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Abstract

The building sector contributes a large proportion of the world’s total final energy consumption. As a
result, considerable attention has been paid to energy efficiency in the building sector. At the current stage,
building retrofitting is the most feasible and cost-effective method to improve building energy efficiency. This
paper presents a multi-objective optimization model for life-cycle cost analysis and retrofitting planning
of buildings. A Net Present Value (NPV) based economic analysis taking life-cycle cost into account is
introduced to formulate the objective functions. In addition, a combination of multiple alternative measures
for each retrofitting intervention is considered in determining the optimal solution. The presented model
aims at maximizing both energy savings and economic benefits during a selected time frame. It allows
decision makers to make best use of the available budget. A Differential Evolution (DE) algorithm is
proposed to solve this optimization problem. The result of the case study illustrates the effectiveness of the
multi-objective optimization model to support the planning of energy-efficient and cost-effective building
retrofitting projects.

Keywords: Building retrofitting, Multi-objective optimization, Life-cycle cost, Multiple retrofitting
measures

1. Introduction

The building sector is nowadays drawing considerable attention in the energy area, being responsible for
about 40% of the total energy consumption in the European Union (EU) and 32% in the world [1]. The
practice of green buildings can reduce the growth of future energy demands. However, improving the energy
efficiency in existing buildings is not similar to that in a brand new green building. Building retrofitting is
currently the most feasible method to reduce the present energy demands in existing buildings1.

During the building retrofitting, Energy Conservation Measures (ECMs) are taken on the current facilities.
The development of technologies allows more and more available ECMs to improve the energy performance,
whereas the selection of proper measures needs to satisfy several different requirements. Decision makers
should take energy, economic, social and other factors into account to strike the best balance between stake-
holders’ and occupants’ requirements [2]. The obtained optimal solution is usually a trade-off between these
energy and non-energy related factors. Therefore a key problem of building retrofitting is the identification
of the proper measures for the project using different criteria based on specific requirements.

Over the last decade, the Multi-Criteria (MC) model has often been used to evaluate a building retrofitting
project. The criteria mainly focus on the energy efficiency, the capital cost and other comfort factors, such
as the usable space for the occupants in the building [3], the air quality and the thermal comfort [4]. Some
MC-based approaches for the evaluation of retrofitting projects can be found from [5, 6, 7, 8]. During

1A Guide to Energy Management in Public Buildings, 2008, http://old.gbcsa.org.za/system/data/uploads/resource/
101_res.pdf
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the design phase of a retrofitting project, MC are also adopted. Energy saving and capital cost are the
most considered criteria for optimal building retrofitting planning [9, 10]. As the requirements within these
criteria are often contradictory, the planning process is essentially a multi-objective optimization problem
subject to several constraints.

According to a recent review [11], there is clear growth in the popularity of multi-objective optimization
for sustainable building design. Recent research [12] especially discusses a multi-objective optimization
model for building retrofitting investment decision. The objectives of the model are to maximize the energy
savings and minimize the payback period for the given initial investment. By using the model in [12], a cost-
effective retrofitting plan with a budget constraint can be obtained. However, in [12], the optimal solution
is restricted only to a single preselected retrofitting measure per type of intervention. In practical projects,
more alternatives can be provided for each type of intervention. The decision maker has to select the proper
measures, even a combination of several measures from all available options for the same intervention. Such
a selection is difficult to make prior to the multi-objective optimization. A more feasible method is to
simultaneously consider all available alternatives during the optimization. The selection of proper measures
thus becomes a part of the optimization.

When evaluating several alternatives, one must not only consider the initial cost of an alternative, as one
alternative could appear cost-effective at the installation stage but more expensive to maintain during the
operation than other alternatives. Such alternative would in fact not be a cost-effective option over the
long term. To evaluate the long-term cost-effectiveness of building retrofitting investments, Life-Cycle Cost
Analysis (LCCA) should be applied. LCCA is an advanced technique especially for assessing the total cost
of facility ownership. The Life-Cycle Cost (LCC) is associated with the estimation of future cash flow.
The LCC of an asset is defined as the total cost throughout its life including planning, design, acquisition,
support and any other costs directly attributable to owning or using the asset 2. For the building retrofitting
investments, LCCA, a widely used technique for building retrofitting, can be applied to estimate the overall
cost of the alternatives during the life-cycle of the building and evaluate the cost-effectiveness. Kaynakli
[13] used LCCA to determine the optimal thickness of the insulation material in a building envelope for best
cost-effectiveness. Menassa [14] presented a method to determine the investment of building retrofitting
projects by taking into account different uncertainties associated with life-cycle cost and perceived benefits
of this investment.

The Simple Payback Period (SPP) was chosen to assess the economic viability in [12]. A variety of typical
economic analysis methods can be used to evaluate the cost-effectiveness of building retrofitting investments,
such as Net Present Value (NPV), Internal Rate of Return (IRR), Overall Rate of Return (ORR), Benefit-
Cost Ratio (BCR), Discounted Payback Period (DPP) and SPP [15, 16]. When the future cash flow is taken
into account, NPV is identified as the most widely used technique for optimal building energy assessment
[17]. The NPV method, rather than the other economic analysis methods, translates the future cash flow
into the present value of money, provides an explicit method to evaluate the overall value of a project. If
the NPV of a prospective project within a chosen time frame is non-negative, the project is considered
profitable. Verbeeck and Hens [18] as well as Petersen and Svendsen [19] used the NPV method to compare
the economic viability of different retrofitting measures.

This paper builds on and extends the study of [12] by presenting a multi-objective optimization model with
life-cycle cost analysis for building retrofitting planning. The optimization model involves both selecting
proper retrofitting measures from a range of available alternatives per type of intervention and determining
the quantities of retrofitted facilities using the chosen retrofitting measures. The model aims at minimizing
energy consumption, reducing the payback period and maximizing economic benefits with the lowest possible
life-cycle cost. The payback period is defined as the earliest possible time after which the NPV of this project

2NSW Treasury, Life Cycle Costing Guideline, http://www.treasury.nsw.gov.au/__data/assets/pdf_file/0005/5099/

life_cycle_costings.pdf
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remains non-negative. The economic viability is assessed by the NPV method. Life-cycle cost indicates the
economic sustainability of the project and minimal life-cycle cost is emphasized in the model to guarantee
long-term cost-effectiveness.

The presented model considers combinations of multiple alternative retrofitting measures in a building.
There are many possible combinations, and the evaluation of alternatives often involves non-linear objective
functions, as shown in [9, 10, 12]. With the development of computational powers and algorithms, it is
possible to address problems that were previously infeasible [11]. The Evolutionary Algorithm (EA), a kind
of generic population-based meta-heuristic optimization algorithm, is generally applied to address building
energy optimization problems. As a typical EA, Genetic Algorithms (GAs) are widely used in optimal
building retrofitting studies, such as [20] and [12]. However, when using GAs to solve a new optimization
problem, the encoding becomes difficult and the convergence speed is slow. As one of the improvements
of the classical EAs, Differential Evolution (DE) algorithms are simple and efficient heuristic methods first
proposed by [21]. According to [21] and [22], DE generally outperforms GAs and many other algorithms on
many numerical benchmark problems, including unimodal as well as multimodal functions, functions with
correlated and uncorrelated variables, and a single problem with plateaus. Comparing to the other EAs,
DE is robust, converges faster, and easy to implement. Consequently, a DE algorithm is adopted to solve
the optimization problem presented in this paper. As a case study, a practical building retrofitting project
is used to test and verify the feasibility and advantages of the proposed approach.

The remainder of this paper consists of four sections. Section 2 gives the formulation of the multi-objective
optimization model. Section 3 introduces the DE algorithm to solve the optimization problem. Section 4
provides results and analysis. Section 5 draws conclusions and discusses future research.

2. Multi-objective Optimization Model

2.1. Decision variables

A building retrofitting plan consists of a set of retrofitting actions, which represents what and how
retrofitting measures are implemented. The retrofitting action is characterized by three components: the
existing facility to be retrofitted, the alternative interventions of new technological interventions and the
quantities of items corresponding to the chosen interventions, as demonstrated in Table 1.

Table 1: A sample retrofitting plan
Facilities Alternatives Quantities

Lighting
Lighting Intervention 1 20
Lighting Intervention 2 0
Lighting Intervention 3 35

Geyser Geyser Intervention 1 25

Air-Con
Air-Con Intervention 1 0
Air-Con Intervention 2 30

Assume that there are I types of facilities to be retrofitted, each corresponds to Ji types of alternative
interventions. Let xji denote the number of selected items from the i-th type of facility with the j-th

alternative intervention, namely alternative intervention (i, j). For i = 1, 2, ..., I, let Xi = (x1
i , x

2
i , ..., x

Ji
i ),

and X = (X1, X2, ..., XI). X is the decision variable which characterizes a retrofitting plan.

2.2. Multi-objectives formulation

Three objective functions are involved in the model. They are formulated as equations (1)-(3):

f1(X) = ES, (1)

f2(X) = NPV, (2)
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f3(X) = Tp, (3)

and there are the following constraints: ES ≥ α,
Tp ≤ T ′,
I0 ≤ β,

(4)

where ES is the total amount of energy savings during a time period [0, T ], where 0 is the initial time point.
To reduce the influence of accumulated errors over time, T is determined as the length of a specific time
period in our case, namely evaluation period. T is not necessarily the whole lifetime of the building. The
cost-effectiveness and energy-efficiency of a retrofitting project are evaluated during the evaluation period.
Tp is the discounted payback period. For simplicity, Tp is defined here as the time point after which the
NPV becomes and stays non-negative.

In the constraints, α is the targeted amount of energy savings, which is usually a percentage of the energy
consumption of the retrofitted building. T ′ is the expected payback period. β is the budget limit of the
retrofitting project. I0 represents the initial cost of the project, which includes the cost of purchasing items
and human labor for installation. Another form of constraints (4) can be written as:ES ≥ α,

Tp ≤ T ′,
Iall ≤ β′,

(5)

where the β′ is the budget limit for overall cost during the evaluation period. This new budget is represented
by β′. This scenario implies that there is a limit for the overall cost of the project during the evaluation
period. The impact of implementing different constraints will be discussed in the result and analysis section.

The objectives of this model are maximizing objective function f1(X) and f2(X), while minimizing f3(X).
Maximizing f1(X) is to maximize the energy saving. Maximizing f2(X) and minimizing f3(X) will guarantee
the economic benefits of the project. Implementing the three objectives allows a retrofitting plan that strikes
a balance between the total profit of the project and the earlier payback of the investment.

2.3. Model analysis

The parameters in the objective functions (1)-(3) are calculated by the following equations:

ES =

T∑
t=1

I∑
i=1

Ji∑
j=1

aji (t)x
j
i (t), (6)

NPV =

T∑
t=1

B(t) − Cm(t)

(1 + d)t
− I0, (7)

in which

I0 =

I∑
i=1

Ji∑
j=1

bjix
j
i , (8)

B(t) =

I∑
i=1

Ji∑
j=1

aji (t)x
j
i (t)p(t), (9)

Cm(t) =

I∑
i=1

Ji∑
j=1

uji (t)m
j
i (t). (10)

In these equations, aji (t) represents the energy saving at time point t of an item from the i-th type of facility

with the j-th alternative measure. aji (t) is usually a constant, whereas it is considered dynamic in some

4



cases due to the fatigue of the facilities. In equation (7), B(t) represents the profit of the retrofitting project
at time point t, Cm(t) represents the maintenance cost within the whole project at time t. In our present
model, the maintenance cost mainly takes the cost of replacing or repairing the interventions into account.
d is the discount rate for NPV calculation. I0 is the overall initial capital cost of the project, and bji is the
cost of installing a single item with the alternative intervention (i, j). In equations (9) and (10), p(t) is the
electricity price at time t and mj

i (t) is the maintenance cost of an item with the alternative intervention (i, j)

at time t. Usually the estimation of such prices takes into account the inflation. uji (t) represents the number
of maintenances that took place in this population at the previous time point, which can be considered as
the control input of the maintenance problem.

xji (t) represents the number of available items at time t. Therefore, xji (0) = xji . The influence of facilities
failures is taken into account in equations (6)-(10). The “failures” in the model refer to the problems that
make the facilities no longer available to the occupants of the building, for example, a faulty, flickering
light bulb, mechanical problems of the condenser or compressor of an air conditioner which prevent it
from working, etc. Items with such problems are considered as failed items which do not contribute to
energy savings and the corresponding profit. Maintenance of such items is the main source of the future
cash outflow. There could also be some electrical and mechanical problems which do not stop the items
from working, for example, the fatigue of a bulb or the refrigerant in an air conditioner needs to recharge.
The performance of the items will deteriorate due to these problems. However, such deterioration is not
significant compared to the estimation value of energy savings and the influence of the failed items. Thus
such issues of “degradation of service level” are not taken into account in the current model. The number
of the available items is estimated by the following equation:

xji (t+ 1) = Dj
i (xji (t)) + uji (t), (11)

where Dj
i (·) represents the decay of the population of items with alternative intervention (i, j). According

to the research on facility population decay [23], such decay is considered as a first-order Markov process,
which means the population size after decay only relates to the population size prior to the decay. As the
population decay mainly results from the failures of the items, the decay rate of a population with alternative
intervention (i, j) can be characterized by the failure rate of the corresponding intervention. Two models
according to the existing research are adopted for the present model to estimate the population decay:

Dj
i (xji (t)) = bji c

j
ix

j
i (t)

2/xji − bjix
j
i (t) + xji (t), (12)

Dj
i (xji (t)) = xji (t)e

−kj
i , (13)

where the coefficients b, c, k are estimated by the Mean Time To Failure (MTTF) for the non-repairable
product and Mean Time Between Failures (MTBF) for repairable product. Equation (12) is taken from
[23]. It describes the decay of the population of lamps, showerheads or motion sensors. Such facilities
are considered non-repairable in the model, whose MTTF is the rated lifetime, i.e., the length of the
life cycle of the item. Let Lj

i denote the rated lifetime, the general form of time-domain decay model

Xj
i (t) = (cji + eb

j
i t−L

j
i )−1 can be found in [23]. bji and cji can be identified from experimental data, whereas

when Lj
i is known, they can also be obtained by solving out the following equations:{

Xj
i (0) = 1,

Xj
i (Lj

i ) = 0.5.
(14)

Equation (13) describes the decay of the population of air conditioners, chillers or heat pumps that are
considered repairable products. For such a facility, the length of its life cycle is usually several times longer
than the MTBF. According to the reliability bathtub curve [24], the failure rate of the population is an
approximately low constant before the end of the lifetime. Therefore an exponential decay model is adopted
from [24] in equation (13). Let θji denote the MTBF of the facility, then kji is obtained from the following
equation:

kji = (θji )−1. (15)
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For each (i, j), the initial population size is xji , as the number of items to be installed at the initial time. As
described in equation (11), the new population is the summation of the survival of the previous population
and the control input uji (t). u

j
i (t) at each time point t is decided according to the maintenance plan, which

varies in different projects. Equation (10) calculates the maintenance cost, in which the unit maintenance
cost mj

i (t) is the price to maintain an item. For the non-repairable product, maintenance is to replace the

failed items, mj
i (t) is the price of the item at time point t. For the repairable product, maintenance refers

to the repairs, mj
i (t) is often a percentage of the item price [25].

2.4. The weighted sum method for multi-objective optimization

The multi-objective optimization model (1)-(10) can be solved by the weighted sum method. According
to the analysis in [26], the weighted sum method provides a basic and easy-to-use approach that gives an
acceptable approximation of one’s preference function when the preference information is not too complex. In
this model, the solution is a trade-off between energy performance and the investment. Thus the optimization
problem is translated into the minimization of a fitness function, which is the weighted sum of objective
functions associated with stationary penalty functions representing the constraints, given by equation (16):

F (x) = −λ1f1(x) − λ2f2(x) + λ3f3(x) + ω

3∑
k=1

max(0, Pk), (16)

where λ1, λ2, λ3 are a set of positive constant weights. During calculation, the objective functions are
adjusted such that they have similar value ranges. ω is a positive constant associated with the penalties.
Pk is the penalty function representing the constraints for this problem, and is defined as follows:

Pk =

α− ES, k = 1,
Tp − T ′, k = 2,
I0 − β, k = 3.

(17)

As given in constraint (5), there is another form of penalty functions in which the budget limit is for the
overall cost of the project:

Pk =

α− ES, k = 1,
Tp − T ′, k = 2,
Iall − β′, k = 3.

(18)

3. Solution by DE Algorithm

The basic operation of DE algorithm follows the general procedure of an evolutionary algorithm. There
are three main steps in a DE algorithm: Mutation,Crossover and Selection. The main difference between GA
and DE is that a differential vector generated from the current population is used to mutate the corresponding
parent. Then, a binomial crossover operation is applied to the parent vector and the mutation vector. The
result, namely child vector, is compared with its parent, and the winner with better fitness value is selected
to form the population of the next generation [27].

The pseudocode of the DE algorithm is presented in Table 2. In this method, let D denote the dimension of
the problem. G refers to the maximum step of iteration. NP represents the population size. The CR and
F are the crossover probability, and the mutation coefficient. Xp

best,g is chosen from the 10% best vectors of
the current population. Xr1.g −Xr2.g is a differential vector for the mutation operation, where Xr1.g, Xr2.g

are randomly selected from the current population. The mutation vector Vi,g and the child vector Ui,g are
accordingly generated. Fitness function F (·) refers to equation (16). As introduced above, DE algorithm
is a simple and efficient heuristic for global optimization. Consequently, DE finds the optimum in almost
every run [22]. For our presented optimization model, it is difficult to determine whether the optimization
result is globally optimal. However, the heuristic of DE provides the ability of escaping from local plateau.
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Table 2: Pseudocode of DE algorithm
line# Procedure of the DE based method

01 Begin
02 Set CR = 0.5; F = 0.5; A = Ø;
03 Create a random initial population {Xi,0|i = 1, 2, ..., NP};
04 For g = 1 to G
05 For i = 1 to NP
06 Randomly choose Xr1,g 6= Xi,g from current population P;
07 Randomly choose Xr2,g 6= Xi,g from current population P;
08 Randomly choose Xp

best,g as one of the 10% best vectors from P;

09 Vi.g = Xi.g + F · (Xp
best,g −Xi.g) + F · (Xr1.g −Xr2.g);

10 Generate jrand = randint(1, D);
11 For j = 1 to D
12 IF j = jrand or rand(0, 1) < CR
13 Uj,i,g = Uj,i,g ;
14 ELSE
15 Uj,i,g = Xj,i,g ;
16 END IF
17 END FOR
18 IF F (Ui,g) ≤ F (Xi,g)
19 Xi,g+1 = Ui,g ;
20 ELSE
21 Xi,g+1 = Xi,g ;
22 END IF
23 END FOR
23 END FOR
24 END

Generally, the solution is considered optimal when convergence is achieved and sufficient iteration number
is reached.

The parameters of DE algorithm are tuned in advance and kept fixed during the calculation. NP is usually
about 4 times of the value ofD to ensure the population diversity and convergence speed. The key parameters
are CR and F . The value of CR represents the trust in the mutation result. Larger F is recommended
because it is helpful to increase the diversity of the population [28]. CR and F are chosen to be 0.5 in our
case.

4. Results and Analysis

4.1. Case study

A retrofitting project similar to the case study in [12] is investigated. The difference is that multiple
alternatives for each intervention as well as the life-cycle cost information are incorporated. In this case
study, 12 types of energy efficiency potential facilities are considered and optimized in the building, including
lighting facilities, heat pumps, chillers, control systems and other devices. Each facility type has 2-5 alterna-
tive interventions. The content of the input data is shown in Table 3, including information on the existing
facilities and corresponding alternative measures. The information on these 12 types of facilities and their
alternative interventions are also given in Table 3. The Maximum Possible Quantity column regulates how
many items from a specific type of facility that can be retrofitted. The overall number of retrofitted items
for a specific intervention cannot exceed its maximum possible quantity. The Unit Cost with unit USD($)
here is the cost of purchasing and installing one such item; Energy Savings with unit kWh is the estimation
of the average annual energy saving from implementing the selected retrofitting measure to one such item;
Unit Cost Saving is the estimation of financial benefit from the energy saving. The maintenance cost and
the MTTF/MTBF are recorded within Maintenance Cost and MTTF/MTBF respectively. For simplicity,
the unit of MTTF/MTBF is translated into months rather than hours. The coefficients of the decay models
for each intervention are shown in Table 4. As mentioned in the previous section, there are non-repairable
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Table 3: Detailed information on existing and proposed alternative facilities
Existing Facilities Maximum

possible
quantity

Proposed alternatives Unit
Cost
($)

Energy
Savings
(kWh)

Unit Cost
Savings
($)

Main-
tenance
Cost($)

MTTF
/MTBF

No sensors installed 202 Motion sensor type1 196 1141 155.02 196 36
Motion sensor type2 150.28 1240 168.47 150.28 41

50W downlight I 537 energy saver globe type1 16.36 208 10.65 16.36 40
energy saver globe type2 16.93 223 11.42 16.93 35
energy saver globe type3 20.19 195 9.98 20.19 42
energy saver globe type4 18.95 220 11.26 18.95 40

50W downlight II 145 35 W new lamp ECG type1 14.19 102 5.2 14.19 40
35 W new lamp ECG type2 15.17 116 5.91 15.17 45
35 W new lamp ECG type3 14.25 107 5.45 14.25 43

18W recessed fitting I 270 18 W retrofitting ECG type1 11.72 21 1.07 11.72 38
18 W retrofitting ECG type2 11.11 20 1.02 11.11 31
18 W retrofitting ECG type3 9.47 25 1.27 9.47 33

54W recessed fitting II 1271 36 W triphosphor tubes type1 65.67 232 11.88 65.67 39
36 W triphosphor tubes type2 78.09 186 9.52 78.09 37
36 W triphosphor tubes type3 61.54 262 13.42 61.54 38
36 W triphosphor tubes type4 60.77 260 13.31 60.77 34
36 W triphosphor tubes type5 65.29 199 10.19 65.29 38

Old chillers 4 New chillers type1 147125 25392 13775.88 14712.5 24
New chillers type2 170590.31 23539 12770.57 17059.03 27

Electric geyser 9 3 kW heat-pumps type1 1250 10989 794.44 125 24
3 kW heat-pumps type2 1299.22 11166 807.24 129.92 27
3 kW heat-pumps type3 1544.88 12074 872.88 154.49 22

Electric geyser 3 22 kW heat-pumps type1 13750 1006 1854.13 1375 24
22 kW heat-pumps type2 13757.97 875 1612.69 1375.79 23
22 kW heat-pumps type3 12600.01 1152 2123.22 1260.01 27

Electric geyser 94 9 kW heat-pumps type1 1250 10989 72.74 125 24
9 kW heat-pumps type2 1355.36 12447 82.39 135.54 26
9 kW heat-pumps type3 954.95 9019 59.7 95.5 26

High-flow showerheads 360 Low-flow showerheads type1 11.25 278 18.61 11.25 65
Low-flow showerheads type2 10.54 254 17 10.54 58

No heater wraps 107 Heater wraps type1 21 273 21 21 51
Heater wraps type2 24.32 326 25.08 24.32 48
Heater wraps type3 22.36 243 18.69 22.36 60

No thermal traps 107 Thermal traps type1 8 380 8 8 67
Thermal traps type2 9.13 350 7.37 9.13 49

items which applies the decay model from equation (12), and repairable items which applies the decay model
from equation (13). The coefficients kji , bji and cji for different interventions are given respectively in the
three columns. These coefficients are calculated according to equation (14) and (15).

Some parameters in the optimization model are selected according to the specifics of the project. In this
case study, the evaluation period is 10 years. The targeted energy saving amount is 10% of the energy
baseline. The baseline energy consumption per year is known as 5,870,911 kWh in this project, thus the
energy baseline is 58,709,110 kWh, i.e., the overall baseline energy consumption during the evaluation period.
Baseline adjustment is not considered here, as this baseline mainly provides a targeted saving value. The
budget limit is shown in Table 5. There are 8 scenarios in Table 5. The first 4 scenarios A,B,C,D adopt
budget constraint from equation (17) while the rest scenarios E,F,G,H adopt the budget constraint from
equation (18). Thus the range of the budget amounts is much larger in the last 4 scenarios. The discount
rate in NPV calculation is 9%, which is recommended in South Africa [12]. For simplicity, the interest rate
of the electricity price and the cost savings is considered constant during the evaluation period, which is
7.1% according to the 2013 Eskom notification 3. The inflation of the maintenance costs is not considered
in this case study. The maintenance plan is decided by the owner of the building. In practise the failed
items are maintained together for convenience. Such maintenance usually takes place once every year or
two years. For the case study, uji (t) applies the following maintenance strategy from a practical building

3http://www.eskom.co.za/c/article/1772/notification-of-20132014-tariff-increase/
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Table 4: Coefficients of the decay models
Existing Facilities Proposed alternatives kj

i yj
i zj

i
No sensors installed Motion sensor type1 1.2895 0.9502

Motion sensor type2 1.2521 0.9672

50W downlight I energy saver globe type1 1.2587 0.9643
energy saver globe type2 1.2984 0.9459
energy saver globe type3 1.2458 0.9698
energy saver globe type4 1.2587 0.9643

50W downlight II 35 W new lamp ECG type1 1.2587 0.9643
35 W new lamp ECG type2 1.2286 0.9765
35 W new lamp ECG type3 1.2398 0.9722

18W recessed fitting I 18 W retrofitting ECG type1 1.2732 0.9579
18 W retrofitting ECG type2 1.3403 0.9245
18 W retrofitting ECG type3 1.3179 0.9361

54W recessed fitting II 36 W triphosphor tubes type1 1.2658 0.9612
36 W triphosphor tubes type2 1.2811 0.9542
36 W triphosphor tubes type3 1.2732 0.9579
36 W triphosphor tubes type4 1.3078 0.9412
36 W triphosphor tubes type5 1.2732 0.9579

Old chillers New chillers type1 0.5
New chillers type2 0.4444

Electric geyser 3 kW heat-pumps type1 0.5
3 kW heat-pumps type2 0.4444
3 kW heat-pumps type3 0.5455

Electric geyser 22 kW heat-pumps type1 0.5
22 kW heat-pumps type2 0.5217
22 kW heat-pumps type3 0.4444

Electric geyser 9 kW heat-pumps type1 0.5
9 kW heat-pumps type2 0.4615
9 kW heat-pumps type3 0.4615

High-flow showerheads Low-flow showerheads type1 1.1568 0.9956
Low-flow showerheads type2 1.176 0.992

No heater wraps Heater wraps type1 0.2353
Heater wraps type2 0.25
Heater wraps type3 0.2

No thermal traps Thermal traps type1 0.1791
Thermal traps type2 0.2449

management project, as described in equation (19):

uji (t) =

{
0, t = 1, 3, 5...

xji − xji (t), t = 2, 4, 6...
(19)

which means maintenances take place at the end of the year 2,4,6... During each maintenance, all the failed
items are fixed, so that the population size is increased to xji . For the 8 scenarios, λ1 = 0.5, λ2 = 0.6, λ3 =
0.2.

4.2. Illustrative results and analysis

Fig. 1 illustrates how the fitness values converge to optimal during the optimization in Scenarios A-
D. Rapid convergence can be observed in curves corresponding to scenarios B, C, D. Within 100 steps,
the curves become flat and the fitness values slowly descend to the optimal value. The solid curve which
corresponds to scenario A demonstrates several sharp descents, revealing the ability of escaping from local
plateau. As introduced in the previous section, it is difficult to determine whether the final result is globally
optimal. In the present model, DE is trusted to be able to obtain a good enough solution when sufficient
iteration number is reached. The following table shows the performances can be achieved by DE.

Table 6 illustrates the corresponding performances after applying the optimal solutions. In Table 6, Energy
Saving, Overall Profit and Overall Investment are the performance characteristics within the evaluation
period. Percentage saved is the proportion of energy saving compared to the overall energy baseline. Initial
Investment is the total cost of all units at the initial stage. The characteristics in Table 6 show how good
the performances are with the obtained solution: all constraints are satisfied and performances are actually
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Table 5: Eight scenarios with different budgets and expected payback period
Scenarios Description
Scenario A The budget is for initial investment, which is $60,000. The desired payback period is 3 years. The

targeted energy saving is 10% of the energy baseline.

Scenario B The budget is for initial investment, which is $95,000. The desired payback period is 3 years. The
targeted energy saving is 10% of the energy baseline.

Scenario C The budget is for initial investment, which is $125,000. The desired payback period is 3 years. The
targeted energy saving is 10% of the energy baseline.

Scenario D The budget is for initial investment, which is $195,000. The desired payback period is 3 years. The
targeted energy saving is 10% of the energy baseline.

Scenario E The budget is for overall investment, which is $100,000. The desired payback period is 3 years. The
targeted energy saving is 10% of the energy baseline.

Scenario F The budget is for overall investment, which is $125,000. The desired payback period is 3 years. The
targeted energy saving is 10% of the energy baseline.

Scenario G The budget is for overall investment, which is $175,000. The desired payback period is 3 years. The
targeted energy saving is 10% of the energy baseline.

Scenario H The budget is for overall investment, which is $250,000. The desired payback period is 3 years. The
targeted energy saving is 10% of the energy baseline.

Figure 1: Convergence of the fitness values by DE during optimization: Scenarios A-D
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Table 6: Performances of the optimal solutions
Payback Period Energy Savings Percentage Investment($) Overall NPV($)

(Month) (kWh) Saved Initial Overall Profit($)
Scenario A 13 6254370 10.65% 59999.08 74664.88 713406.6 446561.8

Scenario B 19 7948240 13.54% 94980.91 117119.7 782204.7 475804.9

Scenario C 23 9190815 15.65% 124981.3 154418.7 840633.7 499910.4

Scenario D 33 13867120 23.62% 194931.3 238434.4 860362.9 480573.4

Scenario E 17 7393115 12.59% 81628.21 99992.71 756256.7 465459.4

Scenario F 20 8191315 13.95% 102015 124999.4 793474.5 480421.2

Scenario G 25 9874125 16.82% 141727.6 174976.3 872425.8 512987

Scenario H 34 14537235 24.76% 204326.9 249774.8 863053.6 478002.8

Table 7: Performance of optimization results with old model
Payback Period Energy Savings Percentage Investment($) Overall NPV($)

(Month) (kWh) Saved Initial Overall Profit($)
Scenario A’ 15 5242835 8.93% 58136.98 125028.4 470462 228283.1

Scenario B’ 32 6262350 10.67% 94983.9 214335.1 466440.1 153620.3

Scenario C’ 31 8762920 14.93% 124459.6 242483.8 586299 209378.4

Scenario D’ 51 12136310 20.67% 190469.6 374205.2 682995.2 167563.2

much better than the target values implied in the constraints. The energy savings are significant comparing
to the energy baseline, and the payback periods are shorter than 3 years, especially in scenarios A-C. In
scenario D, the payback period is close to 3 years. This reveals the influence of various budgets: on the
one hand, with growing budgets, the energy saving and the profit keep increasing; on the other hand, the
payback periods are not actually improving as budgets grow.

In Table 6, scenarios A, B, C, D are cases where the budget is decided for the initial investment only, while in
scenarios E, F, G, H the budget is decided according to the total expenditure during the evaluation period.
The results of each pair are similar; one can choose either method according to practical requirements.
However, if one needs to control the expenditure on maintenance, the use of the constraint in equation (5)
is recommended. In all 8 scenarios, the investment is very close to its budget. This implies that the DE
algorithm generally gives priority to the most cost-effective alternative interventions according to the fitness
function. With increased budget, the optimal solution comprises more items which are less cost-effective
than the prior selected ones. Therefore the growth of the overall profit is not as significant as the investment.
Such tendency illustrates the method’s preference for cost-effective solutions. The radar charts in Figs. 2-3
demonstrate the shapes of the performance corresponding to the 8 scenarios. In order to show clearer results,
the scales of the values of each performance characteristics are normalized to the similar range. It can be
observed that the shapes of the optimal performances in the radar charts are very similar, only the scales
are different. The charts reveal the effectiveness of the optimization method to find global optimal solutions.

The existing optimization model in [12] considers only one preselected retrofitting measure for each facility
type. The SPP method is adopted in [12] without taking LCCA into account. Table 7 illustrates the
performances of the optimal solutions obtained from the model in [12]. According to this model, the
initial investment is the overall cost of the project, thus only scenarios A′, B′, C ′, D′ are tested, where
the conditions are same with scenarios A-D, respectively. The same criteria as proposed in the present
model are adopted to characterize the performances. Fig. 4 shows the shape of the performances with the
old model. From Table 7 and Fig. 4, with the old model, higher investments are corresponding with lower
savings and profits, reveal worse efficiency than the present model. As failures of items and the maintenances
are inevitable during the lifetime of the project and the building, the old model cannot provide the most
cost-effective solution, some of the solutions are not even feasible according to the constraints. Our model
is proved to be a better method for planning a practical retrofitting project.
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Figure 2: Performances in Scenarios A-D

Figure 3: Performances in Scenarios E-H

Figure 4: Performances with the old model
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Figure 5: Sensitivity analysis of the influence of maintenance cost and failure rate

4.3. Sensitivity analysis

In practise, many of the parameters required by the optimization model are not know with 100% confi-
dence and have to be estimated, such as the average energy savings, the electricity price, the discount and
interest rate and the failure rate of the interventions. The uncertainties of the parameters can influence the
actual performance of the project. In [12], a set of sensitivity analysis of several external influences, such as
the auditing error, electricity prices, wrongly specified energy savings and initial investment cost are given.
In our present model, the influences of the uncertainties of maintenance cost and the failure rate must be
considered as well. Scenario C is considered for illustration of such influences on payback period, energy
savings, overall investment cost and NPV. The results are given in Fig. 5.

The maintenance cost of the interventions can increase due to the fluctuation in economy. Significant
uncertainty of the failure rates of the interventions is inevitable in practise. As a result, the influence of
such bias on the performance of the optimal solution must be checked. Fig. 5 shows the influence when
the maintenance costs and the failure rates of all interventions are increased by 10%. According to the
Fig. 5, the influence of the increase of maintenance costs is not as significant as the uncertainties of the
failure rates. When failure rate is increased, the payback period becomes 25 months and the energy saving
becomes 8770500 kWh. The overall investment increases to $193735.4 and the NPV decreases to $447789.6.

5. Conclusion and future work

This paper presents an optimization model for building retrofitting planning. While maximizing the
energy savings and the economic benefits of the project as proposed in the existing research [12], the present
model introduces a building investment analysis method associated with life-cycle cost analysis. The new
method takes maintenance costs of retrofitted items into account to evaluate the overall cost-effectiveness
of the solution within a specific time frame. Furthermore, more available retrofitting options in a building
retrofitting project are introduced. A range of possible alternative measures as well as the quantities of
retrofitted facilities using the selected measures are evaluated. Considering a combination of alternative
measures allows the best cost-effectiveness of a retrofitting plan under the budget limit. The illustrative
results and analysis show that with the present model, it is possible to find the most cost-effective long-term
solution that includes life-cycle cost analysis and multiple option of retrofitting measures, unlike the existing
studies that exclude these. A DE algorithm, as verified in the case study to be able to find the optimal
solution for a building retrofitting problem, is adopted to solve the proposed optimization problem.

There are several topics which call for further studies on the investigated topic: a power saving profile can
be more informative than the annual energy saving estimation; the impact of the retrofitting project, e.g.,
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the influence on occupants’ behaviors has not yet been investigated; more criteria, such as the comfort
requirements can be introduced in the future optimization model.
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