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Abstract

In the real economic world, we often suffer from the default risk—the
present financial crisis could serve as an evidence. The long established idea
for inhibiting the default behavior is to resort to collateral, and this idea has
profound effect on the market equilibrium. To study this effect, we make an
investigation of the economy wherein default risk is present, assets are collat-
eralized and households are risk-averse. We shall prove that the economy is
in possession of an equilibrium. This proof is distinct from the existing one,
in two respects: First it shows that equilibrium exists for the Leontief utility
function, and second it is constructive. By constructive we mean that, on the
basis of this proof, we can (and we shall) develop an algorithm for comput-
ing that equilibrium. The algorithm developed is of a path-following type. It
starts from an economy which consists of several sub-economies, each with
a complete market and a Cobb-Douglas utility function; and it terminates at
the equilibrium of the economy under consideration. The algorithm is shown
by simulation to be effective.
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1 Introduction

It is well known that the now pervading global financial crisis stems from the U.S.
sub-prime mortgage crisis. The sub-prime mortgage market is a kind of collat-
eralized asset market, which features, alongside the standard asset market in the
classical Arrow-Debreu model, the collateralization of assets and the presence of
default risk. The collateralized asset market bulks large in the financial market; in
2009, the ratio of residential mortgages to GDP is 72.4 percent in U.S., 85.6 per-
cent in U.K., and even in China, a now rising nation, more than 13 percent. These
value statistics, in combination with the troubling financial crisis, indicate that this
market commands a serious investigation.

It has been shown in Geanakoplos and Zame (2010) that the reliance on col-
lateral to secure loans has substantial effect on the market equilibrium. In that
literature, the authors made an extension of the intertemporal general equilibrium
model by allowing for collateralized assets, default risk, and durable commodities,
which can, aside from being consumed, serve as collateral. They proved the ex-
istence of equilibrium (called collateral equilibrium hereafter, or CE for short) for
such an extended model, and conducted an analysis of its efficiency. Their proof is,
however, an existence, instead of a constructive, one. The main object of this paper
is therefore to seek a constructive proof of the existence of collateral equilibrium,
so that a procedure for the computation thereof can be derived from it.

The economic phenomenon or behavior of default has received considerable
attention in recent years. In order to study quantitatively who in an economy
may benefit, and who may suffer, from the government regulation of collateral
requirements, Araujo et al. (2012) specialize the Geanakoplos-Zame model to a
case where all assets are endowed with a single and riskless promise, but each
with distinct collateral requirements. They present there necessary and sufficient
conditions for the collateral equilibrium to be Pareto-efficient by characterizing a
minimal set of assets that may be traded in equilibrium. To investigate the effect
of collateral requirements on dynamic behavior of economic agents, Gottardi and
Kubler (2012) extend the Geanakoplos-Zame model to an infinite-horizon setting
and have a discussion of the efficiency of competitive equilibria and the existence
of Markov equilibria.1

In contrast to the articles quoted above, the focus of the present paper is on

1For other models on the infinite-horizon economy, one is referred to Araujo et al. (2002); Magill
and Quinzii (1994). For other models involving default risk, see, for example, Diamond (1984);
Dubey et al. (2005); Gale and Hellwig (1985); Sabarwal (2003); Townsend (1979); Zame (1993).
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the computation of collateral equilibria. The model we shall use is essentially the
same as that of Geanakoplos and Zame (2010), except that the assumptions on the
individual preference are slightly different. In Geanakoplos and Zame (2010), the
utility function is assumed to be strictly monotone in date-zero consumption of
perishable commodities, and in date-one consumption of all commodities. This
assumption excludes, for example, the Leontief utility function. For this reason,
we shall weaken it in this paper, by assuming the utility function to be weakly
monotone in all commodities, both date-zero and date-one.

Under this assumption, we shall attempt to prove in Section 4 the existence
of collateral equilibrium and find in Section 5 a procedure for its computation.
The computation of collateral equilibrium is important for the purpose of compar-
ative statics, and comparative-static properties constitute, as emphasized by Paul
Samuelson, the main empirical implication of a model. In Dubey et al. (2005), pun-
ishment was invoked to inhibit the default behavior, and it was shown there that this
way would not lower, and sometimes might promote, efficiency of the market equi-
librium. By contrast, the efficiency of collateral equilibrium is affected greatly by
the (exogenously given) collateral requirement level, whose optimal value should
neither be too high nor too low. (See Section 3.) No doubt, an algorithm for com-
puting collateral equilibrium will facilitate the determination of this optimal value.

As we know, algorithms of path-following type have long been used in eco-
nomic equilibrium computation. Historically, it is Scarf (1967) who first intro-
duced an algorithm of this type that makes possible the computation of economic
equilibrium. Then Eaves developed in 1972 the Homotopy method (Eaves, 1972),
and Smale in 1976 developed the global Newton method (Kellogg et al., 1976;
Smale, 1976). For a review of these methods, we refer the reader to, among oth-
ers, Allgower and Georg (1993); Eaves and Schmedders (1999); Scarf and Hansen
(1973). In Brown et al. (1996), the authors devised a path-following algorithm for
computing equilibria of the general equilibrium model with incomplete market.2

To compute collateral equilibrium, we shall in this paper try to develop an algo-
rithm of this type. We shall show existence of such a path which starts from an
economy where all households share a common generalized Cobb-Douglas util-
ity function, no commodity is durable, and assets are all with zero collateral re-

2When the market is incomplete, Radner (1972) established the existence of Radner equilibrium
on condition that the volume of trade in any asset is bounded above. Without this boundary condition
equilibrium may fail to exist (Hart, 1975; Duffie and Shafer, 1985). Even it does, however, Pareto
efficiency has become an ideal that is seldom attainable (See Diamond, 1967; Stiglitz, 1982). Plainly,
collateral requirements would curtail one’s borrowing capacity and creates a natural bound on the
sales of assets, so existence of collateral equilibrium is guaranteed without imposing explicitly that
boundary condition.
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quirement level; and terminates at the collateral equilibrium of the economy under
consideration. The starting economy of the path is chosen in a way such that its
equilibrium is unique and easy to find. It will be demonstrated in Section 6 that
this algorithm is effective in terms of the accuracy of the equilibrium it provides.

2 The Economy

We study a pure exchange economy E with two dates (date 0 and date 1), h̄ house-
holds, and J assets. Let there be S possible states of nature at date 1 and suppose
the households own subjective probabilities as to their occurrence. Call date 0 state
0. In each state, assume there are L commodities available for trade and commod-
ity ` in state s will be indexed by (s, `). The assets are traded at date 0 and pay off
at date 1. Contrary to the classical economy, a seller of an asset in this economy
is allowed to default on his promise, so is, in order for there to be a buyer, obliged
to put up a prescribed amount of collateral to back his promise. The collateral
should obviously be durable commodities. Assume it is held, and therefore can be
consumed, by the borrower, and will be forfeited if he does default.

2.1 Notation and assumption

Given any two vectors y1 = (y1
1, · · · ,y1

n),y
2 = (y2

1, · · · ,y2
n) in the Euclidean space

Rn, let y1 ≥ y2 be that y1
i ≥ y2

i for all i = 1, · · · ,n; y1 > y2 be that y1 ≥ y2 and
y1 6= y2; y1 À y2 be that y1

i > y2
i for all i = 1, · · · ,n; ‖y1‖= maxi |y1

i |, and ‖y1‖1 =
∑i |y1

i |. For a scalar b, y1 ≥ b means y1
i ≥ b for all i = 1, · · · ,n, and, similarly, for

≥ and À. Suppose the consumption space X of each household is R
(S+1)L
+ . Let

xh = (xh
0,x

h
1, · · · ,xh

S) be a consumption bundle of household h, where xh
s is what he

consumes in state s; eh
s = (eh

s1, · · · ,eh
sL) be his endowment in state s; and uh(x) :

X → R be his utility function.

Given a consumption bundle xh
0 at date 0, let Fs(xh

0) ∈RL
+ be what remains of

xh
0 in state s at date 1. Suppose it is a positive linear transformation of xh

0, that is,
Fs(xh

0) = κs ◦ xh
0, where κs ∈ RL

+ and the operator ‘◦’ means Hadamard product.
Let S = {1, · · · ,S}, S̄ = {0}∪S, H = {1, · · · , h̄}, L = {1, · · · ,L}; J = {1, · · · ,J};
let

e0 = ∑
h∈H

eh
0, es = ∑

h∈H
eh

s +Fs(e0), ∀s ∈ S,

and e = (e0, · · · ,eS).

We make the following assumptions:
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(i) eh
s À 0 for all s ∈ S̄ and h ∈H;

(ii) uh(x) is continuous, concave and weakly monotone in xsl,∀(s, l) ∈ S̄×L;

The first assumption requires each household to have a positive endowment of all
commodities in all states, which is stronger than its counterpart in Geanakoplos
and Zame (2010). For the assumption on utility function uh(x), it is assumed in the
latter to be quasi-concave, strictly monotone in date-one consumption of all com-
modities and in date-zero consumption of all perishable commodities. This rules
out the Leontief utility function. In contrast, uh(x) is assumed here to be weakly
monotone in consumption of all commodities in all states. But for computational
purpose, it is required to be concave.

2.2 Real assets

Real asset j has its payoff A j ∈RSL
+ and is collateralized by a bundle c j ∈RL

+ of
date-zero commodities.3 Let A j = (A j

1, · · · ,A j
S), where A j

s ∈ RL
+ is the payoff of

asset j in state s. Since default is permitted, the actual delivery DEL j
s of asset j in

state s is given by
DEL j

s = min{ps ·A j
s , ps ·Fs(c j)},

where ps ∈RL
+ is the spot price vector in state s.

2.3 Households

Household h is assumed to be a price-taker and characterized by his utility function
uh(x) and endowment eh. For notational simplicity, we distinguish his asset pur-
chases ϕh and asset sales ψh, both in RJ

+. Let p = (p0, · · · , pS) ∈R
(S+1)L
+ , where

ps is the spot price vector of commodities in state s, and q = (q1, · · · ,qJ) ∈ RJ
+,

where q j is the price of asset j.

Let ηh = (xh,ϕh,ψh) be a plan. The budget set Bh(p,q) consists of such plans

3Here, only real assets is assumed to be available. However, the algorithm given below also works
well when assets that are not real appear, if their payoffs are, or can be approximated by, smooth
functions of the price vector. For instance, the payoff of a call or a put option can be approximated
by the smooth function given in the next paragraph.
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that

p0(xh
0− eh

0)+q(ϕh−ψh)≤ 0 (2.1)

∑
j

ψh
j c j− xh

0 ≤ 0 (2.2)

∀s ∈ S, ps(xh
s − eh

s )− psFs(xh
0)+∑

j
(ψh

j −ϕh
j )DEL j

s ≤ 0 (2.3)

where (2.2) implies that collateral is consumed by the borrower. Household h then
solves

{max uh(xh) : (xh,ϕh,ψh) ∈ Bh(p,q)} (2.4)

for his consumption bundle xh, purchase portfolio ϕh and sales portfolio ψh.

2.4 Collateral equilibrium

DEFINITION 1. A collateral equilibrium is a collection {p,q,(ηh)h∈H} such that

• Utility maximization: Given (p,q), ηh solves (2.4), for all h ∈H;
• Commodity markets at date 0 clear: ∑h∈H(xh

0− eh
0) = 0;

• Commodity markets at date 1 clear: ∑h∈H(xh
s −eh

s −Fs(xh
0)) = 0, for all s∈ S;

• Asset markets clear: ∑h∈H(ϕh−ψh) = 0.

2.5 GEI equilibrium

Assume the number J of assets is less than the number S of states at date 1. And
assume that the promise of each asset is kept and no collateral is required. Replace
DEL j

s in (2.3) with A j
s , and we get

ps(xh
s − eh

s )− psFs(xh
0)+∑

j
(ψh

j −ϕh
j )A

j
s ≤ 0. (2.3′)

The budget set B̄h(p,q) of household h is now defined to be the set of plans that
satisfy (2.1) and (2.3′), and he solves

{max uh(xh) : ηh ∈ B̄h(p,q)} (2.4′)

for his plan ηh.

DEFINITION 2. A GEI equilibrium is a collection {p,q,(ηh)h∈H} such that

• Utility maximization: Given (p,q), ηh solves (2.4′), for all h ∈H;
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• Commodity markets at date 0 clear: ∑h∈H(xh
0− eh

0) = 0;
• Commodity markets at date 1 clear: ∑h∈H(xh

s −eh
s −Fs(xh

0)) = 0, for all s∈ S;
• Asset markets clear: ∑h∈H(ϕh−ψh) = 0.

Note that the market clearing conditions are the same as those in Definition 1.

3 An Example

The example is adapted from Example 2 of Geanakoplos and Zame (2010). The
adaption is: Households are here free to own subjective probability distributions,
rather than sharing an objective one, as to the occurrence of date-one states. This
example is presented with a dual purpose: first, to illustrate how collateral require-
ments affect the market equilibria and the social welfare; second, to show that
distinct beliefs on the occurrence of date-one states would influence the optimal
collateral requirement and the social welfare.

More specifically, it will be shown later (i) that different collateral requirements
would lead to different equilibria with different levels of social welfare; and (ii)
that when both households in the economy agree on the probabilities of default,
the optimal collateral requirement level is given by 1/4, in which case household
2 will default on his promise in equilibrium, but when they do not agree on the
probabilities of default, the optimal collateral requirement level is given, instead,
by 1/3, and household 2 will choose not to default in equilibrium, even though he
is entitled to do so.

EXAMPLE 3.1. Suppose there are two states of nature at date 1, and two commodi-
ties are available for trade in each state: Food, which is perishable, and Housing,
which is perfectly durable. There are two types of households in the economy. The
utility function and endowment for the first type is given by

u1 = x1
0F + x1

0H + γ11(x1
1F + x1

1H)+ γ12(x1
2F +3x1

2H)

e1 = (29/2,1;9,0;9,0);

and, for the second type, by

u2 = logx2
0F +4x2

0H + γ21(x2
1F +4x2

1H)+ γ22(x2
2F +4x2

2H)

e1 = (7/2,0;9,0;5/2,0);

where γi j, i, j = 1,2 are nonnegative scalars satisfying γ11 + γ12 = γ21 + γ22 = 1.
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Suppose a single security promising one unit of food at date 1 and collateralized
by λ unit of housing is available for trade. The equilibrium of the economy depends
on the value of λ and is given below. For detailed computation, please refer to
Geanakoplos and Zame (2010). Let xi = (xi

0F ,xi
0H ;xi

1F ,xi
1H ;xi

2F ,xi
2H), i = 1,2, p =

(p0F , p0H ; p1F , p1H ; p2F , p2H), and the social welfare W be (u1 +u2).

(i) λ = 0
Since the security is not backed by any collateral, its delivery will be zero,
and so will its price. Household 1 is not willing to buy the security and
household 2 can borrow nothing. The equilibrium is given by

q0 =0,

p =(1,5;1,4;1,4),

x1 =(18− 5
8
,
17
40

;
107
10

,0;
107
10

,0),

x2 =(
5
8
,
23
40

;
73
10

,1;
4
5
,1).

(ii) λ ∈ (0,1/4)
If household 2 borrows nothing, his marginal utility of income at date 0 is
8/5; otherwise, it is

8− (4γ21 +3γ22)
5− (4γ11 +3γ12)

≥ 4
2

>
8
5

;

so he will borrow as much as possible, or 4γ11 + 3γ12, which is indepen-
dent of the collateral level. Note competition will drive p0H above 5. The
equilibrium is given by

qλ =(4γ11 +3γ12)λ ,

p =(1,4γ11 +3γ12 +
7
2
· 8−4γ21−3γ22

9−4γ21−3γ22
;1,4;1,3),

x1 =(18− 7
2(9−4γ21−3γ22)

,0;13,0;
23
2

,
1
6
),

x2 =(
7

2(9−4γ21−3γ22)
,1;5,1;0,

5
6
).

(iii) λ ∈ [1/4,1/3)
As above, household 2 will borrow up to his limit γ11/λ +3γ12, which varies
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inversely with the collateral requirement level. The equilibrium is given by

qλ =γ11 +3λγ12,

p =(1,
qλ
λ

+
7
2
· 8− γ21/λ −3γ22

9− γ21/λ −3γ22
;1,4;1,3),

x1 =(18− 7
2(9− γ21/λ −3γ22)

,0;9+
1
λ

,0;
23
2

,
1
6
),

x2 =(
7

2(9− γ21/λ −3γ22)
,1;9− 1

λ
,1;0,

5
6
).

Marginal utility of income MU1
0 of household 1 at date 0 is invariably unity,

so his utility is maximized when p0H peaks; that of household 2 at date 0 is

MU2
0 =

2(9− γ21/λ −3γ22)
7

,

which varies directly as λ . Differentiating p0H with respect to λ , we obtain

d p0H

dλ
=− 1

λ 2

[
γ11− 7

2
· γ21

(9− γ21/λ −3γ22)2

]
;

and differentiating the social welfare W with respect to λ , we obtain

dW
dλ

=− 1
λ 2

[(
γ11− 7

2
· γ21

(9− γ21/λ −3γ22)2

)− γ21
(
1− 1

9− γ21/λ −3γ22

)]
.

When γ11 = γ21, dW/dλ is inside zero; so at λ = 1/4 social welfare has
its peak and satisfaction of household 2 meets its trough, and he will prefer
to default in state 2. But when γ11is substantially less than γ21, dW/dλ is
beyond zero; both social welfare and satisfaction of household 2 have their
peaks at λ = 1/3; and he will, at this level, be ready to stand by his promise
at date 1.
Suppose the objective probability distribution is given by (0.95,0.05) and
both households enjoy it, then social welfare is maximized at λ = 1/4 and
the corresponding value stands at 42.58. If household 1 takes a quite differ-
ent view (γ11,γ12) = (0.05,0.95), social welfare then achieves its maximum
at λ = 1/3 and its value falls to 42.54.

(iv) λ ∈ [1/3,2/5)
Household 2 will again borrow up to his limit 1/λ , which is, contrary to
the case above, independent of the subjective beliefs of the households. The
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equilibrium is given by

qλ =1,

p =(1,
1
λ

+
7
2
· 8λ −1

9λ −1
;1,4;1,3),

x1 =(18− 7λ
2(9λ −1)

,0;9+
1
λ

,0;
23
2

,
1

3λ
− 5

6
),

x2 =(
7λ

2(9λ −1)
,1;9− 1

λ
,1;0,

11
6
− 1

3λ
).

It is easily checked that

d p0H

dλ
< 0,

dMU2
0

dλ
> 0,

and
dW
dλ

< 0, when γ22 <
3λ (11λ −2)

2(9λ −1)
.

Therefore, household 1 maximizes his utility at λ = 1/3, and household 2 at
λ = 2/5. Social welfare will be maximized at λ = 1/3, if household 2 owns
the objective probability distribution.

(v) λ ∈ [2/5,1/2)
Household 2 can still borrow enough to buy all housing at date 0; but grow-
ing collateral level curtails his borrowing capacity, which permits him to
deliver less at date 1 and enables him to consume some food in state 2. The
equilibrium is given by

qλ =1,

p =(1,
1
λ

+
7
2
· 8λ −1

9λ −1
;1,4;1,4),

x1 =(18− 7λ
2(9λ −1)

,0;9+
1
λ

,0;9+
1
λ

,0),

x2 =(
7λ

2(9λ −1)
,1;9− 1

λ
,1;

5
2
− 1

λ
,1).

Similarly, we have

d p0H

dλ
< 0,

dMU2
0

dλ
> 0,

dW
dλ

< 0.

Therefore, household 1 maximizes his utility at λ = 2/5, and household 2 at
λ = 1/2. Social welfare will be maximized at λ = 2/5.
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(vi) λ ∈ [1/2,∞)
At such high a collateral level, household 2 fails to raise enough money to
finance his housing purchase at date 0, so both households will share the one
unit housing at that date. The equilibrium is given by

qλ =1,

p =(1,5;1,4;1,4),

x1 =(18− 5λ −1
8λ −1

,1− 7λ
2(5λ −1)

+
λ

8λ −1
;9+4x1

0H +
x2

0H
λ

,0;9+
1
λ

,0),

x2 =(
5λ −1
8λ −1

,
7λ

2(5λ −1)
− λ

8λ −1
;5+(4− 1

λ
)x2

0H ,1;
5
2
− 1

λ
,1).

For household 1, with the increased collateral level his sales of housing de-
creases, which, in turn, reduces his income at date 0 and lowers his util-
ity level. For household 2, increased collateral level would diminish his
marginal utility of income at date 0, so both households favor a lower collat-
eral requirement and social welfare is maximized at λ = 1/2.

(vii) GEI equilibrium
Suppose only the security with payoff (p1F , p2F) is available for trade. House-
hold 2 is free to borrow without any collateral requirement. The GEI equi-
librium is given by

q =1;ϕ1 = 5;ϕ2 =−5;

p =(1,7.5;1,4,1,3),

x1 =(17,0;14,0;
23
2

,
5
6
),

x2 =(1,1;4,1;0,
1
6
).

It is easily checked that p0H at this equilibrium is higher than that at any
collateral equilibrium, and so is the utility level of household 1. But that of
household 2 slumps to a record low.

In sum, for CE, if both households believe the objective probability distribu-
tion, social welfare achieves its maximum 42.58 at λ = 1/4; at this level, house-
hold 2 would default and the conclusion that default can promote efficiency holds.
But if household 1, instead, believes (γ11,γ12) = (0.05,0.95), then social welfare
achieves its maximum 42.54 at λ = 1/3, so a dead-weight loss results. As opposed
to the case above, household 2 would now keep his promise and default fails to
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promote efficiency. Given the objective probability distribution, social welfare at
the GEI equilibrium attains 42.63, higher than that at every collateral equilibrium.

Recall that one of the insights of Geanakoplos and Zame (2010)(p. 4) is that

· · · collateral requirements that lead to default (with positive prob-
ability) in equilibrium may (ex ante) Pareto dominate collateral re-
quirements that do not lead to default. Moreover, if securities offering
the same promise but backed by different collateral requirements are
offered, the market may choose a collateral requirement that leads to
default (with positive probability).

In the case of this example, it can be seen from the calculation above that this
insight holds valid when the households agree on the probabilities of default; but
otherwise it would cease to be true.

4 Existence of Collateral Equilibrium

Remember that the purpose of this paper is to compute the collateral equilibrium
of an economy with the aid of a path-following algorithm. The strategy of a path-
following algorithm is to first deform the original economy to obtain a family of
economies, one of which has a unique and easily accessible equilibrium; then prove
that there exists a path departing from this unique equilibrium and terminating at
the equilibrium of the original economy; and finally follow this path to secure the
equilibrium of the original economy. Central to this algorithm is how to deform
the original economy to obtain that desired family of economies. Let us treat this
issue in what follows.

4.1 An auxiliary economy

For a vector v = (v1, · · · ,vn), let lnv = ∑n
i=1 lnvi; for a plan η = (x,ϕ,ψ), let

φ(η ;λ ) = ∑
s∈S

lnxs + lnϕ + lnψ + ln
(
x0−λ ∑

j∈J
ψ jc j).

From the standpoint of economics, the function φ is a (generalized) Cobb-Douglas
utility function when λ vanishes. It is to be noted that φ has as its arguments both
the purchasing portfolio ϕ and the sale portfolio ψ , so the question arises naturally
whether they will go to infinity at equilibrium, if φ is adopted as a utility function.
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The answer is no; the budget constraints, as will be seen later, prevents them from
blowing up at equilibrium. From the standpoint of optimization, the function φ
serves as a barrier function, used to handle the boundary conditions.

For purely computational purpose, we add to the utility function uh a perturba-
tion term, which vanishes as λ is equal to unity, to get

ũh(η ;λ ) = uh(x)+(1−λ )
N1

∑
i=1

σh
i ηi,

where N1 = (S + 1)L + 2J and σh = (σh
1 , · · · ,σh

N1
) ∈RN1

+ ; and then we deform it
by multiplying it with a factor λ , giving

ūh(η ;λ ) = λuh(x)+λ (1−λ )
N1

∑
i=1

σh
i ηi;

finally we add the barrier function φ , as a standard method to treat the boundary
conditions in the theory of optimization, to this deformed utility function, to get

Uh(η ;λ ) = ūh(η ;λ )+λ0(1−λ )φ(η ;λ ),

where λ0 is a positive scalar. Of the value of λ0 the existence of equilibrium is
independent; but its choice will affect the performance of the algorithm developed
later on.

It can easily be seen that Uh is strictly monotone in consumption of all goods
and in the purchasing portfolio ϕ .4 When λ vanishes, it becomes φ(η ;0), a Cobb-
Douglas utility function, as stated above. We shall utilize Uh as a utility function
to define an auxiliary economy.

Again for computational purpose, we have to ensure that, when λ vanishes, the
equilibrium of the auxiliary economy is unique and easy to find. For this reason,
let us deform the budget constraints, by defining B̃h(p,q,λ ) to be a set of plans
(x,ϕ,ψ) that satisfies

p0(xh
0− eh

0)+λq(ϕh−ψh)+(1−λ )q(ϕh +ψh− eh
a)≤ 0, (4.1)

∀s ∈ S, ps(xh
s − eh

s )−λ psFs(xh
0)+λ ∑

j
(ψh

j −ϕh
j +(1−λ )eh

a j)DEL j
s ≤ 0, (4.2)

4Its monotonicity in the sales portfolio ψ is vague. Fortunately, this is not required in the present
paper.
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where eh
a = (eh

a1, · · · ,eh
aJ) ∈RJ

++, and wherein the collateral requirement of each
asset and the durability of each commodity are all discounted by a factor of λ . Let
˜̃Bh(p,q,λ ) be a subset of B̃h(p,q,λ ) with each of its elements respecting

λ ∑
j

ψh
j c j− xh

0 ≤ 0, (2.2′)

which, at λ = 0, reduces itself to the boundary condition xh
0 ≤ 0.

When λ vanishes, the budget set B̃h(p,q,λ ) becomes

p0(xh
0− eh

0)+q(ϕh +ψh− eh
a)≤ 0,

∀s ∈ S, ps(xh
s − eh

s )≤ 0.

From this set one can see that the assets have lost their ability to transfer wealth
across states; instead they yield utility directly, just the same as a commodity. The
vector eh

a can be seen as endowments of the assets, serving to prevent ϕh and ψh

from blowing up when λ is small.

We are now in a position to define the auxiliary economy E (λ ), wherein house-
hold h acts to optimize the utility function Uh, instead of uh, with respect to
B̃h(p,q,λ ). It is to be noticed that E (1) = E , i.e., the original economy is re-
covered when λ changes to one.

In the economy E (0), each household optimizes his behavior by solving

max ∑
s∈S̄

lnxs + lnϕ + lnψ

p0(xh
0− eh

0)+q(ϕh +ψh− eh
a)≤ 0,

∀s ∈ S, ps(xh
s − eh

s )≤ 0.

As the utility function is additive, this problem is equivalent to (S+1) subproblems,
each defined by, for s = 0,

max lnx0 + lnϕ + lnψ

p0(xh
0− eh

0)+q(ϕh +ψh− eh
a)≤ 0;

and for s ∈ S,

max lnxs s.t. ps(xh
s − eh

s )≤ 0.

Each of these subproblems corresponds to an economy with a Cobb-Douglas utility
function and a complete market, whose equilibrium is well known to be unique
and readily accessible. The equilibrium of E (0) is, therefore, unique and readily
accessible. We shall next show that the auxiliary economy E (λ ) in general admits
of an equilibrium.

14



4.2 The existence theorem

DEFINITION 3. The equilibrium of E (λ ) is a collection {p,q,(ηh)h∈H} such that

• Given (p,q), ηh optimizes Uh in B̃h(p,q), for all h ∈H;
• Commodity markets at date 0 clear: ∑h∈H(xh

0− eh
0) = 0;

• Commodity markets at date 1 clear: ∑h∈H(xh
s − eh

s − λFs(xh
0)) = 0, for all

s ∈ S;
• Asset markets clear: ∑h∈H[λ (ϕh−ψh)+(1−λ )(ϕh +ψh− eh

a)] = 0.

We claim that

THEOREM 4.1. If assumptions (1), (2) are satisfied, and c j > 0 for all j ∈ J, then
E (λ ) has an equilibrium for all λ ∈ [0,1).

PROOF. See the Appendix. Q.E.D

With the aid of this theorem, we can show that

THEOREM 4.2. Given assumptions in Theorem 4.1, the economy E has a collat-
eral equilibrium.

PROOF. Let {λ k} be an increasing sequence of positive scalars such that lim
k→∞

λ k =

1; and let (pk,qk,(ηh
k )h∈H) be an equilibrium of E (λ k). As shown in the proof

of Theorem 4.1, the set {(pk,qk,(ηh
k )h∈H) : k = 1,2, · · ·} is uniformly bounded.

Therefore, it has a convergent subsequence; without loss of generality, let it also be
{(pk,qk,(ηh

k )h∈H)}∞
k=1 and suppose it converges to (p,q,(ηh)h∈H). We say that this

is a collateral equilibrium of E . Indeed, (ηh)h∈H clear all markets, so it remains to
show that

ηh ∈ argmax
η

{
uh(η) : η ∈ Bh(p,q)∩¤h

}
.

By contradiction, suppose there exists an η0 ∈ Bh(p,q)∩¤h such that uh(η0) >
uh(ηh). By the continuity of uh, there is an α ∈ (0,1) satisfying uh(αη0) > uh(ηh);
so, for k sufficiently large, Uh(αη0;λ k) > Uh(ηh

k ;λ k). Note that, by assumption
(1), an α strictly less than one would render slack both constraints (2.1) and (2.3) at
αη0.5 Hence, when k is sufficiently large, we have αη0 ∈ B̃h(pk,qk,λ k)∩¤h. But
this contradicts that household h has optimized in the economy E (λ k). Q.E.D

5In Dubey et al. (2005), this is called the scaling property of the budget set. This property also
obtains, even if the budget set contains assets that are not real; in which case, it is easily verified that
both Theorems 4.1 and 4.2 are still true.
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5 Computation of Collateral Equilibrium

For the price vectors ps such that ps ·A j
s = ps ·Fs(c j), DEL j

s is non-differentiable.
To facilitate the CE computation, we wish to approximate it by a smooth function
D j

s(λ ) given in Zang (1980), which is as follows:

D j
s(λ )=





ps ·A j
s if ρ j

s ≤−(1−λ ),

− (ρ j
s )2

4(1−λ ) + 1
2(ps ·A j

s + ps ·Fs(c j))− 1
4(1−λ ) if − (1−λ ) < ρ j

s ≤ (1−λ ),

ps ·Fs(c j) if (1−λ )≤ ρ j
s ,

where ρ j
s = ps ·A j

s − ps ·Fs(c j) and λ ∈ [0,1]. Furthermore, we assume the utility
function uh(x) to be smooth.

5.1 Characterization of the auxiliary economy

As stated above, the equilibrium of E (0) exists and is unique. Denote it by {p(0),q(0),(xh(0),ϕh(0),ψh(0))h∈H}.
Construct a set of smooth and positive functions {(eh(λ ),eh

a(λ )
)

: h∈H} such that

eh(0) = xh(0), eh(1) = eh; eh
a(0) = ϕh(0)+ψh(0), eh

a(1) = eh
a.

Household h in E (λ ) is then supposed to be endowed with a vector eh(λ ) of com-
modities and a vector eh

a(λ ) of assets; so, at λ = 0, each household just consumes
his endowment and no economic activity would take place. This treatment will be
useful in proving that the equilibrium of E (0) is a regular zero point of the system
(5.1), as is to be shown in Proposition 5.1.

We shall next characterize the equilibrium of E (λ ) by a system of simultaneous
equations, which would facilitate its computation. Let Ds = (D1

s , · · · ,DJ
s ) for all s∈

S, Y = {p,q,(ηh,µh)h∈H}, vh = (vh
0, · · · ,vh

S), where vh
0 = p0eh

0(λ )+(1−λ )qeh
a(λ )

and vh
s = pseh

s (λ )−λ (1−λ )eh
a(λ )Ds,∀s ∈ S. Let

Ωλ =




p0 0 · · · 0 q (1−2λ )q
−λκ1 ◦ p1 p1 · · · 0 −λD1 λD1

...
...

...
...

...
−λκS ◦ pS 0 · · · pS −λDS λDS


 .

Since Uh(η ;λ ) is strictly concave in η for any given λ ∈ [0,1), Y is an equilibrium
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of E (λ ) if and only if it solves the following system




∇ηUh−ΩT
λ µh = 0,h ∈H

Ωλ ηh− vh = 0,h ∈H

∑
h∈H

[xh
0l − eh

0l(λ )] = 0, l = 1, · · · ,L−1

∑
h∈H

[xh
0L− eh

0L(λ )]+λ (∑
l∈L

p0l −ζ0) = 0

∑
h∈H

[xh
sl − eh

sl(λ )−λFsl(xh
0)] = 0, l = 1, · · · ,L−1

∑
h∈H

[xh
sL− eh

sL(λ )−λFs1(xh
0)]+λ (∑

l∈L
psl −ζs) = 0

∑
h∈H

[λ (ϕh−ψh)+(1−λ )(ϕh +ψh− eh
a(λ ))] = 0

(5.1)

where ζ = (ζ0, · · · ,ζS) ∈RS+1
++ . The first set of equations is made up of the KKT

conditions of each household; the second of their budget constraints; the third and
the fifth of commodity market clearing conditions; the last of asset market clearing
conditions. For the fourth and sixth sets of equations, they reduce to the market
clearing conditions when λ vanishes; when it does not, their first terms are, by
Walras’ law, automatically zero and then they reduce to

∑
l

psl = ζs,∀s ∈ S̄.

(This formulation helps to prove Propositions 5.1 and 5.2.) Let H(Y,λ ) be the left
hand side of (5.1). Define

∆ ={(p,q) ∈R
(S+1)L
++ ×RJ

++ : ‖ps‖1 = 1,∀s ∈ S},
X =∆×RN

++×R+, Y = RN+(S+1)L+J,

where N = h̄[(S +1)(L+1)+2J]. Then H(Y,λ ) is a Homotopy from X to Y.

5.2 A path-following algorithm

We shall next try to find the equilibrium of E by solving H(Y,λ ) = 0 through a
path-following algorithm. To enable this, we need a primary route that emanates
from H(Y,0) = 0 and heads for H(Y,1) = 0. Since uh(x) is smooth, the Homotopy
H is then smooth and, as a rule, we shall next show that H(Y,0) has a unique zero
point, H(Y,λ ) has zero as its regular value for all λ ∈ [0,1) and the set {(Y,λ ) ∈
X : H(Y,λ ) = 0} is compact.
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Note that H(Y,0) is a characterization of the economy E (0), which, as stated
above, has a unique equilibrium, so solution to H(Y,0) = 0 is unique. For its
regularity, we claim that

PROPOSITION 5.1. If all commodities are normal, then H(Y,0) has zero as its
regular value.

PROOF. Let G1 be the first two rows (in block) of G(Y,λ ), or the first-order condi-
tion of each household, and G2 be the rest. The Jacobian matrix J0 of H(Y,0) with
respect to Y and (µh) is given by

J0 =




G1
11 G1

12

G2
11 G2

12

. . .
...

Gh̄
11 Gh̄

12

G1
21 G2

21 · · · Gh̄
21 0




,

where the upper left block is the Jacobian of G1 with respect to (ηh,µh)h∈H, and
upper right to (p,q); the lower left one is that of G2 to (ηh,µh)h∈H and lower right
to (p,q). The blocks are each given by, letting In be the identity matrix of size n,

Gh
11 =

[
∇ηUh −ΩT

0
Ω0 0

]
,Gh

21 =
[

I(S+1)L 0 0 0
0 IJ IJ 0

]
,

and,

Gh
12 =




Πh 0
0 −µh

0 IJ

0 −µh
0 IJ

0 0


 ,Πh =



−µh

0 IL
. . .

−µh
S IL


 .

That household h precisely consumes his endowment makes the last row of Gh
12

vanish. Letting

Θh =
[

Πh

−µh
0

]
,

we have Gh
12 = (Gh

21)
T Θh. Recall that µh

s is the shadow price. By assuming that all
commodities are normal, we get µh

s > 0 for all s ∈ S̄,h ∈H. The matrix Θh is thus
diagonal and negative definite. Since all Gh

11 are negative definite, by elementary
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column operation, J0 is reduced to



G1
11 0

G2
11 0

. . .
...

Gh̄
11 0

G1
21 G2

21 · · · Gh̄
21 G22




,

where G22 =−∑h Gh
21(G

h
11)

−1Gh
12 =−∑h Gh

21(G
h
11)

−1(Gh
21)

T Θh. The matrix Gh
21(G

h
11)

−1(Gh
21)

T

is negative definite, for (Gh
11)

−1 is negative definite and Gh
21 is of full row rank.

Hence, the matrix −Gh
21(G

h
11)

−1(Gh
21)

T Θh, and therefore G22, is negative definite.
Thus J0 is nonsingular. Q.E.D

Let ξ = (ξ1, · · · ,ξL+h̄) = (e1
1, · · · ,e1

L,e
2
1, ,e

3
1, · · · ,eh̄

1,ζ ) ∈RL+h̄. We have

LEMMA 5.1. When pÀ 0, the Jacobian of the following system with respect to ξ
is nonsingular:

p(xh− eh) = 0,h ∈H

∑
h∈H

(xh
l − eh

l ) = 0, l = 1, · · · ,L−1

∑
h∈H

(xh
L− eh

L)+∑
l

pl −ζ = 0,

(5.2)

where xh,eh and p all belong to RL.

PROOF. The Jacobian J is given by



p1 p2 · · · pL 0
p1 0

. . .
...

p1 0
1 0 · · · 0 1 · · · 1 0
0 1 · · · 0 0 · · · 0 0

. . . . . .
...

0 0 · · · 1 0 · · · 0 1




.

It suffices to show that the system Jz = 0 has zero as its unique solution. In fact, for
any z satisfying Jz = 0, by p1 > 0, it follows from the second to the L-th equation
that zi = 0, i = L + 1, · · · ,L + h̄− 1, which, along with the (L + 1)-th equation,
implies z1 = 0. From (L + 2)-th to the (L + h̄−1)-th equation it follows that zi =
0, i = 2, · · · ,L−1, which, along with the first equation and pL > 0, implies zL = 0.
By the last equation, we then have zL+h̄ = 0. So z = 0 and J is thus nonsingular.

Q.E.D
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Remark 1. In this Lemma, the first set of equations corresponds to households’
budget constraints in some state, the second to the market clearing condition; and
the third shapes the price simplex. If we replace the last column of J with the vector
(0, · · · ,0,λ ), still it is nonsingular when λ 6= 0.

Remark 2. Let ξ0 =(e1
01, · · · ,e1

0L,(1−λ )e1
a1, · · · ,(1−λ )e1

aJ,e
2
01, ,e

3
01, · · · ,eh̄

01,ζ0)∈
RL+h̄+J . The system in state 0 that corresponds to system (5.2), is given by

p0(xh
0− eh

0)+λq(ϕh−ψh)+(1−λ )q(ϕh +ψh− eh
a) = 0,h ∈H

∑
h∈H

[xh
0l − eh

0l(λ )] = 0, l = 1, · · · ,L−1,

∑
h∈H

[xh
0L− eh

0L(λ )]+λ (∑
l

p0l −ζ0) = 0,

∑
h∈H

[λ (ϕh−ψh)+(1−λ )(ϕh +ψh− eh
a(λ ))] = 0.

By Lemma 5.1, the Jacobian J0 of this system with respect to ξ0, is nonsingular.
Similarly, letting ξs = (e1

s1, · · · ,e1
sL,e

2
s1, ,e

3
s1, · · · ,eh̄

s1,ζs) ∈RL+h̄,∀s ∈ S, the Jaco-
bian Js of the system in state s with respect to ξs is also nonsingular.

Let σ = (σ1, · · · ,σ h̄,ξ0, · · · ,ξS). We have

PROPOSITION 5.2. When λ ∈ (0,1), H(Y,λ ) has zero as its regular value for
almost all σ ∈ Y++.

PROOF. The Jacobian of H with respect to σ is given by

Jσ H =




Λ
. . .

Λ
J0

. . .
JS




,

where

Λ =




λ (1−λ )
. . .

λ (1−λ )


 .

So Jσ H is nonsingular when λ ∈ (0,1). The Jacobian of H : X×Y++ → Y, taken
σ as variables, then has full row rank. Noting that H is smooth, the proposition
follows immediately from the transversality theorem. Q.E.D
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Propositions 5.1 and 5.2 together imply that the primary route desired exists.
We now dedicate ourselves to the proposition:

PROPOSITION 5.3. For any ε > 0, the primary route defined by H(Y,λ ) = 0 is
trapped when λ ∈ [0,1− ε].

PROOF. From the proof of Proposition 4.1, it follows that ‖ηh‖ is finite for all
h ∈ H, and the commodity price vector p and the asset price vector q are strictly
positive and of finite magnitude. So it remains to show that ‖µh‖ is finite. The
first-order condition of household h is given by

∂Uh

∂ϕ j
= µh

0 q j,

∂Uh

∂xsl
= µh

s psl,∀s ∈ S.

Because Uh is smooth, partial derivatives on the left-hand side are continuous on a
compact set; so their function values are bounded, from which it follows immedi-
ately that ‖µh‖ is finite. Q.E.D

6 Numerical Test

Let ēsl be the reciprocal of esl . The starting point of the algorithm, or the equilib-
rium of economy E (0), is given by: (i) the equilibrium prices of commodities and
of assets

psl =
ēsl

∑L
k=1 ēsk

,∀s ∈ S̄, l ∈ L; q j =
2p01e01

∑h eh
a j

,∀ j ∈ J;

(ii) the equilibrium consumption of commodities and of assets in state 0

xh
0l =

1
(L+2J)p0l

( L

∑
k=1

p0keh
0k +

J

∑
j=1

q jeh
a j

)
,∀l ∈ L;

ϕh
j = ψh

j =
1

(L+2J)q j

( L

∑
k=1

p0keh
0k +

J

∑
j=1

q jeh
a j

)
,∀ j ∈ J;

(iii) the equilibrium consumption in state s

xh
sl =

1
L · psl

L

∑
k=1

pskeh
sk,∀s ∈ S, l ∈ L.
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To test the algorithm, we adopt the classical path-following algorithm with
Euler predictor and Newton corrector (Allgower and Georg, 1993), and program
it in MATLAB. The pseudocode for the implementation of this algorithm is given
in the Appendix. We take the step size in the predictor step to be 0.25, and let
λ0 = 0.2, eh

a = 1,h ∈H.

EXAMPLE 1. First we use the algorithm presented in the last section to find
a solution to the example given in Section 3, and compare it with the true equilib-
rium. Let (γ11,γ12) = (γ21,γ22) = (0.95,0.05). If the collateral requirement level is
at 1/4, the equilibrium resulting from the algorithm is given by

q =0.9533, p = (1,6.5189;1,3.9777;1,3.0756),

x1 =(17.3173,0.0009;12.8898,0.0003;11.4512,0.1945),

x2 =(0.6811,0.9929;5.1105,0.9774;0.0487,0.7885);

if at 1/3, by

q =0.9881, p = (1,5.8813;1,3.9856;1,3.1321),

x1 =(17.4043,0.0014;11.9720,0.0003;11.4486,0.1610),

x2 =(0.5966,0.9835;6.0280,0.9782;0.0513,0.8168);

and at 1/2, by

q =0.9839, p = (1,5.0622;1,3.9893;1,3.8779),

x1 =(17.4809,0.0096;10.9678,0.0003;10.8702,0.0182),

x2 =(0.5235,0.9378;7.0322,0.9442;0.6298,0.9256).

It is easily checked that these three equilibria are all in the neighborhood of the true
equilibria given in Section 3.

EXAMPLE 2. Suppose each household has a CES utility function which is
additively separable across states. That is, for household h and τ > 0,

uh(x) = uh(x0, · · · ,xS) =
S

∑
s=0

γh
s (

L

∑̀
=1

xhτ
s` )

1
hτ ,

where γh
s is the probability of state s with γh

0 = 1. In the real economic world, both
the endowments of the households and the payoffs of the assets may be affected by
some random factors. For this reason, let us suppose that the vectors eh, A j, c j are
randomly generated for all households and all assets. (Their values are given in the
Appendix.) Let S = 5, L = 3, h̄ = 4, J = 2, and τ = 0.2.
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The collateral equilibrium of this economy yielded by the algorithm is the fol-
lowing. The asset prices are given by

q =
[
q1 q2

]
=

[
1.5412 1.6338

]
.

The commodity prices are given by

p = [p0, · · · , pS] =




1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.2867 0.9004 0.8089 1.0144 0.7211 0.7525
0.9675 1.1813 0.7611 1.0618 0.6203 0.7035


 .

The consumption bundles of the households are given by

x1 =




30.7869 9.7293 15.4899 33.1254 7.9715 14.4002
8.9621 15.2138 42.6964 30.8866 36.3267 51.2627
45.3779 5.0494 57.5430 25.0778 75.2209 70.4086


 ;

x2 =




48.1652 45.7008 28.2635 63.5420 20.5380 28.8742
21.6899 58.7556 46.5104 61.2135 45.0108 57.2464
55.4136 30.8510 53.7632 54.7020 64.7442 67.4191


 ;

x3 =




15.9227 38.3039 16.0060 38.6115 21.2755 26.6751
9.4738 45.4373 22.5129 37.6881 35.4247 41.1774
19.7094 29.2801 24.8420 35.0035 44.7285 45.5600


 ;

x4 =




36.1251 26.1850 37.9519 49.8375 21.0008 27.5178
26.8742 29.7540 49.2010 48.9647 31.2117 38.2462
39.4992 21.4048 52.9939 46.3467 37.3232 41.1673


 ;

where the s-th column of xh denotes the consumption bundle of household h in
state s−1. The purchase portfolio of assets are given by

ϕ = [ϕ1, · · · ,ϕ h̄] =
[

0.2660 16.1148 0.3098 5.7091
9.5097 1.6288 0.3141 6.4711

]
.

The sales portfolio of assets are given by

ψ = [ψ1, · · · ,ψ h̄] =
[

10.0625 2.4305 4.7438 5.5636
1.4598 10.4798 2.3015 3.9953

]
.

EXAMPLE 3. Suppose the utility function takes the same form as in Example
2. Let S = 6, L = 5, h̄ = 6, J = 5. The values of eh, A j, c j for all households and
all assets are given in the Appendix.
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The collateral equilibrium of this economy yielded by the algorithm is the fol-
lowing. The asset prices are given by

q =
[
q1, · · · ,q5

]
=

[
3.6225 4.6209 4.6142 3.0501 0.5184

]
.

The commodity prices are given by

p = [p0, · · · , pS] =




1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.6196 1.1545 0.9862 1.0053 0.8357 0.7216 1.1916
1.3175 1.0238 0.7775 0.8552 0.7698 0.6728 0.5463
1.3786 1.0187 0.8842 0.8070 1.3453 0.6883 0.6724
1.0847 1.2917 1.1307 1.0308 0.8468 0.6397 0.7629




.

The consumption bundles of the households are given by

x1 =




31.7171 39.5299 21.5848 29.2675 23.7285 7.2628 8.8528
4.9991 20.2420 23.0405 28.6000 54.6414 32.5385 4.8371
24.5323 35.3583 72.0056 58.4940 80.8021 45.5803 120.7635
9.6012 36.2077 38.6161 76.6042 6.7764 40.7900 45.8896
26.4623 12.2088 12.3009 25.6913 51.2922 58.0997 26.1317




;

x2 =




38.5556 44.2165 29.0851 39.9266 21.0486 20.0233 9.7375
11.6075 31.2951 30.0478 39.4095 31.5355 42.4148 6.5546
28.7847 41.7645 52.4802 58.3657 38.0389 50.0593 40.1668
17.3758 42.2757 38.8009 67.3477 10.9972 47.4018 24.5211
22.9607 23.9272 21.8808 37.0827 30.6190 56.3886 18.1935




;

x3 =




32.9370 47.7945 22.0065 26.1771 20.6505 26.1306 20.7563
14.9927 37.8119 22.4934 25.9489 27.3739 43.7408 15.9471
27.6627 45.9831 32.5242 33.5834 31.1551 48.9799 52.1707
18.8922 46.3650 26.6831 36.8832 12.9727 47.1878 37.9736
24.4328 31.4999 18.1698 24.9258 26.8245 53.1157 31.3233




;

x4 =




22.2125 32.9438 43.2533 24.8424 24.7025 19.2178 19.3384
12.7670 27.5694 43.9896 24.6714 30.4619 28.5571 15.6510
21.8966 31.9860 58.2903 30.0105 33.5481 31.1539 40.0951
16.7915 32.1881 50.1580 32.2159 17.3575 30.2743 31.2411
19.6309 24.0551 37.3004 23.9329 30.0197 33.1636 26.8333




;

x5 =




35.8255 65.1494 31.4687 38.8099 35.0259 47.0290 29.5189
24.0390 56.0039 31.9075 38.5681 41.7224 65.0201 24.7648
37.0932 63.5290 39.9583 45.5137 45.2327 69.9266 53.4455
28.6254 63.8707 35.4997 48.2955 26.0138 68.2649 43.7721
32.1391 50.0370 27.8727 37.6132 41.2459 73.6452 38.8057




;
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x6 =




22.7523 35.8134 27.6008 39.3881 25.5936 28.0723 31.7188
15.5947 31.2587 27.9330 39.1544 29.7737 37.3217 27.1820
24.0304 35.0066 33.5601 45.5639 31.9516 39.9344 53.7352
18.7139 35.1783 30.6491 48.0985 19.6488 39.0440 44.9446
20.3743 28.2949 24.8359 38.2657 29.5002 41.8989 40.3416




;

where the s-th column of xh denotes the consumption bundle of household h in
state s−1. The purchase portfolio of assets are given by

ϕ = [ϕ1, · · · ,ϕ h̄] =




0.6782 1.4088 0.9744 0.7940 2.2582 1.6817
0.7588 0.4364 0.8550 0.5524 2.6283 1.4551
0.6666 0.4570 0.7650 0.5510 2.5761 1.4375
1.3760 0.7798 0.7779 0.8837 3.2208 1.9534
2.5054 5.5671 7.7062 4.3951 28.9272 14.4902




.

The sales portfolio of assets are given by

ψ = [ψ1, · · · ,ψ h̄] =




0.7436 0.8544 1.2878 1.3894 2.2781 1.3399
0.3898 1.6719 1.2108 1.0777 1.4403 0.9705
0.3970 1.4192 1.2415 1.0402 1.4451 0.9804
0.4303 1.2742 2.0993 1.4609 2.2604 1.5885
17.3786 9.8569 9.7024 7.8093 12.0200 8.0574




.

For Examples 2 and 3, we can not compare directly the equilibria given above
with the true equilibria, which are unknown. But it can be checked that both equi-
libria yielded by the algorithm satisfy system (5.1), so we can conclude that they
are in the neighborhood of the true equilibria.

Appendix

Proof of Theorem 4.1

It is noticed that the budget set B̃h(p,q,λ ) is unbounded. The key idea of the proof
is first to impose, to make B̃h(p,q,λ ) bounded, lower and upper bounds on the
asset prices and on one’s consumption, and then let the lower bounds go to zero
and the upper bounds go to infinity. The technique of proof used here is analogous
to that of Dubey et al. (2005).

For any small lower bound b > 0, define

∆b =
{

(p,q) ∈R
(S+1)L
+ ×RJ

+ : ‖ps‖1 = 1∀s ∈ S̄, p≥ b,and b≤ q≤ 1
b

}
.
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It is noticed that when ‖x‖ → ∞, ‖Uh(x)‖ → ∞, so there exists an M > ‖2e‖ such
that when ‖x‖ > M, Uh(x) > Uh(2e) for all h ∈ H. Define, for each h ∈ H and
(p,q) ∈ ∆b,

¤h =
{
(x,ϕ,ψ) ∈R

(S+1)L
+ ×RJ

+×RJ
+ : ‖x‖ ≤M

}
,

Ψh
b(p,q) = argmax

(x,ϕ,ψ)

{
Uh(η ;λ ) : (x,ϕ,ψ) ∈ B̃h(p,q,λ )∩¤h

}
.

We claim that Ψh
b(p,q) is nonempty, compact, convex, and upper semi-continuous.

Obviously, ˜̃Bh(p,q,λ )∩¤h is nonempty, convex, and closed. We next show its
boundedness. Let ea = ∑h eh

a. When λ ∈ [0,0.25], we have, by (4.1),

‖ϕ‖ ≤M1; ‖ψ‖ ≤M1,

where M1 = 2
b2 ‖ea‖1 + 2

b‖e0‖1. When λ ∈ [0.25,1), we have, by (2.2′) and c j > 0,

ψ j ≤ 4‖x0‖
‖c j‖ ≤ 4M

‖c j‖ .

Let ς0 = max j∈J 1/‖c j‖ and ς = 4ς0, then ‖ψ‖ ≤ ςM. By (2.1), we have

‖ϕ‖ ≤ ‖eh
0‖1

b
+

1+ ςJ
b2 (M +‖eh

a‖1)
def= M2.

Let K1 = max(M1,M2) and K2 = max(M1,ςM). So, for all λ ∈ [0,1), ‖ϕ‖ ≤ K1

and ‖ψ‖ ≤ K2. Hence ˜̃Bh(p,q,λ )∩¤h is bounded. Consider the convex program

M = argmax
(x,ϕ,ψ)

{ūh(η ;λ ) : (x,ϕ,ψ) ∈ ˜̃Bh(p,q,λ )∩¤h}.

Because of the continuity of ūh, M is nonempty and bounded (it is a subset of
˜̃Bh(p,q,λ )∩¤h). Then Theorem 5 of Wright (1992) applies, from which it follows
that Ψh

b(p,q) is nonempty, compact, and convex. For its upper semi-continuity,
refer to section 1.8 of Debreu (1959).

Define the excess demand of commodities and of assets as

Z0 = ∑
h

(xh
0− eh

0),

Zs = ∑
h

[
xh

s − eh
s −λFs(xh

0)
]
,∀s ∈ S;

Za = ∑
h∈H

[
λ (ϕh−ψh)+(1−λ )(ϕh +ψh− eh

a)
]
.
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Write Z = (Z0, · · · ,ZS,Za). Define the correspondence Ψ0
b to be

Ψ0
b(Z) = argmax

(p,q)∈∆b

{
∑
s∈S̄

ps ·Zs +q ·Za

}
,

which is clearly nonempty, compact, convex, and upper semi-continuous. Let
¤H = ∏h∈H ¤h, and Ψb(p,q,Z) : ∆b×¤H → ∆b×¤H be the correspondence de-
fined by

Ψb(p,q,Z) = Ψ0
b(Z)× (∏

h∈H
Ψh

b(p,q)).

By Kakutani’s theorem, it has a fixed point {p(b),q(b),(xh(b),ϕh(b),ψh(b))h∈H}.
As in Dubey et al. (2005), it can be established that, as b tends to zero, this fixed
point converges to an equilibrium of E (λ ). To avoid notational clutter, we suppress
the b.

In state 0, we have p0Z0 +qZa = 0. If there is a j ∈ J such that Za j > 0, taking
q̃ j = 1/b and q̃i = b for i 6= j, we have

p0Z0 + q̃Za ≤ 0;

there then follows that,

1
b

Za j ≤ ‖e0‖1 +b(‖ea‖1 + JhK2)
def= T1.

So we have, for all j ∈ J,
Za j ≤ bT1.

If there is an l ∈ L such that Z0l > 0, taking p̃0l = 1− (L−1)b, p̃0k = b for all
k 6= l, and q̃ j = b for all j ∈ J, we have

Z0l ≤ b
1− (L−1)b

(‖e0‖1 + JhK2)
def= bT2.

This being true for all l ∈ L, it follows,
∥∥∥∑

h
Fs(xh

0)
∥∥∥≤ ‖Fs(e0)‖+b‖Fs(T2)‖ def= T3,

where T2 = (T2, · · · ,T2) ∈ RL.

In state s, in view of the strict monotonicity of the utility function, we have

ps(xh
s − eh

s )−λ psFs(xh
0)+∑

j
λ (ψh

j −ϕh
j +(1−λ )eh

a)DEL j
s = 0.
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Adding across households, we get

psZs +λ ∑
h

∑
j
(ψh

j −ϕh
j +(1−λ )eh

a)DEL j
s = 0.

Note that ∑h(ϕh
j −ψh

j − (1−λ )eh
a) ≤ Za j and DEL j

s ≤ psA
j
s for all λ ∈ [0,1]. If

there exists an l ∈ L such that Zsl > 0, taking p̃sl = 1− (L− 1)b, and p̃sk = b for
all k 6= l, we obtain

Zsl ≤ b
1− (L−1)b

(‖es‖1 +LT3 + JT1T4),

where T4 = max(‖A1
s‖1, · · · ,‖AJ

s‖1). Therefore, aggregate excess demand of com-
modities and of assets becomes less than or equal to zero, as b goes to zero. By
the argument of Dubey et al. (2005) (p. 32), we have that commodity prices are all
positive, asset prices are bounded, and there is no excess supply in any commod-
ity and in any asset. Indeed, we have here that q À 0, i.e., asset prices all being
positive.

The Pseudocode of the Algorithm

The pseudocode is presented in the MATLAB style. In the following the symbol,
step, denotes the step length; step0, step1 denote respectively the minimum and the
maximal step lengths allowable in the algorithm. The vector

start =
[
Y
λ

]

denotes the starting point of each step, and tan designates for the Euler predictor
the tangent vector; its definition and the procedure for its computation are given in
Definition 2.2 and Section 3.2 of Allgower and Georg (1993). Let the symbol, err,
be the error of the system, with ‘start(end)’ denoting the last component of start,

{
H(Y,λ ) = 0
start(end)−λ = 0

(6.1)

at a certain point, and err0 the maximal error allowed in each step. If err is greater
than err0, the step length, step, will be contracted by a factor of ‘contraction’, until
its value becomes less than step0.

The pseudocode is sketched as follows. For details on the implementation of
Euler predictor and Newton corrector, one is referred to Allgower and Georg (1993,
1994).
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(i) Set the values of step0, step1, step, err0, err, contraction, delta. Let lambda=0.
(ii) Let start be the solution to the system (6.1) with λ = 0. Take the initial

tangent vector to be tan = [0, · · · ,0,1]T .
(iii) WHILE lambda<1-delta

% Set the step length to be the maximum.
step=step1;

% Set the initial value of ’err’ to be larger than ’err0’.
err=2*err0;

% Implement the predictor-corrector step
WHILE err>err0 & step>step0

temp=Euler_Predictor(start,step,tan);
[new,err,tan0]=Newton_Corrector(temp);
step=step*contraction;

END

start=new;
tan=tan0;
lambda=start(end);

END.

Data of Example 2

The endowments of the households are given by

e1 =




23 4 14 6 4 17
11 1 18 29 47 45
49 1 46 25 23 25


 ; e2 =




48 22 39 3 15 1
33 34 2 40 35 44
48 27 50 32 35 32


 ;

e3 =




17 42 2 20 39 24
2 49 46 33 8 41
18 18 11 49 43 44


 ; e4 =




43 4 37 32 1 3
21 17 46 32 40 44
45 14 10 15 10 5


 ;

where the s-th column of eh denotes the endowment of household h in state s−1.
The durability of the commodities are given by

[κ1, · · · ,κ5] =




0.3658 0.0436 0.9475 0.0900 0.4005
0.7188 0.7302 0.6680 0.2683 0.2080
0.1717 0.4586 0.2620 0.7045 0.7552


 .
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The beliefs, γh = (γh
1 , · · · ,γh

S ), of the households as to the occurrence of states in
date one are given by




γ1

γ2

γ3

γ4


 =




0.1480 0.3261 0.1375 0.2692 0.1191
0.1461 0.1280 0.2999 0.2163 0.2097
0.2668 0.2638 0.2651 0.1154 0.0888
0.2033 0.2519 0.2892 0.1755 0.0802


 .

The collateral requirements of the assets are given by

[c1,c2] =




3 0
0 1
2 4


 .

The promises of the assets are given by

A1 =




1 3 4 2 2
1 4 0 3 2
4 3 1 2 2


 ; A2 =




2 0 3 2 1
1 3 2 2 4
1 1 0 3 4


 ;

where the s-th column of A j denotes the promise of asset j in state s.

Data of Example 3

The endowments of the households are given by

e1 =




23 1 29 17 48 2 15
11 14 25 45 22 50 35
49 18 4 25 34 3 35
4 46 47 48 27 40 1
1 6 23 33 39 32 44




; e2 =




32 49 20 43 21 37 15
17 18 33 24 45 46 1
2 2 49 41 4 10 40
18 46 39 44 17 32 10
42 11 8 43 14 32 3




;

e3 =




44 3 14 11 30 22 9
5 37 5 38 4 21 3
19 23 14 9 10 42 30
36 48 36 39 7 41 41
9 34 21 7 37 41 49




; e4 =




24 9 47 7 21 18 27
2 19 34 16 26 2 3
33 48 50 30 21 34 23
9 11 33 31 23 17 23
21 19 43 23 20 32 33




;

e5 =




14 28 20 4 4 32 17
47 47 12 24 49 49 4
47 36 30 13 34 50 46
29 34 11 31 7 27 49
27 31 12 34 30 37 5




; e6 =




47 21 28 17 3 15 12
2 14 10 15 30 26 33
14 19 21 47 18 41 35
14 26 8 45 8 17 25
46 14 26 30 41 12 39




;

30



where the s-th column of eh denotes the endowment of household h in state s−1.
The durability of the commodities are given by

[κ1, · · · ,κ6] =




0.8394 0.0924 0.5403 0.1291 0.1181 0.1354
0.6569 0.7192 0.4090 0.4703 0.6618 0.1897
0.6563 0.7367 0.6496 0.8520 0.6441 0.9230
0.4099 0.4219 0.6495 0.0433 0.8997 0.7213
0.3916 0.0767 0.1358 0.2100 0.9161 0.0749




.

The beliefs, γh = (γh
1 , · · · ,γh

S ), of the households as to the occurrence of states in
date one are given by




γ1

γ2

γ3

γ4

γ5

γ6




=




0.1943 0.2295 0.0780 0.1434 0.2659 0.0890
0.2159 0.1348 0.2563 0.0940 0.1115 0.1876
0.3009 0.1479 0.1720 0.1545 0.1433 0.0815
0.1754 0.1804 0.1406 0.1025 0.2272 0.1739
0.1803 0.2050 0.1056 0.1919 0.2465 0.0707
0.2099 0.1258 0.1128 0.1763 0.1694 0.2057




.

The collateral requirements of the assets are given by

[c1, · · · ,c5] =




3 4 3 0 0
1 2 2 2 0
1 4 4 1 1
4 0 1 4 0
1 4 3 0 0




.

The promises of the assets are given by

A1 =




4 4 4 3 0 1
4 0 1 3 2 1
0 4 1 3 4 4
1 3 1 2 1 4
0 4 3 0 4 4




; A2 =




1 2 4 3 3 1
2 1 0 0 4 0
1 1 3 2 1 2
2 3 0 2 3 0
0 2 3 4 4 4




;
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A3 =




2 2 3 3 2 0
1 4 2 3 0 3
0 4 2 0 4 1
3 4 2 0 2 0
0 4 3 2 1 2




; A4 =




2 1 4 0 0 1
0 4 0 4 4 2
2 1 4 0 4 3
0 2 3 4 1 1
3 1 2 4 2 3




;

A5 =




3 3 4 1 0 4
2 2 0 2 4 0
3 1 4 4 3 4
0 2 0 0 4 4
2 0 2 2 4 3




;

where the s-th column of A j denotes the promise of asset j in state s.
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