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ABSTRACT 
In a fluid flow field where velocities are measured or 

numerically calculated, the vorticity value at a point in the 
field is usually estimated by approximating partial 
derivatives of velocity with ratios of velocity differences 
and spatial differences.  Based on the fundamental 
definition of rotation, this paper presents an alternate 
approach to estimate vorticity, by using the instantaneous 
relative angular velocity of finite line segments radiating 
from the point to adjacent points in the fluid. 

The number, length and placement of line segments are 
varied to find their effects on predicted vorticity values in 
four laminar flow fields with known vorticity.  Equations 
are also derived for a configuration consisting of four 
independent finite line segments which has application to a 
square numerical velocity mesh and to instrumentation such 
as hot wire vorticity probes and vane vorticity meters.  The 
results presented are relevant to both experimental and 
computational fluid mechanics.   
NOMENCLATURE 
Latin 
a - constant for stagnation flow (Equation (8)) 
f - Blasius function, f = f(η) 
i - point i (Figure 3) 
k - free vortex strength 
l  - ideal vorticity meter vane width (Figure 4) 
n - number of line segments, vanes 
n’  - number of line segments (unequal length) 
0 - point 0 (Figs. 1-4) 
r0 - radius of point 0 in xyz coordinates (Figure 3) 
Rx - Reynolds number based on u∞x/ν  
s - length of line segment (Figs. 1-4) 
s’ - s/ r0 
s* - s/δ 
t - time or instant, t 
u - velocity in the x- direction 
v - velocity in the y- direction 
w  - velocity in the z- direction  
W - solid body rotation constant 
x,y,z -   fixed Cartesian coordinate system (Figs. 1,3,8) 

x’,y’,z’ - Cartesian coordinate system, fixed at point 0 
(Figures 1, 3, 4) 

y* - y/δ 
Greek 
δ - boundary layer thickness 
ζ0 - vorticity component in the z-direction at point 0 
ζ0

∗ - ζ0δ/ u∞ 
Z0

* - estimated vorticity component in the Z-direction 
(2Ω0δ/ u∞) 

η - Blasius similarity variable, y x2/u ν∞  
η0 - vorticity component in the y-direction at point 0 
θ - angle between x-axis and line segment (Figs. 2-

4) 
ν - kinematic viscosity 
ξ0 - vorticity component in the z-direction at point 0 
φ0 - angle between r0 and x-axis (Figure 3) 
ω0 - rotation at point 0 
ω0i - angular velocity of line segment 0i about point 0 
Ω0 - estimated rotation at point 0 
Ω0

∗ - Ω0 r0
2
 /k 

∞ - infinity 
Subscripts 
i - point i 
n - normal 
0 - point 0 
0i - line segment 0i 
x - x-direction 
1,2,3,4 - points 
01,02,..0i  - line segments 
∞ - free stream condition 
 
INTRODUCTION 

The Cauchy-Stokes Decomposition Theorem 
postulates that the kinematics of a fluid particle can be 
broken down into four component motions: Translation, 
dilation, angular deformation and rotation.  The first three 
are used directly in the derivation of the Navier-Stokes 
equations, while the consequences of rotation, or vorticity, 
are neglected. 



However, vorticity has been called the key to fluid 
mechanics by Shercliff (1977) and others. Endeavors to 
measure, calculate and predict vorticity are and have been a 
focus for many fluid mechanics researchers.  Monographs 
devoted to the subject of vorticity range from that of 
Truesdell (1954) to Saffman (1992).  Vorticity 
determination has been greatly facilitated in recent years by 
the development of powerful computer and numerical 
methods, and by the introduction of new experimental 
instruments and techniques.  In the very active area of 
turbulence research, recent work on coherent or organized 
structures has fostered vorticity measurement and 
calculation.  Wallace and Foss (1995) have called vorticity a 
defining property of turbulence. 

Originally defined by Lamb (1932), vorticity is twice 
the instantaneous rotation at a point in a moving fluid.  The 
definition of fluid rotation on which this paper is based is 
Cauchy’s First Interpretation of Rotation as given by 
Truesdell (1954).  Consider a point 0 in a moving fluid.  At 
the instant t, it is located at (x0, y0, z0) of the fixed Cartesian 
coordinate system in Figure 1, and all fluid points on the 
surface of a sphere of radius s centered at 0 (the red sphere 
in Figure 1) are imagined to be connected to 0 by line 
segments. (Such a contrivance might look like a “Koosh” 
ball, the popular toy ball constructed of several thousand 
rubber filaments radiating from a center (point 0)).  The 
average of the angular velocities of all of the imaginary line 
segments of length s relative to point 0 at the instant t, is 
defined as the rotation at 0.  Rotation then, is in no way, 
simple solid body rotation of fluid points about point 0. 

The envelopes of the projection of the radial line 
segments onto each of the three coordinate planes (x=0, y=0 
and z=0) are the cylinders shown in Figure 1.  The average 
angular velocity of the projected line segments in each 
coordinate plane gives a component of rotation.  
Multiplication of each by the Lamb factor of two yields the 
vorticity components at 0, given by the arrows in Figure 1 
as ζ0, η0, ξ0. 

If s is taken to be the infinitesimal ds, the velocity 
field around 0 can be expressed as a Taylor series, with 
higher order terms neglected.   Incorporation of the 
infinitesmality of the line segment s and the abbreviated 
Taylor series into Cauchy’s original definition of rotation 
(e.g. see Shercliff (1977)) results in the familiar expressions 
for the components of vorticity,  
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where u0, v0, w0  are the velocities at point 0 in the x, y and 
z directions. If an analytical expression accurately describes 
a velocity field of interest, the vorticity can easily be 
calculated by carrying out the differentiation in Equations 
(1) - (3).  This is usually not the case (e.g. most flows are 
geometrically complex and/or turbulent) and, short of 
solving the Navier Stokes equations rewritten as the 
vorticity transport equations, a physical or computational 
velocity grid or mesh is typically constructed.  Figure 2 
shows a two-dimension velocity mesh in the z=0 plane with 
sxs square openings and mesh point 0 surrounded by mesh 
points 1 4− and ′ − ′1 4 .  Velocities (u and v in the Figure 
2 mesh) at each mesh points can be obtained by either:  
 
1)  Solution of the governing equations by finite difference 

methods (or by some  other numerical method). 
2)  Experimental measurement.  For  example 

velocities at mesh points can  be measured by using 
pressure probes, laser-doppler anemometry, or hot wire 
anemometry.  A Kovaszny - type four-sensor hot wire 
probe is an example of the latter.  It is used to measure 
velocity differences to estimate vorticity. The outline of 
an upstream view of the four hot wires (each inclined at 
a 45o angle to the probe axis) is sketched in Figure 2.  
More details of this vorticity probe are given by 
Wallace and Foss (1995). 
 
Once the velocity mesh is synthesized the vorticity 

values at mesh points can be estimated by using appropriate 
velocity differences and mesh point distances to 
approximate the derivatives in Equations (1) - (3).  
However this usual approach to determine vorticity is based 
on the use of finite distances and finite velocities to 
approximate partial derivatives which arose from a vorticity 
derivation based on infinitesimal differences (Shercliff 
(1977)). 
For example, using finite differencing to represent ζo in 
Equation (1) for point 0 in Figure 2 (for θ1=0) results in, 
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for central differencing.  Equations (1’a), (1’b) and (1’c) are 
each numerical representations of the partial differential 
equation (1), but which one is the closest representation of 
the actual Cauchy definition of fluid rotation? 



A more straightforward approach to the estimation of 
vorticity is to go back to the fundamental kinematics 
definition of rotation, based on the rotation of finite line 
segments.  In this paper, such a finite line segment analysis 
is presented for the estimation of vorticity.  What result are 
quantitative criteria on how large a vorticity measurement 
device can be or how large a measurement or calculation 
mesh can be selected to yield accurate vorticity values.  This 
finite line segment approach also yields insights into the 
number and location of sensors and mesh points needed to 
get an accurate representation of vorticity at a point in a 
given flow field.  Lastly, the finite line analysis answers the 
question of which finite difference method, (1’a), (1’b) or 
(1’c) is the most accurate. 

 
FINITE LINE SEGMENT ROTATION ANALYSIS 

Cauchy’s First Interpretation of Rotation given by 
Truesdell (1950) and discussed in the Introduction will be 
used to calculate the rotation at point 0 of a two-
dimensional flow field at an instant t, shown in Figure 3.  
(Other components of rotation and vorticity, (as shown in 
Figure 1) can be calculated in a similar fashion for a full 
three-dimensional flow.)  At t, i is a neighboring point of 0 
in the fluid , defining the instantaneous finite line segment 
0i.  The rotation of the fluid  surrounding point 0 is defined 
as the average rate of right-handed rotation  (+θ as shown in 
the figure)  of all line segments 0i of length s in the xy plane 
about 0, expressed as, 
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where ω0 is the instantaneous average rotation of fluid about 
0 at radius s, ω0i  is the instantaneous rate of rotation of 
finite line segment 0i about point 0, and ζ0 is the vorticity in 
the z-direction,  shown in Figure 1.    

The finite line segment 0i of length s has no 
interaction with the fluid between points 0 and i.  Its rate of 
rotation ω0i serves to show how fast point i in the fluid 
rotates with respect to point 0, at instant t.  Thus ω0i is given 
by the difference in the velocities normal to the line 
segment, vni - vno divided by length s.  Putting this in terms 
of the Cartesian xy velocity components shown in Figure 3 
results in,  
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where θi is the angle at which 0i is inclined to the Cartesian 
coordinate system x’y’ centered at point 0 (+ in a counter 
clockwise direction) at time t. 

If u and v are known analytical functions, Equations 
(4) and (5) can be combined and integrated to give a value 
of ω0 , the rotation of fluid particles at radius s about the 
point 0 at time t. Note that if this results in an analytic 
expression for ω0, the expression will not contain uo or vo  

since these will cancel out in the integration taken over 
0 2≤ ≤θ π.    

Alternately, an “ideal” rotation or vorticity meter 
could be constructed to measure ω0 at point 0, as shown in 
Figure 4.  It consists of a large number (n) of small 
(massless) radial vanes ( l << s) with vane centers mounted 
at radius s on thin (dragless) rigid wire struts, each rotating 
at ω0i (on a frictionless bearing) independently of the others.  
At any instant t, the estimate of the rotation at 0 would be 
given by, 
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As n→∞, Ω0  given by (6) approaches the value given by 
(4), ω0 = 1/2ζ0. Mounting this ideal vorticity meter along 
the x’ and y’ axes in Figure 1 would yield η0 and ξ0, the 
other two Cartesian components of the vorticity vector at 0, 
for large n. 

Real (non-ideal) vane vorticity meters frequently are 
used to study rotational flows, such as wing tip vortices and 
boundary layers.  A four-vaned vorticity meter used by 
McCormick (1968) consists of four radial vanes rigidly 
mounted 90o apart on a shaft.  A direct comparison of this 
non-ideal vorticity meter with the ideal vorticity meter of 
Figure 4, raises questions about how closely the rotation of 
four fixed, interdependent vanes approximates a true 
measure of ω0.   The McCormick device is a turbine, rotated 
by lift forces.  More recently Willey (1985) tested a four 
element vorticity meter that rotated by drag forces.  
Consideration of Figure 4 shows that neither of these 
devices closely approximates the combined motion of four 
independent, massless and dragless vanes of an ideal meter. 

Thus Equation (6), which approximates Equation (4) 
by averaging instantaneous rotation rates of n finite line 
segments at point 0, can be evaluated from an experiment 
(e.g. by use of a  n-vaned vorticity meter shown in Figure 4) 
or from a velocity field (e.g. by mesh point velocities 
obtained from a numerical solution or by  measurements.) 
Three questions arise: 

1)  How many line segments (n) are needed to get an 
accurate instantaneous value of Ω0 (i.e. Ω0≈ ω0)? 

2)  How long should the line segments, s, be relative 
to the flow field? 

3)  At what angles (θi) should the n line segments be 
placed? 

The answers to these three questions will of course 
depend on the flow field itself.  Given velocities u and v, 
the variables n, s and θi can be varied over ranges, using 
Equations (5) and (6).  Since the most common applications 
involve n=4 (e.g., the four sensor hot wire probe, the 
McCormick and Willey meters and a square finite 
difference mesh) it is convenient to derive an expression for 
Ω0 in (6) for this common case.  



The angular velocities of the four independent finite 
line segments in Figure 2 are ω01(θ1), ω02(θ1+π/2), 
ω03(θ1+π), and ω04(θ1+3π/2).  Substitution of these into 
Equation (5) and combining them into Equation (6) for n=4, 
yields (using suitable trigonometric identities), 
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The rotation at point 0, ω0 = 1/2ζ0, is now approximated 

in (7) by the average instantaneous angular velocity, Ω0, of 
the four finite (length s) line segments, written in terms of 
their Cartesian tip velocities referenced to the fixed xy 
coordinate system.  Because of the finite line segments, Ω0 
is also a function of θ1, which characterizes the 
instantaneous angular position of the four line segment 
array at 0 in Figure 2. 

The accuracy of the finite difference vorticity equations  
(1’a), (1’b) and (1’c) can now be evaluated using fig. 2 and 
Equation 7.  Setting θ1=0 and using ζo=2Ωo, Equation 7 
becomes, 
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which is identical to Equation (1’c).  Thus, central 
differencing most accurately represents fluid rotation, while 
forward and backward differencing differ from (7’) by a 
factor of two, and involved different velocity components. 
 
ROTATION TEST CASE RESULTS 

The accuracy of vorticity determination at a point in a 
moving fluid by the use of a four-vaned vorticity meter, a 
four-element hot wire vorticity probe or a square velocity 
grid can be evaluated by using Equation (7’).  Using 
laminar two-dimensional flows for which closed-form 
solutions exist, Ω0 from (7) can be evaluated at points in the 
flow field and compared to ω0, where ω0 can be calculated 
from Equation (1) or (4), or both.  In this way the effects of 
limiting the number of finite line segments to n=4, and the 
effect of sensor or mesh size (s) and placement can be 
evaluated. 
 

Four laminar two dimensional flows will be used: 
1)  Potential stagnation flow (ζ0 = 0) 
2)  Solid body rotation flow (ζ0 is constant). 
3)  Free vortex flow (ζ0 = 0 except at the origin). 
4)  Blasius boundary layer flow (ζ0 varies). 
In addition, one turbulent, two-dimensional flow will be 

considered: 
5)  Direct Numerical Simulation (DNS) of flow over a 
thin, flexible plate or “flag”. 
 

These simple two-dimensional test case flows (#1 – 4) 
can also be looked upon as the x-y components of a three-

dimensional flow.  The two inviscid flows (case 1) and 3)) 
can be considered to be superimposed on a uniform flow in 
the z-direction.  Similarly, case 2) , the fully viscous solid 
body rotation, could be added to a uniform z-direction flow.   
(Vorticity probes are commonly calibrated by rotating the 
probe about its axis in a known uniform axial flow.)  Case 4 
could represent the two-dimensional part of a laminar three-
dimensional Loos-Sowerby boundary layer (as discussed by 
Panton (1984)).  The turbulent example will show that the 
trends observed via the laminar cases also are consistent 
with the vorticity estimated from a turbulent velocity field. 

 
1) Potential Stagnation Flow 
The Cartesian velocity field in plane potential stagnation 
flow is given by, 

u = ax, v = - ay .        (8) 
where a is constant.  This is an inviscid, irrotational flow, 
and substitution of (8) into Equation (1) will verify that at 
any point 0 in the flow field, ω0 = 0.  Rewriting (8) in terms 
of the geometry in Figure 2, the velocities at point 1 for the 
potential stagnation flow are, 
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 The velocities at points 2, 3 and 4 can be easily found 
by substituting (θ1+π/2), (θ1+π), and (θ1+3π/2) into (9).  
Substitution of these velocities into Equation (7) results in 
Ω0 = 0 everywhere in the flow field, independent of the line 
segment length s.  Thus, any size four line segment device 
or mesh would yield a correct vorticity value, (Ω0 = ω0 = 0),  
of ζ0,  anywhere in this pure potential flow field. 
 
2) Solid Body Rotation 

In solid body rotation the entire flow field rotates in 
the xy plane about the z-axis at constant angular velocity, 
W.  The velocity is tangential to the circular streamlines and 
proportional to the streamline radius.  The cartesian 
velocities in this rotational viscous flow are, 
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where r and φ are defined in Figure 2. 
Rewriting (10) in terms of the four line segments in 

Figure 2, the velocities at point 1 for solid body rotation are, 
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The velocities at points 2, 3 and 4 can be found as 
before, using (11).  Substitution into Equation (7) results in  
Ω0 = W.  This is exactly what Equations (10) and (1) yield, 
so that for solid body rotation, Ω0 = ω0 = W and the 
vorticity is ζ0 = 2W, which is constant everywhere in the 
flow field. 



Again, any size four-element device or mesh (Figure 
2) will yield a correct value of ω0 in this constant (non-
zero) vorticity flow field.  Vorticity probes  have been 
calibrated by rotating the probe about its axis facing into a 
uniform flow (Kovasznay (1954)).  The result obtained 
from Equation (7) would indicate such a procedure is a 
valid one, and one that would be independent of the probe 
size (disregarding probe size effects on the flow field itself). 

 
3) Free Vortex Flow 

Circular streamlines also characterize free vortex flow, 
but this rotating flow has a tangential velocity that is 
inversely proportional to streamline radius.  The Cartesian 
velocities in this irrotational (except at the origin) inviscid 
flow are, 
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where r and φ are defined in Figure 3 and k is the vortex 
strength (a constant).  Substitution of (12) into Equation (1) 
shows that ω0 = 0  anywhere in the region r > 0.  A singular 
point exists at r = 0, where the tangential velocity is infinite 
and the vorticity is nonzero in this inviscid and otherwise 
irrotational (ζ0 = 0) flow. 

Rewriting (12) in terms of the Figure 3 geometry, the 
Cartesian velocities for point i are, 
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where r0, φ0, and θi are shown in Figure 3 and s’ = s/r0. 

Free vortex flow with its singularity at r = 0 presents a 
more complex velocity field for a finite size vorticity meter 
or mesh.  This can be seen by combining Equation (13) (and 
corresponding expressions for u0 and v0) with Equation (5) 
to get an expression for ω0i, the rate of rotation of a single 
finite line segment 0i , in the free vortex flow field.  The 
result is, 
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where ω0i
* is ω0i nondimensionalized by k/ro

2, the rate of 
rotation of point 0 around the xy origin, and s’ = s/r0, as 
before.  Equation (14) has been derived for φ0 = 0 (see 
Figure 3) only because ω0i

* has the same behavior at other 
values of φ (at constant r0) due to the free vortex flow field 
symmetry. 

Equation (14) is plotted in Figure 5 with ω0i
* as a 

function of θi for various values of s’.  For s’ = 0 (a case of 
a vanishingly small line segment 0i or a case of r0 >> s), 
Equation (14) reduces to, 
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2
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*
0 2cosicos21 θ−=θ−=ω = .        (15)         

The simple cosine function in Equation (15) is plotted in 
Figure 5 and clearly shows that the areas above and below 
the ω0i

*  axis cancel so that the average value of ω0i
* is zero 

( i.e. zero vorticity) at r0, for s’→ 0. The finite line segment 
approach expounded here allows one to see the actual 
distribution of neighboring point rotational rates about point 
0.  The infinitesimal approach, used to derive Equation (1) 
(Shercliff (1977)), is independent of θi, hence does not 
provide this distribution information. 
 For values of s’>0, plots of Equation (14)  in Figure 5 
show some elucidative line segment rotational distributions 
about point 0 in this free vortex flow.  For example, the 
curve for s’ = 0.4 shows that the line segment 0i starts out 
with a clockwise rotation rate of ω0i

* = -0.7 at θi = 0.  As θi 
is increased, the rotation rate goes to zero at about 60o, and 
then becomes counterclockwise between 60o  and 160o, 
reaching a maximum of ω0i

* = 1.02 at about 110o.  As line 
segment 0i swings past θi = 160o it approaches the free 
vortex singularity at the xy origin, which of course, is a 
region of steep velocity gradients.  This causes ω0i

* to 
become strongly negative (clockwise rotation) until it 
reaches ω0i

*  = -1.7 at θi = 180o after which it retraces in 
reverse the 0o to 180o  sequence as line segment 0i is rotated 
full cycle to 360o. 
 As will be shown later, the average rate of rotation for 
all s’ < 1.0 (the net area under the s’curves) is zero (i.e. zero 
vorticity).  It will also be shown that the four line segment 
configuration of Figure 2 will not yield zero vorticity, for 
values of s’ large enough to have individual line segment 
rotation rates significantly effected by the large velocity 
gradients near the singularity.  Some fluid mechanics 
textbooks use behavior of a pair of crossed lines (same 
configuration as shown in Figure 2) in a free vortex flow to 
illustrate irrotational flow.  A student may be perplexed by 
the illustration, because as Figure 5 shows, it is misleading 
in two ways:  a)  The use of a pair of crossed lines is 
incorrect.  It must consist of the four independent 
perpendicular line segments as shown in Figure 2.   b)  For 
all but values of s’ close to zero, the pair of crossed lines 
invoked to show irrotational flow, will not necessarily 
exhibit rates of rotation that will cancel (e.g. the s’ = 0.4  
case discussed above).   

To complete the family of curves in Figure 5, consider 
the case of s’ = 1, when line segment 0i is equal to r0 and 
point i coincides with the free vortex singularity at θi = 
180o.  For this limiting case, Equation (14) becomes, 

ω θ0 1
1
2i s i

*
' cos= = − ,    (16) 



which is plotted in Figure 5.  The area under the s’ = 1 
curve is nonzero, so this limiting case will yield a nonzero 
vorticity at point 0. 

Equation (14) could also be evaluated for s’ > 1, but 
the results given in Figure 5 for 0 1≤ ≤s'  are sufficient to 
demonstrate details of vorticity determination by finite line 
segments about a point in free vortex flow. 

Based on the preceding portrayal of a single line 
segment rotation in free vortex flow, an evaluation of the 
four element vorticity meter of Figure 2 can now be carried 
out.  Substituting θ1, (θ1+π/2), (θ1+π), and (θ1+3π/2) into 
(13) for the four independent line segments in Figure 2, 
expressions for the velocities at points 1-4 can be put into 
Equation (7).  After some simplification, the 
nondimensional, spatially-averaged, instantaneous angular 
velocity, Ω0

*, for the four line segments in free vortex flow 
is given by 
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where Ω0 has been nondimensionalized by k/ro
2, which can 

be also interpreted as the average rotation in an area 
bounded by a circle centered at r = 0 of radius r0.  Equation 
(17) has been derived for the case of θ1 = 0o (see Figure 2) 
only, since variation of φ0 between 0o and 45o in effect 
produces a variation of θ1 at a constant r0, in the 
symmetrical free vortex flow field. 

The exact value of rotation, ω0, at point 0 in the free 
vortex can be obtained by combining (14) with Equation (4) 
to yield, 
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where ω0 has been nondimensionalized by k/ro
2.  The 

integral in (18) was evaluated numerically.  However, for 
the limiting case of s’ = 0, the integrand in (18) reduces to 
(15) directly which yields ω0

* = 0 (the area under the curve 
for s’ = 0 in Figure 5).  Likewise, for the limiting case, of s’ 
= 1, the integrand in (18) becomes (16) which integrates to 
yields ω0

* = 1/2 (the area under the curve for s’ = 0 in  
Figure 5).   

Figure 6 is a plot of Ω0
* as a function of s’ for various 

values of φ0, as evaluated from Equation (17), all for θ1 = 
0o.  (The position of the four element vorticity meter or  
mesh is shown by the insert sketch in the plot.)  Also, ω0

*, 
the exact value of nondimensional rotation, is shown as a 
function of s’, evaluated by the numerical integration of 
(18) and the limiting values at s’ = 0 and 1.  Some important 
conclusions can be drawn from Figure 6: 
i) The nondimensional rotation, ω0

*, is zero at point 0 for 
all 0 1≤ <s' , where the free vortex flow is indeed 
irrotational.  This clearly shows that the calculation or 
measurement of vorticity by finite line segments (Equation 

(4)) is independent of s’ in this irrotational part of free 
vortex flow for 0 1≤ <s' .  At s’ = 1, the direct effect of the 
free vortex singularity is made evident by a nonzero 
rotation, ω0

* = 1/2.   
ii) The angular orientation of the four element vorticity 
meter (be it a meter (Figure 4) or one element of velocity 
mesh (Figure 2)) has a strong effect on values of Ω0

* for s’ 
> 0.2.   For instance, at s’ = 0.8 for φ0 = 0o, Ω0

* = -1.1 but if 
at the same point 0, the four element meter or mesh is 
oriented at φ0 = 45o, Ω0

* = 0.4.  The large difference in Ω0
* 

between these two angular orientations can be explained by 
considering the previous detailed discussion of ω0i

*  and the 
plot in Figure 5 for s’ = 0.8. 
iii) In the irrotational flow, the four element vorticity 
meter or mesh will essentially indicate zero vorticity (i.e. 
Ω0

* = 0) for s’ < 0.2  For  s’ > 0.2 (i.e. for larger finite line 
elements, s, or smaller distances r0 from the vortex 
singularity) the plots in Figure 6 show Ω0

* values are 
nonzero (except where a constant φ curve crosses the Ω0

* = 
0 axis) in regions of irrotational flow (s’<1.0).  In i) above,  
it was concluded that for 0 1≤ <s' , the size of the line 
segment (or the distance of 0 from the singularity) had no 
effect on the accuracy of the calculated rotation (Equation 
(4)).  Therefore, in Figure 6 it must be concluded that in 
regions where values of Ω0

* differ significantly from zero, 
the inaccuracy is due to n=4, i.e. four line segments (or four 
points on one opening of a velocity mesh)  are not sufficient 
when s’ > 0.2. 

This effect of the number of line segments, n, for this 
free vortex flow can be shown directly by using Equations 
(6) and (14).  Letting φ0 = 0 and θ1 = 0, n was varied by 
evenly distributing line segments about point 0 in multiples 
of π (e.g. for n=6, θ1 = 0, θ2 = π/3, θ3 = 2π/3, etc.).  Figure 7 
shows the results as a plot of Ω0

* as a function of s’ with n 
as a parameter.   For n large (n=∞) a correct value of Ω0

* =0 
is obtained for all 0 10≤ ′ <s . .   The values in Figure 7 show 
that for n=10, good results (Ω0

* = 0) are obtained for s’ as 
large as 0.6 , as contrasted with n=4 (Figure 6 and 7) where 
a vorticity meter or velocity mesh must have s’ < 0.2 for 
accurate estimation of vorticity in this free vortex flow.  
Very poor accuracy results (as to be expected)  occur for 
n=1, 2, and even n=3.  

The reader is cautioned that for n > 4, the point i 
(Figure 3) does not necessarily coincide with the mesh 
points in Figure 2.  To show the effect this has, consider the 
mesh points 1 4−  and 1’ - 4’ surrounding point 0 in Figure 2.  
Involvement of all of these mesh points in a finite difference 
representation is called a nine-point representation (e.g. see 
Anderson, Tannehill and Pletcher (1984)), sometimes used 
to reduce truncation errors in the numerical solution of 
elliptic partial differential equations.  Use of (6), and (17) 
for points 1-4 ( with s’) and (17) for points 1’ - 4’ (with s’ 
replaced by 2 s’) yields the dashed curve in Figure 7, 
labeled n’ = 8.  Comparison of this dashed curve with plot 



of n = 8 and n=∞ shows the errors that are introduced by 
using line segments of different lengths (which is violation 
of the definition of rotation given earlier for this two-
dimensional flow) for a finite difference nine-point 
representation.   

In summary, the steep, concentrated velocity gradients 
in the free vortex flow have provided the means to draw 
some conclusions about the effect of vorticity meter (or 
velocity mesh) size, placement and number of finite line 
segments on the accurate determination of vorticity. 

 
4) Blasius Boundary Layer Flow 

Vorticity determination in a laminar two-dimensional 
boundary layer formed on a flat plate in an incompressible 
uniform flow at velocity u∞ , (see Figure 8) will now be 
considered.  The solution of the boundary layer velocity 
field, first given by Blasius (e.g., see White (1990)), is not 
strictly in closed-form, because one must numerically solve 
the nonlinear ordinary differential equation,  

′′′ + ′′ =f ff 0  ,           (19) 
with the boundary conditions, f(0) = 0, f’(0) = 0, and f’(∞) 
= 1.   Tabulated values of f, f’ and f” are given in White 
(1990) as a function of the similarity 
parameter, x2/uy ν=η ∞  where x and y are shown in 
Figure 8 and ν is the kinematic viscosity.  The streamwise 
(x) and normal (y) velocities nondimensionalized by u∞  are, 
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and the boundary layer thickness (loci of u=0.99 u∞) is,  

δ = 4 925.
Re
x

x
,     (21) 

where Rex = u∞ x/ν is the boundary layer Reynolds number.   
An analytical solution for ζ0, the transverse or 

spanwise vorticity in the boundary layer (Figure 8) can be 
derived from Equation (1), the definition of η, and the  
velocities in (20) to obtain, 
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' ,  (22) 

where ζ0 = 2ω0. 
If the boundary layer flow considered is restricted to 

case of Re , ,x ≥ 10 000  then the Reynolds number 
coefficient term in (22) is less than 1% of |f’’| for values of 
η in most of the boundary layer, and will be neglected.  
Equation (22) then becomes, 

ζ
ζ δ

0
0 3483* .= = − ′′
∞u

f  ,                (23) 

where ζ0  has been nondimensionalized by u∞  and δ 
(Equation (21)).  Equation (19) was solved numerically for 

f” and Equation (23) was evaluated to get the plot of ζ0
* vs. 

y* (where y* = y / δ) shown in Figure 9.  The reversed S-
shaped curve in Figure 9 shows that the vorticity has a 
maximum at the wall (y* = 0)  and decreases asymptotically 
to zero just beyond the edge of the boundary layer (y* > 
1.0). 

The four element vorticity meter or mesh of Figure 2 
is shown positioned in the laminar boundary of Figure 8, at 
point 0 located at (x0, y0), and rotated so that θ1 = 0.  Using 
Equation (7) and defining four-element measured (or 
calculated) nondimensional vorticity as Zo

* = 2Ω0δ/u∞ ,  
results in, 
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where s* = s / δ.   Combining (24) with (20) yields, 

( ) ( ) ( )Z
s

f f f f f f
x x

0 4 2 1 1 1 3 3 3
1

2
1

2
1

2
1 3

*
*

' ' ' '

Re Re
=

⎧

⎨
⎪

⎩
⎪

− + − − −
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎫

⎬
⎪

⎭
⎪

η η
. (25) 

If, as in Equation (23), (25) is limited to Re ,x ≥ 10 000  (and 
x0 >> s), it reduces to, 

 ( ) ( )[ ]Z
s

f f0 4 2
1

2
*

* ' '= −η η .     (26) 

Using a numerical solution of (19), values of f’ in (26) were 
evaluated as a function of y0

* = y0 / δ.  Figure 9 shows plots 
of Equation (26) for three values of s* compared to the exact 
vorticity distribution in the boundary layer given by 
Equation (23).   Note that none of the s* curves originate at 
y* = 0 because of the finite size of the four element 
configuration.  (That is, the nearest position to the wall for 
θ1 = 0 is y0

*  = s*). 
The agreement with the exact solution (again, for 

Re ,x ≥ 10 000 ) is excellent for s* = 0.1.  The 
nondimensional vorticity values for a vorticity meter or grid 
size that is 25% of the boundary thickness (s* = 0.25) are 
also quite good, with about a maximum of a 3% 
underprediction of Zo

* near the wall and a small over 
prediction of Zo

* near yo
* = 1.  It can be seen from the curve 

for s* = 0.5 that there are no Zo
* values obtained near the 

wall, and in the outer region of the boundary layer, the 
vorticity meter significantly protrudes into the mainstream 
flow, causing a serious overprediction of vorticity values. 

Thus as in the case of the free vortex flow, Equation 
(7) provides the means to estimate the maximum size of a 
four element vorticity meter or velocity grid which should 
not be exceeded to accurately measure (or calculate) 
vorticity in a laminar boundary layer. 

 
5) DNS Simulation Analysis 

The concept of rotation estimation via multiple line 
segment tracking was used to analyze the vorticity field 
created by a flexible thin plate or “flag” (Connell and Yue, 
2007).  The “true” vorticity field as calculated using a very 



fine adaptive mesh is shown in Figure 10 for one time 
realization.  Flow is from left to right and we investigated 
the field along a line at y = 0 downstream of the foil.  The 
specific flow and structure parameters are, μ = 0.3, Kb = 
0.0001, Re = 1000, and Ks = 10 and represent a plate or flag 
with high in-plane stiffness and low bending stiffness (refer 
to Connell and Yue, 2007 for details).  First the effect of 
adding line segments on the estimated vorticity will be 
assessed as done in Figure 7 for a free vortex and then the 
effect of increasing the line segment length for an n=4 
“meter” will be discussed. 

Figure 11 shows the vorticity, ζ, as a function of 
streamwise distance at y = 0.  The “true” vorticity as 
estimated by a standard 4-point central difference with 
spacing s of 0.04 is shown for reference and this matched 
the vorticity as calculated from the adaptive mesh.  The 
vorticity estimated by a “meter” with s = 0.12 and n = 2, 4, 
and 8, is also shown in Figure 11.  Additional line segments 
clearly improve the vorticity estimate but in regions of steep 
spatial gradients there is no substitute for small spatial 
resolution.  This is shown by the residual bias error even for 
larger n and the rms error noted in the figure. 

Figure 12 shows the vorticity along the same line as in 
Figure 11 but for the case of n = 4 line segments and line 
segment lengths of 3, 5, 7, and 9 times the baseline s = 0.04.  
Decreasing size clearly improves the estimate of vorticity 
and decreases rms error.  In regions of mild spatial 
gradients, however, even a “large” meter provides a 
reasonable estimate of the vorticity.  For example for x>2 
the estimated vorticity is close to the “true” despite the 
relatively large “meter” sizes.  This is due to the size of the 
“meter” relative to the vorticity field spatial variations. 

 
CONCLUSIONS 

Using a finite line segment approach, expressions have 
been derived for rotation and vorticity that allow 
quantitative criteria to be established on how closely a 
finite-sized device or velocity grid can be expected to yield 
accurate values of vorticity. 

One not surprising conclusion is that the finite size 
depends on the velocity gradients of the particular flow field 
under study.  Use of the methods presented in this paper 
should be readily extendible to more complicated, less 
idealized situations, such as a Rankine vortex,  which can 
approximate such flows as wing-tip vortices (McCormick 
(1986)) or turbine endwall boundary layer vortices 
(Langston (1977)). 

The introduction of this paper mentioned the general 
topic of turbulent flow.  All of the analytical discussions 
given here have dealt with laminar flow.  However the 
approach taken should be extendible to turbulent flow.  
Wyngaard (1969) analyzed the response of a four-wire 
probe, for varying scales of isotropic turbulence, and 
recommended probe sizes based on the Kolmogorov length 
scale.  To a first approximation, the probe or element size 

criteria developed in this paper could also be brought into 
consideration for a turbulent flow, using the mean flow 
gradients, in addition to turbulence length scales.   An 
example of the instantaneous turbulent vorticity as 
estimated by the summation of finite-length line segments 
was given for different line segment numbers and lengths.  
The turbulent example was consistent with the analytical 
laminar examples in that spatial gradients of the velocity 
field dictate the necessary size of a meter to accurately 
resolve the vorticity field.  Adding line segments or “meter” 
vanes improves the estimate but only to a point where the 
finite spatial size of the meter limits the accuracy of the 
estimated vorticity. 
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Figure 1. Point (xo, yo, zo) in fluid flow field at instant t.  
Rotation at 0 is the average relative angular velocity of fluid 
points on surface of sphere of radius s. 
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Figure 2. Two-dimensional mesh used for numerical 
calculations or measurements of velocity.  The four 
independent line segments (01, 02, 03, 04) are used to 
estimate the rotation at point 0. 
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Figure 3. Coordinate system and velocity components used 
to show rotation of fluid at point i about point 0 as 
measured by the angular velocity ω01 of line segment 0i of 
length s. 
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Figure 4. “Ideal” vorticity meter to measure the rotation of 
fluid at radius s with respect to the z’ axis at point 0. 
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Figure 5. Nondimensional rotation, ω0i

*, of line segment 0i 
about point 0 in a free vortex as a function of line segment 
angle θi for various values of s’ = s / r0 (φ0 = 0o). 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Nondimensional Line Segment Length, s’

N
on

di
m

en
si

on
al

 A
ve

ra
ge

 R
ot

at
io

n,
 Ω

0*

φ0 = 0, 90o

φ0 = 45o

φ0 = 30, 60o

φ0 = 15, 75o

ω0
*

x

y

φ0

1

2

3

4

0

 
Figure 6. Nondimensional rotation Ω0

* of fluid about point 
0 in a free vortex as a function of s’ and φ0, all for θ1 = 0o., 
from Eqn. (17).  Bold line is exact solution for rotation, ω0

*, 
given by Eqn. (18). 
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Figure 7. Nondimensional rotation Ω0

* of fluid about point 
0 in a free vortex (φ0 = 0 and θ1 = 0) as a function of s’= 
s/r0, for values of n, the number of finite line segments.  The 
line segments are evenly distributed about 0 at multiples of 
2π/n. 
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Figure 8. Vorticity determination at a point 0 in a boundary 
layer with a four-element vorticity meter or velocity grid 
(for θ1 = 0o). 
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Figure 9. Nondimensional, spanwise vorticity, Z0

*, in a 
laminar boundary layer as a function of nondimensional 
distance from the wall, y0

* = y0/δ, and four-element meter 
size, s* = s/δ. 
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Figure 10. Vorticity Field for Flexible Foil Simulation 
(Connell and Yue, 2007).  Unsteady flow over a 2D flexible 
thin foil was simulated using DNS. 
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Figure 11. Vorticity along y = 0 line as estimated by 
conventional 4-point central finite difference and by 2, 4, 
and 8 line segments with larger vorticity “meter” size 
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Figure 12. Vorticity along y = 0 line as estimated by 
conventional 4-point central finite difference and by 4-line 
segment vorticity “meters” of varying size 
 


