while 
Fig. 11(b,d) indicates that for Y close to top and bottom 
boundaries. For high relaxation factors the difference is not 
important, whereas for low relaxation numbers the errors close 
to top and bottom are much less for fixed velocity, and 
evidently in this case the accuracy is better in lower 𝜏 and the 
optimum 𝜏 is close to 1. We also investigate the difference in 
the errors as we increase X from 2 to 25. We note a more 
relevant decrease in errors as we go further from the 
boundaries. Additional grids to extrapolate the distribution 
functions on boundaries can lead to more consistent boundary 
conditions and enhance the accuracy of the scheme. More 
details of this procedure can be found in [12]. Hence, another 
point that should be highlighted on is the effect of boundary 
conditions on compressibility errors, and we can recognize it 
clearly when comparing the errors along Y for different 
boundary conditions for the same X. As presented in Fig. 12, 
the difference in errors along Y is not significant for bounce 
back boundary conditions especially for low relaxation factors. 
While in contrary, errors decrease as we go far from top and 
bottom boundaries for fixed velocity boundary conditions, and 
are minimum at the center, for low relaxation factors. This 
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reveals the sensitivity of these boundary conditions to positions 
and relaxations factors. Thus despite of increase in accuracy it 
showed in comparison to bounce back, careful consideration 
should be taken to the non-homogeneity of the errors between 
adjacent nodes. 

 
(a)     (b) 

 
Figure 12. (a) error varaition along Y for bounce back 
boundary condition, (b) error varaition along Y for fixed 
velocity boundary condition 

CONCLUSION  
The proposed L-BGK model was benchmarked with two 

well-known benchmark problems. Good agreement is obtained 
with the analytical solution of Poiseuille flow problem, and 
with the available literature results for 2D lid-cavity. For the 
Poiseuille flow problem, the Re critical beyond which the 
regime becomes turbulent was found to be 2083, which 
matches the literature results [21]. Furthermore, the accuracy of 
the model was tested for different special dimensions and 
relaxation parameters. It was noted that these parameters have a 
clear influence on accuracy since they constitute the main 
source for discretization errors. On the other hand, for every 
studied width we have located its optimum relaxation factor, 
reaching an empirical expression to relate (τ, W)optimum. In 
addition, the effect Ma was studied, and as expected as Ma 
increases the accuracy decreases, however this is more 
significant when the discretization errors are very small i.e. 
when we use (τ, W)optimum. Unlikely, when the discretization 
errors are large enough, the compressibility errors are 
negligible and the effect of Ma is less significant. Moreover, a 
critical value of W.τ/Re.Ma=74 was obtained, after which the 
model's errors increase heavily and it loses its accuracy. 
Finally, a comparison between different boundary conditions is 
established, and fixed velocity boundary condition showed 
more accuracy than the bounce back boundary conditions, 
especially for low relaxation factors, whereas the latter showed 
less compressibility errors and more uniformity of errors on 
adjacent lattices. As a conclusion, our results show that LBM is 
considerably competitive as a computational tool for fluid flow 
problems and if tuned by optimizing its accuracy and 
performance is capable of changing the landscape of CFD 
market. 
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