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1. INTRODUCTION

Dynamic Multi-Objective Optimisation Problems (DMOOPS) are Multi-Objective Op-
timisation Problems (MOOPs) where either the objective functions or the constraints
change over time. This article focuses on unconstrained DMOOPs with objectives that
change over time and with static boundary constraints—that is, bounded constraint
DMOOPs. Furthermore, it should be noted that this article does not focus on MOOPs
with noise [Goh et al. 2010; Chia et al. 2012].

In order to determine whether an algorithm can solve DMOOPs efficiently, it should
be evaluated on DMOOPs that test the ability of the algorithm to overcome certain
difficulties, such as tracking a Pareto-Optimal Front (POF) that changes from convex
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to concave over time or finding a diverse set of solutions where the density of solutions
changes over time. Such functions are referred to as benchmark functions.

The set of benchmark functions chosen for a comparative study influence the results
and effectiveness of the study. Therefore, the benchmark functions should be chosen
with care. However, one of the main problems in the field of DMOO is a lack of standard
benchmark functions. Therefore, selecting which benchmark functions to use is not a
trivial task. In addition, currently no comprehensive overview of DMOOPs is presented
in the literature. This article seeks to address this problem by:

—Providing a comprehensive overview of DMOOPs that were suggested in the
literature

—Suggesting an ideal set of DMOO benchmark functions

This will enable a uniform comparison of Dynamic Multi-Objective Optimisation
Algorithms (DMOAs). In order to achieve these two main objectives, the following
subobjectives were identified:

—Investigating the current DMOOPs presented in the literature to establish whether
they are efficiently testing the performance of DMOO algorithms

—Identifying shortcomings of current DMOOPs
—Addressing the identified shortcomings of current DMOOPs by:

—Introducing an approach to develop DMOOPs with an isolated POF
—Introducing an approach to develop DMOOPs with a deceptive POF
—Introducing new DMOOPs with complicated Pareto-Optimal Sets (POSs)

The rest of the article is outlined as follows. Formal definitions of concepts that are
required as background for this article are provided in Section 2. Section 3 discusses
characteristics proposed for an ideal set of static Multi-Objective Optimisation (MOO)
and Dynamic Single-Objective Optimisation (DSOO) benchmark functions. In addition,
the characterisation of DMOOPs are discussed. A comprehensive overview of DMOOPs
proposed in the literature are provided in Section 4. Section 5 highlights shortcom-
ings of current DMOOPs. To address the identified shortcomings, new DMOOPs are
introduced. Section 6 highlights observations made in a study that compares the per-
formance of five DMOAs on various DMOOPs. Characteristics that an ideal DMOO
benchmark function suite should have are suggested in Section 7, taking into account
new advancements in the MOO literature. Furthermore, a set of DMOOPs are sug-
gested for each identified characteristic. Section 8 highlights real-world application
areas of DMOO and discusses four real-world DMOOPs. Finally, the conclusions are
discussed in Section 9.

2. DEFINITIONS

This section provides definitions that are required as background for the rest of the
article. Definitions with regards to MOO and DMOO are provided in Sections 2.1 and
2.2, respectively.

2.1. Multi-Objective Optimisation

The various objectives of a MOOP are normally in conflict with one another—that is,
improvement in one objective leads to a worse solution for at least one other objective.
Therefore, the definition of optimality that is used for Single-Objective Optimisation
Problems (SOOPs) has to be adjusted when solving MOOPs.

For MOOPs, when one decision vector dominates another, the dominating decision
vector is considered as a better decision vector.

Let the nx-dimensional search space (also referred to as the decision space) be rep-
resented by S ⊆ Rnx and the feasible space represented by F ⊆ S, where F = S for
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unconstrained optimisation problems. Let x = (x1, x2, . . . , xnx ) ∈ S represent a vector
of the decision variables (i.e., the decision vector), and let a single objective function
be defined as fk : Rnx → R. Then, f(x) = ( f1(x), f2(x), . . . , fnk(x)) ∈ O ⊆ Rnk represents
an objective vector containing nk objective function evaluations, and O is the objective
space.

Using the previous notation, and assuming minimisation, decision vector domination
is defined as follows:

Definition 1. Decision Vector Domination: Let fk be an objective function. Then, a
decision vector x1 dominates another decision vector x2, denoted by x1 ≺ x2, if and only
if:

—x1 is at least as good as x2 for all the objectives (i.e., fk(x1) ≤ fk(x2), ∀k = 1, . . . , nk);
and

—x1 is strictly better than x2 for at least one objective (i.e., ∃i = 1, . . . , nk : fi(x1) <
fi(x2)).

The best decision vectors are called Pareto-optimal, defined as follows:

Definition 2. Pareto-Optimal: A decision vector x∗ is Pareto-optimal if there does not
exist a decision vector x 
= x∗ ∈ F that dominates it—that is, �k : fk(x) ≺ fk(x∗). If x∗ is
Pareto-optimal, the objective vector, f(x∗), is also Pareto-optimal.

The set of all Pareto-optimal decision vectors are referred to as the POS, defined as:

Definition 3. Pareto-Optimal Set: The POS, POS∗, is formed by the set of all Pareto-
optimal decision vectors—that is:

POS∗ = {x∗ ∈ F |�x ∈ F : x ≺ x∗} (1)

The POS contains the best trade-off solutions for the MOOP. The set of corresponding
objective vectors are the POF or Pareto front, which is defined as follows:

Definition 4. Pareto-Optimal Front: For the objective vector f(x) and the POS POS∗,
the POF, POF∗ ⊆ O is defined as:

POF∗ = {f = ( f1(x∗), f2(x∗), . . . , fnkm(x∗)) |x∗ ∈ POS∗} (2)

2.2. Dynamic Multi-Objective Optimisation

Using the notation defined in Section 2.1, an unconstrained DMOOP can be mathe-
matically defined as:

minimise: f(x, W(t))
subject to: x ∈ [xmin , xmax]nx , (3)

where W(t) is a matrix of time-dependent control parameters of an objective func-
tion at time t, W(t) = (w1(t), . . . , wnm(t)), nx is the number of decision variables,
x = (x1, . . . , xnx ) ∈ Rnx, and x ∈ [xmin , xmax]nx refers to the boundary constraints.

In order to solve a DMOOP the goal of an algorithm is to track the POF over time
(i.e., for each timestep) to find:

POF∗(t) = {f(t) = ( f1(x∗, w1(t)), f2(x∗, w2(t)), . . . , fnk(x
∗, wnk(t))) |x∗ ∈ POS∗(t)} (4)

3. BACKGROUND

This section discusses characteristics that were proposed for an ideal set of static
MOOPs and Dynamic Single-Objective Optimisation Problems (DSOOPs). Further-
more, the characterisation of DMOOPs are discussed.
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3.1. Ideal MOO Benchmark Function Characteristics

The ZDT [Deb 1999; Zitzler et al. 2000] and DTLZ [Deb et al. 2002] MOOP suites were
constructed by Deb et al. in such a way that the benchmark functions are [Deb et al.
2002]:

—Easy to construct
—Scalable in terms of both the number of decision variables and the number of objective

functions
—Producing a POF with a known shape and location and that is easy to understand
—Hindering an algorithm to produce a good distribution of solutions and/or converging

to the true POF

According to Deb [1999], an algorithm can be hindered to converge to the true POF
when a benchmark function is multimodal, has an isolated optimum, is deceptive,
or contains noise. Deceptive functions have at least two optima in the search space,
with the search space favouring the deceptive optimum. For a DMOOP the deceptive
optimum is a local POF and not the true global POF. A multimodal function has many
POFs (local and global), and therefore a DMOO algorithm can become stuck in a local
POF. An objective function where an open subset of decision variable values maps to a
single value is referred to as an objective function with—that is, regions where small
perturbations of the decision variable values do not change the objective function value.
The flat regions’ lack of gradient information may cause an algorithm to struggle to
converge to the optima. An isolated POF occurs if the majority of the fitness landscape
is fairly flat and no useful information is provided with regards to the location of the
POF. Therefore, if a DMOOP has an isolated POF, a DMOA may struggle to converge
towards the POF. It should be noted that if the majority of the fitness landscape is
not fairly flat and therefore the POF is not completely isolated from the rest of the
search space, an algorithm may still struggle to converge towards the POF if the
density of solutions close to the POF is significantly less than in the rest of the search
space.

An algorithm may struggle to find a diverse set of solutions if the true POF has
the following properties: convexity or nonconvexity in the POF, a discontinuous POF,
and nonuniform spacing of solutions in the POS or POF [Deb 1999, 2004]. When a
POF is convex, it may be difficult to solve the DMOOP by algorithms that assign
a solution’s fitness based on Pareto ranking—that is, the number of solutions that
the solution dominates [Deb 1999]. Pareto ranking may cause bias towards certain
portions of the POF that contain intermediate solutions. This occurs since this fitness
assignment favours intermediate solutions that perform reasonably well with regards
to all objective functions more than solutions that perform very well with regards to
one objective and not so well with regards to the other objectives. If the POF has
a set of disconnected continuous subregions, referred to as a discontinous POF, an
algorithm may struggle to find solutions in all regions of the POF. However, even
though an algorithm may find solutions within each region, solutions from certain
subregions may be outranked (or dominated) when the solutions compete amongst
each other (for a rank or for storage in the archive) and may therefore disappear
from the nondominated solution set. In addition, an algorithm may struggle to find
a diverse set of nondominated solutions if the POS or POF is not uniformly spaced
[Deb 2004].

3.2. Ideal Dynamic SOO Benchmark Function Characteristics

If a DSOOP completely changes over time without any connection to a previous en-
vironment, an algorithm implementing a restart after a change will perform the best
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[Branke 1999]. Therefore, DSOO benchmark functions should change in such a way
over time that the new environment has a connection to a previous environment
[Branke 1999]. Furthermore, according to Morrison and Jong [1999], a DSOO bench-
mark function generator should enable easy:

—changes to the landscape complexity to develop benchmark functions that are repre-
sentative of real-world problems (in terms of their complexity).

—specification of the morphological characteristics and changes of the landscape (e.g.,
the peak location, shape and height).

—specification of the type of changes of the environment (e.g., recurrent, chaotic, large
or small changes).

—representation of the environment mechanisms to ensure that the environment can
be defined in an unambiguous manner.

In addition, the benchmark function should have a reasonable computational com-
plexity [Morrison and Jong 1999]. According to Branke [1999], ideal characteristics
of benchmark functions are in general tunable parameters and simplicity—that is,
the function is easy to describe and analyse. However, although benchmark functions
should be simple enough to gain a better understanding of the performance of an algo-
rithm that is solving the DSOOP, at the same time the benchmark functions should be
complex enough to represent real-world problems.

3.3. Characterisation of DMOO Benchmark Functions

One the first categorisations of DMOOPs was proposed by Farina et al. [2004], who
categorised DMOOPs into four types, namely:

—Type I DMOOPs, where the POS changes over time but the POF remains unchanged
—Type II DMOOPs, where both the POS and the POF change over time
—Type III DMOOPs, where the POF changes over time but the POS remains un-

changed
—Type IV DMOOPs, where a change occurs in the environment but both the POS and

POF remain unchanged

Goh and Tan [2009c] characterised DMOOPs according to spatial and temporal fea-
tures. Spatial features were divided into two categories, namely physical attributes and
nonphysical attributes. Physical attributes refer to physical aspects, such as the POF
or POS. Nonphysical attributes refer to the manner in which the physical attributes
change. The categorisation of spatial features are [Goh and Tan 2009c]:

(1) Physical attributes:
—The whole POS moves to a new location.
—The shape of the POF changes or a part of the POF disappears.
—The fitness landscape changes without affecting the POS or POF.
—Random changes to the POS, POF and/or landscape.

(2) Nonphysical attributes:
—Random changes to physical attributes.
—Changes to physical attributes follow a fixed pattern, where past physical topolo-

gies may or may not be revisited again.
—Periodic changes to physical attributes, where changes within a period may or

may not follow a fixed pattern.

According to Goh and Tan [2009c], the temporal features of DMOOPs are as follows:

—No change occurs.
—A change occurs randomly.

5



—A change occurs at fixed intervals.
—A change occurs according to a predetermined schedule.
—A change occurs after a predefined condition is satisfied.

The following challenges are unique to DMOOPs [Goh and Tan 2009c]:

—A DMOOP does not have a single solution at a specific time, but has a set of solutions.
Therefore, an algorithm has to track the changing POF over time.

—After a change in the environment occurred, any solution within the set of solutions
(or all solutions) can become obsolete or invalid.

—Changes can occur with regards to both the shape of the POF and the distribution
of the solutions within the POF. Therefore, both the decision variable space and
objective space have to be considered when dealing with DMOOPs (refer to the cat
egorisation of DMOOPs by Farina et al. [2004]).

Furthermore, similar to algorithms solving DSOOPs, algorithms that solve DMOOPs
have to be adapted to overcome diversity loss and outdated memory [Blackwell and
Branke 2006]. Outdated memory occurs when the environment changes and the infor-
mation that is currently stored is no longer valid and can even guide the search in the
wrong direction. For evolutionary algorithms, this outdated information may include
the individual’s fitness and various solutions’ ranks. For particle swarm optimisations
(PSOs), this outdated information may include the particle’s fitness: pbest solutions of
the particles and the swarm’s gbest. Diversity loss may occur when the algorithm is
converging to a specific optimum. For example, with a PSO the gbest and the pbest
of the particles will be close to the previous optimum and therefore the particles’ ve-
locities will be small. The smaller velocities may prevent the particles from tracking
a changing optimum, especially if the new optimum is not in close proximity to the
previous optimum. Therefore, the algorithm may get stuck in the previous optimum
and be unable to search for new optima [Blackwell and Branke 2006].

4. DMOO BENCHMARK FUNCTIONS CURRENTLY USED

This section discusses benchmark functions that have been used in the DMOO lit-
erature to evaluate whether algorithms can efficiently solve DMOOPs. Due to space
constraints, only POSs and POFs with different characteristics are illustrated in this
section.

One of the first DMOOPs suggested in the literature was proposed by Tan et al. [2003]
and is based on the DSOO Moving Peaks benchmark function generator [Branke 1999].
Guan et al. [2005] suggested creating DMOOPs by replacing objective functions with
new objective functions over time. The advantage of Guan et al.’s approach is that the
new objective function(s) can cause a severe change in the DMOOP, and by selecting
the objective functions carefully, various types of changes can be incorporated into the
DMOOP.

Recently, Wang and Li [2010] presented a DMOOP where the one subfunction of an
objective function changes over time. When objective functions are changed over time,
as in the approaches followed by Guan et al. [2005] and Wang and Li, the objective
functions should be selected carefully to ensure that the resulting objective functions
hinder the algorithm in finding the POF in various ways, as discussed in Section 3.
Another approach was followed by Jin and Sendhoff [2004], where a two-objective
DMOOP is constructed from a three-objective MOO function. The approach of Jin and
Sendhoff has been used by various researchers [Li et al. 2007; Liu 2010; Liu and Wang
2006, 2007]. However, the adherence to the guidelines suggested by Deb [1999] by the
benchmark functions suggested by Guan et al., Wang and Li, and Jin and Sendhoff will
depend on the specific objective functions that are used.
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Fig. 1. POF and POS of FDA1 with nt = 10 and τt = 10 for 1,000 iterations. POF remains static over time,
but POS changes over time.

Based on the ZDT [Deb 1999; Zitzler et al. 2000] and DTLZ [Deb et al. 2002] functions,
Farina et al. [2004] developed the first suite of DMOOPs, namely the FDA benchmark
functions.

The DMOOPs of the FDA DMOOP suite are easy to construct, and the number of de-
cision variables are easily scalable. FDA4 and FDA5 are constructed in such a way that
they are easily scalable with regards to both the number of decision variables and the
number of objective functions. The FDA benchmark functions are of Type I, II, and III
DMOOPs, and the POF of these DMOOPs is either convex, nonconvex, or changes from
convex to concave (or vice versa) over time. Therefore, the FDA DMOOP suite exhibits
the characteristics that benchmark functions should have, as defined by Deb [1999].

The five FDA DMOOPs are defined as follows:

FDA1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(xI), g(xII, t) · h( f1(xI), g(xII, t)))
f1(xI) = x1
g(xII, t) = 1 +∑xi∈xII

(xi − G(t))2

h( f1, g) = 1 −
√

f1
g

where:
G(t) = sin(0.5πt), t = 1

nt

⌊
τ
τt

⌋
xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 1]n−1,

(5)

where τ , τt, and nt refer to the current iteration, the frequency of change, and the
severity of change, respectively. For FDA1, values in the decision variable space
(POS) change over time, but the values in the objective space (POF) remain the same.
Therefore, it is a Type I DMOOP. It has a convex POF with POF = 1 − √

f1, as
illustrated in Figure 1(a). The POS is xi = G(t), ∀xi ∈ xII, as illustrated in Figure 1(b).
Appendix B discusses how to determine the POS and POF of a DMOOP.

FDA2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

Minimise: f (x, t) = ( f1(xI), g(xII) · h(xIII, f1(xI), g(xII), t))
f1(xI) = x1
g(xII) = 1 +∑xi∈xII

x2
i

h(xIII, f1, g, t) = 1 −
(

f1
g

)H2(t)

where:
H(t) = 0.75 + 0.75 sin(0.5πt), t = 1

nt

⌊
τ
τt

⌋
H2(t) = (H(t) +∑xi∈xIII

(xi − H(t))2
)−1

xI ∈ [0, 1]; xIIi , xIIIi ∈ [−1, 1]

(6)
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Fig. 2. POF of FDA2 and FDA3 with nt = 10 and τt = 10 for 1,000 iterations. POF of FDA2 changes in a cyclic
manner over time, moving from the top line to bottom line for certain timesteps and from the bottom line to
the top line for other timesteps. POF of FDA3 changes over time in a cyclic manner, moving either from the
top line to the bottom line for certain timesteps or from the bottom line to the top line for the other timesteps.

FDA2 has a POF that changes from convex to concave and vice versa. It is a Type II
DMOOP, as both the POS and POF change over time. For FDA2, POF = 1 − f H(t)−1

1 , as
illustrated in Figure 2(a). The POS of FDA2 is xi = 0, ∀xi ∈ xII and xi = H(t), ∀xi ∈ xIII.
It should be noted that many researchers refer to FDA2 as a Type III DMOOP due to
an error in the DMOOP definition in Farina et al. [2004]. However, before the definition
of FDA2 in Farina et al., the explanation of the effect of the h function on the DMOOP
states that the h function in FDA2 causes the POF to only change through a change in
xIII and that FDA2 is therefore a Type II DMOOP.

FDA3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(xI, t), g(xII, t) · h( f1(xI), g(xII, t)))
f1(xI, t) =∑xi∈xI

xF(t)
i

g(xII, t) = 1 + G(t) +∑xi∈xII
(xi − G(t))2

h( f1, g) = 1 −
√

f1
g

where:
G(t) = |sin(0.5πt)|, F(t) = 102 sin(0.5πt), t = 1

nt

⌊
τ
τt

⌋
xIi ∈ [0, 1]; xIIi ∈ [−1, 1]

(7)

FDA3 has a convex POF, and both values of the POS and POF change. Therefore,
it is called a Type II DMOOP. For FDA3, POF = (1 + G(t))(1 −√ f1

1+G(t) ), as illustrated
in Figure 2(b). The POS is xi = G(t), ∀xi ∈ xII, similar to the POS of FDA1 (refer to
Figure 1). The f1 function of the two-objective FDA DMOOPs regulate the spread of
solutions in objective space. Therefore, when f1 changes over time, as is the case with
FDA3, the spread of solutions in the POF changes over time.

FDA4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x, g(xII, t)), . . . , fk(x, g(xII, t)))
f1(x, g, t) = (1 + g(xII, t)

)∏M−1
i=1 cos

( xiπ

2

)
fk(x, g, t) = (1 + g(xII, t)

) (∏M−1
i=1 cos

( xiπ

2

))
sin
( yM−k+1π

2

)
,∀k = 2, . . . , M − 1

fm(x, g, t) = (1 + g(xII, t)
)∏M−1

i=1 sin
( x1π

2

)
where:
g(xII, t) =∑xi∈xII

(
xi − G(t)

)2
, G(t) = |sin(0.5πt)|, t = 1

nt

⌊
τ
τt

⌋
xII = (xM, . . . , xn); xi ∈ [0, 1], ∀i = 1, . . . , n

(8)
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Fig. 3. POF of FDA4 and FDA5 for three objective functions. The size of the sphere’s radius of FDA5’s POF
changes in a cyclic manner as the value of G changes over time. The radius increases over time and then
decreases to the value of 1.0.

For FDA4, values in the decision variable space (POS) change over time, but the
values in the objective space (POF) remain the same. Therefore, it is a Type I DMOOP.
It has a nonconvex POF with the true POF (POF) defined as f 2

1 + f 2
2 + f 2

3 = 1 for three
objective functions, as illustrated in Figure 3(a). The POS of FDA4 is xi = G(t),∀xi ∈ xII,
similar to FDA1 (refer to Figure 1).

FDA5=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x, g(xII, t)), . . . , fk(x, g(xII, t)))
f1(x, g, t) = (1 + g(xII, t)

)∏M−1
i=1 cos

( yiπ

2

)
fk(x, g, t) = (1 + g(xII, t)

) (∏M−1
i=1 cos

( yiπ

2

))
sin
( yM−k+1π

2

)
,∀k = 2, . . . , M − 1

fm(x, g, t) = (1 + g(xII, t)
)∏M−1

i=1 sin
( y1π

2

)
where:
g(xII, t) = G(t) +∑xi∈xII

(
xi − G(t)

)2
, G(t) = |sin(0.5πt)|, t = 1

nt

⌊
τ
τt

⌋
yi = xF(t)

i , ∀i = 1, . . . , (M − 1)
F(t) = 1 + 100 sin4(0.5πt)
xII = (xM, . . . , xn); xi ∈ [0, 1],∀i = 1, . . . , n

(9)

FDA5 has a nonconvex POF, where both the values in the decision variable space (POS)
and the objective space (POF) change over time. Therefore, it is a Type II DMOOP. Fur-
thermore, the spread of solutions in the POF changes over time. For FDA5 with three
objective functions, the POF is f 2

1 + f 2
2 + f 2

3 = (1 + G(t)
)2, as illustrated in Figure 3(b).

The POS of FDA5 is xi = G(t),∀xi ∈ xII, similar to FDA1 (refer to Figure 1).
Many researchers have used the FDA DMOOPs over the years, as highlighted in

Table I, where “Modified” indicates that the authors have used a modified version of
the specific FDA DMOOP and “Other” indicates that the authors have used DMOOPs
other than the FDA set. Table I shows that most researchers used the FDA1 DMOOP,
which is of Type I, where the POS changes over time but the POF remains the same.
Clearly, FDA1 is the easiest DMOOP of the FDA suite to solve. Therefore, using
the FDA1 DMOOP alone to test whether an algorithm can solve DMOOPs is not
sufficient.
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Table I. Usage of FDA DMOOP to Test Algorithms’ Performance

DMOOP Version Authors
FDA1 Original [Farina et al. 2004; Amato and Farina 2005; Hatzakis and

Wallace 2006; Mehnen et al. 2006; Zeng et al. 2006; Bingul 2007;
Cámara et al. 2007a, 2007b; Zheng 2007; Zhou et al. 2007; Greeff
and Engelbrecht 2008; Isaacs et al. 2008; Tan and Goh 2008;
Wang and Dang 2008; Chen et al. 2009; Goh and Tan 2009b,
2009a; Isaacs et al. 2009; Ray et al. 2009; Lechuga 2009; Wang
and Li 2009; Cámara et al. 2009, 2010; Cámara Sola 2010; Greeff
and Engelbrecht 2010; Koo et al. 2010; Liu et al. 2010; Wang and
Li 2010; Helbig and Engelbrecht 2011]

Modified [Zhou et al. 2007]
FDA2 Original [Farina et al. 2004; Zeng et al. 2006; Cámara et al. 2007a, 2007b;

Liu and Wang 2007; Wang and Dang 2008; Greeff and
Engelbrecht 2010; Liu 2010; Wang and Li 2010; Helbig and
Engelbrecht 2011]

Modified [Mehnen et al. 2006; Deb et al. 2007; Zheng 2007; Isaacs et al.
2008; Talukder and Khaled 2008; Khaled et al. 2008; Isaacs et al.
2009; Ray et al. 2009; Lechuga 2009; Cámara et al. 2009, 2010;
Cámara Sola 2010; Liu et al. 2010]

FDA3 Original [Farina et al. 2004; Shang et al. 2005; Zeng et al. 2006; Liu and
Wang 2007; Wang and Dang 2008; Koo et al. 2010; Wang and Li
2010; Helbig and Engelbrecht 2011]

Modified [Zheng 2007; Talukder and Khaled 2008; Khaled et al. 2008;
Cámara et al. 2009, 2010; Cámara Sola 2010]

FDA4 Original [Farina et al. 2004; Mehnen et al. 2006; Zheng 2007; Greeff and
Engelbrecht 2008; Cámara et al. 2009, 2010; Cámara Sola 2010;
Greeff and Engelbrecht 2010]

FDA5 Original [Farina et al. 2004; Shang et al. 2005; Zheng 2007; Greeff and
Engelbrecht 2008; Chen et al. 2009; Cámara et al. 2009, 2010;
Cámara Sola 2010; Greeff and Engelbrecht 2010]

Modified [Talukder and Khaled 2008; Khaled et al. 2008]
Other [Mehnen et al. 2006; Liu and Wang 2007; Goh and Tan 2009b,

2009a; Wang and Li 2009; Koo et al. 2010; Liu et al. 2010; Liu
2010; Wang and Li 2010; Helbig and Engelbrecht 2011]

Several researchers have used the FDA2 DMOOP. However, the POF of FDA2
changes from a convex to a concave shape only for specific values of the decision
variables [Mehnen et al. 2006; Deb et al. 2007], as can be seen, for example, in Helbig
and Engelbrecht [2011, 2013b]. Therefore, even if an algorithm finds Pareto-optimal
solutions, it may find a convex POF instead of a concave POF. To address this issue,
several modifications to the h or g function of FDA2 have been suggested [Cámara et al.
2009, 2010; Deb et al. 2007; Isaacs et al. 2008; Lechuga 2009; Liu et al. 2010; Mehnen
et al. 2006; Ray et al. 2009; Cámara Sola 2010; Zheng 2007]. Underlying problems
with FDA3 also lead to several modifications to FDA3 being suggested [Cámara et al.
2010; Khaled et al. 2008; Talukder and Khaled 2008; Zheng 2007]. In order to test an
algorithm’s ability to solve Type III DMOOPs, Talukder and Khaled [2008] modified
FDA5 to a Type III DMOO.

A generalisation of the FDA functions was suggested by Mehnen et al. [2006]. In
contrast to the FDA functions, this generalised DMOOP, DTF, is constructed in such
a way that the number of disconnected continuous POF sections, the number of local
POFs, the curvature of the POF, the spread of the solutions, and the optimal decision
variable values that represent the POS can be easily specified. The DTF DMOOP is
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defined as:

DTF =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(xI, t), g(xII, t)h( f1(xI, t), g(xII, t), t))
f1(xI, t) = xβ(t)

1
g(xII, t) = 1 +∑xi∈xII

((xi − γ (t))2 − cos(ω(t(τ )))π (xi − γ (t)) + 1)

h( f1, g, t) = 2 −
(

f1
g

)α(t)
−
(

f1
g

) ∣∣sin(ψ(t)π f1))
∣∣α(t)

where:
t = 1

nt

⌊
τ
τt

⌋
xI ∈ [0, 1], xIIi ∈ [−1, 1],

(10)

where β represents the spread of solutions, α the curvature of the POF, γ the optimal
decision variable values or POS, ψ the number of POF sections, and ω the number of
local POFs. For example, a Type II DMOOP can be constructed from DTF by setting
the following parameter values: n = 20, α(t) = 0.2 + 4.8t2, β(t) = 102 sin(0.5πt), γ (t) =
sin(0.5πt), ψ(t) = ts with s ∈ R, and ω(t) ∝ ψ(t).

Tang et al. [2007] also suggested constructing DMOOPs based on the ZDT functions of
Deb [1999]. Three objective functions are constructed similar to the DMOOPs of Farina
et al. [2004] and provide an additional explanation of how the POF is calculated. For
two objective DMOOPs, the following format is used:⎧⎨

⎩
Minimise: f(x) = ( f1(xI), f2(xII))

f1(xI) = f1(xI)
f2(xII) = u(t)g(xII)v(t)

[
h
(

f (xI), g(xII)v(t)
)] (11)

with u(t) and v(t) functions of time t. The selection of u(t) and v(t) lead to the construction
of various types of DMOOPs:

—u(t) = 1 and v(t) that changes over time create a DMOOP of Type I.
—v(t) = 1 and u(t) that changes over time create a DMOOP of Type III.
—u(t) and v(t) that change over time create a DMOOP of Type II.

The formulation of the DMOOP using Equation (11) can therefore lead to the creation
of various types of DMOOPs by changing the values of v(t) and u(t). It is very similar
to the FDA DMOOPs, but by formulating the DMOOP in this way, the required type of
DMOOP can be easily created. Since these functions are based on the ZDT functions,
they adhere to the characteristics of benchmark functions recommended by Deb [2004].
An example of Type III DMOOP using Equation (11) where v(t) = 1 and u(t) = t2 is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x) = ( f1(xI), f2(xII))

f1(xI) = 1 − exp(−4x1) sin6(6πx1)

f2(xII) = t2g
(

1 −
(

f1
g

)2)
where:

g = 1 + 9
(∑n

i=2 xi

n−1

)0.25

xi ∈ [0, 1],∀i = 1, 2, . . . , 10

(12)

Wang and Li [2009, 2010] recently also suggested new Type I DMOOPs that are
created by adapting the ZDT functions.

Based on the construction guidelines of Farina et al. [2004] and Goh and Tan [2009b]
presented three DMOOPs, namely dMOP1, dMOP2, and dMOP3. dMOP1 and dMOP2
have a POF that changes from convex to concave over time, with dMOP1 being a

11



Fig. 4. POF of dMOP1 and POS of ZJZ with nt = 10 and τt = 10 for 1,000 iterations. POF of dMOP1 changes
in a cyclic manner over time, by moving either from the middle line to the top line for certain timesteps or
from the bottom line to the middle line for the other timesteps.

Type III DMOOP and dMOP2 a Type II DMOOP. In the FDA DMOOP suite, FDA2
also has a POF that changes from convex to concave over time, and FDA2 is a Type II
DMOOP. However, dMOP1 and dMOP2 do not suffer from the decision variable selec-
tion problem from which FDA2 suffers. dMOP1 tests whether a DMOO algorithm can
solve problems where the POF changes from convex to concave but the POS remains the
same over time, and dMOP2 adds the difficulty of solving this problem with a changing
POS and POF. dMOP3 is very similar to FDA1; however, the variable that controls
the spread of the POF solutions (x1 in FDA1) changes over time. This may cause an
algorithm to struggle to maintain a diverse set of solutions as the POS changes over
time. The dMOP benchmark functions are defined as follows:

dMOP1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII) · h( f1(xI), g(xII), t))
f1(xI) = x1

g(xII) = 1 + 9
∑

xi∈xII
(xi)2

[0.1cm]h( f1, g, t) = 1 −
(

f1
g

)H(t)

where:
H(t) = 0.75 sin(0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(13)

The POF of dMOP1 changes from convex to concave over time, but the POF remains
the same. Therefore, it is a Type III problem, with POF = 1 − f H(t)

1 , as illustrated in
Figure 4(a). The POS of dMOP1 is xi = 0, ∀xi ∈ xII, similar to FDA2.

dMOP2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII, t) · h( f1(xI), g(xII, t), t))
f1(xI) = x1

g(xII, t) = 1 + 9
∑

xi∈xII
(xi − G(t))2

[0.1cm]h( f1, g, t) = 1 −
(

f1
g

)H(t)

where:
H(t) = 0.75 sin(0.5πt) + 1.25, G(t) = sin(0.5πt), t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(14)

dMOP2 has a POF that changes from convex to concave, where the values in both the
POS and POF change. Therefore, dMOP2 is a Type II problem, with POF = 1 − f H(t)

1 ,
similar to dMOP1 (refer to Figure 4(a)). The POS of dMOP2 is xi = G(t), ∀xi ∈ xII,
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similar to FDA1 (refer to Figure 1).

dMOP3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII, t) · h( f1(xI), g(xII, t)))
f1(xI) = xr

g(xII, t) = 1 + 9
∑

xi∈xII\xr
(xi − G(t))2

h( f1, g) = 1 −
√

f1
g

where:
G(t) = sin(0.5πt), t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; r =⋃(1, 2, . . . , n)

(15)

dMOP3 has a convex POF, where the POS changes over time but the POF remains
the same. dMOP3 is therefore a Type I DMOOP, and the spread of the POF solutions
changes over time. Similar to FDA1, for dMOP3, POF = 1−√

f1 (refer to Figure 1) and
the POS is xi = G(t),∀xi ∈ xII (refer to Figure 1(b)).

More recently, Li and Zhang [2006] and Deb et al. [2006] presented MOOPs with
decision variable dependencies (or linkages). Zhou et al. [2007] modified FDA1 to in-
corporate dependencies between the decision variables. The modified FDA1 DMOOP
is defined as follows:

ZJZ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII, t) · h( f1(xI), g(xII, t)))
f1(xI) = x1

g(xII, t) = 1 +∑xi∈xII

(
xi − G(t) − xH(t)

1

)2
h( f1, g) = 1 −

(
f1
g

)H(t)

where:
G(t) = sin(0.5πt), H(t) = 1.5 + G(t), t = 1

nt

⌊
τ
τt

⌋
xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 2]

(16)

For ZJZ, the values of both the POS and POF change over time. Therefore, it is a
Type II DMOOP. ZJZ’s POF is similar to dMOP1 (refer to Figure 4(a)) and changes
from convex to concave over time, with POF = 1 − f H(t)

1 . However, there are nonlinear
dependencies between the decision variables that make the DMOOP more difficult to
solve. The POS of ZJZ is xi = G(t) + xH(t)

1 ,∀xi ∈ xII, as illustrated in Figure 4(b).
Another shortcoming of the FDA DMOOP suite is that all DMOOP objective functions

consist of decision variables with the same rate of change over time. Koo et al. [2010]
suggested two new benchmark functions where each decision variable has its own
rate of change, except the variable x1 that controls the spread of solutions. These two
functions, DIMP1 and DIMP2, are defined as follows:

DIMP1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII, t) · h( f1(xI), g(xII, t)))
f1(xI) = x1

g(xII, t) = 1 +∑xi∈xII
(xi − Gi(t))2

h( f1, g) = 1 −
(

f1
g

)2
where:

Gi(t) = sin
(
0.5πt + 2π

( i
n+1

))2
, t = 1

nt

⌊
τ
τt

⌋
xI = (x1) ∈ [0, 1]; xII = (x2, x3, . . . , xn) ∈ [−1, 1]n−1

(17)

The POS of DIMP1 changes over time, but the POF remains the same. Therefore,
DIMP1 is a Type I DMOOP, with POF = 1 − f 2

1 (as illustrated in Figure 5(a)), and the
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Fig. 5. POF of DIMP1 with nt = 10 and τt = 10 for 1,000 iterations and POF of HE1 with nt = 10, τt = 50
and τ = 299. POF of HE1 is the shape of a sine wave and therefore discontinuous. The sine wave’s period
changes over time.

POS is xi = G(t),∀xi ∈ xII, similar to FDA1 (refer to Figure 1(b)).

DIMP2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII, t) · h( f1(xI), g(xII, t)))
f1(xI) = x1

g(xII, t) = 1 + 2(n − 1) +∑xi∈xII
[(xi − Gi(t))2 − 2 cos(3π (xi − Gi(t)))]

h( f1, g) = 1 −
√

f1
g

where:

Gi(t) = sin
(
0.5πt + 2π

( i
n+1

))2
, t = 1

nt

⌊
τ
τt

⌋
xI ∈ [0, 1]; xII ∈ [−2, 2]n−1

(18)

DIMP2 is a Type I problem, since its POS changes over time but its POF remains
the same. Similar to FDA1, DIMP2’s POF is 1 − √

f1 (refer to Figure 1), and the POS
is xi = G(t),∀xi ∈ xII (refer to Figure 1(b)).

The FDA and dMOP suites only contain DMOOPs with a continuous POF. Two
discontinous functions, namely TP1mod and TP2mod, were presented by Greeff and
Engelbrecht [2008]. However, these two functions do not allow easy scalability of the
number of decision variables. Therefore, TP1mod and TP2mod do not adhere to the charac-
teristics of benchmark functions that are recommended by Deb et al. Recently, Helbig
and Engelbrecht [2011] presented two DMOOPs with a discontinuous POF, namely
HE1 and HE2. These two functions are based on the ZDT3 [Zitzler et al. 2000] MOOP
that developed in such a way that it adheres to the characteristics recommended by
Deb et al. HE1 and HE2 were developed by adapting ZDT3 to be dynamic and therefore
adhere to the benchmark function characteristics recommended by Deb et al. HE1 and
HE2 are defined as:

HE1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII) · h( f1(xI), g(xII), t))
f1(xI) = x1

g(xII) = 1 + 9
n−1

∑
xi∈xII

xi

h( f1, g, t) = 1 −
√

f1
g − f1

g sin(10πt f1)
where:
t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(19)
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HE2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII) · h( f1(xI), g(xII), t))
f1(xI) = xi

g(xII) = 1 + 9
n−1

∑
xi∈xII

xi

h( f1, g, t) = 1 −
(√

f1
g

)H(t)
−
(

f1
g

)H(t)
sin(10π f1)

where:

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(20)

Both HE1 and HE2 have a discontinuous POF, with various disconnected continuous
subregions. Both are Type III DMOOPs, since their POFs change over time but their
POSs remain the same. For HE1, POF = 1 − √

f1 − f1 sin(10πt f1), as illustrated in
Figure 5(b), and for HE2, POF = 1 − (

√
f 1)H(t) − f H(t)

1 sin(0.5π f1). The shape of HE2’s
POF is similar to HE1 (refer to Figure 5(b)). The POS for both HE1 and HE2 is
xi = 0,∀xi ∈ xII, similar to FDA2.

Avdagić et al. [2009] introduced an adaptation of the DTLZ problems to develop
the following types of benchmark functions: Type I DMOOP, where the POS changes
coherently over time but the POF remains the same; Type II DMOOP, where the shape
of the POS continuously changes and the POF also changes over time; and a Type II
DMOOP, where the number of objective functions change over time [Avdagić et al.
2009]. These benchmark functions are developed from the following general equation:

DTLZAv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise : q(x) = (q1(x), . . . , qm(x))
q1(x) = a1xc1

1 xc1
2 . . . xc1

m−1(1 − xm)c1 g1(x) + b1

q2(x) = a2xc2
1 xc2

2 . . . (1 − xm−1)c2 (1 − xm)c2 g2(x) + b2

...
qm−1(x) = am−1xcm−1

1 (1 − x2)cm−1 . . . (1 − xm−1)cm−1 (1 − xm)cm−1

gm−1(x) + bm−1

qm(x) = am(1 − x1)cm(1 − x2)cm . . . (1 − xm−1)cm(1 − xm)cmgm(x) + bm

where :
gi = 1 − di cos(20πxi), ai, bi, ci, di ∈ R

(21)

A Type I DMOOP with a continuously changing POS is created by using Equation (21)
and setting the following parameter values: ai = 1, di = 0, and bi = bik, where k
represents the iteration and ci = 1 or ci = 2. Similarly, a Type II DMOOP with
continuously changing POS and POF are developed by setting the following parameter
values: ai = 1, bi = bi(k), ci(k) = 5bik, and di = 0. To develop a Type II DMOOP with
a changing number of objectives, the same parameters are used as those specified for
the Type II DMOOP, with two objective functions being used for a certain number
of iterations and then using three objective functions for the other iterations. These
additional types of DMOOPs, which are not part of the FDA benchmark function set,
may become important if these kind of changes occur in a real-world problem.

Recently, Huang et al. [2011] pointed out that all DMOOPs assume that the current
found POS does not affect the future POS or POF. To the best knowledge of the authors
of this article, none of the suggested DMOOPs have a POS or POF that depends on
the previous POS or POF. Furthermore, most DMOOPs consist of a static number of
decision variables and objective functions. Therefore, Huang et al. [2011] introduced
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four DMOOPs that incorporate these scenarios, defined as follows:

T1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(x, t), f2(x, t)
)

f1(x, t) =∑d1(t)
i=1

(
x2

i − 10 cos(2πxi) + 10
)

f2(x, t) = (x1 − 1)2 +∑d2(t)
i=2

(
x2

i − xi−1
)2

where:
d1(t) = n| sin(t)|�
d2(t) = n| cos3(2t)|�
t = 1

nt

⌊
τ
τt

⌋
,

(22)

with d1 and d2 varying the number of decision variables over time. The minimum for
f1 is 0, and the POS for f1 is xi = 0,∀i = 1, . . . , d1(t). The minimum for f2 is 0 with the
POS xi = 1,∀i = 1, . . . , d2(t). Both the POF and POS remains static, but the number of1
decision variables change over time. Therefore, T1 is a Type IV DMOOP.

T2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(x, t), . . . , fm(x, t)
)

f1(x, t) = (1 + g(xII))
∏m(t)−1

i=1 cos
(

πxi
2

)
fk(x, t) = (1 + g(xII))

∏m(t)−k
i=1 cos

(
πxi
2

)
sin
(πxm(t)−k+1

2

)
,∀k = 2, . . . , m(t) − 1

fm(x, t) = (1 + g(xII))
∏m(t)−1

i=1 sin
(

πx1
2

)
where:

g(xII) =∑m(t)
i=1 (xi − 0.5)2

m(t) = M| sin(0.5πt)|�, t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0, 1],

(23)

with M representing the maximum number of objective functions, and m varying the
number of objective functions over time. T2 is a Type III DMOOP, since its POF changes
over time but its POS remains the same. The POS of T2 is xi = 0.5,∀i = 1, . . . , m(t),
and the POF is

∑m(t)
i f2

i = 1.6

T3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(x, t), f2(x, t)
)

f1(x, t) = R(x, t) cos
(

πx1
2

)
f2(x, t) = R(x, t) sin

(
πx1

2

)
where:

R(x, t) = R̄(x, t − 1, t) + G(x, t)

R̄(x, t) = 1
P

∑P
j Rj(x, t − 1)

R̄(x,−1) = 1

G(x, t) =∑n
i=2

(
xi − R̄(x, t − 1)

)2
t = 1

nt

⌊
τ
τt

⌋
x1 ∈ [0, 1]; xi ∈ [R̄(x, t) − 100, R̄(x, t) + 100], ∀i = 2, . . . , n,

(24)

with the value of R(x, t) depending on previous values of R. Therefore, if a slight error
occurs with regards to the found value of R at time t, this error will increase over
time, influencing the algorithm’s ability to find the solutions at the next timesteps.
Both the POS and POF remain static. Therefore, T3 is a Type IV DMOOP. The POS is
xi = R̄(x, t − 1),∀i = 2, . . . , n. The POF is f 2

1 + f 2
2 = 1. Similar to T1, T4 is a Type IV
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Fig. 6. POF of DSW1 and DSW2 with n = 10, s = 6, nt = 10, and τt = 10 for 1,000 iterations. POF of DSW1
changes in a cyclic manner, moving from left to right and then returning to left. POF of DSW2 moves from
the middle to both the left and right at the same time, creating a mirror image—that is, to the left of zero,
the POF moves to the left,and to the right of zero, the POF moves to the right.

DMOOP, defined as:

T4 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(x, t), f2(x, t)
)

f1(x, t) =∑n
i=1

(
x2

i − 10 cos(2πxi) + 10
)

f2(x, t) = (x1 − r(t))2 +∑n
i=2

(
x2

i − xi−1
)2

where:
r(x, t) = 1

n

∑
xi∈x (xi − 0)

t = 1
nt

⌊
τ
τt

⌋
,

(25)

with r representing the average error of the decision variables of the selected POS
(POS∗). Since the POS of T4 is xi = 0,∀i = 1, 2, . . . , n, the average error of the decision
variables of POS∗ is r(x, t) = 1

n

∑
xi∈x (xi − 0). The selected trade-off solution set, POS∗,

is derived from the current POS by a decision-making mechanism used by the decision
maker. Therefore, for T4, the POF depends on the decision-making mechanism used at
previous timesteps.

Mehnen et al. [2006] suggested that simpler benchmark functions are required to
analyse the effect of different dynamic properties in a more isolated manner. For this
reason, they presented the DSW DMOOP generator that is based on the static MOOP
of Schaffer [1985]. The DSW DMOOPs are parabolic and are similar to the sphere
function that are typically used to test whether an algorithm can solve DSOOPs. The
DSW benchmark generator is defined as:

DSW =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(x, t), f2(x, t))
f1(x, t) = (a11x1 + a12|x1| − b1G(t))2 +∑n

i=2 x2
i

f2(x, t) = (a21x1 + a22|x1| − b2G(t) − 2)2 +∑n
i=2 x2

i
where:
G(t) = t(τ )s, t = 1

nt

⌊
τ
τt

⌋
,

(26)

with s representing the severity of change. Using Equation (26), the following three
benchmark functions are created:

DSW1:
{

x ∈ [−50, 50]n, a11 = 1, a12 = 0, a21 = 1,
a22 = 0, b1 = 1, b2 = 1 (27)

DSW1 has a dynamic POF and POS, and is therefore a Type II DMOOP. The POS of
DSW1 is x1 ∈ [G(t), G(t) + 2] and xi = 0,∀i = 2, 3, . . . , n. The POF is POF = (

√
f1 − 2)2

with f1 = (x1 − G(t))2, as illustrated in Figure 6(a). DSW1 is similar to the spherical
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SOOP function, where the center of the sphere is linearly shifted over time.0

DSW2:
{

x ∈ [−50, 50]n, a11 = 0, a12 = 1, a21 = 0,
a22 = 1, b1 = 1, b2 = 1 (28)4

Both the POS and POF of DSW2 change over time. Therefore, DSW2 is a Type II
DMOOP. DSW2 has a disconnected POS, with x1 ∈ [−G(t) − 2,−G(t)] ∪ [G(t), G(t) + 2],
and xi = 0,∀i = 2, 3, . . . , n. If a periodical G(t) is used, the POSs will join and depart
periodically. The POF of DSW2 is similar to that of DSW1, namely POF = (

√
f1 − 2)2,

but with f1 = (|x1| − G(t))2.

DSW3:
{

x ∈ [−50, 50]n, a11 = 1, a12 = 0, a21 = 1,
a22 = 0, b1 = 0, b2 = 1 (29)5

DSW3 has a changing POF and POS, and is therefore a Type II DMOOP. For DSW3,
the POS is x1 ∈ [0, G(t) + 2], and the POF is POF = (

√
f1 − G(t) − 2)2 with f1 = x2

1 .
Setting b1 = 0 causes one border of the POS interval for x1, namely G(t) + 2, to change
over time, whereas the other border, 0, remains static.

5. ISSUES WITH CURRENT DMOOPS

From Section 4, the following shortcomings of current DMOOPs are identified [Helbig
and Engelbrecht 2013a]. None of the DMOOPs have:

—An isolated POF (refer to Section 3.1)
—A deceptive POF (refer to Section 3.1)
—A POF that is defined by nonlinear curves in the decision space (i.e., a complex

POS.

When a DMOOP has an isolated POF, the lack of gradient information may cause
a DMOA difficulty converging towards the POF. In addition, since the majority of the
search space is fairly flat, no useful information is provided with regards to the location
of the POF. Therefore, DMOOPs with an isolated POF are difficult to solve [Huband
et al. 2006; Deb 2004]. A DMOOP with a deceptive POF is a multimodal problem, since
there exist more than one optima and the search space favours the deceptive optimum,
which is a local POF and not the global POF. Multimodal problems are difficult to solve,
as a DMOA can get stuck in a local POF. DMOOPs with a deceptive POF are even more
difficult to solve than multimodal DMOOPs, since the global POF is in an unlikely
place in the search space [Huband et al. 2006; Deb 2004]. Although many benchmark
functions have a nonlinear POF, the POS is defined by a linear function. However,
when a DMOOP has a POS that is defined by a nonlinear function, the DMOOP will
be more difficult to solve.

It should be noted that although these shortcomings do not occur in benchmark
functions, they may occur in real-world DMOOPs. Therefore, the three shortcomings of
DMOOPs listed earlier are addressed in this section. Section 5.1 presents an approach
to adapt current DMOOPs’ POF to an isolated POF. A similar approach to change
a DMOOPs’ POF to a deceptive POF is presented in Section 5.2. In addition, new
DMOOPs with complex POSs are introduced in Section 5.3.

5.1. DMOOPs with an Isolated POF

Flat regions occur when an open subset of decision variable values maps to a single
objective function value. When a DMOOP has objective functions with flat regions, its
POF is referred to as an isolated POF. No DMOOPs with an isolated POF have been
proposed in the DMOO literature. Therefore, this section presents an approach that
can be used to develop DMOOPs with an isolated POF [Helbig and Engelbrecht 2013a].
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The WFG MOOP benchmark function suite was introduced by Huband et al. [2006]
to address shortcomings of other MOO test suites. One of the shortcomings that the
WFG suite addresses is the development of MOO benchmark functions with isolated
POFs. This approach is adapted so that it can be applied to DMOOPs currently used
to evaluate DMOAs.

Decision variables are mapped to new values to create flat regions with the following
equation [Huband et al. 2006]:

yi(xi, A, B, C) = A+ min(0, xi − B�)
A(B− xi)

B
− min(0, C − y�)

(1 − A)(xi − C)
1 − C

, (30)

where A, B, C ∈ [0, 1], B < C, B = 0 ⇒ A = 0 ∧ C 
= 0, and C = 1 ⇒ A = 1 ∧ B 
= 0.
All values of xi between B and C are mapped to the value of A to create a flat region
between B and C.

This mapping can be applied to existing DMOOPs, of which two examples are pro-
vided next, namely the adjustment of the three-objective FDA5 DMOOP [Helbig and
Engelbrecht 2013a] (refer to Equation (9)) and the two-objective dMOP2 DMOOP (refer
to Equation (14)):

FDA5iso =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x, g(xII, t)), . . . , fk(x, g(xII, t)))
f1(x, g, t) = (1 + g(xII, t)

)∏M−1
i=1 cos

( yiπ

2

)
fk(x, g, t) = (1 + g(xII, t)

) (∏M−1
i=1 cos

( yiπ

2

))
sin
( yM−k+1π

2

)
,∀k = 2, . . . , M − 1

fm(x, g, t) = (1 + g(xII, t)
)∏M−1

i=1 sin
( y1π

2

)
where:

g(xII, t) =∑xj∈xII

(
yj − G(t)

)2 ; G(t) = |sin(0.5πt)|, t = 1
nt

⌊
τ
τt

⌋
F(t) = 1 + 100 sin4(0.5πt)

yi = xF(t)
i , ∀i = 1, . . . , (M − 1); yj = yj(xj, A, B, C), ∀xj ∈ xII

xII = (xM, . . . , xn), xi ∈ [0, 1],∀i = 1, . . . , n,

(31)
where yj is calculated using Equation (30). Example values for A, B, and C are G(t),
0.001, and 0.05, respectively. Similar to FDA5 (refer to Equation (9)), the POF of
FDA5iso is f 2

1 + f 2
2 + f 2

3 = (1+ G(t))2 (as illustrated in Figure 3(b)). The POS of FDA5iso
is xi = G(t),∀xi ∈ xII, similar to FDA1 (refer to Figure 1).

dMOP2iso =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII, t) · h( f1(xI), g(xII, t), t))
f1(xI) = x1

g(xII, t) = 1 + 9
∑

xi∈xII
(yi − G(t))2

h( f1, g, t) = 1 −
(

f1
g

)H(t)

where:
yi = yi(xi, A, B, C), ∀xi ∈ xII

H(t) = 0.75 sin(0.5πt) + 1.25
G(t) = sin(0.5πt), t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1), xII = (x2, . . . , xn),

(32)
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where yi is calculated using Equation (30). Example values for A, B, and C are G(t),
0.001, and 0.05, respectively.

5.2. DMOOPs with a Deceptive POF

When a DMOOP has a deceptive POF, the DMOOP has at least two optima, with the
search space favouring the deceptive POF. Some of the benchmark functions discussed
in Section 4 are multimodal (e.g., FDA3 in Equation (7)). However, none of the DMOOPs
discussed in Section 4 has a deceptive optimum. This section presents an approach to
adjust existing DMOOPs in such a way that the DMOOPs have a deceptive POF [Helbig
and Engelbrecht 2013a].

Huband et al. [2006] also introduced an approach to develop MOOPs with a de-9
ceptive POF. Similar to the approach to develop MOOPs with isolated POFs (refer to
Section 5.1), the following transformation function is used:

yi(xi, A, B, C) =
(

y − A+ B�(1 − C + A−B
B

)
A− B

+ 1
B

+ A+ B− y�(1 − C + 1−A−B
B

)
1 − A− B

)

(|y − A| − B) + 1, (33)

where A ∈ (0, 1), 0 < B � 1, 0 < C � 1, A− B > 0, and A+ B < 1. A represents the
value at which xi is mapped to zero—that is, the global minimum of the transformation
function. The size of the basin leading to A is represented by B, and the value of the
deceptive optimum is represented by C.

Therefore, DMOOPs with a deceptive POF can be developed by applying this trans-
formation (or mapping) function to existing DMOOPs. For example, calculating yj in
Equation (31) and yi in Equation (32) using Equation (33) will transform FDA5iso and
dMOP2iso into DMOOPs with deceptive POFs. A, B, and C in Equation (33) can, for
example, be selected as 0.35, 0.001, and 0.05, respectively.

5.3. DMOOPs with Complex POSs

Another shortcoming of MOOPs is that the POS is defined by a simple function—
for example, xi = sin(0.5πt) [Li and Zhang 2009]. Therefore, Li and Zhang [2009]
presented MOOPs with complicated POSs, where the POS is defined by nonlinear
curves in the decision space—for example, xj = sin(6πx1 + jπ

n ), ∀ j = 2, 3, . . . , n. This
shortcoming is also true for DMOOPs [Helbig and Engelbrecht 2013a]. Recently, Helbig
and Engelbrecht [2013a] proposed three new DMOOPs with complex POSs. This section
presents these DMOOPs and introduces four new DMOOPs with complicated POSs,
based on the MOOPs of Li and Zhang [2009].

The first DMOOP, HE3, has a POF that changes over time but the POS remains the
same. Therefore, HE3 is a Type III DMOOP. The POS and POF of HE3 are:

POS : xj = x
0.5
(

3( j−2)
n−2

)
1 , ∀ j = 2, 3, . . . , n.

POF : y = (2 − √
x1
) [

1 −
(

x1

2 − √
x1

)H(t)
]
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Fig. 7. POF of HE3 with nt = 10 and τt = 10 for 1,000 iterations. POF changes in a cyclic manner, moving
from the middle to the top, then from the top to the middle, then from the middle to the bottom, then from
the bottom to the middle. This whole process is then repeated. c©2013 IEEE. Reprinted with permission
from [Helbig and Engelbrecht 2013a].

Fig. 8. POS of HE3 for two decision variables: x2 and x5.

HE3 is defined as:

HE3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))

f1(x) = x1 + 2
|J1|
∑

j∈J1

(
xj − x

0.5
(
1.0+ 3( j−2)

n−2

)
1

)2

g(x) = 2 − √
x1

2
|J2|
∑

j∈J2

(
xj − x

0.5
(
1.0+ 3( j−2)

n−2

)
1

)2

h( f1, g) = 1 −
(

f1
g

)H(t)

where:
H(t) = 0.75 sin(0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}
xi ∈ [0, 1]

(34)

The POF and POS of HE3 are illustrated in Figures 7 and 8, respectively. It is important
to note that unlike most of the other DMOOPs, the POS of HE3 to HE10 are different
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Fig. 9. POS of HE4 for two decision variables: x2 and x5.

for each decision variable.

HE4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))

f1(x) = x1 + 2
|J1|
∑

j∈J1

(
xj − sin

(
6πx1 + jπ

n

))2
g(x) = 2 − √

x1 + 2
|J2|
∑

j∈J2

(
xj − sin

(
6πx1 + jπ

n

))2
h( f1, g) = 1 −

(
f1
g

)H(t)

where:
H(t) = 0.75 sin(0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1], xi ∈ [−1, 1], ∀i = 2, 3, . . . , n

(35)

The POF of HE4 changes over time but the POS remains the same. Therefore, HE4 is
a Type III DMOOP. The POS and POF of HE4 are:

POS : xj = sin
(

6πx1 + jπ
n

)
, ∀ j = 2, 3, . . . , n.

POF : y = (2 − √
x1
) [

1 −
(

x1

2 − √
x1

)H(t)
]

The POS of HE4 is illustrated in Figure 9. The POF is similar to the POF of HE3 (refer
to Figure 7).

HE5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))

f1(x) = x1 + 2
|J1|
∑

j∈J1

(
xj − 0.8x1 cos

(
6πx1 + jπ

n

))2
g(x) = 2 − √

x1 + 2
|J2|
∑

j∈J2

(
xj − 0.8 cos

(
6πx1 + jπ

n

))2
h( f1, g) = 1 −

(
f1
g

)H(t)

where:

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊
τ
τt

⌋
J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1], xi ∈ [−1, 1], ∀i = 2, 3, . . . , n

(36)
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Fig. 10. POS of HE5 for two decision variables: x2 and x5.

HE5 is a Type III DMOOP, since the POF changes over time but the POS remains the
same. The POS and POF of HE5 are:

POS : xj =
{

0.8x1 cos
(
6πx1 + jπ

n

)
, j ∈ J1

0.8x1 sin
(
6πx1 + jπ

n

)
, j ∈ J2

POF : y = (2 − √
x1
) [

1 −
(

x1

2 − √
x1

)H(t)
]

The POS of HE5 is illustrated in Figure 10. The POF is similar to the POF of HE3,
illustrated in Figure 7.

HE6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))

f1(x) = x1 + 2
|J1|
∑

j∈J1

(
xj − 0.8x1 cos

(
6πx1+ jπ

n
3

))2
g(x) = 2 − √

x1 + 2
|J2|
∑

j∈J2

(
xj − 0.8 cos

(
6πx1 + jπ

n

))2
h( f1, g) = 1 −

(
f1
g

)H(t)

where:
H(t) = 0.75 sin(0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1], xi ∈ [−1, 1], ∀i = 2, 3, . . . , n

(37)

For HE6, the POF changes over time but the POS remains the same. Therefore, HE6
is a Type III DMOOP. The POS and POF of HE6 are:

POS : xj =
⎧⎨
⎩

0.8x1 cos
(

6πx1+ jπ
n

3

)
, j ∈ J1

0.8x1 sin
(
6πx1 + jπ

n

)
, j ∈ J2

POF : y = (2 − √
x1
) [

1 −
(

x1

2 − √
x1

)H(t)
]
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Fig. 11. POS of HE6 for two decision variables: x2 and x5. c©2013 IEEE. Reprinted with permission from
Helbig and Engelbrecht [2013a].

The POF of HE6 is similar to the POF of HE3 (refer to Figure 7). The POS of HE6 is
illustrated in Figure 11.

HE7 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))

f1(x) = x1 + 2
|J1|
∑

j∈J1

(
xj − [0.3x2

1 cos
(
24πx1 + 4 jπ

n

)

+ 0.6x1] cos
(
6πx1 + jπ

n

))2
g(x) = 2 − √

x1 + 2
|J2|
∑

j∈J2

(
xj − [0.3x2

1 cos
(
24πx1 + 4 jπ

n

)

+0.6x1] sin
(
6πx1 + jπ

n

))2
h( f1, g) = 1 −

(
f1
g

)H(t)

where:

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊
τ
τt

⌋
J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1], xi ∈ [−1, 1], ∀i = 2, 3, . . . , n

(38)

HE7 is a Type III DMOOP, since the POF changes over time but the POS remains the
same. The POS and POF of HE7 are:

POS : xj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a cos
(

6πx1+ jπ
n

3

)
, j ∈ J1

a sin
(
6πx1 + jπ

n

)
, j ∈ J2

with:
a =
[
0.3x2

1 cos
(
24πx1 + 4 jπ

n

)
+ 0.6x1

]

POF : y = (2 − √
x1)

[
1 −
(

x1

2 − √
x1

)H(t)
]
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Fig. 12. POS of HE7 for two decision variables: x2 and x5. c©2013 IEEE. Reprinted with permission from
Helbig and Engelbrecht [2013a].

The POS of HE7 is illustrated in Figure 12. The POF is similar to the POF of HE3, as
illustrated in Figure 7.

HE8 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))
f1(x) = x1 + 2

|J1|
∑

j∈J1

(
4y2

j − cos(8yiπ ) + 1.0
)

g(x) = 2 − √
x1 + 2

|J2|
∑

j∈J2

(
4y2

j − cos(8yiπ ) + 1.0
)

h( f1, g) = 1 −
(

f1
g

)H(t)

where:
H(t) = 0.75 sin(0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}

yj = xj − x

(
0.5
(
1.0+ 3( j−2)

n−2

))
1 , ∀ j = 2, 3, . . . , n

xi ∈ [0, 1], ∀i = 1, 2, . . . , n

(39)

HE9 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))
f1(x) = x1 + 2

|J1|
∑

j∈J1

(
4
∑

j∈J1
y2

j − 2
∏

j∈J1
cos
(

20yjπ√
j

)
+ 2.0
)

g(x) = 2 − √
x1 + 2

|J2|
∑

j∈J2

(
4
∑

j∈J2
y2

j − 2
∏

j∈J2
cos
(

20yjπ√
j

)
+ 2.0
)

h( f1, g) = 1 −
(

f1
g

)H(t)

where:
H(t) = 0.75 sin(0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}

yj = xj − x

(
0.5
(
1.0+ 3( j−2)

n−2

))
1 , ∀ j = 2, 3, . . . , n

xi ∈ [0, 1] ∀i = 1, 2, . . . , n

(40)

The POF of HE8 changes over time but the POS remains the same. Therefore, HE8
is a Type III DMOOP. The POS (refer to Figure 8) and POF (refer to Figure 7) of
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HE8 are:

POS : xj = x
0.5
(

3( j−2)
n−2

)
1 , ∀ j = 2, 3, . . . , n.

POF : y = (2 − √
x1
) [

1 −
(

x1

2 − √
x1

)H(t)
]

For HE9, the POF changes over time but the POS remains the same. Therefore, HE9
is a Type III DMOOP. The POS (refer to Figure 8) and POF (refer to Figure 7) of HE9 are:

POS : xj = x
0.5
(

3( j−2)
n−2

)
1 , ∀ j = 2, 3, . . . , n.

POF : y = (2 − √
x1
) [

1 −
(

x1

2 − √
x1

)H(t)
]

9

HE10 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))

f1(x) = x1 + 2
|J1|
∑

j∈J1

(
xj − sin

(
6πx1 + jπ

n

))2
g(x) = 2 − x2

1 + 2
|J2|
∑

j∈J2

(
xj − sin

(
6πx1 + jπ

n

))2
h( f1, g) = 1 −

(
f1
g

)H(t)

where:
H(t) = 0.75 sin(0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}
xi ∈ [0, 1] ∀i = 1, 2, . . . , n

(41)

The POF of HE10 changes over time but the POS remains the same. Therefore, HE10
is a type I DMOOP. The POS (refer to Figure 9) and POF (refer to Figure 7) of HE10 are:

POS : xj = sin
(

6πx1 + jπ
n

)
, ∀ j = 2, 3, . . . , n.

POF : y = (2 − √
x1
) [

1 −
(

x1

2 − √
x1

)H(t)
]

The HE3 to HE10 DMOOPs can be changed from Type III DMOOPs to Type II
DMOOPs by changing the h function in Equations (34) through (41) as follows:

h( f1, g) = 1 −
(

f1

g

)H2(t)

with:

H2(t) = H(t) +
∑
xi∈xII

(
xi − H(t)

)2
, xII ⊂ x (42)

This new h function will cause the POS to change over time.

6. EVALUATION OF DMOO ALGORITHMS

This section highlights findings of a study that compares the performance of DMOAs
on DMOOPs with various characteristics [Helbig 2012]. Five DMOAs were used for
the experiments, namely the Dynamic Nondominated Sorting Genetic Algorithm II
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(DNSGA-II)-A [Deb et al. 2007], DNSGA-II-B [Deb et al. 2007], the dynamic coopera-
tive competitive Evolutionary Algorithm (dCOEA) [Goh and Tan 2009b], the Dynamic
Multi-objective Particle Swarm Optimisation (DMOPSO) algorithm [Lechuga 2009],
and the Dynamic Vector Evaluated Particle Swarm Optimisation (DVEPSO) algorithm
[Helbig and Engelbrecht 2013b]. All DMOAs were evaluated on a modified version of
DIMP2 with a concave POF, ZJZ (Equation (16)), FDA2 (Equation (6)), FDA2Camara
[Cámara et al. 2010], FDA3 (Equation (7)), FDA3Camara [Cámara et al. 2010], FDA5
(Equation (9)), FDA5iso (Equation (31)), FDA5dec (refer to Section 5.2), dMOP2
(Equation (14)), dMOP3 (Equation (15)), dMOP2iso (Equation (32)), dMOP2dec (refer
to Section 5.2), HE1 (Equation (19)), HE2 (Equation (20)), HE6 (Equation (37)), HE7
(Equation (38)), and HE9 (Equation (40)). For all benchmark functions, the severity
of change frequency of change combination (nt − τt) was set to 1–10, 10–10, 10–25,
10–50, and 20–10. For each DMOOP, the DMOA was executed for 30 runs, with each
run consisting of 1,000 iterations. Three performance measures were used, namely
the number of nondominated solutions found, accuracy [Cámara Sola 2010] (low value
indicates good performance), and stability [Cámara Sola 2010].

The following observations were made:

—DMOAs solving a DMOOP with a discontinuous POF will struggle to find a diverse
set of solutions for each of the continuous sections of the POF. Therefore, a DMOA
may require a longer period to find a diverse set of solutions. However, the time
available depends on the frequency of changes in the environment. Only DMOPSO
performed really well on DMOOPs with a discontinuous POF. DVEPSO struggled to
converge towards a discontinuous POF. However, the other algorithms managed to
find solutions that were relatively close to the true POF. DMOOPs with a discontin-
uous POF are selected as a characteristic of an ideal benchmark function suite (refer
to Table II, item 2).

—Only DVEPSO and dCOEA could solve DIMP2, where each decision variable has its
own rate of change. In addition, DVEPSO outperformed dCOEA. In a fast-changing
environment, both DMOAs obtained very high accuracy and stability values. There-
fore, the found solutions were far from the true POF, and the performance of both
DMOAs was severely affected by changes in the environment. DMOOPs with deci-
sion variables that change at different rates are selected as a characteristic that an
ideal benchmark function suite should exhibit (refer to Table III, item 6).

—The lack of gradient information may cause a DMOA to converge slower to an isolated
POF. All DMOAs, except DMOPSO, obtained a better performance for dMOP2iso
than the original dMOP2 DMOOP. However, in contrast to dMOP2, when solving
FDA5iso, all DMOAs obtained a worse performance than with the original FDA5
DMOOP. Furthermore, dCOEA struggled to converge towards the POF of FDA5iso.
In a fast-changing environment with severe changes, all DMOAs obtained much
larger accuracy and stability values. Therefore, they struggled to find solutions close
to the true POF in the available time, and their performance was severely affected
by the changes the environment.

—Since the search space favours the local POF, DMOAs take longer to converge to
the true POF if the POF is deceptive. Therefore, when the changes in the environ-
ment are gradual and occur only occasionally, the DMOAs obtain reasonable accu-
racy and stability values. However, when the environment changes frequently, the
DMOAs’ performance degrade, leading to very large accuracy and stability values.
On dMOP2dec, all DMOAs except DMOPSO performed much worse than on the orig-
inal dMOP2. For FDA5dec, all DMOAs performed much worse than for the original
FDA5 function. In addition, dCOEA struggled to find solutions for FDA5dec, even
in slow-changing environments. DMOOPs with an isolated or deceptive POF are
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Table II. Set of DMOO Benchmark Functions for Each Identified Characteristic for MOOPs in
General

Characteristic DMOOP Type: Suggested DMOOPs
1. DMOOPs that cause difficulties to
converge towards the POF:
— Multimodal DMOOPs Type I: DMZDT4 [Wang and Li 2009]
— DMOOPs with an isolated optimum Various: DMOOPs developed according to Section 5.1
— DMOOPs with a deceptive optimum Various: DMOOPs developed according to Section 5.2
2. DMOOPs that cause difficulties to
find a diverse set of solutions:
— DMOOP with a convex POF —Type I: FDA1 (Equation (5)), DMZDT1 [Wang and Li

2009]
—Type II: Modified FDA3 functions [Zheng 2007;

Talukder and Khaled 2008; Khaled et al. 2008; Cámara
et al. 2010]

—Type III: dMOP1 (Equation (13))
— DMOOPs with a nonconvex POF — Type I: DMZDT2 [Wang and Li 2009], FDA4

(Equation (8)), DMOP3 [Liu et al. 2010]
— Type II: FDA5 (Equation (9))
—Type III: Modified FDA5 [Talukder and Khaled 2008]

— DMOOPs with a discontinuous POF —Type I: DMZDT3 [Wang and Li 2009]
—Type III: HE1 (Equation (19)), HE2 (Equation (20))

— DMOOPs with a nonuniform spread of
solutions

—Type I: dMOP3 (Equation (15))
—Type II: FDA5 (Equation (9)), modified FDA3 functions

[Zheng 2007; Talukder and Khaled 2008; Khaled et al.
2008; Cámara et al. 2010]

—Type III: Modified FDA5 [Talukder and Khaled 2008]

3. DMOOPs with various types or
shapes of POSs

— Types I, II: DTLZAv (Equation (21))
— Type II: ZJZ (Equation (16)), DSW2 (Equation (28)),

DSW3 (Equation (29))
— Type III: HE3 to HE10 (Equations (34) through (41))
—Types II, III: Modified FDA2 [Mehnen et al. 2006; Deb

et al. 2007; Liu et al. 2010; Zheng 2007; Isaacs et al.
2008; Ray et al. 2009; Lechuga 2009; Cámara et al.
2009, 2010; Cámara Sola 2010]

4. DMOOPs with dependencies
between the decision variables

—Type II: ZJZ (Equation (16))

c©2013 IEEE. Reprinted with permission from Helbig and Engelbrecht [2013a]

identified as characteristics of an ideal benchmark function suite (refer to Table II,
item 1).

—DMOAs solving a DMOOP with a complex POS will require more time to converge
than when they are solving a DMOOP with a simple POS—that is, when all decision
variables have the same POS, with the POS being defined by a linear function.
When solving HE6, HE7, and HE9 with complicated POSs, the DMOAs struggled
to converge to the true POF. For HE9, three of the five DMOAs obtained very high
accuracy values, and two DMOAs obtained high accuracy values, indicating a poor
performance. In addition, when solving HE6 and HE7, all DMOAs, except dCOEA,
obtained high accuracy values. DMOOPs where the POS is a nonlinear function have
been identified as a characteristic that an ideal benchmark function suite should
exhibit (refer to Table II, item 5).

It should be noted that similar to a lack of standard DMOO benchmark functions,
there are no standard DMOO performance measures. Selecting which performance
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Table III. Set of DMOO Benchmark Functions for Each Identified Characteristic for DMOOPs

Characteristic DMOOP

1. DMOOPs where the distribution of
solutions in the POF changes over
time

— Type I: dMOP3 (Equation (15))
— Type II: FDA5 (Equation (9)), modified FDA3 functions

[Zheng 2007; Talukder and Khaled 2008; Khaled et al.
2008; Cámara et al. 2010]

— Type III: Modified FDA5 [Talukder and Khaled 2008]

2. DMOOPs where the POF changes
from convex to nonconvex and/or
vice versa over time

—Type II: dMOP2 (Equation (14)), ZJZ (Equation (16))
— Type III: dMOP1 (Equation (13))
— Types II, III: Modified FDA2 functions [Mehnen et al.

2006; Deb et al. 2007; Liu et al. 2010; Zheng 2007;
Isaacs et al. 2008; Ray et al. 2009; Lechuga 2009;
Cámara et al. 2009, 2010; Cámara Sola 2010]

3. DMOOPs where the shape of POS
changes over time

— Various types: DTLZAv (refer to Equation (21))

4. DMOOPs with a disconnected POS
that changes over time

— Type II: DSW2 (Equation (28))

5. DMOOPs where each decision
variable has a different POS that
changes over time

— Type III: HE3 to HE10 (Equations (34) through (41))

6. DMOOPs with decision variables
that change with different rates over
time

— Type I: DIMP1 (Equation (17)), DIMP2 (Equation (18))

7. DMOOPs where the current POF
depends on the previous POF or POS

— Type IV: T3 (Equation (24)), T4 (Equation (25))

8. DMOOPs where the number of
decision variables vary over time

— Type IV: T1 (Equation (22))

9. DMOOPs where the number of
objective functions vary over time

— Types I, II: DTLZAv (Equation (21))
—Type III: T2 (Equation (23))

10. Real-world DMOOPs — Refer to Section 8
c©2013 IEEE. Reprinted with permission from Helbig and Engelbrecht [2013a]

measures to use to evaluate DMOAs is no trivial task. However, the reader is referred
to Helbig [2012] and Helbig and Engelbrecht [2013c], which provide a comprehen-
sive overview of DMOO performance measures and highlight issues with performance
measures that are currently used to evaluate DMOAs.

7. IDEAL SET OF DMOO BENCHMARK FUNCTIONS

Taking into consideration the benchmark functions currently being used for DMOO
(discussed in Section 4) and the ideal characteristics of benchmark functions (dis-
cussed in Section 3), it becomes clear that many different types of DMOOPs have been
suggested to be used as benchmark functions. Therefore, when a new DMOO algorithm
has been developed, the selection of benchmark functions to test the algorithm’s ability
to solve DMOOPs in comparison with other algorithms is a daunting task. This section
presents the characteristics of an ideal benchmark function set and suggests DMOOPs
that can be used to sufficiently test an algorithm’s ability to solve DMOOPs.

From Sections 3 and 4, the following characteristics were identified that an
ideal MOO (static or dynamic) set of benchmark functions should have [Helbig and
Engelbrecht 2013a]:

(1) The set of benchmark functions should test whether an algorithm can converge
towards a POF with the following characteristics:
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—Multimodality
—Isolated optimum
—Deceptive optimum

(2) The set of benchmark functions should test whether an algorithm can obtain a
diverse set of solutions when a POF has the following characteristics:
—Convexity and/or nonconvexity in the POF
—Discontinuous POF (i.e., a POF with disconnected continuous subregions)
—Nonuniform distribution of solutions in the POF

(3) The benchmark functions should have various types (Type I to IV of Farina et al.
[2004]) or shapes of POSs, including POSs with nonlinear curves.

(4) The benchmark functions should have decision variables with dependencies (link-
ages).

In addition, the following characteristics were identified that an ideal DMOO bench-
mark function suite should have [Helbig and Engelbrecht 2013a]:

(1) The benchmark functions should have a nonuniform distribution of solutions in
the POF and/or the distribution of solutions should change over time.

(2) The POFs’ shape should change over time from convex to nonconvex and/or vice
versa.

(3) The POSs’ shape should change over time.
(4) The POS should be disconnected and change over time.
(5) Each decision variable should have a different POS that changes over time.
(6) The benchmark functions should have decision variables that change with differ-

ent rates over time.
(7) The benchmark functions should include cases where the POF depends on values

of POSs or POFs of previous environments.
(8) The benchmark functions should enable varying the number of decision variables

over time.
(9) The benchmark functions should enable varying the number of objective functions

over time.
(10) A real-world DMOOP

For each characteristic, a set of DMOOPs was identified from Sections 4, 5.1, and
5.2. Tables II and III present the proposed ideal benchmark functions suite from which
DMOOPs can be selected to evaluate the performance of DMOAs.

Selection of DMOOPs for a study should be done in such a way that various types of
DMOOPs are selected for each characteristic. The reason for this is to ensure that an
algorithm can overcome a certain difficulty in various types of DMOO environments.

In order to evaluate whether an algorithm can solve DMOOPs with various change
frequencies (τt) and change severities (nt), the following parameter values are sug-
gested: τt = {5, 10, 25, 50, 100} and nt = {1, 10, 20}, where various combinations of
τt and nt values should be used. These parameter values will enable researchers to
analyse the performance of the algorithms for specific type of environments—that
is, whether a specific algorithm performs well in slow-changing environments, fast-
changing environments, or both; gradually changing environments, severely changing
environments, or both; and a combination of these listed environment types.

In addition to the benchmark functions listed in Table II, generic benchmark function
generators can be used to create DMOOPs of various types with specific characteris-
tics as outlined in this section—for example, DTF (refer to Equation (10)), DTLZAv

(refer to Equation (21)), DSW (refer to Equation (26)), and the DMOOP of Tang et al.
(refer to Equation (11)).
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8. REAL-WORLD DMOO PROBLEMS

Normally, the degree of difficulty of a real-world problem is unknown beforehand. Fur-
thermore, in many cases, the true POF of a real-world problem is unknown. Therefore,
artificial problems or benchmark functions are used to evaluate the performance of an
algorithm. The benchmark functions exhibit certain characteristic and therefore test
whether an algorithm can overcome specific difficulties.

Numerous real-world DMOOP application areas exist, of which some are hydro-
thermal power scheduling [Deb et al. 2007], machining of gradient material [Roy
and Mehnen 2008], controller design for a time-varying unstable plant [Farina et al.
2004; Huang et al. 2011], war resource allocation [Palaniappan et al. 2001], route
optimisation according to real-time traffic [Wahle et al. 2001], design optimisation of
wind turbine structures [Maalawi 2011], supply chain networks [Chen and Lee 2004;
Selim et al. 2008], and energy-efficient routing optimisation in mobile ad hoc networks
[Constantinou 2011].

In this section, four real-world DMOOPs of various application areas are discussed,
namely the regulation of a lake-river system, the optimisation of a heating system, the
control of a greenhouse, and the management of hospital resources.

8.1. Regulation of a Lake-River System

Hämäläinen and Mäntysaari [2001] proposed a mathematical model to regulate a lake-
river system that consists of four lakes and a river that connects the lakes to the sea.
The DSOOP in Hämäläinen and Mäntysaari [2001] is adapted to a DMOOP as follows:

min f = ( f1, f2)

f1 =
∑
k∈K

cggk +
n∑

i=1

pi

f2 =
∑
k∈K

cI Ik +
n∑

i=1

pi

with:

gk = (xgoal
k − xk

)2
Ik =
⎧⎨
⎩

(Ik − xk)2, if xk < Ik
(xk − uk)2, if xk > Ik
0, otherwise

pi =
{

c1 (|qi − qi−1| − 	qmax)2 + c2 (qi − 1i−1)2
, if |qi − qi−1| > 	qmax

c2 (qi − qi−1)2 , otherwise

where K is the set of goal observation indexes of the planning period; c1 and c2 are
adjustable parameters; gk is the deviation from the goal point; xgoal

k is the goal; xk is the
true water level; Ik is the deviation from the goal set; lk and uk are the lower and upper
bounds of the goal xk, respectively; pi is a penalty function; qi is the outflow from Lake
Päijänne; 	qmax is the upper limit of the change in flow rate; and i refers to the dis-
cretized time interval. The following parameter values are suggested [Hämäläinen and
Mäntysaari 2001]: cg = 10L/m2, cI = 100L/m2, c1 = 100s2/m6, and c2 = 0.00001s2/m6.
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8.2. Heating Optimisation

Hämäläinen and Mäntysaari [2002] proposed a DMOOP to optimise indoor heating.
The DMOOP is defined as:

min f = ( f1, f2, f3)

f1 =
n−1∑
i=0

piqi

f2 =
n−1∑
i=0

qi

f3 =
n−1∑
i=0

∣∣Ti − T ideal
i

∣∣ (44)

with:
T0 = Tn (45)
li ≤ Ti ≤ ui, ∀i = 0, . . . , n − 1
0 ≤ qi ≤ q, ∀i = 0, . . . , n − 1,

where f1 represents heating costs; f2 represents heating energy; f3 represents devi-
ation from the ideal temperature; Ti represents indoor temperature that is a state
variable; qi represents the heating power at time i and is a decision variable; T0 is the
initial indoor temperature; li and ui are the lower and upper bounds of Ti, respectively;
q is the maximum heating capacity of the heating system; pi is the hourly price of
electricity at time i; and T ideal

i is the hourly ideal indoor temperature specified by the
decision maker.

The constraint in Equation (45) specifies that the indoor temperature of the first hour
of the day has to be the same on the following day. This constraint can be managed
by either only accepting solutions that adhere to this constraint or by converting the
constraint to a penalty function.

8.3. Control of a Greenhouse

Ursem et al. [2002] proposed a mathematical model to describe the state transformation
of a greenhouse for crops as a DSOOP. Zhang [2007] proposed a DMOOP to optimisation
of the control of a greenhouse sytem based on the model proposed by Ursem et al. [2002]:

min
U(k)∈Uad

f(U(k)) = (− f1, f2, f3)

f1(U(k)) = 1
l

k+l∑
j=k

vpcrop( j)	x( j)

f2(U(k)) = 1
l

k+l∑
j=k

vpheat( j)uheat( j)

f3(U(k)) = 1
l

k+l∑
j=k

vCO2 ( j)upCO2 ( j) (46)
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subject to:

xtemp(k + 1) = xtemp(k) + 	xtemp(k), xCO2 (k + 1) = xCO2 (k) + 	xCO2 (k)
xcrop(k + 1) = xcrop(k) + 	xcrop(k), yout(k + 1) = 	xcrop(k)

xtemp(0) = 18; xCO2 (0) = 1; xcrop(0) = 4; 16 ≤ xtemp(k) ≤ 35,∀k (47)

	xtemp(k) = uheat(k − 1) + t1 + uvent(k − 1)
[
vtemp(k − 1) − xtemp(k − 1)

]+ k2vsun(k − 1)
	xcrop(k) = min(max(k5 − |xtemp(k − 1) − k6|, 0), min(xCO2 , k7), min(vsun(k − 1), t8))

− k9 min(k5 − |xtemp(k − 1) − k6|, 0)

with:

Uad = {U(k) = (u0(k), u1(k), . . . , ul−1(k)
) |u j(k) = (uheat(k + j), uvent(k + j), uCO2 (k + j)

)
,

u j(k) ∈ [0, 5]x[0, 1]x[0, 4]; 0 ≤ j ≤ l − 1}
vtemp(k) = 10 + vtemp,p(k) + vtemp,st(k), vsun(k) = 1.0 + vsun,p(k) + vsun,st(k)
vpcrop(k) = 22.0 + vpcrop,p(k) + vpcrop,st(k), vpheat(k) = 2.5 + vpheat,st(k), vpCO2 (k)

= 2.5 + vpCO2,st(k), t0 = −10

vtemp,p(k) = 7 cos(2π10−2tk) + 9 cos(2π10−3tk)

vsum,p(k) = 4 cos(2π10−2tk) + 9 cos(2π10−3tk)

vpcrop,p(k) = −3cos(2π10−3tk)
vtemp,st(k) = min(max(vtemp,st(k − 1) + U (−0.5, 0.5),−4), 4)
vsun,st(k) = min(max(vsun,st(k − 1) + U (−0.25, 0.25),−1, 1)

vpcrop,st(k) = min(max(vpcrop,st(k − 1) + U (−10−2, 10−2), −5), 5)

vpheat,st(k) = min(max(vpheat,st(k − 1) + U (−10−3, 10−3),−0.5), 0.5)

vpCO2,st(k) = min(max(vpCO2,st(k − 1) + U (−10−3, 10−3),−0.5), 0.5)
vtemp,st(0) = 0; vsun,st(0) = 0; vpheat,st(0) = 0; vpCO2,st(0) = 0; vpcrop,st(0) = 0
uheat ∈ [0, 5]; uvent ∈ [0, 1]; uCO2 ∈ [0, 4]
vtemp ∈ [−20, 40]; vsun ∈ [0, 8]; vpcrop ∈ [0, 30]; vpheat, vpCO2 ∈ [0, 3]
xtemp ∈ [−20, 50]; xCO2 ∈ [0, 10]; xcrop ∈ [0, ∞),

where tk is the time when the greenhouse is in the k-th step, U (a, b) is a stochastic
variable with an uniform distribution over [a,b], l is the prediction timestep size, k1
is the smallest coefficient of heat transformation, k2 is the sun absorption rate of the
greenhouse, k3 is the increment rate at which the crop consumes CO2, k4 is the density
of CO2 outdoors, k5 is the maximum crop output, k6 is moderate temperature that
results in the best crop growth, k7 is the maximum quantity of CO2 that the crop
consumes, k8 is the maximum intensity of the sun that results in crop growth, and k9
is the loss rate that results in severe temperatures. The controller consists of three
variables, namely heat (uheat), ventilation (uvent), and CO2 (uCO2 ). Five variables are
considered for the environmental system, namely environmental temperature (vtemp),
intensity of the sun (vsun), prices of the crop (vpcrop), heat (vpheat), and CO2 (vpCO2 ). In
addition, the greenhouse has three indoor state variables, namely temperature (xtemp),
density of CO2 (xCO2 ), and crop quantity (xcrop).
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The constraint, 16 ≤ xtemp ≤ 35 (refer to Eq. (47)), is transformed into a subobjective
function:

f4(U(k)) =
k+l∑
j=k

{
[max(16 − xtemp( j), 0)]2 + [min(35 − xtemp( j), 0]2} (48)

Therefore, the DMOOP of Equation (46) is converted to the following four-objective
DMOOP:

min
U(k)∈Uad(k)

(− f1(U(k)), f2(U(k)), f3(U(k)), f4(U(k))
)

(49)

The following parameter values are suggested in Zhang [2007]: k1 = 0.1, k2 = 0.2,
k3 = 1, k4 = 4, k5 = 8, k6 = 26, k7 = 8, k8 = 7, and k9 = 0.1.

8.4. Hospital Resource Management

Hutzschenreuter et al. [2009] proposed a DMOOP to model the management of hospital
resources, defined as follows:

min f(π ) = (− f1(π ), f2(π ), f3(π ))

f2(π ) =
∑∑

cuπu(ti, su) + cCT S−ORucCT S−OR(π )

(50)

with:

su(ti) = utilised capacity at unit u at start of day ti
ru(t−

i )

pi =
⎧⎨
⎩

max
{
rmin

u , ru(t−
i ) − rdecr

u

}
, if su(ti) < UTdecr

u
ru(t−

i ), if su(ti) ∈ [UTdecr
u , UTincr

u

]
min
{
rmax

u , ru(t−
i ) + rincr

u

}
, otherwise

πu(t0, su) = rbase
u

rbase
u ∈ N

⋂∣∣rmin
u , rmax

u

∣∣ , ∀u ∈ U

su(ti) ∈ R+
0 , ∀u ∈ U, ∀ti ∈ T

′

rdecr
u , rincr

u ∈ [0, 5], ∀u ∈ U

UTdecr
u ∈ [0, 1], UTincr

u ∈ [UTdecr
u , UTdecr

u + 1
]
, ∀u ∈ U,

where T is the time horizon with discrete time units t and n equidistant decision5
moments denoted by ti ∈ T ′ with ti−1 < ti∀i = 1, . . . , n− 1 (typically t will be in steps of
hours and ti will be in steps of days), π is a resource allocation policy, f1(π) is the mean
total throughput of patients under π defined as the number of patients discharged
from the hospital after treatment, f2(π ) is the mean total resource cost, f3(π ) is the
mean total weighted backup capacity usage under allocation π , ucCT S−OR is the unused
Cardio-Thoracic Surgery Operating Room (CTS-OR) capacity due to cancelled surgeries
resulting from unavailable postoperative care beds give π , su(ti) is the state at unit u at
decision moment i, ru(t−

i ) is the resource capacity of unit u at time t−
i that is just before

the adjustment at time ti, rbase
u is the base resource allocation, rdecr

u and rincr
u are resource

adjustments, UTdecr
u and UTincr

u are utilisation adjustments with UTdecr
u ≤ UTincr

u , and
πu(ti, si) ∈ [rmin

i , rmax
i ]∀ti ∈ T ′, u ∈ U .
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9. CONCLUSION

In recent years, many DMOOPs have been proposed in the DMOO literature. In addi-
tion, no standard benchmark functions exist to evaluate the performance of DMOAs.
However, no comprehensive overview of the proposed DMOOPs exists. Therefore, it is
a daunting task to select DMOAs for empirical studies.

This article seeked to address this gap in the literature by providing a comprehensive
overview of the benchmark functions that have been used in the DMOO literature.
In addition, characteristics that an ideal DMOO benchmark function suite should
exibit were proposed, and DMOOPs were suggested for each of these characteristics.
The suggested ideal benchmark function suite should enable a uniform comparison of
DMOAs.

The investigation of the DMOOPs presented in the literature highlighted the fol-
lowing shortcomings of DMOOPs: no DMOOPs have a deceptive or isolated POF, for
most DMOOPs the POS is the same for each decision variable and the POS is a simple
function (such as xi = | sin(0.5πt)|).

To address these shortcomings, this article presented an approach to adapt existing
DMOOPs in such a way that the DMOOPs have either a deceptive or an isolated POF.
Furthermore, new DMOOPs were proposed where the POS is a nonlinear function and
the POS varies for each decision variable.

In addition, DMOO application areas were highlighted, and four real-world DMOOPs
were discussed in more detail, namely the regulation of a lake-river system, the op-
timisation of a heating system, the control of a greenhouse, and the management of
hospital resources.

      APPENDIX

B. CALCULATING THE TRUE POS AND POF

This section discusses how POS and POF are determined for DMOOPs. One example
is provided, namely FDA2 modified by Cámara et al. [2009, 2010] and Cámara Sola
[2010] referred to in this section as FDA2Cámara.

The FDA2Cámara DMOOP has two objective functions (refer to Section 4) and is
defined as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII) · h
(
xIII, f1(xI), g (xII) , t

)
)

f1(xI) = x1
g(xII) = 1 +∑xi∈xII

x2
i

h(xIII, f1, g, t) = 1 −
(

f1
g

)H2(t)

where:
H(t) = z− cos(πt/4), t = 1

nt

⌊
τ
τt

⌋
H2(t) = H(t) +∑xi∈xIII

(xi − H(t)/2)2

xI ∈ [0, 1]; xIIi , xIIIi ∈ [−1, 1]

The goal when solving FDA2Cámara is to minimise the two objective functions, namely
f1 and f2 = gh. Since f1 only depends on x1, the true POF depends on f2. In order to
minimise gh, both g and h have to be minimised. h will be minimised if the term f1

g
H2(t)

is maximised (since this term is subtracted from 1). The term f1
g

H2(t)
is maximised

if g is minimised (since f1 is divided by g). g is minimised if the term
∑

xi∈xII
x2

i is
minimised—that is, if

∑
xi∈xII

x2
i is zero. Therefore, the optimal values for xi ∈ xII is
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xi = 0. If
∑

xi∈xII
x2

i = 0, g = 1. Replacing g = 1 into f2 = gh results in f ∗
2 = 1 − f H2(t)

1 .
In order to minimise f ∗

2 , H2(t) has to be minimised. H2(t) is minimised if the term∑
xi∈xIII

(xi − H(t)/2)2 is minimised, which results in H∗
2 (t) = H(t). Therefore, the optimal

values of xi ∈ xIII is xi = H(t)
2 . Replacing H2 in f ∗

2 with H∗
2 results in f2 = 1 − f H(t)

1 .
Therefore, POF is 1 − f H(t)

1 . The decision variable values that lead to POF is POS,
namely xi = 0,∀xi ∈ xII and xi = H(t)

2 , ∀xi ∈ xIII.
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