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Abstract

The recently developed reference-command tracking version of model predic-

tive static programming (MPSP) is successfully applied to a single-stage closed

grinding mill circuit. MPSP is an innovative optimal control technique that

combines the philosophies of model predictive control (MPC) and approximate

dynamic programming. The performance of the proposed MPSP control tech-

nique, which can be viewed as a ‘new paradigm’ under the nonlinear MPC

philosophy, is compared to the performance of a standard nonlinear MPC tech-

nique applied to the same plant for the same conditions. Results show that

the MPSP control technique is more than capable of tracking the desired set-

point in the presence of model-plant mismatch, disturbances and measurement

noise. The performance of MPSP and nonlinear MPC compare very well, with

definite advantages offered by MPSP. The computational speed of MPSP is in-

creased through a sequence of innovations such as the conversion of the dynamic

optimization problem to a low-dimensional static optimization problem, the re-

cursive computation of sensitivity matrices and using a closed form expression

to update the control. To alleviate the burden on the optimization procedure
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in standard MPC, the control horizon is normally restricted. However, in the

MPSP technique the control horizon is extended to the prediction horizon with

a minor increase in the computational time. Furthermore, the MPSP technique

generally takes only a couple of iterations to converge, even when input con-

straints are applied. Therefore, MPSP can be regarded as a potential candidate

for online applications of the nonlinear MPC philosophy to real-world industrial

process plants.

Keywords: comminution, grinding mill, model predictive control, model

predictive static programming, optimal control

1. Introduction

A grinding mill circuit forms a crucial part in the energy and cost-intensive

comminution process of extracting valuable metals and minerals from mined

ore. The ability of downstream processes to extract the greatest benefit from

milled ore is dependent on the particle size distribution of the product that

leaves the mill. In order to achieve the desired product specification in terms

of quality and production rate, adequate control of the circuit is required. The

usual control objectives for a grinding mill circuit are to improve the quality of

the product, to maximise the throughput, to decrease the power consumption,

to reduce the usage of grinding media and to improve process stability [1].

Yet, these objectives are interrelated and necessitates trade-offs to be made, i.e.

both throughput and product particle size cannot be independently controlled to

arbitrary set point values. The challenges when controlling a grinding process

are the strong coupling between variables, large time delays, uncontrollable

disturbances, the variation of parameters over time, the nonlinearities in the

process and instrumentation inadequacies [2, 3].

The majority of industrial mineral processing plants make use of Propor-

tional Integral Derivative (PID) controllers to achieve the objectives mentioned

above even though the success of model-based controllers in other process indus-

tries are well attested [2, 4]. Model-based controllers such as model predictive
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control (MPC) provides significant advantages over PID when applied to grind-

ing mill circuits [5, 6, 7, 8]. The economic performance of PID control compared

to nonlinear MPC when applied to a grinding mill circuit was evaluated by Wei

and Craig [9] and results showed that nonlinear MPC (NMPC) can improve

performance with respect to recovered mineral value in downstream flotation

circuits. Further improvements to overall MPC performance can be achieved by

incorporating peripheral control tools such as inferential measurements, distur-

bance observers or model-plant mismatch detection [10, 11, 12, 13].

The following studies all make use of linearized models when applying MPC:

Chen et al. [3], Niemi et al. [5], Pomerleau et al. [6], Ramasamy et al. [7], Remes

et al. [8], Apelt and Thornhill [11], Yang et al. [12],Chen et al. [14]. Because

of the highly nonlinear nature of a grinding process, the use of NMPC with

fundamental nonlinear models is more desireable. Even though the modelling

of comminution processes has improved over the past years [15], many of the

available fundamental nonlinear models are not necessarily suitable for process

control. These nonlinear models are mainly used for steady-state plant design

and for a better understanding of load behaviour, breakage mechanisms and

energy dissipation [16]. Moreover, the computational burden of detailed fun-

damental nonlinear models with large parameter sets and large state vectors

increases the difficulty of developing feasible nonlinear model based controllers.

In Coetzee et al. [17], robust NMPC was applied to a grinding mill circuit in

simulation and showed excellent results in the presence of large disturbances and

parameter uncertainties. Even though the nonlinear model used in the study

had the minimum number of states and parameters necessary for control and

estimation purposes [18], the robust NMPC controller was not regarded suitable

for online application unless computational time was significantly reduced.

In an effort to address the problem of computational cost for MPC, Bem-

porad et al. [19] showed that for a discrete-time linear time-invariant system,

the control law can be obtained through a linear function instead of quadratic

programming. Another technique for reducing the computational cost of MPC

can be found in Wang and Boyd [20], where the dimensionality of the problem
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is reduced by restructuring the quadratic programs found in MPC and perform-

ing only a few iterations to solve the quadratic program with an appropriate

interior-point method.

Recently, a novel suboptimal control design technique called Model Predic-

tive Static Programming (MPSP) has been developed by Padhi and Kothari [21]

for finite-horizon nonlinear problems with terminal constraints. This technique

combines the philosophies of MPC and approximate dynamic programming to

reduce a dynamic optimisation problem to a low dimensional static optimisa-

tion problem which significantly reduces computational complexity. Additional

innovations are used such as the recursive computation of sensitivity matrices

and using a closed form expression to update the control history to further re-

duce computational time. The computational effectiveness of the MPSP control

technique is well illustrated in a number of problems in the aerospace industry,

e.g. see Padhi and Kothari [21], Halbe et al. [22], Oza and Padhi [23], Bhitre

and Padhi [24], Joshi and Padhi [25], Maity et al. [26]. The MPSP philosophy

was recently extended by Kumar and Padhi [27] to include output tracking for

infinite horizon nonlinear problems. Similar to NMPC, it was proposed that the

MPSP technique can be applied with a receding horizon mechanism for output

tracking problems.

This paper describes the mathematical formulation of MPSP for output

tracking where the output is a nonlinear function of both the states and the

input and applies it in simulation to a grinding mill circuit. The proposed

MPSP technique is evaluated against a conventional NMPC in terms of the

ability to reject noise and disturbances while tracking a desired setpoint. The

aim of this paper is to illustrate the ability of MPSP to track a desired setpoint,

in the presence of significant disturbances and model uncertainties, with similar

performance to NMPC, but without the computational burden associated with

it.

This study shows that improved output regulation can be achieved by means

of MPSP compared to NMPC, primarily because the control horizon and predic-

tion horizon are equal for MPSP. Note that even though the horizons are equal,
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this does not substantially increase the computational burden. MPSP con-

verges to a solution within a few iterations, even in the presence of model-plant

mismatch, disturbances and measurement noise. Although more iterations are

necessary to converge to a solution when input constraints apply, convergence

remains quite fast in general.

The rest of the paper is organized as follows: Section 2 of the paper dis-

cusses the nonlinear model used to describe the grinding mill circuit, Section

3 gives an overview of MPSP for nonlinear problems, Section 4 gives a brief

description of the NMPC used in this study, Section 5 describes the simulation

of both controllers and Section 6 discusses the results. Preliminary results of

this technique applied to a grinding mill circuits over a finite time horizon was

presented at the 19th IFAC World Congress held in Cape Town in August 2014

[28].

2. Milling Circuit and Model Description

Mill Load

(JT)

Sump 

volume

(SVOL)

Sump Water

(SFW)

Cyclone Feed Flow (CFF)

Cyclone Feed Density (CFD)

Particle Size Estimate (PSE)

Mill Inlet Water (MIW)

Mill Feed Solids (MFS)

Mill Feed Balls (MFB)

Pump

Figure 1: A single-stage closed grinding mill circuit.

Both NMPC and MPSP are applied in simulation to a single-stage closed

grinding mill circuit as described in this section. The three main elements of

the circuit shown in Figure 1 are the mill, sump and hydrocyclone. The mill
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Table 1: Description of circuit variables

Input Variables

MIW mill inlet water [m3/h]

MFS mill feed solids [t/h]

MFB mill feed balls [t/h]

SFW sump feed water [m3/h]

CFF cyclone feed flow-rate [m3/h]

Output Variables

JT mill total charge fraction [-]

SV OL sump slurry volume [m3]

PSE particle size estimate [-]

receives four streams: mined ore, water, steel balls and underflow from the

hydrocyclone. The ground ore in the mill mixes with water to create a slurry.

For this circuit, the slurry in the mill is discharged through an end-discharge-

screen where the aperture size of the end-discharge-screen limits the particle

size of the discharged slurry. The discharged slurry is collected in a sump where

it is diluted with water before it is pumped to the cyclone for classification. The

hydrocyclone is responsible for the separation of the in- and out-of-specification

ore discharged from the sump. The in-specification particles of the slurry pass

to the overflow of the hydrocyclone, while the out-of-specification particles pass

to the underflow. The underflow is passed back to the mill for the out-of-

specification particles to be ground further. The overflow contains the final

product which is passed to downstream processes [29]. The input and output

variables of the circuit shown in Fig. 1 are described in Table 1.

The reduced complexity nonlinear dynamic model of le Roux et al. [30] can

be used to describe the circuit shown in Fig. 1. The approach in the derivation

of this nonlinear phenomenological population balance model was to use as few

fitted parameters as possible for reasonably accurate model responses in the

correct direction.
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Table 2: Description of subscripts

Subscript Description

X∆− f-feeder; m-mill; s-sump; c-cyclone

X−∆ r-rocks; s-solids; c-coarse; f-fines; b-balls; w-water

V−−∆ i-inflow; o-outflow; u-underflow

The model uses six states to represent the constituents of the charge in the

milling circuit. The six states are rocks, solids, coarse, fines, balls and water.

Rocks are defined as ore too large to pass through the end-discharge screen,

whereas solids are ore that can be discharged from the mill. The solids consist

of the sum of fine and coarse ore, where fine ore is smaller than the product

specification size and coarse ore is larger than the product specification size.

Although there are only three size classes used to describe the ore in the circuit

(rocks, coarse ore and fine ore), these size classes are sufficient for a reasonably

accurate model with responses in the correct directions [18]. The second last

state, balls, represent the steel balls added to the mill to assist with grinding.

The balls and rocks are the main grinding material and are only found in the

mill as they are too large to pass through the apertures in the end-discharge

screen. Finally, water is added to the ore to create a slurry which eases the

transportation of ore through the circuit.

Only a brief overview of the model is given here. A detailed description of

the model can be found in le Roux et al. [30]. The model divides the circuit into

four modules: a feeder, a semi-autogenous mill with an end-discharge screen, a

sump and a hydrocyclone. For the model equations, V denotes a flow-rate in

m3/h and X denotes the states of the model as volumes in m3. Table 2 provides

a description of the subscripts for V and X. The first subscript indicates the

module considered (feeder, mill, sump or cyclone), the second subscript specifies

which of the six states are considered (rocks, solids, coarse, fines, balls, water),

and in the case of flow-rates the final subscript shows if it is an inflow, overflow

or underflow. The continuous time state-space description of the grinding mill
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circuit is shown below

Ẋmw = MIW − ϕVVXmwXmw

Xms+Xmw
+ Vcwu

Ẋms = MFS
DS

(1− αr)− ϕVVXmwXms

Xms+Xmw
+ Vcsu + ϕPmill

DSφr

(
Xmr

Xmr+Xms

)
Ẋmf = MFS

DS
αf − ϕVVXmwXmf

Xms+Xmw
+ Vcfu + Pmill

DSφf
/[

1 + αφf

(
Xmw+Xmr+Xms+Xmb

vmill
− vPmax

)]
Ẋmr = MFS

DS
αr − ϕPmill

DSφr

(
Xmr

Xmr+Xms

)
Ẋmb = MFB

DB
− ϕPmill

φb

(
Xmb

DS(Xmr+Xms)+DBXmb

)
Ẋsw = ϕVVXmwXmw

Xms+Xmw
− CFFXsw

Xsw+Xss
+ SFW

Ẋss = ϕVVXmwXms

Xms+Xmw
− CFFXss

Xsw+Xss

Ẋsf =
ϕVVXmwXmf

Xms+Xmw
− CFFXsf

Xsw+Xss

(1)

where Xmw, Xms, Xmf , Xmr and Xmb are the volume of water, solids, fines,

rocks and balls within the mill respectively, Xsw, Xss and Xsf are the volume

of water, solids and fines within the sump respectively, and Vcwu, Vcsu and Vcfu

are the underflow of water, solids and fines at the hydrocyclone respectively.

Because solids are the sum of fine and coarse ore, only the change in the solids

and fines are calculated rather than the change in coarse ore. The nomenclature

for the model is shown in Tables 3.

Table 3: Circuit parameter values and uncertainty

Parm Value ∆ Description

αf 0.05 50% Fraction fines in the ore

αr 0.47 50% Fraction rock in the ore

αP 1.0 Fractional power reduction per fractional

reduction from maximum mill speed

αφf
0.01 Fractional change in kW/fines produced per

change in fractional filling of mill

Continued on next page.
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Table 3 – continued from previous page.

Parm Value ∆ Description

αspeed 0.71 Fraction of critical mill speed

αsu 0.87 5% Parameter related to fraction solids in underflow

C1 0.6 Constant

C2 0.7 Constant

C3 4.0 Constant

C4 4.0 Constant

δPs 0.5 Power-change parameter for fraction solids in

the mill

δPv
0.5 Power-change parameter for volume of mill filled

DB 7.85 Density of steel balls [t/m3]

DS 3.2 Density of feed ore [t/m3]

εsv 0.6 Max fraction solids by volume of slurry at 0

slurry flow

εc 129 5% Parameter related to coarse split [m3/h]

φb 90.0 5% Steel abrasion factor [kWh/t]

φf 29.5 50% Power needed per tonne of fines produced

[kWh/t]

φr 6.00 20% Rock abrasion factor [kWh/t]

ϕPmax 0.57 Rheology factor for maximum mill power draw

Pmax 1662 Maximum mill motor power draw [kW]

vmill 100 Mill volume [m3]

vPmax
0.34 Fraction of mill volume filled for maximum

power draw

VV 84.0 Volumetric flow per “flowing volume” driving

force [h−1]

χP 0 Cross-term for maximum power draw
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The three outputs of the model considered in this paper are the fraction of

the mill filled with charge JT , the volume of the sump filled with charge SV OL

and the particle size estimate at the overflow of the cyclone PSE. These can

be calculated as follow

JT = (Xmw +Xms +Xmr +Xmb) /vmill

SV OL = Xss +Xsw

PSE = Vcfo/Vcso

(2)

where Vcfo and Vcso are the volumetric flow-rate of fines and solids at the over-

flow of the cyclone respectively.

The intermediate equations required in (1) related to the mill are

ϕ = max

{
0,
(

1−
(

1
εsv
− 1
)
Xms

Xmw

)0.5
}

Pmill = Pmax{1− δPvZ2
x − 2χP δPvδPsZxZr − δPsZ2

r}(αspeed)αP

Zx = Xmw+Xmr+Xms+Xmb

vmillvPmax
− 1

Zr = ϕ
ϕPmax

− 1

(3)

where ϕ is an empirically defined rheology factor, Pmill is the mill power draw,

Zx is the effect of the charge within the mill on the power draw, and Zr is the

effect of the rheology of the charge in the mill on the power draw.

The intermediate equations required in (1) and (2) related to the cyclone

are

Vccu =
CFF (Xss−Xsf )

Xsw+Xss

(
1− C1 exp

(
−CFF
εc

))
(

1−
(

Xss

C2(Xsw+Xss)

)C3
)(

1−
(
Xsf

Xss

)C4
)

Fu = 0.6−
(

0.6− Xss

Xsw+Xss

)
exp

(
−Vccu

αsuεc

)
Vcwu = Xsw(Vccu−FuVccu)

FuXsw+FuXsf−Xsf

Vcfu =
Xsf (Vccu−FuVccu)
FuXsw+FuXsf−Xsf

Vcsu = Vccu +
Xsf (Vccu−FuVccu)
FuXsw+FuXsf−Xsf

Vcso = Vsso − Vcsu

Vcfo = Vsfo − Vcfu

(4)
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where the flowrate of water, solids, coarse and fines at the underflow of the

cyclone are Vcwu, Vcsu, Vccu and Vcfu respectively, the flowrate of solids and

fines at the sump outflow are Vsso and Vsfo respectively, and Fu represents the

fraction of solids in the cyclone underflow.

The parameter values shown in Tables 3, the operating point of the circuit

shown in Table 4, and the initial state conditions shown in Table 5 were taken

from the sampling campaign of the industrial grinding mill circuit described in

le Roux et al. [30].

Table 4: Operating point of milling circuit

Variable Nominal Min Max Unit

Input

CFF 374 100 500 m3/h

MIW 4.64 0 20 m3/h

MFB 5.69 0 10 t/h

MFS 65.2 0 100 t/h

SFW 140.5 0 400 m3/h

Output

JT 0.34 0.25 0.45 Fraction

SV OL 5.99 1.0 8.0 m3

PSE 0.67 0.5 0.8 Fraction

Table 5: Initial states for mill and sump

State Value Unit State Value Unit

Mill States Sump States

Xmw 4.85 m3 Xsw 4.11 m3

Xms 4.90 m3 Xss 1.88 m3

Xmf 1.09 m3 Xsf 0.42 m3

Xmr 1.82 m3

Xmb 8.51 m3
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3. Output Tracking using Model Predictive Static Programming

3.1. Algorithm Derivation

The MPSP control technique for output tracking is discussed here. The

state dynamics and output equation of a general discrete nonlinear system can

be written as

Xk+1 = Fk (Xk, Uk)

Yk = Hk (Xk, Uk)
(5)

where X ∈ Rn, U ∈ Rm, Y ∈ Rp represent the states, the input and the output

of the system respectively, and k are time steps.

The primary objective of output tracking by means of MPSP is to find an

input projection Uk, k = 1, 2, ..., N so that the output Yk goes to the desired

output value Y ∗k for time steps 1 to N , i.e. Yk → Y ∗k ∀ k = 1, 2, ..., N . It is

important to note that the output Yk is a function of both the states Xk and the

input Uk of the system. The MPSP algorithm predicts the output for N time

steps and calculates inputs for N time steps. Compared to MPC, N represents

both the prediction and control horizon for MPSP.

For the control technique presented here, it is necessary to start with a

“guess” initial input. Obviously the method to obtain a good estimate or in-

telligent guess of the initial input is problem specific. Because the optimal

input will not necessarily be achieved by the guessed input, the input has to be

improved by an iterative process where i is the iteration index which increases

until the algorithm converges. Convergence can be measured as
‖Y i

k−Y
∗
k ‖

‖Y ∗k ‖
< εk, ∀

k = 1, 2, ..., N , where Y ∗k is the desired output and εk is a user defined tolerance

limit on the output error.

The system shown in (5) can now be written as

Xi
k+1 = Fk

(
Xi
k, U

i
k

)
Y ik = Hk

(
Xi
k, U

i
k

) (6)

The relationship of variables between consecutive iterations i and i+ 1 at time

12



step k are

Y i+1
k = Y ik + ∆Y ik

Xi+1
k = Xi

k + ∆Xi
k

U i+1
k = U ik + ∆U ik

(7)

The output Y i+1
k at time step k and iteration (i + 1) can be expanded by

Taylor series expansion, retaining only first order terms

Y i+1
k = Hk

(
Xi+1
k , U i+1

k

)
= Hk

(
Xi
k + ∆Xi

k, U
i
k + ∆U ik

)
≈ Y ik +

[
∂Hk

∂Xk

]
∆Xi

k +
[
∂Hk

∂Uk

]
∆U ik

(8)

Combining (8) and the expression for the outputs in (7), it is possible to write

∆Y ik = Y i+1
k − Y ik

∆Y ik ≈
[
∂Hk

∂Xk

]
∆Xi

k +
[
∂Hk

∂Uk

]
∆U ik

(9)

where ∆Y ik is the error in the output at time k and iteration i.

The state Xi+1
k+1 at time step (k + 1) and iteration (i + 1) can be expanded

by Taylor series expansion retaining only first order terms

Xi+1
k+1 = Fk

(
Xi+1
k , U i+1

k

)
= Fk

(
Xi
k + ∆Xi

k, U
i
k + ∆U ik

)
≈ F

(
Xi
k, U

i
k

)
+
[
∂Fk

∂Xk

]
∆Xi

k +
[
∂Fk

∂Uk

]
∆U ik

≈ Xi
k+1 +

[
∂Fk

∂Xk

]
∆Xi

k +
[
∂Fk

∂Uk

]
∆U ik

(10)

Combining (10) and the expression for states in (7), it is possible to write

∆Xi
k+1 = Xi+1

k+1 −Xi
k+1

∆Xi
k+1 =

[
∂Fk

∂Xk

]
∆Xi

k +
[
∂Fk

∂Uk

]
∆U ik

(11)

where ∆Xi
k is the error in the state and ∆U ik is the error in the input solution at

time step k and iteration i. If small input deviations (∆U ik = dU ik), small state

deviations (∆Xi
k = dXi

k) and small output errors are assumed (∆Y ik = dY ik ),

the output error dY ik in (9) can be written in terms of the state and input error
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of (11)

dY ik =
[
∂Hk

∂Xk

]
dXi

k +
[
∂Hk

∂Uk

]
dU ik

=
[
∂Yk

∂Xk

] [
∂Fk−1

∂Xk−1

]
dXi

k−1 +
[
∂Hk

∂Xk

] [
∂Fk−1

∂Uk−1

]
dU ik−1 +

[
∂Hk

∂Uk

]
dU ik

(12)

The state error dXi
k−1 in (12) can be expanded further in terms of dXi

k−2

and dU ik−2. And the state error dXi
k−2 can be expanded further in terms of

dXi
k−3 and dU ik−3, and so on. This expansion procedure can continue until

state error dXi
1 (where k = 1) is reached. Finally,

dY ik =
[
Ak
]i
dXi

1 +
[
Bk1
]i
dU i1 +

[
Bk2
]i
dU i2 + ...

+
[
Bkk−1

]i
dU ik−1 +

[
Bkk
]i
dU ik

(13)

where [
Ak
]i

=
[
∂Hk

∂Xk

] [
∂Fk−1

∂Xk−1

] [
∂Fk−2

∂Xk−2

]
...
[
∂F1

∂X1

]
[
Bkj
]i

=
[
∂Hk

∂Xk

] [
∂Fk−1

∂Xk−1

]
...
[
∂Fj+1

∂Xj+1

] [
∂Fj

∂Uj

]
[
Bkk
]i

=
[
∂Hk

∂Uk

] (14)

If it is assumed that with full-state feedback the initial condition of the system

is known, i.e. X1 is known, the error dXi
1 = Xi+1

1 − Xi
1 has to be zero, i.e.

dX1 = 0. Therefore, the error in the output in (13) reduces to

dY ik =

k∑
j=1

[
Bkj
]i
dU ij (15)

Note that for the derivation of (15) the input variables at each time step are

independent of the previous values of the states and/or inputs. The input

variables are seen as decision variables and independent decisions can be made

at every point in time. During the implementation of the algorithm, the entire

input projection is computed, but only the first input move is performed. For

the next time step the algorithm repeats, calculates a new input trajectory and

again only performs the first input move of the new trajectory. Feedback is

implemented via the cost function, described at a later stage in this section.

Equation (15) represent the output sensitivity at time step k with respect to

change in the input at all time steps prior to and including k. It is intuitively
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clear that the effect of input changes at future time steps will not change the

output vector at the current time step. Therefore,
[
Bkj
]i

can be defined for

all k = 1, 2, ..., N and j = 1, 2, ..., N . In order to reduce the computational

requirements of the algorithm,
[
Bkj
]i

can be computed recursively.

[
φkk
]i

= In×n[
φkj
]i

=
[
φkj+1

]i [ ∂Fj

∂Xj

]
[
Bkj
]i

=
[
∂Hk

∂Xk

] [
φkj+1

]i [ ∂Fj

∂Uj

]
 ∀j < k

[
Bkj
]i

=
[
∂Hk

∂Uk

]
∀j = k[

Bkj
]i

= [0]p×m ∀j > k

(16)

The primary objective of the control technique can be defined by the follow-

ing cost function

J i = 1
2

∑N
k=1

(
Y i+1
k − Y ∗

k

)T
Qk

(
Y i+1
k − Y ∗

k

)
+ 1

2

∑N
k=1

(
U i+1

k − U i
k

)T
Rk

(
U i+1

k − U i
k

)
= 1

2

∑N
k=1

(
Y i
k + dY i

k − Y ∗
k

)T
Qk

(
Y i
k + dY i

k − Y ∗
k

)
+ 1

2

∑N
k=1

(
dU i

k

)T
Rk

(
dU i

k

)
= 1

2

∑N
k=1

(
dY i

k − dY ∗i
k

)T
Qk

(
dY i

k − dY ∗i
k

)
+ 1

2

∑N
k=1

(
dU i

k

)T
Rk

(
dU i

k

)
(17)

where dY ∗ik = Y ik −Y ∗k . The cost function can be written in terms of the input

error dUk by using (15)

J i = 1
2

∑N
k=1 β

TQkβ + 1
2

∑N
k=1

(
dU ik

)T
Rk
(
dU ik

)
(18)

where

β =
∑k
j=1

[
Bkj
]i
dU ij − dY ∗ik (19)

The iteration index i is dropped throughout the rest of the document for

the sake of simplicity. The objective is to minimize the cost function J in (18)

for dU1, dU2, ..., dUN , which requires the calculation of the partial derivatives

∂J
∂(dU1) , ∂J

∂(dUl)
, and ∂J

∂(dUN ) .
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The equation corresponding to ∂J
∂(dUz) = 0 can be simplified to

∂J
∂(dUz) =

∑N
k=1

(
Bkz

T
Qk
∑k
j=1B

k
j dUj

)
−
∑N
k=1B

k
z
T
QkdY

∗
k +RzdUz

(20)

The first term in (20) can be simplified further as∑N
k=1

(
Bkz

T
Qk
∑k
j=1B

k
j dUj

)
=

∑N
k=1

(
Bkz

T
QkB

k
1dU1 +Bkz

T
QkB

k
2dU2 + ... +Bkz

T
QkB

k
kdUk

)
=

(
B1
z
T
Q1B

1
1dU1

)
+
(
B2
z
T
Q2B

2
1dU1 +B2

z
T
Q2B

2
2dU2

)
+ ...+(

BNz
T
QNB

N
1 dU1 +BNz

T
QNB

N
2 dU2 + ... +BNz

T
QNB

N
N dUN

)
=

∑N
l=1B

l
z
T
QlB

l
1dU1 +

∑N
l=2B

l
z
T
QlB

l
2dU2 + ...+BNz

T
QNB

N
N−1dUN

= Cz1dU1 + Cz2dU2 + ...+ CzNdUN
(21)

From the simplification above, matrix C ∈ RN×N can be defined for e = 1, ..., N

and j = 1, ..., N as

Cej =
∑N
l=j

(
Ble
)T
QlB

l
j

(22)

Thus, ∂J
∂(dUz) = 0 can now be written as

N∑
k=1

Bkz
T
QkdY

∗
k = Cz1dU1 + Cz2dU2 + ...+ CzNdUN +RzdUz (23)

Final calculations

Compiling all the equations for all times steps, the system of equations can

be written as

[dUe] = [Cej + δejRe]
−1

[be] (24)

where δej is the Kronecker-delta function and vector b ∈ RN×1 is defined for

e = 1, ..., N as

be =

N∑
k=1

Bke
T
QkdY

∗
k (25)

Finally, the updated input at time step k = 1, ..., N is

U i+1
k = U ik + dU ik (26)
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Because output tracking using MPSP is a relatively new development, some

issues remain open for exploration, such as convergence guarantees and the con-

solidation of input, state and output equality, inequality and rate constraints.

A possible approach to address state constraints is shown in Bhitre and Padhi

[24] where slack variables can be used to handle state variable inequality con-

straints. However, the technique developed by Bhitre and Padhi [24] is not for

the type of system nor the type of cost function considered here.

Using the grinding mill circuit as control problem, this paper investigates

the effect of modelling errors on the MPSP algorithm, its ability to reject noise

and large disturbances, and the computational efficiency of the algorithm.

3.2. General Procedure

The general procedure to implement the receding horizon MPSP control

algorithm is described below.

i. Start the iteration procedure of the MPSP algorithm by estimating an initial

input trajectory U1
k , ∀k = 1, 2...N . Initialize the iteration index as i = 0.

ii. Use the known initial condition X1 and input projection U ik to propagate

the system dynamics in (6). Obtain the state trajectory Xi
k, ∀k = 1, 2...N .

iii. From the state trajectory Xi
k determine the output trajectory Y ik . Use the

desired output trajectory Y ∗k to calculate dY ik = Y ik − Y ∗k , ∀k = 1, 2...N .

iv. Terminate the algorithm if the output error is smaller than the user-defined

tolerance value, i.e.
‖Y i

k−Y
∗
k ‖

‖Y ∗k ‖
< εY , ∀k = 1, ..., N , or if the input projection

has converged, i.e.
‖Ui+1

k −U∗k‖∞
‖U∗k‖∞

< εU , ∀k = 1, ..., N . If either of these

conditions are met for i ≥ 1, then use U ik as the optimal input projection.

Otherwise, continue with steps v. and vi.

v. Increase the iteration index i. Using Xi
k and U ik for all k = 1, 2, ..., N ,

calculate the result vector shown in (25) and the matrices shown in (22).

vi. Compute the input deviation dU ik using (24). Update the input for the ith

iteration with (26) and return to step ii.
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4. Nonlinear MPC

Given the system described by (5), the aim of nonlinear MPC can be de-

scribed as

min
U

J (U,X0) (27)

where

J = 1
2

∑NP

k=1 (Yk − Y ∗k )
T
Qk (Yk − Y ∗k ) +

1
2

∑NC

k=1 (Uk+1 − Uk)
T
Rk (Uk+1 − Uk)

(28)

where NC is the control horizon and NP is the prediction horizon. The input is

constrained between Ulb < U < Uub where Ulb and Uub are the lower and upper

bounds for input U respectively.

Comparing the cost function J above to the cost function for MPSP in (17),

there is a difference in how the input Uk is evaluated. In (17) the difference

between the input projections for consecutive iterations is evaluated (i.e. U i+1
k −

U ik), whereas in (28) the change in the control between time steps is evaluated

(i.e. Uk+1 − Uk). The effect of the difference in the cost function formulations

can be reduced by increasing the ratio between matrix R and Q. If R is much

smaller than Q, the contribution by the change in the input to the cost function

will be much less than the contribution by the deviation of the output from

setpoint to the cost function.

The problem described above is a constrained minimization problem and

can be solved using the fmincon function in MATLAB. In this paper, the mini-

mization technique used by fmincon to solve (28) was sequential quadratic pro-

gramming. A description of sequential quadratic programming can be found in

Grüne and Pannek [31]. The principal idea is the formulation of a quadratic sub-

problem based on the quadratic approximation of the Lagrangian function. An

approximation of the Hessian of the Lagrangian function using a quasi-Newton

updating method is made at each major iteration. This is used to generate

the quadratic programming subproblem whose solution is used to form a search

direction for a line search procedure.

18



5. Simulation

5.1. Simulation environment

The parameter values, the operating point of the circuit and the initial states

can be viewed in Tables 3, 4 and 5 respectively. The state, input and output

vectors are defined as

X = [Xmw, Xms, Xmf , Xmr, Xmb, Xsw, Xss, Xsf ]
T

U = [MFS, SFW, CFF ]
T

Y = [JT, SV OL, PSE]
T

(29)

The grinding mill circuit was simulated for both controllers with the follow-

ing general conditions:

i. Full-state feedback is assumed in this paper, which is a significant assump-

tion as the states in the mill and the sump cannot be measured directly.

As seen from Wei and Craig [2], the measurements available in industrial

grinding mill circuit are limited. Various attempts have been made to esti-

mate the states and parameters of the plant, which can then be used for the

feedback control [32, 33, 34, 35]. However, state and parameter estimation

for grinding mill circuits is both challenging and interesting, which remains

open for further research.

ii. Sampling time of Ts = 10 s.

iii. Simulation time of 4 h, i.e. 1440 time sampling points.

iv. The ball feed-rate MFB is kept as a constant ratio of 16.7 of the volume

of the mill filled with charge JT in an attempt to keep the volume of balls

in the mill constant, i.e. MFB/JT = 16.7.

v. Mill water inlet MIW is a constant ratio of 7% of MFS.

vi. Model-plant-mismatch between the controller and the plant is achieved by

maintaining all the model parameters constant for the controller, but vary-

ing the following plant parameters every 3 minutes according to the respec-

tive uncertainties shown in Tables 3: αf , αr, αsu, εc, φb, φf , φr. Each

uncertainty follows a uniform distribution around the nominal value of the
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parameter to produce large changes in the parameter. A uniform distribu-

tion was chosen instead of a normal distribution so that the model-plant-

mismatch rejection capabilities of the controllers are clearly visible from the

simulation results.

vii. A disturbance is simulated as a change in the mill feed size distribution by

increasing the fraction of rocks in the ore fed to the mill αr with 50% of its

nominal value. This change is applied between t = 1.2 h and t = 2.8 h.

viii. A disturbance is simulated as a change in the ore hardness by increasing the

power needed per ton of fines produced φf with 50% of its nominal value.

This change is applied between t = 2.2 h and t = 3.8 h.

ix. The input U is hard-constrained for both MPSP and NMPC between the

limits shown in Table 4.

To evaluate the noise and disturbance rejection of the controllers, two sce-

narios are simulated:

� For the first set of simulations, the milling circuit experience parameter

variations and disturbances, but no measurement noise is added to the

measured states.

� The same parameter variations and disturbances are used for the sec-

ond set of simulations, but now measurement noise with a distribution

of N
(
0, (0.01X0)2

)
is added to the measured states. Because large and

fast unexpected changes to the volume of material in the circuit are not

expected, the standard deviation of the noise is kept small.

Both controllers made use of the same Q and R matrices. The particle size

estimate PSE is regarded as the most important output variable to control as

this variable determines the economic efficiency of the milling circuit. Therefore,

the Q weighting matrix for the output variables was determined such that a 1%

deviation from setpoint for PSE will produce an error in the cost function equal

to a 5% deviation of JT from setpoint and equal to a 20% change in SV OL
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from setpoint, i.e.

Q1 (5%JTSP )
2

= Q2 (20%SV OLSP )
2

= Q3 (1%PSESP )
2

Of the three weighting variables, Q2 will be the smallest. Thus, choosingQ2 = 1,

the output weighting matrix is defined as

Q = 104 diag([0.50, 0.0001, 3.11])

The R weighting matrix for the input variables was determined such that

2% changes of half the ranges of CFF , MFS and SFW will produce the same

error in the cost function. The R matrix was scaled to produce 1% of the error

compared to the Q matrix, i.e.

100R1

(
2%MFSrange

2

)2

= Q1 (5%JTSP )
2

and

R1

(
2%MFSrange

2

)2

= R2

(
2%SFWrange

2

)2

= R3

(
2%CFFrange

2

)2

Therefore, the input weighting matrix is

R = 10−4 diag([36, 16, 23])

5.2. MPSP and NMPC implementation details

In this paper, the MPSP and NMPC algorithms are simulated for a control

horizon TC = 0.1 h. In the case of NMPC the prediction horizon is set equal

to the control horizon. For MPSP the horizon of prediction is by definition the

same as the horizon of control.

Both MPSP and NMPC are applied as receding horizon controllers, i.e. the

control is calculated from time t0 to t0+TC where TC [h] is the fixed control time

and t0 [h] is the current time. Thus, the input trajectory is always NC = TC/Ts

sampling instances long, where Ts [h] is the sampling time. The time sampling

points can be expressed as {t1, t2, ..., tNC
} = {t0, t0 + Ts, ..., t0 +NCTs}.

When the controller is initiated, i.e. t0 = 0 s, the initial states of the system

are provided as well as an initial input trajectory of NC sampling instances long.
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The initial input trajectory is not optimal and has to be improved iteratively

by the MPSP or NMPC algorithm. Once the algorithm has determined a new

input trajectory for all the time sampling points when t1 = t0 = 0 s, the input

at t1 = 0 s is implemented and the system moves to the next time step. The

time is now at t1 = Ts and the MPSP or NMPC algorithm repeats. The time

series was

{t1, t2, ..., tNC
} = {0, Ts, ..., NCTs}

and is now

{t1, t2, ..., tNC
} = {Ts, 2Ts, ..., (NC + 1)Ts}

A new input trajectory of NC sampling instance long has to be defined before

the control algorithm can start again. However, the initial input trajectory for

the first minimization routine when t1 = 0 s cannot be used for the next mini-

mization routine when t1 = Ts. The input trajectory for the first minimization

routine when t1 = 0 s was only defined until time tNC
= NCTs. This input tra-

jectory does not define an input for tNC+1 = (NC+1)Ts when t1 = 0. Therefore,

the input trajectory for the second minimization routine requires the definition

of an input value for the final time step at tNC
= (NC +1)Ts when t1 = Ts. The

input trajectory for the second minimization routine at t1 = Ts is obtained by

shifting the input trajectory calculated during the first minimization routine at

t1 = 0 s one sampling instant to the left and equating the input at tNC
to the

input at tNC
− Ts.

Termination of the MPSP algorithm occurs if all of the following conditions

below are met for the three outputs

‖ Y (1)ik − Y (1)∗k ‖/‖ Y (1)∗k ‖ < 0.05

‖ Y (2)ik − Y (2)∗k ‖/‖ Y (2)∗k ‖ < 0.1

‖ Y (3)ik − Y (3)∗k ‖/‖ Y (3)∗k ‖ < 0.001

(30)
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or if all of the following conditions below are met for the three inputs

‖ U(1)i+1
k − U(1)∗k ‖∞/‖ U(1)∗k ‖∞ < 0.01

‖ U(2)i+1
k − U(2)∗k ‖∞/‖ U(2)∗k ‖∞ < 0.01

‖ U(3)i+1
k − U(3)∗k ‖∞/‖ U(3)∗k ‖∞ < 0.01

(31)

If these conditions are not met after 10 iterations, the algorithm terminates

automatically.

Termination of the NMPC algorithm occurs either after 10 iterations, if the

minimization algorithm has reached a feasible minimum for the cost function in

(28), or if the cost function values is less than 0.1.
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Figure 2: Output of the plant when no measurement noise is added to the states.

[Top: mill total charge fraction JT . Middle: sump slurry volume SV OL. Bottom: particle

size estimate PSE. Legend: YSP is the desired setpoint, YMPSP is the output from the

MPSP controller (TC = 0.1 [h]), YNMPC is the output from the NMPC controller (TC = 0.1

[h]).]
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Finally, the partial derivatives of (5) necessary for the MPSP algorithm were

explicit functions obtained through symbolic differentiation.

5.3. Results

The results of the two simulation cases discussed in Section 5.1 are shown in

Figs. 2 to 7. Figs. 2 and 3 show the output of the milling circuit when there is

no measurement noise and when there is measurement noise added to the states

respectively. Figs. 4 and 5 show the input to the milling circuit when there is

no measurement noise and when there is measurement noise added to the states

respectively. Fig. 6 shows the particle size estimate PSE at the overflow of
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Figure 3: Output of the plant when measurement noise is added to the states.

[Top: mill total charge fraction JT . Middle: sump slurry volume SV OL. Bottom: particle

size estimate PSE. Legend: YSP is the desired setpoint, YMPSP is the output from the

MPSP controller (TC = 0.1 [h]), YNMPC is the output from the NMPC controller (TC = 0.1

[h]).]
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the cyclone for both simulation cases zoomed in between 2 h and 2.5 h. Fig.

7 shows the variation of the parameters every 3 minutes, and also shows the

constant disturbance in the fraction of rock in the ore fed to the mill (αr) and

the power needed per ton of fines produced (φf ). Fig. 8 shows the frequency

of the number of iterations per time step. For each figure, ‘X + 0’ indicates

the case where no measurement noise was added to the states, and ‘X + N ’

indicates the case where measurement noise was added to the states.

6. Discussion

Table 6 shows the normalized root mean squared error between the output

of the controllers and the desired setpoint. It is interesting to note that the

MPSP controller achieves better output regulation than the NMPC controller,

especially with regards to SV OL. The trends the outputs follow for the NMPC

and MPSP controllers are fairly similar, although there is some difference in the

trends for fraction of the mill filled with charge JT . The large deviation of the

outputs from setpoint after 3 h occurs because the cyclone feed flow-rate CFF

is constrained to its maximum allowable rate of 450 m3/h, as shown in the plots

of the inputs in Figs. 4 and 5.

The measurement noise added to the states appears to have the greatest

effect on the particle size estimate PSE at the cyclone overflow. This is shown

in more detail in Fig. 6 where the top plot clearly shows the effect of the

Table 6: Normalized root mean squared error between desired setpoints and outputs for both

controllers. ((X + 0) - No measurement noise added to states. (X +N) - Measurement noise

added to states.)

JT SV OL PSE

X + 0
MPSP 0.53% 4.4% 1.6%

NMPC 1.6% 18% 1.5%

X +N
MPSP 0.51% 4.7% 1.9%

NMPC 1.1% 18% 1.7%
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parameter variation every 3 minutes and the bottom plot shows the effect of

the measurement noise added to the states. Because of the integrating effect

of the charge in the mill and the charge in the sump, the effect of the high

frequency measurement noise added to the states is low-pass filtered for outputs

JT and SV OL. However, PSE is calculated using an algebraic function, and

the small variations in the state have a significant effect on its value. Since the

measurement noise added to the mill states is filtered by the sump, which acts

as a buffer between the mill and the cyclone, the noisy states which contribute

most to the variations in PSE is the volume of water Xsw, solids Xss and fines
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Figure 4: Input determined by the controller when no measurement noise is added to the

states.

[Top: mill feed solids MFS. Middle: sump feed water SFW . Bottom: cyclone feed flow-rate

CFF . Legend: U0 is original operating point of the plant, UMPSP is the input from the

MPSP controller (TC = 0.1 [h]), UNMPC is the input from the NMPC controller (TC = 0.1

[h]).]
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Xsf in the sump respectively. Of specific importance is the noise added to Xsf ,

since the volume of fines in the sump is the most significant contributor to PSE,

as shown in (2) and (4). What is apparent from Fig. 6 is that both controllers

struggle to reject measurement noise added to the states.

The model-plant mismatch created by varying the plant parameters every

3 minutes does not appear to have a detrimental effect on overall plant perfor-

mance. The mismatch effect can be seen most clearly in the top plot of Fig. 6.

Both controllers are able to maintain an acceptable level of plant performance,

but neither controller can fully reject the mismatch.

The step disturbance between 1.2 h and 2.8 h in the the fraction of rock in
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Figure 5: Input determined by the controller when measurement noise is added to the states.

[Top: mill feed solids MFS. Middle: sump feed water SFW . Bottom: cyclone feed flow-rate

CFF . Legend: U0 is original operating point of the plant, UMPSP is the input from the

MPSP controller (TC = 0.1 [h]), UNMPC is the input from the NMPC controller (TC = 0.1

[h]).]
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the ore fed to the mill αr, shown in Fig. 7, does not seem to have a significant

impact on the overall performance of the milling circuit. No significant change in

the input can be seen to compensate for this disturbance. Another contributing

factor that may possibly diminish the effect of this disturbance can be the

variation of the rock breakage rate φr.

The effect of the step disturbance between 2.2 h and 3.8 h in the power

needed per ton of fines produced φf can be seen most clearly in the controller’s

use of the cyclone feed flow CFF . An increase in this parameter simulates

a case where the ore has hardened and it takes longer for the ore to grind

sufficiently fine. In order to maintain the required particle size estimate PSE,

it is necessary for CFF to increase. However, an increase in CFF will result

in a decrease of the sump volume SV OL. The decrease in SV OL is negated by

increasing the flow of the sump dilution water SFW . Because more energy is
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Figure 6: A zoomed in plot of PSE between 2 h and 2.5 h for both simulation cases. The top

plot clearly shows the effect of the parameter variation every 3 minutes. For the bottom plot,

the noise added to the states dominate the plot.
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required to break the ore, it takes longer to break. As shown in Figs. 4 and 5 the

feed-rate of ore the mill MFS decreases slightly to maintain a constant fraction

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1
α

f

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

α
r

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

0.9

1

α
s
u

0 0.5 1 1.5 2 2.5 3 3.5 4
120

130

140

ε s

0 0.5 1 1.5 2 2.5 3 3.5 4
85

90

95

φ
b

0 0.5 1 1.5 2 2.5 3 3.5 4

20
40
60

φ
f

0 0.5 1 1.5 2 2.5 3 3.5 4
4

6

8

φ
r

Figure 7: The variation of parameters αf , αr, αsu, εc, φb, φf and φr every 3 minutes (0.1

h) according to their respective uncertainties shown in Tables 3. The step disturbances in αr

between 1.2 h and 2.8 h and φf between 2.2 and 3.8 h can be seen in the figures for αr and

φf respectively.
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of the mill filled JT . Because the cyclone feed flow-rate CFF is constrained

after approximately 3 h as shown in Figs. 4 and 5, PSE cannot be maintained

at setpoint, as shown in Figs. 2 and 3.

Fig. 8 shows the frequency of the number of iterations per time step needed

by both the MPSP and NMPC minimization algorithms to reach a solution.

It should be remembered that the MPSP and NMPC routines were limited to

a maximum 10 iterations. As seen from Figs. 8, for the simulation scenarios

considered in this paper, 2 iterations of the MPSP routine is usually sufficient

to find an optimal solution. When noise is added to the states, the MPSP

algorithm may require a few more iterations to achieve a feasible solution. On

the other hand, the NMPC algorithm usually achieves convergence within 3

iterations if no noise is added to the states, and between 3 and 6 iterations if

noise is added to the states.

It is regarded as unfair to compare the computational time for the cus-

tom programmed MPSP routine to the NMPC routine implemented with the

fmincon function of the Optimization Toolbox of MATLAB. The custom pro-

grammed MPSP routine does not call as many subroutines and error handling

routines as fmincon. However, for interest sake the average computational time

required for one iteration of the MPSP routine was 0.16 s. The average com-

putational time for the fmincon function to complete one iteration was 1.6 s.

Simulations were carried out on a 64-bit system with 4GB RAM and an Intel

Core i7-2600 CPU @ 3.4 GHz in MATLAB R2013a. Obviously the computa-

tional time of both routines can be decreased, but it is encouraging to note that

the large number of matrix operations for the MPSP routine is handled quickly

and effectively.

In order to demonstrate repeatability, the simulations for the MPSP con-

troller, with and without measurement noise added to states, was repeated 50

times and a new noise and model-plant mismatch vector was generated for each

repetition. The MPSP controller was limited to a maximum of 2 iterations per

time step. For each repetition, the MPSP controller was able to track the de-

sired setpoint irrespective of the parameter variations and measurement noise.
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There was no unusual behaviour for any of the simulations even though only 2

iterations per time step was allowed. The normalized root mean squared error

between the plant output and the setpoint was less than 3% for PSE, less than

1.5% for JT and less than 12% for SV OL. The reason for the larger error in

SV OL is that CFF starts to increase to compensate for the disturbance applied

between 2.2 h and 3.8 h. When the upper constraint on CFF is applied, SV OL

starts to increase and moves away from the setpoint.

7. Conclusion

Output tracking using MPSP was successfully applied to a nonlinear model

of a single-stage closed grinding mill circuit. The performance of the proposed

MPSP controller was evaluated against the performance of a standard con-

strained NMPC controller applied to the same plant for the same conditions.

The aim of this paper is not to compare the mathematical details of each mini-

mization algorithm, but rather to show the control abilities of MPSP in the pres-

ence of noise, model-plant mismatch, disturbances and input box constraints.

Results indicate that the performance of the MPSP controller compares

favourably to the performance of an NMPC controller. Compared to NMPC,

MPSP achieved improved output regulation in the presence of model-plant mis-

match, disturbances and measurement noise. Both controllers showed similar

performance to reject the mismatches, disturbances and measurement noise.

Even if the MPSP algorithm is limited to two iterations per time step, it is

still capable of controlling the plant with adequate accuracy. The advantage of

MPSP is that the computational burden is decreased by converting the dynamic

optimization problem to a low-dimensional static optimization problem, calcu-

lating the sensitivity matrices recursively and using a closed form expression to

update the control. Although the prediction and control horizons are equal in

MPSP, this does not lead to substantially increased computational time. If these

horizons are decreased further the computational time should also decrease, but

at the cost of control performance. Further improvements to the computational
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time of MPSP can be achieved by using improved matrix operation program-

ming techniques for matrix inverse and multiplication. Future work for MPSP

will involve the application of equality and inequality constraints for states, in-

puts and outputs in the algorithm formulation, as well as creating a framework

for a robust MPSP controller.

MPSP shows promise as a suitable option for nonlinear model-based optimal

control for output tracking in large industrial processes, especially if computa-

tional time and complexity is a limiting factor for the real-time application of a

model-based optimal controller.
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