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Abstract In this study, average monthly and annual rainfall
totals recorded for the period 1970 to 2010 from a network of
13 stations across the Lake Kariba catchment area of the
Zambezi river basin were analyzed in order to characterize
the spatial-temporal variability of rainfall across the catchment
area. In the analysis, the data were subjected to intervention
and homogeneity analysis using the Cumulative Summation
(CUSUM) technique and step change analysis using rank-sum
test. Furthermore, rainfall variability was characterized by
trend analysis using the non-parametric Mann-Kendall statis-
tic. Additionally, the rainfall series were decomposed and the
spectral characteristics derived using Cross Wavelet
Transform (CWT) and Wavelet Coherence (WC) analysis.
The advantage of using the wavelet-based parameters is that
they vary in time and can therefore be used to quantitatively
detect time-scale-dependent correlations and phase shifts be-
tween rainfall time series at various localized time-frequency
scales. The annual and seasonal rainfall series were homoge-
neous and demonstrated no apparent significant shifts.
According to the inhomogeneity classification, the rainfall
series recorded across the Lake Kariba catchment area
belonged to category A (useful) and B (doubtful), i.e., there
were zero to one and two absolute tests rejecting the null
hypothesis (at 5 % significance level), respectively. Lastly,
the long-term variability of the rainfall series across the Lake

Kariba catchment area exhibited non-significant positive and
negative trends with coherent oscillatory modes that are con-
stantly locked in phase in the Morlet wavelet space.

1 Introduction

Rainfall is one of the climatic variables that affect both the
spatial and temporal patterns on water availability (De Luis
et al. 2000; Kampata et al. 2008; Ngongondo 2006). In par-
ticular, the southern African region experiences significant
rainfall variability at various spatial and temporal scales and
is prone to serious drought and flood events (e.g., Tysen 1986;
Nicholson and Entekhabi 1987; Lindesay 1988; Reason et al.
2000). The region is characterized by the increasing changes
in high rainfall events (Mason and Joubert 1997), and it is also
most sensitive to precipitation shifts and variability (IPCC
2007). The variability of rainfall over southern Africa can
have detrimental consequences to economic development, di-
saster management, population, and hydrological planning of
a particular country. Due to anomalous rainfall variability,
major water resources and reservoirs are often at risk (e.g.,
due to flooding), and the population and properties in the
basin are often impacted most.

The region’s water resources, agriculture, and rural com-
munities are impacted considerably due to high rainfall vari-
ability (Cook et al. 2004). It is imperative to perform spatial
temporal variability analysis of rainfall at monthly or seasonal
timescales to determine the likelihood of extreme (drought or
flood) events occurrences and or return periods. For example,
the identification of seasons in which floods are most likely
involves studying characteristics of monthly rainfall within
the seasons across the region. To this end, better understand-
ing of the relationships between rainfall and other climatic
variables contributes towards water resource management
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and planning. It is therefore essential to thoroughly study rain-
fall variability at monthly, seasonal, and annual time scales in
order to support the management of water resources (Nsubuga
et al. 2011). As reported in Mason and Jury (1997), precipita-
tion in southern African exhibits high variability at all time-
scales. This variability has been attributed to the proximity of
the Agulhas, Benguela, and Antarctic circumpolar currents,
which are characterized by complex and highly variable cli-
mate patterns around southern Africa (Shannon et al. 1990).
Further, the 1984 floods along the Namibian coast for instance
were associated with extremely warm SST in the Angola/
Benguela front region typical of the Benguela Niño. In addi-
tion, the 2000 floods which hit Mozambique, eastern
Zimbabwe and northeast South Africa could have been influ-
enced by the Tropical-Temperate Troughs (TTTs) which have
been previously linked to high rainfall intensities. Further, the
El Niño Southern Oscillation (ENSO) has also been associat-
ed to major floods and drought events in the southern African
region (e.g., Cook 2000; Mason and Jury 199; Reason and
Rouault 2002).

Several studies investigating rainfall variability in the
Zambezi river basin have been reported in the literature. For
example, Mazvidza et al. (2000) grouped the precipitation
records of the Lake Kariba catchment using a number of
Zambian weather stations into decadal means between 1960
and 1990 to determine climate change and variability. Records
from ten of the 15 examined stations showed the 1980–1990
decade experienced the lowest means of flows over the last
40 years, while 15 stations registered the lowest mean of flow
for the past 30 years in the same decade. Mazvimavi and
Wolski (2006) analyzed the trends of rainfall, stream flow,
and long-term variations of annual flows of the Okavango
and Zambezi rivers for the period of 1933–2004 and 1924–
2004, respectively. The maximum and minimum annual flows
of the Okavango and Zambezi rivers were analyzed and found
to have inherent exhibit change points. In addition, Kampata
et al. (2008) analyzed long-term rainfall data in the headstream
regions of the Zambezi river basin using the Cumulative
Summation (CUSUM technique), step change analysis, and
Mann-Kendall statistics to study the spatial-temporal variabil-
ity of rainfall between 1935 and 2006. From the analysis,
Kampata et al. (2008) reported that the rainfall data in the
entire sub-basin belonged to a similar climate regime, and
the trends observed at the different stations were
homogeneous.

Notwithstanding the valuable contribution of the above
studies towards our understanding of spatial-temporal vari-
ability of rainfall in the larger Zambezi river basin, analysis
of the variability of rainfall in the Kariba catchment area re-
mains inconclusive. This study focuses on the Lake Kariba
catchment region in the Zambezi river basin since rainfall over
this area influences all important processes responsible for,
e.g., hydroelectricity, agriculture, and livestock. Lake Kariba

catchment climatology is controlled mainly by the movement
of air masses associated with the Inter-Tropical Convergence
Zone (ITCZ) (Beilfuss 2012). Normally, the rainy season ex-
tends from November to March. The entire catchment is high-
ly susceptible to extreme droughts and floods that occur nearly
every decade (Beilfuss 2012), but these has become more
frequent and more pronounced with associated economic
losses (Solomon et al. 2007). For example, during the severe
1991/1992 drought, reduced hydropower generation resulted
in an estimated US$102million reduction in GDP, $36million
reduction in export earnings, and the loss of 3000 jobs.
Extreme floods have also resulted in considerable loss of life,
social disruptions, and extensive economic damage. The pur-
pose of this study is to characterize rainfall variability across
the Kariba catchment through intervention analysis, homoge-
neity tests, trend analysis as well as spatial and spectral corre-
la t ion analysis using wavelet -based parameters .
Characterizing rainfall variability and trends can be used for
decision making and further hydrological modeling.

2 Study area

Lake Kariba is one of the largest artificial reservoirs (by vol-
ume) in the world with a surface area of 5577 km2 and a live
storage volume 564,800 Mm3 (Beilfuss 2012). Lake Kariba
regulates runoff from an upstream catchment area of 687,
535 km2, which is about 50 % of the total Zambezi catchment
area. Average annual rainfall for the Lake Kariba catchment
area (see Fig. 1) is about 1000 mm, producing a mean annual
discharge of 37,249 Mm3 (and an average flow rate of
1181 mm3 s−1). Approximately 50 % of annual rainfall over
the catchment, on average, contributes to Zambezi base flow
(Sharma and Nyumbu 1985; Beilfuss 2012). During drought
years, the magnitude and duration of average peak flows may
be reduced by 70 % or more. Runoff varies considerably from
year to year, e.g., from a remarkable 72,800 Mm3 in
1957/1958 to as low as 12,300 Mm3 in 1995/1996. The time
series of annual flows reveals long-term cycles of high, medi-
um, and low runoff. These cycles also influence runoff. For
instance, a sequence of particularly low rainfall years in the
catchment, such as the one that occurred during the early
1900s and again during the period 1980 to1998, can signifi-
cantly reduce the proportion of annual rainfall that occurs as
runoff (Beilfuss 2012).

3 Data and methodology

3.1 Data

Monthly total rainfall data considered in the present
study consists of observations from a network of 13
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stations which are distributed across the Lake Kariba
catchment area. These data sets were obtained from
Z imb a bwe Me t e o r o l o g i c a l S e r v i c e s ( ZMS ) .
Furthermore, these monthly total rainfall data records
spanned a period of 1970 to 2010 without any missing
data sets. Table 1 summarizes the characteristics of the
selected stations.

3.2 Methodology

3.2.1 Intervention and homogeneity

Rainfall data collected at stations spanning a period of
several years may not be homogeneous, i.e., the rainfall
measurements may have inherent sudden changes or
shifts in its mean and variance in relation to the original
values. These inhomogeneities and inconsistencies may
occur due to several causes, some of which are related

t o c h a n g e s i n ( a ) s e n s o r i n s t r um e n t a t i o n
(malfunctioning, variation in the power supply, and even
replacements), (b) observation practices (including
changes in observation times, location of the instru-
ment), (c) modifications of the environmental conditions
(overall changes in land cover and land use) of the site,
and (d) overall climate change and variability. As a
result, observations made prior to the changes often ex-
hibit different statistical properties than data sets collect-
ed after the change. As a first step towards understand-
ing the variability of rainfall in a given area, it is nec-
essary to apply appropriate techniques to evaluate
whether a given data set can be considered to be homo-
geneous and, if not, introduce the appropriate correc-
tions. In the present study, intervention and homogene-
ity analysis approaches are considered. A Cumulative
Summation (hereafter CUSUM) technique reported in,
e.g., Parida et al. (2003) and Kampata et al. (2008)

Fig. 1 Location of the Kariba River Basin and some of the meteorological stations
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expressed in Eq. (1) was used to decipher the inconsistencies
and test for homogeneity across the network of 13 stations of
the Kariba catchment region depicted in Fig. 1.

Sm ¼ Sm�1 þ xm � xmeanð Þ;m ¼ 1; 2; :::; n ð1Þ

In Equation, Sm is the CUSUM value, xm is the mean
of n data points. Dates when the Sm values change
between positive and negative values are used to split
the data set into two periods, i.e., the pre- and post-
intervention periods. The resulting data groups are then
subjected to a step change analysis using the rank-sum
test (which is a non-parametric test, the median differ-
ences between two data subsets) reported in, e.g., Helsel
and Hirsch (2002). The relevant equations for the rank-
sum test statistic Zrs have been summarized in Kampata
et al. (2008) and re-written in Eq. 2 for the purpose of
completeness.

Zrs ¼

Sm−0:5−μt

σ
if Sm > μt

0 if Sm ¼ μt
Sm−0:5−μt

σ
if Sm < μt

8>>><
>>>:

μt ¼ 0:5k N þ 1ð Þ
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km N þ 1ð Þ

12

r
ð2Þ

In Eq. 2, Sm, μt, and σ are the statistic (computed as the sum
of ranks of the observations in the smaller group), the theoret-
ical mean, and standard deviation, respectively, of ranked da-
ta. Furthermore, N is the largest rank while k and m are the

number of observations in the smallest and largest group, re-
spectively. When Zrs<Z (Z is the critical value of the Z-statis-
tics obtained from the normal distribution table at a 5 % sig-
nificance level; see Kampata et al. 2008), then the null hypoth-
esis, H0, is accepted suggesting that the two samples come
from the same distribution.

As reported in Peterson et al. (1998), there are numerous
methods used to assess the heterogeneity in a time series. It is,
however, recommended that a combination of statistical and
metadata information be considered during analysis of homo-
geneity in order to effectively track down any inherent hetero-
geneity in, e.g., rainfall time series. Furthermore, homogeneity
can be assessed by use of relative or absolute methods (Sahin
and Cigizoglu 2010). As reported in Sahin and Cigizoglu
(2010), relative methods of detecting homogeneity in a time
series assume that the reference station is homogeneous and
often require the series at each candidate stations to be corre-
lated. In cases where the correlation is low, absolute methods
(which often utilize individual station time series) are consid-
ered more tractable (Wijngaard et al. 2003).

Absolute statistical methods such as those reported in, for
example, Peterson et al. (1998), Alexandersson (1986), and
Costa and Soares (2009) have been widely used for homoge-
neity tests. These methods often vary in complexity and
assumptions of the statistical properties of the data series.
For a detailed algorithm of these tests, the reader is referred
to Wijngaard et al. (2003) and references therein. In the pres-
ent work, the four main absolute methods widely used for
homogeneity test are considered and are summarized in
Table 2. In the SNHT, BRT, and PT, an inherent step-wise
shift in the mean often designates an inhomogeneous series
and the test is capable of locating the corresponding break-
down time (i.e., these tests are location specific). Furthermore,
a classification of the test results reported in Wijngaard et al.

Table 1 Characteristics of the study network of stations

Geographical location National number Station name Latitude (°) Longitude (°)

Mashonaland West 67,891 Mhondoro Met −18.19 30.36

Mashonaland West 67,893 Chibhero Met −18.09 30.40

Mashonaland West 67,761 Kariba Airport Met −16.31 28.53

Matebeleland North 67,843 Victoria Falls Met −17.56 25.50

Midlands 67,865 Kwekwe Met −18.56 29.50

Mashonaland North 67,869 Kadoma Met −18.19 29.53

Mashonaland West 67,765 Karoi Met −16.50 29.37

Matebeleland North 67,853 Hwange Met −18.44 26.57

Midlands 67,861 Gokwe Met −18.13 26.56

Matebeleland North 67,755 Binga Met −17.37 27.20

Matebeleland North 67,857 Tsholotsho Met −19.45 27.46

Matebeleland North 67,855 Lupane Met −18.57 27.48

Matebeleland North 67,863 Nkayi Met −19.00 28.54
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(2003) has also been considered to characterize the nature of
homogeneity across the stations used in this study.

3.2.2 Trend analysis

In this study, trend analysis was done using the non-
parametric Man-Kendall (MK) test (Mann 1945; Kendall
1975). In particular, the trend magnitudes were computed by
the Theil-Sen’s estimator (Theil 1950; Sen 1968). The MK
test has been widely used in hydro-meteorological time series
to detect significant trends (Yue and Hashimo 2003;
Cannarozzo et al. 2006; Partal and Kahya 2006; Mazvimavi
andWolski 2006; Modarres and da Silva 2007; Kampata et al.
2008; Liu et al. 2008) and highly recommended by the
World Meteorological Organization (WMO). The
authors feel that it suffices just to mention the MK null
hypothesis herein and the readers are encouraged to refer to
the existing numerous literature for relevant equations of the
MK test statistic.

3.2.3 Wavelet-based coherence analysis

One practical application of wavelet analysis in interpreting
multiscale, irregular, non-stationary, and noisy time series as
well as analyzing the transient coupling between any two sig-
nals has been demonstrated and reported in numerous litera-
ture (see for example, Torrence and Compo 1998; Grinsted
et al. 2004; Maraun and Kurths 2004; Maraun et al. 2007). In
order to characterize the causal relationships (such as localized
variability, dominant modes of variability, and their time evo-
lution) of precipitation across the study network in the Kariba
catchment area (which are thought to be linked together by
similar climatology), rainfall records at each station were
decomposed into time-frequency space based on the proce-
dure described in Torrence and Compo (1998). In the present
work, the continuous wavelet transform was used to expand
the annual precipitation time series into the wavelet space in
order to detect and characterize any inherent intermittent var-
iability (Torrence and Compo 1998; Grinsted et al. 2004;

Table 2 Absolute statistical methods of homogeneity test

Type of test Null hypothesis Remarks

Standard normal homogeneity
test (SNHT)

H0: The whole series is homogeneous, i.e.,
zi∈N(0,1); i∈(1....n)

H1: Series is inhomogeneous i.e.,

zi∈
N μ1; 1ð Þ; i∈ 1::::að Þ
N μ2; 1ð Þ; i∈ aþ 1::::nð Þ

�

– Alexandersson (1986) and Alexandersson
and Moberg (1997)

– Can be used to account for more than one
discontinuity, testing for inhomogeneous
trends rather than just breaks, and inclusion
of change invariance

Buishand range
test (BRT)

H0: Precipitation follows one or more
distributions that have the same mean

H1: there exists a time t the precipitation
changes the mean

– Buishand (1982)
– Use adjusted partial sums:

S�0 ¼ 0

S�y ¼ ∑
y

i¼1

Y i−Y
� �

; y ¼ 1; 2…:; n

– When the value of Sy
* oscillates around zero,

then the data is homogeneous
– A rescaled range is computed as

R ¼
max S�y
0 ≤ y ≤ n
σ −

min S�y
0 ≤ y ≤ n
σ

Pettit test H0: Data are homogeneous
H1: A date at which there is change
in the data exists

– Pettit (1979)
– This test is based on the rank, ri of Yi, and
ignores the normality of the series

X y ¼ 2∑
y

i¼1
ri−y nþ 1ð Þ ; y ¼ 1; 2;…n

– The break occurs in year k when

X k ¼ max1≤ y≤n X y

�� ��
von Neumann ratio test (VNRT) H0: precipitation data sets are independent,

identically distributed randomly and that
for homogeneous precipitation, the mean
of the ratio is two

H1: there is a date at which there is a change
in precipitation

– von Neumann (1941)
– It is a test that used the ratio of mean square
successive (year to year) difference to the
variance

– Test statistic:

N ¼ ∑n−1
i¼1 Y i−Y iþ1ð Þ2

∑n
i¼1 Y i−Ymeanð Þ2

N
N−1
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Maraun and Kurths 2004;Maraun et al. 2007). In addition, the
CrossWavelet Transform coefficients (CWTs)were construct-
ed from pairs of continuous wavelet transform coefficients
(station-wise pairs). The CWTs are suitable for divulging
common power and relative phases present in the time series
in the wavelet space. In order to reveal significant coherence
(even in cases of low common power) of the paired station-
wise precipitation records, the Wavelet Coherence (WC) be-
tween any two CWT was computed and analyzed using a
methodology reported in, e.g., Grinsted et al. (2004) and
Maraun and Kurths (2004). Overall, the advantage of using
wavelet-based parameters (i.e., CWT and WC) is that they
vary in time and therefore can detect the association between
different modes of climate fluctuation as well as provide the
localized linear correlation of pairs of climate fluctuation at a
specific frequency and time in the wavelet space. The statisti-
cal significance of the computed CWTand WC were estimat-
ed using the Monte Carlo method reported in Grinsted et al.
(2004).

4 Results and discussion

4.1 Rainfall variability in the Kariba catchment area

Understanding and explaining the nature and causes of quasi-
regular spatial-temporal variability in precipitation has been
central in hydro-meteorology, climate, and weather research.
In the first phase of analyzing rainfall variability in the Kariba
catchment region, graphical visual examination of the data
sets was carried out in order to flag any biases (this is deter-
mined statistically by use of standard deviation as the thresh-
olds) and record the number of missing data sets. In general,
the data sets used in the present study were good and the
proportion of missing data was less than 0.5 % in most of
the stations. As shown in Fig. 2, the pattern or structure of,
e.g., the monthly rainfall variability across the study network

is strikingly similar albeit systematic differences in the ampli-
tudes of the modes of variability across the stations and at
different timescales.

Time box plots depicted in Fig. 3 were used to analyze the
characteristic variability of rainfall across all the stations. As
illustrated in Fig. 3, all the stations exhibit very similar decadal
variability pattern as there are no noticeable differences in the
decadal medians. The long upper whisker could be associated
to the presence of extreme values and or outliers (biases) in the
data sets. The seasonally averaged rainfall totals clearly depict
that summer rainfall (DJF) is also 50 % higher than winter
(JJA), which, as expected, has the lowest rainfall. The vari-
ability during winter is at the minimum (short whiskers). The
seasonal pattern of rainfall in the Kariba catchment region is
demonstrated by the bottom panel of Fig. 3. As shown in
Fig. 3, the Kariba catchment area receives rainfall between
November and March with extreme rainfall events or
suspected station-dependent interventions recorded in across
most months except for January and November.

Investigating whether the rainfall series exhibits a normal
distribution is vital in order to determine whether parametric
or non-parametric tests would be used for assessing the pres-
ence of interventions, homogeneities, trends, and variability.
In order to understand the underlying distribution characteris-
tics of the monthly rainfall, DJF, and annual averaged rainfall
totals, four normality tests—Shapiro-Wilk (SW), Anderson-
Darling (AD), Lilliefors (LF), and Jarque-Bera (JB) tests (see
for example Quesenberry 1986); Razali and Wah 2011)—
were applied to the rainfall data sets. The results of these tests
are given in Table 3. As illustrated in Table 3, the normality of
rainfall data was confirmed by two and four tests only in
Victoria Falls and Tsholotsho stations, respectively. Data from
six stations were confirmed normally distributed from all the
tests. The percentage number of stations confirmed to be nor-
mally distributed varied from test to test as follows: JB (85%),
LF (81 %), AD (81 %), and SW (65 %). Two important con-
clusions can be drawn from results given in Table 3. Firstly,
the test for normality across by use of four normality tests
yields different tests for the different time series of interest,
i.e., annual or seasonal. These inherent differences arise due to
the differences in the data records as well as the differences in
the underlying geophysical processes that drive rainfall vari-
ability. Notwithstanding these differences, confirmation of
normality in the rainfall totals is important as it avers to the
use of non-parametric methods for intervention, homogeneity,
and trend analysis as appropriate in the present study.

4.2 Intervention and homogeneity analysis

4.2.1 Intervention analysis

The rainfall CUSUM values for 12 of the 13 stations depicted
in Fig. 4 demonstrate that the monthly rainfall has been aboveFig. 2 Visual inspection of rainfall variability
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the long-term mean (calculated over the 40-year period, i.e.,
1970 to 2010) in some of the time in 11 stations. Furthermore,
there appears to have been interventions in most of the stations
(about eight) from 1982, resulting in a generally downward
trend. The most probable dates (months since January 1970)
for the observed interventions were determined and the step
change analysis was carried to validate the observed interven-
tion. The intervention dates and the corresponding step change
analysis results are given in Table 4. It appears that the test
statistic (Z values) are less than the critical value of 1.96 (5 %)
in all 12 stations, suggesting that the CUSUM values cannot
be confirmed. These results imply that the rainfall time series
in Kariba catchment area come from the same climatological
region and the area experiences an oscillatory hydro-
meteorological signal that has no apparent shifts over the 40-
year period.

4.2.2 Homogeneity tests

Annual total rainfall amounts at each of the 13 stations was
tested for homogeneity by the four absolute test methods re-
ported in, e.g., Wijngaard et al. (2003), i.e., SNHT, BRT, PT,
and VNT, and the results are given in Table 5. As reported in,
e.g., Wijngaard et al. (2003), Feng et al. (2004), and Sahin and
Cigizoglu (2010), the absolute tests considered here could
have different sensitivities to changes in rainfall series. As a
result, there are apparent differences in test results
across the stations as illustrated in Table 5. The VNT
scored four inhomogeneities; SNHT scored two inhomo-
geneities while PT and BRT scored one inhomogeneities
each. Additionally, based on the Wijngaard et al. (2003)
classification, the present study distinguished the inho-
mogeneities across the 13 stations by categorizing them

Fig. 3 Box plot for showing
rainfall variability

Table 3 Normality tests for annual, seasonal rainfall totals

Type of test and parameter of
interest

Karoi Hwange Gokwe Binga Tsholotsho Lupane Nkayi Mhondoro Chibhero Kariba Victoria Falls Kwekwe Kadoma

Shapiro-Wilk Annual 0.009 0.002 0.533 0.741 0.009 0.375 0.089 0.227 0.072 0.307 0.000 0.249 0.367

DJF 0.210 0.322 0.483 0.447 0.026 0.231 0.439 0.008 0.174 0.922 0.045 0.134 0.647

Anderson-Darling Annual 0.024 0.105 0.797 0.845 0.061 0.443 0.134 0.165 0.043 0.404 0.008 0.461 0.507

DJF 0.282 0.478 0.574 0.214 0.055 0.308 0.683 0.206 0.214 0.974 0.017 0.038 0.476

Lilliefors Annual 0.074 0.358 0.936 0.700 0.017 0.518 0.139 0.391 0.100 0.508 0.096 0.462 0.275

DJF 0.223 0.375 0.652 0.205 0.218 0.351 0.683 0.325 0.069 0.996 0.000 0.040 0.503

Jarque-Bera Annual 0.153 0.000 0.630 0.648 0.000 0.551 0.080 0.843 0.287 0.560 0.000 0.377 0.455

DJF 0.370 0.525 0.433 0.705 0.313 0.603 0.551 0.000 0.432 0.814 0.392 0.640 0.784

Number of passes 5 6 8 8 4 8 8 6 6 8 2 6 8
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depending on the number of absolute tests rejecting the
null hypothesis at the 5 % significance level, i.e., (a)
class A, zero or one rejection; (b) class B, two rejec-
tions; and (c) class C, three or more rejections.

As shown in Table 5, Mhondoro and Tsholotsho stations
are suspect (class C) and doubtful (class B), respectively, and
all the other stations are useful (class A). This means that most
of the stations considered in the present study seem to be
homogeneous (and that the inherent heterogeneity amplitude
that could be present is subtle) and therefore credible for
trends and variability analysis. The heterogeneity present in
Mhondoro suggest that any trends present in the Mhondoro
rainfall data ought to be considered with caution or
disregarded unless the magnitude of the trend is sufficiently
large and this has to be supported with a priori information

regarding the presence of climatic signal rather than artificial
excursions.

Given in Table 6 are the results of the SNHT, BRT, PT, and
VNT tests applied to DJF rainfall totals. The BRT and VNT
characterize DJF rainfall at Hwange, Gokwe, and Chibhero
stations to be inhomogeneous. These stations are in close
proximity to Mhondoro station. Similarly, the DJF rainfall at
the 13 stations has been characterized into two nominal clas-
ses A and B. Furthermore, Hwange, Gokwe, and Chibhero
stations belong to class B category while the rest of the sta-
tions are class A category. These results suggest that trend and
variability analysis of the DJF rainfall totals could be consid-
ered plausible. As a result, trend analysis of summer (DFJ)
rainfall totals described in the present study inherently char-
acterizes the nature of rainfall across the Lake Kariba catch-
ment region of the Zambezi river basin.

4.3 Trend analysis

4.3.1 Annual trends

Results of the MK test for annual trends of precipitation in the
Kariba catchment area, Zambezi basin, for the period 1970 to
2010 are shown in Table 7. All the stations with the exception
of Mhondoro exhibit insignificant trends, suggesting that the
probability distribution of the geophysical process driving the
variability of rainfall totals has not changed over time. Our
results corroborate those reported in Kampata et al. (2008)
who used non-intervened series of rainfall in the hindstream
of the upper Zambezi River Basin in Zambia. This underlying
similarity arises due to the fact that the study region reported
in Kampata et al. (2008) belongs to the same climate regime as
the current study region. Using the KM test, it can be noticed
that both positive (~62 %) and negative (~38 %) trends were

Fig. 4 CUSUM plot for rainfall
in 12 stations

Table 4 Step change analysis using the rank-sum method

Stations Parameter

Break point (month) P value h value Z value

Karoi 144 0.15 0 1.45

Gokwe 144 0.16 0 1.40

Binga 112 0.22 0 1.24

Tsholotsho 144 0.22 0 1.23

Lupane 144 0.16 0 1.40

Nkayi 128 0.14 0 1.48

Mhondoro 384 0.09 0 −1.68
Chibhero 144 0.32 0 0.99

Kariba 144 0.18 0 1.35

Victoria Falls 240 0.19 0 1.30

Kwekwe 144 0.30 0 1.03

Kadoma Cotton 144 0.13 0 1.51
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identified in annual precipitation data (this is illustrated in
Fig. 5). Based on the Theil-Sen’s estimator, the magnitudes
of the significant trends were determined to be in the range of
about (−) 0.027 mm/year at Mhondoro station to (+)
0.013 mm per year at Tsholotsho station.

4.3.2 Seasonal trends

The seasonal trends in rainfall time series were assessed
by applying the MK test to the DJF rainfall time series
spanning 1970 to 2010. As depicted in Table 8, all the

stations did not have any significant trend at the 95 %
significance level. As shown in Table 8 and Fig. 5,
there exist both negative (~69 %) and positive (31 %)
insignificant trends, and this structure is a complete in-
verse compared to the annual distribution pattern. This
means that the Kariba catchment area is becoming sub-
tly drier. This scenario might impact negatively on, e.g.,
the agricultural and livestock production activities (espe-
cially those activities that are time critical) in the area.
In addition, decisions related to water management will
be impacted due to the associated reduction of water

Table 7 Annual rainfall trend test statistics for significant trends at α=0.05

Station name Mann-Kendall test Sen’s slope h values

KENDALL τ P values (two-tailed) Z values P values (two-tailed) b

Karoi 0.04 0.73 0.35 0.25 0.005 0

Hwange 0.05 0.65 0.45 0.89 0.005 0

Gokwe −0.02 0.87 −0.17 0.40 −0.002 0

Binga 0.09 0.43 0.80 0.87 0.012 0

Tsholotsho 0.10 0.38 0.89 0.54 0.013 0

Lupane 0.00 1.00 0.00 0.45 0.000 0

Nkayi 0.08 0.49 0.69 0.75 0.009 0

Mhondoro −0.25 0.02 −2.30 0.11 −0.027 1

Chibhero −0.05 0.68 −0.42 0.45 −0.007 0

Kariba −0.03 0.80 −0.26 0.19 −0.008 0

Victoria Falls 0.05 0.63 0.48 0.29 0.006 0

Kwekwe −0.01 0.94 −0.08 0.67 −0.004 0

Kadoma Cotton 0.02 0.88 0.15 0.43 0.003 0

Table 8 Summer (DJF) rainfall trend test statistics for significant trends at α=0.05

Station name Mann-Kendall test Sen’s slope h values

Kendall τ P values (two-tailed) Z values P values (two-tailed) b

Karoi 0.04 0.75 0.33 0.87 0.005 0

Hwange −0.18 0.28 −1.08 0.63 −0.016 0

Gokwe −0.06 0.62 −0.51 0.46 −0.007 0

Binga −0.06 0.59 −0.54 0.40 −0.010 0

Tsholotsho 0.01 0.91 0.11 0.91 0.001 0

Lupane −0.03 0.76 −0.30 0.91 −0.004 0

Nkayi 0.10 0.35 0.93 0.40 0.013 0

Mhondoro −0.01 0.93 −0.09 0.66 −0.001 0

Chibhero 0.08 0.44 0.77 0.91 0.011 0

Kariba −0.17 0.12 −1.57 0.25 −0.022 0

Victoria Falls −0.03 0.76 −0.30 0.16 −0.003 0

Kwekwe −0.07 0.50 −0.67 0.20 −0.012 0

Kadoma Cotton −0.02 0.87 −0.16 0.43 −0.001 0
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levels in Lake Kariba. This subtle declining DJF rain-
fall, high variability, and the low statistical significance
would often lead to underestimating the importance of
climate signals (trends) that could be very catastrophic
to society and the economy. The magnitude of the sea-
sonal trends inherent in the DJF series in the Kariba
catchment area ranges between −0.022 mm to +
0.013 mm per annum at Kariba and Nkayi stations,
respectively.

4.4 Coherence of rainfall variability across stations

The CWT and WC derived from the Morlet continuous
wavelet transform have been used to examine the nature
of monthly total rainfall variability patterns across the

Kariba catchment area by assessing the presence of
common power and the relative phase in the time-
frequency space. In particular, the phase relationships
between standardized rainfall records are explored given
that they have common climatology. The Monte Carlo
method [using 1000 ensemble surrogate data set pairs of
the red noise based on the lag-one autoregressive (AR1)
model coefficients of the standardized rainfall data sets]
was used to compute the statistical significance (5 %) of
CWT and WC. In the wavelet space, the rainfall vari-
ability in the northern region of the Kariba catchment
area is depicted in Fig. 6. As illustrated in Fig. 6, the
CWT of the standardized rainfall records at Karoi and
Chibhero stations have constant in-phase and high com-
mon power (at 5 % significance level) during 1978–
1983 and 1995–2003. There is, however, a larger area
with phase-lock deviation outside the 5 % significance
level. This implies that there are unreliable phase lags
in rainfal l between the two northern sta t ions.

Fig. 7 Same as Fig. 6 but for rainfall between Tsholotsho and Nkayi

Fig. 8 Same as Fig. 6 but for rainfall between Mhondoro and Chibhero
stations

Fig. 6 Cross wavelet transform (top) and squared wavelet coherence
(below) for rainfall between Karoi and Chibhero stations. Time (in
years) is plotted on the horizontal axis while the period (in years) is
plotted on the vertical axis. Color codes from dark blue (low values) to
dark red (high values). The thick black contour designates the 5 %
significance level against red noise and the lighter curve is the cone of
influence (COI) that delimits the region not influenced by edge effects

Fig. 5 Distribution of positive and negative trends at the 95 %
confidence level using the Mann-Kendall test for the annual and
seasonal rainfall mean totals (1970–2010)
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Furthermore, the WC depicts larger sections with 5 %
significance level exhibiting in-phase relationship, sug-
gesting causality in the rainfall fluctuations. Overall, the
modes of rainfall variability in the northern region of
the Kariba catchment area are wavelengths varying from
about 2 to 4 years.

As depicted in Fig. 7, rainfall fluctuations in the southern
part of the Kariba catchment area (Tsholotsho and Nkayi sta-
tions) do not show high common power (at 5 % significance
level) based on the CWT coefficients (top panel). However,
the rainfall variability exhibit insignificant locked in-phase
oscillatory modes at two wavelength bands varying from 2
to 6 years and 8–11 years around 1975 to 1985 and 1985 to
2002, respectively. The eastern part (Mhondoro and Chibhero
stations) of the Kariba catchment area exhibits significant high
power and constant in-phase around 1975–1985 and 1995–
2002 (see Fig. 8). As shown in the bottom panel of Fig. 8,
there is a larger section of the wavelet space with significant
coherent oscillatory modes at varying wavelengths of 2–6 and
10–12 years between 1975 and 1998. This suggests that the
rainfall variability as recorded inMhondoro mirror the rainfall
records at Chibhero station.

Rainfall variability for stations in the western part of the
Kariba catchment area, i.e., Victoria Falls and Binga stations,
are depicted in Fig. 9. The top panel illustrates that rainfall
fluctuations at Victoria Falls and Binga stations have small
sections in the wavelet space with significant common high
power at timescales of 4 and 10 years. Sections with 5 %
significance level are locked in-phase. The coherency in os-
cillatory modes (see bottom panel of Fig. 9) occurs at wave-
lengths above 8 years while the locked in-phase oscillatory
modes appear between 1982 and 1995.

Figure 10 depicts the CWT (top panel) and WC (bottom
panel) for rainfall records in the central part (Gokwe and
Kariba) of the Kariba catchment area. As illustrated in the
CWT, areas of significant high common power occur at

wavelength region of approximately 2–3 years centered
around 1985. Furthermore, there are weak in-phase oscillatory
modes of rainfall records at Gokwe and Kariba stations.
Gokwe and Kariba stations have the shortest baseline imply-
ing that the fluctuations in the rainfall series ought to mirror
each other. On the other hand, the WC of the rainfall time
series at Gokwe and Kariba stations exhibit high coherence
around 1985 (at a wavelength of 2–3 years) and between 1995
and 2005 (wavelength centered at 4 years). Compared to the
short baseline (i.e., between Gokwe and Kariba stations),
Karoi and Tsholotsho stations have a relatively long north–
south baseline. The relationship between rainfall records at
Karoi and Tsholotsho stations is depicted in Fig. 11. The
CWT (top panel in Fig. 11) illustrates that the significant
locked in-phase rainfall oscillatory modes and common power
with time scale of 4 years occurred around 1998. Compared to
CWT, the WC (bottom panel in Fig. 11) depicts a larger sec-
tion of significant coherency with marked locked in-phase
rainfall fluctuations, suggesting that rainfall variability at the
various stations across the Kariba catchment area exhibits

Fig. 11 Same as Fig. 6 but for rainfall between Karoi and Tsholotsho
(long north–south baseline) stations

Fig. 10 Same as Fig. 6 but for rainfall at Gokwe and Kariba stations

Fig. 9 Same as Fig. 6 but for rainfall at Victoria Falls and Binga stations
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spatially independent and temporally independent constant
phases. Overall, the characteristics of rainfall variability in
the Kariba catchment area based on the wavelet-based param-
eters are summarized as in Table 9.

5 Conclusions

The significance of analyzing the variability of rainfall for
weather and climate studies has been underscored by various
researchers from the diverse scientific community. In the pres-
ent study, rainfall data from a network of 13 stations across the
Kariba catchment area in the Zambezi river basin has been
analyzed. Based on the four decades of rainfall data, the fol-
lowing conclusions can be drawn:

(a) All network stations in the Kariba catchment exhibited
similar annual and seasonal (DJF) rainfall variability
pattern.

(b) Annual and seasonal rainfall series across the network of
stations over Lake Kariba catchment area (about 78 %)
demonstrated normal distribution.

(c) There were no apparent significant shifts in the annual
and seasonal rainfall data in the Kariba catchment area
based on the CUSUM and rank-sum test analysis.

(d) Annual and seasonal rainfall data from most of the sta-
tions were homogeneous. Based on the Wijngaard et al.
(2003) classification, the network of station considered
in the present study were category A (useful) and B
(doubtful) stations implying that trend and variability
analysis results using the station time series would be
considered plausible.

(e) The annual and seasonal rainfall series in the Kariba
catchment area have non-significant positive and nega-
tive trends.

(f) Most network stations considered in the present study
exhibit coherent oscillatory modes that are constantly
locked in-phase in the Morlet wavelet space.

The current study is a step towards bridging the gap in
rainfall variability characterization in the Kariba catchment
area. In particular, these results would be valuable since

local-scale rainfall variability can lead to sudden changes in
water availability in the surface and sub-surface hydrologic
systems thereby significantly affecting agriculture, livestock,
water supply, and hydropower sectors—the social economic
livelihoods over the study area. Future studies focusing on
investigating the (a) occurrence of extreme events and (b) link
between rainfall variability and tele-connection patterns such
as the Intertropical Convergence Zone (ITCZ), El Niño and La
Niña (ENSO), and Indian Ocean Dipole (IOD) are
recommended.
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