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Abstract In this paper, we consider finite-time syn-
chronization between two complex dynamical network-
s by using periodically intermittent control. Based on

finite-time stability theory, some novel and effective finite-
time synchronization criteria are derived by applying
stability analysis technique. The derivative of the Lya-

punov function V (t) is smaller than βV (t) (β is an arbi-
trary positive constant) when no controllers are added
into networks. This means that networks can be self-

synchronized without control inputs. As a result, the
application scope of synchronization greatly enlarged.
Finally, a numerical example is given to verify the effec-

tiveness and correctness of the synchronization criteria.
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1 Introduction

Complex dynamical networks consist of a number of
nodes, which represent dynamic systems, and links be-
tween the nodes. Complex networks [1-4] exist in var-

ious fields of science, engineering and society, such as
the World Wide Web, ecological networks, neural net-
works and electrical power grids, etc. As the major col-

lective behavior [5-6], synchronization of complex net-
works is one of the key issues that has been extensive-
ly addressed [7-11] because the synchronization mecha-

nism can explain well many significant and interesting
natural phenomenons, including the synchronous infor-
mation exchange in the Internet and the WWW, the

synchronous transfer of digital or analog signals in com-
munication networks and the synchronous cooperative
behavior of close relationship in the nature and society.

Up to now, the synchronization for nonlinear sys-
tems especially dynamical networks [12-13] has been
widely studied, and many control schemes, such as adap-

tive control [14-15], pinning control [10, 16], observ-
er based control [17], integral control [18], and hybrid
feedback control [19], have been focused on this topic.

The above effective control approaches are continuous
control. The discontinuous control methods which in-
clude impulsive control and intermittent control have

attracted much interest due to its practical and easy
implementation in engineering fields. The intermitten-
t control, as a special form of switching control [20],

was first introduced to control linear econometric mod-
els in [21]. On the other hand, the intermittent control
[22-31] is different from the impulsive control [32-37] s-

ince impulsive control is activated only at some isolated
instants, while intermittent control has a nonzero con-
trol width. What’s more, intermittent control is more

effective and robust [22]. In recent years, several syn-



2 Jun Mei et al.

chronization criteria for complex dynamical networks

with or without time delays via intermittent control
have been presented, see [23-24, 29-30].

Nevertheless, to our best knowledge, the previous re-

sults focus on asymptotical or exponential synchroniza-
tion of networks through intermittent control [22-30],
and there are also many results concerning finite-time

synchronization or stability [38-47]. However, there are
very few results concerned with finite-time synchroniza-
tion via intermittent control [48]. Compared with ex-

ponential synchronization of networks via intermittent
control, the finite-time synchronization of networks by
using intermittent control is realized in a finite time.

Furthermore, the finite-time control strategies have demon-
strated better robustness and disturbance rejection prop-
erties [49]. Therefore, it is worth studying the finite-

time synchronization of complex networks via periodi-
cally intermittent control.

The main purpose of this paper is to achieve finite-
time synchronization by adding an intermittent con-

troller. Based on the finite-time stability, some nov-
el criteria for finite-time synchronization between two
complex networks are derived by using a central lemma.

On the other hand, the conditions for finite-time syn-
chronization via periodically intermittent control are
expressed in terms of linear matrix inequalities (LMIs),

which is easy to be verified. Besides, the derivative of
the Lyapunov function V (t) is smaller than βV (t) (β
is an arbitrary positive constant), which enriches the

previous results in Ref. [48], when no controllers are
added into networks. Finally, a numerical example is
given to demonstrate the effectiveness of the proposed

approach.
The paper is organized as follows. In Section 2, the

synchronization problem to be considered and some

necessary preliminaries are restated. In Section 3, a suf-
ficient condition for the synchronization scheme being
uniformly finite-time synchronized is obtained. In sec-

tion 4, some simulation results are presented. Conclu-
sions are drawn in Section 5.

2 Preliminaries

Consider a complex dynamical network consisting of
N nodes, in which each node is a n-dimensional dynam-

ical system. The state equation of the entire network is
given as:

ẋi(t) = f(xi(t)) + c
N∑
j=1

aijΓxj(t), i = 1, 2, · · · , N, (1)

where xi(t) = (xi1(t), xi2(t), · · · , xin(t))
T ∈ Rn is the

state vector of the ith dynamical node, f : Rn → Rn

is a continuous vector function, the constant c > 0 is a

coupling strength. Γ ∈ Rn×n is a positive definite diag-
onal matrix which describe the inner-coupling matrix
and A = (aij) ∈ RN×N is the coupling configuration

matrix. If there is a connection from the nodes i to
j (j ̸= i), then aij > 0; otherwise, aij = 0 (j ̸= i), and
the diagonal elements of matrices A is defined as

aii = −
N∑

j=1,j ̸=i

aij .

For simplicity, regarding model (1) as the master
(or drive) system, and the response (or slave) system is

given by:

ẏi(t) = f(yi(t)) + c
N∑
j=1

aijΓyj(t) + ui(t),

i = 1, 2, · · · , N, (2)

where yi(t) = (yi1(t), yi2, . . . , yin(t))
T ∈ Rn, i = 1, 2,

. . . , N , is the response state vector of the node i. u(t) =

(u1(t), u2(t), . . . , uN (t))T is an intermittent controller
defined by

ui(t) = −ηiei(t)− k (λmax(P ))
1+µ
2

λmin(P ) sign(ei)|ei|µ,
lT ≤ t < lT + δ, i = 1, 2, · · · , N,

ui(t) = 0, lT + δ ≤ t < (l + 1)T,
i = 1, 2, · · · , N,

(3)

where |ei|µ = (|ei1|µ, |ei2|µ, . . . , |ein|µ)T , sign(ei) =

(sign(ei1), sign(ei2), . . . , sign(ein))
T , and ei(t) is syn-

chronization error, ηi > 0 is a positive constant called
control gain, k > 0 is a tunable real constant, the real

number µ satisfies 0 < µ < 1. Denote λmax(P )(λmin(P ))
as the maximum (minimum) eigenvalue of the positive
definite diagonal matrix P . T > 0 is the control peri-

od, δ > 0 is called the control width (control duration).
ȷ = {1, 2, . . . , p} is a finite natural number set and l ∈ ȷ.
θ = δ/T be the ratio of the control width δ to the con-

trol period T called control rate.

Remark 1. Obviously, when θ = 1, the intermittent
control (3) is degenerated to a continuous control input

which has been extensively proposed in previous work
(see [40-41]). However, this trivial case not being dis-
cussed in this paper.

Let ei(t) = yi(t) − xi(t) (1 ≤ i ≤ N) be synchro-
nization errors, according to the intermittent controller
(3), then the error dynamical system can be derived as

ėi(t) = f(yi(t))− f(xi(t)) + c
∑N

j=1 aijΓej(t)

+ui(t), lT ≤ t < lT + θT, i = 1, 2, · · · , N,

ėi(t) = f(yi(t))− f(xi(t)) + c
∑N

j=1 aijΓej(t),

lT + θT ≤ t < (l + 1)T, i = 1, 2, · · · , N,

(4)
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To obtain the results of this paper, we have the fol-

lowing assumption and some important lemmas.

Assumption 1. ([54]) Assume that there exists a pos-
itive definite diagonal matrix P = diag(p1, . . . , pn) and

a diagonal matrix Θ = diag(θ1, . . . , θn), such that f(·)
satisfies the following inequality:

(y−x)TP (f(y)−f(x)−Θ(y−x)) ≤ −ξ(y−x)T (y−x),(5)

for some ξ > 0, all x, y ∈ Rn and t > 0.

The function f(·) ∈ QUAD(P,Θ). it can be shown
that QUAD assumption holds for several well-known
chaotic oscillators, such as the Lorenz’s systems, Chua’s

systems, Rössler’s systems, and so on. This assumption
has been widely given in the synchronization literature
([31],[42],[48],[53]).

Lemma 1 ([50]). Assume that a continuous, positive-
definite function V (t) satisfying the following differen-
tial inequality:

V̇ (t) ≤ −αV η(t), ∀ t ≥ t0, V (t0) ≥ 0, (6)

where α > 0, 0 < η < 1 are two constants. Then, for
any given t0, V (t) satisfies the following inequality:

V 1−η(t) ≤ V 1−η(t0)− α(1− η)(t− t0), t0 ≤ t ≤ t1, (7)

and

V (t) ≡ 0, ∀ t ≥ t1, (8)

with t1 given by

t1 = t0 +
V 1−η(t0)

α(1− η)
. (9)

Lemma 2 ([51]). Suppose there exist a continuous,

positive-definite function V (t) satisfies the following in-
equality:

V̇ (t) ≤ −αV η(t) + κV (t), ∀t ≥ t0, V 1−η(t0) ≤
α

κ
,

where α, κ > 0, 0 < η < 1 are three constants. Then,
the settling time t2 satisfies

t2 ≤
ln(1− κ

αV
1−η(t0))

κ(η − 1)
.

Remark 2. Let 0 < η < 1, 0 < θ < 1, β > 0 and

suppose that the time t2 as the setting time of the above
Lemma 2, there exists a positive real M , such that∫ t2

t0

eβ(1−η)(1−θ)sds < M

for any given initial value t0.

Lemma 3. Suppose that function V (t) is continuous
and non-negative when t ∈ [0,∞) and satisfies the fol-
lowing conditions:{
V̇ (t) ≤ −αV η(t), lT ≤ t ≤ lT + θT,

V̇ (t) ≤ βV (t), lT + θT ≤ t < (l + 1)T,
(10)

where α, β > 0, T > 0, 0 < η, θ < 1, then the

following inequality holds:

V 1−η(t) ≤ V 1−η(0)e(1−η)β(1−θ)t − αθ(1− η)t,

0 ≤ t ≤ t4. (11)

Proof. Take M0 = V 1−η(0) and W (t) = V 1−η(t) +
α(1− η)t, where t ≥ 0. Let Q(t) = W (t)− hM0, where

h > 1 is a constant. It is easy to see that

Q(t) < 0, for t = 0. (12)

First, we will prove that

Q(t) < 0, for all t ∈ [0, θT ). (13)

Otherwise, there exists a t0 ∈ [0, θT ) such that

Q(t0) = 0, Q̇(t0) > 0, (14)

Q(t) < 0, 0 ≤ t < t0. (15)

Using Eqs. (12), (14) and (15), we obtain

Q̇(t0) = (1− η)V −η(t0)V̇ (t0) + α(1− η)

≤ (1− η)V −η(t0)(−αV η(t0)) + α(1− η)

= −α(1− η) + α(1− η)

= 0 (16)

This contradicts the second inequality in (14), and so
(13) holds.

LetW1(t) = [V 1−η(t)+α(1−η)t]e−(1−η)β(t−θT ), and
H(t) = W1(t)− hM0 −α(1− η)(t− θT )e−(1−η)β(t−θT ),
t ≥ θT . Next, we will prove that for t ∈ [θT, T )

H(t) ≤ 0, for all t ∈ [θT, T ). (17)

Otherwise, there exists a t1 ∈ [θT, T ) such that

H(t1) = 0, Ḣ(t1) > 0, (18)

H(t) < 0, θT ≤ t < t1. (19)

Using Eqs. (18) and (19), we have

Ḣ(t1) = (1− η)V −η(t1)V̇ (t1)e
−(1−η)β(t−θT )

−β(1− η)e−(1−η)β(t−θT )V 1−η(t1) +

α(1− η)e−(1−η)β(t−θT ) − β(1− η) ·
e−(1−η)β(t−θT ) · α(1− η)t− α(1−
η)e−(1−η)β(t−θT ) + β(1− η)e−(1−η)β(t−θT ) ·
α(1− η)(t− θT )

≤ β(1− η)V 1−η(t1)e
−(1−η)β(t−θT ) −

β(1− η)e−(1−η)β(t−θT )V 1−η(t1)−
β(1− η)e−(1−η)β(t−θT ) · α(1− η)t+

β(1− η)e−(1−η)β(t−θT ) · α(1− η)(t− θT )

= −βθT (1− η)e−(1−η)β(t−θT ) · α(1− η)

< 0, (20)
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which contradicts the second inequality in (18). Hence

(17) holds. From Eqs. (17), it is easy to see that

W (t) ≤ e(1−η)β(t−θT )[hM0 + α(1− η)(t−
θT )e−(1−η)β(t−θT )]

= e(1−η)β(t−θT )hM0 + α(1− η)(t− θT )

≤ hM0e
(1−η)β(1−θ)T + α(1− η)(1− θ)T. (21)

Consequently, on the one hand, for t ∈ [θT, T ),

W (t) ≤ e(1−η)β(t−θT )hM0 + α(1− η)(t− θT )

< hM0e
(1−η)β(1−θ)T + α(1− η)(1− θ)T.

On the other hand, it follows from Eqs. (12) and (13)
that for t ∈ [0, θT )

W (t) ≤ hM0

< hM0e
(1−η)β(1−θ)T + α(1− η)(1− θ)T.

So

W (t) < hM0e
(1−η)β(1−θ)T + α(1− η)(1− θ)T,

for all t ∈ [0, T ).

Similar to the proof of Eq. (13), we can proof that

W (t) < hM0e
(1−η)β(1−θ)T + α(1− η)(1− θ)T

is true for t ∈ [T, (1 + θ)T ). Suppose Q1(t) = W (t) −
hM0e

(1−η)β(1−θ)T − α(1 − η)(1 − θ)T , it is easy to see
that Q̇1(t) < 0, for t ∈ [T, (1 + θ)T ). Similar to the
proof of Eq. (17), we can verify

W (t) < hM0e
(1−η)β(1−θ)T+β(1−η)(t−θT−T ) +

α(1− η)(1− θ)T + α(1− η)(t− θT − T )

= hM0e
(1−η)β(t−2θT ) + α(1− η)(t− 2θT )

for t ∈ [T + θT, 2T ). Take W2(t) = [V 1−η(t) + α(1 −
η)t]e−(1−η)β(1−θ)T−β(1−η)(t−θT−T ) and

H1(t) = W2(t)− hM0 − [α(1− η)(1− θ)T + α(1−
η)(t− θT − T )]e−(1−η)β(1−θ)T−β(1−η)(t−θT−T ),

then, according to the Eqs. (20), we can easy obtain
that Ḣ1(t) < 0, for t ∈ [T + θT, 2T ).

In the following, we will use mathematical induction

method to derive that the following statement are true.
For nT ≤ t < (n+ θ)T ,

W (t) < hM0e
(1−η)β(1−θ)nT + α(1− η)(1− θ)nT, (22)

and for (n+ θ)T ≤ t < (n+ 1)T ,

W (t) < hM0e
(1−η)β(1−θ)nT+β(1−η)(t−(n+θ)T ) +

α(1− η)(1− θ)nT + α(1− η)(t− (n+ θ)T )

= hM0e
(1−η)β[t−(n+1)θT ] +

α(1− η)[t− (n+ 1)θT ]. (23)

Assume that inequalities (22) and (23) are true for n ≤
k−1, where k is a positive integer. Then, for any integer
m satisfying 0 ≤ m ≤ k − 1, if mT ≤ t < (m+ θ)T ,

W (t) < hM0e
(1−η)β(1−θ)mT + α(1− η)(1− θ)mT

< hM0e
(1−η)β(1−θ)kT + α(1− η)(1− θ)kT,

and if (m+ θ)T ≤ t < (m+ 1)T ,

W (t) < hM0e
(1−η)β[t−(m+1)θT ] +

α(1− η)[t− (m+ 1)θT ]

< hM0e
(1−η)β(m+1)(1−θ)T +

α(1− η)(1− θ)(m+ 1)T

≤ hM0e
(1−η)β(1−θ)kT + α(1− η)(1− θ)kT.

Then, together with Eq. (12), for any t ∈ [0, kT ), we

have

W (t) < hM0e
(1−η)βk(1−θ)T + α(1− η)(1− θ)kT. (24)

Similar to the proof of Eq. (13), we can prove that in-
equality (24) holds for kT ≤ t < (k + θ)T . And similar

to Eq. (17), we can verify the fact that

W (t) < hM0e
(1−η)β(1−θ)kT+β(1−η)(t−(k+θ)T ) +

α(1− η)(1− θ)kT + α(1− η)(t− (k + θ)T )

= hM0e
(1−η)β[t−(k+1)θT ] +

α(1− η)[t− (k + 1)θT ]

for (k + θ)T ≤ t < (k + 1)T . Hence the detail of these
proofs is omitted.

Therefore, from mathematical induction, we can con-

clude that the inequalities (22) and (23) hold for any
positive integer n such that nT ≤ t < (n + θ)T . If
(n+ θ)T ≤ t < (n+ 1)T , we obtain n ≤ t/T , then

W (t) < hM0e
(1−η)β(1−θ)nT + α(1− η)(1− θ)nT

≤ hM0e
(1−η)β(1−θ)t + α(1− η)(1− θ)t.

If (n+ θ)T ≤ t < (n+ 1)T , then it yields n+ 1 > t/T
and

W (t) < hM0e
(1−η)β[t−(n+1)θT ] +

α(1− η)[t− (n+ 1)θT ]

< hM0e
(1−η)β(1−θ)t + α(1− η)(1− θ)t

Let h → 1, from the definition of W (t), we obtain

V 1−η(t) ≤ V 1−η(0)e(1−η)β(1−θ)t − α(1− η)t+

α(1− η)(1− θ)t

= V 1−η(0)e(1−η)β(1−θ)t − αθ(1− η)t

for any t ≥ 0. The proof of Lemma 3 is completed.

Remark 3. Lemma 3 plays an important role in the
finite-time synchronization analysis of dynamical net-
works via intermittent control in this brief, because it

shows the utilization of finite-time intermittent control.
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Lemma 4 (Jesen inequality [53]). If a1, a2, · · · , an
are any positive numbers and 0 < r < p, then

(
n∑

i=1

api )
1/p ≤ (

n∑
i=1

ari )
1/r.

3. Main results

In this section, with the help of Lemma 3, some nov-

el finite-time synchronization criteria via periodically
intermittent control are rigorously derived. The main
results are stated as follows.

Theorem 1. Under Assumption 1, if there exist pos-
itive constants η1, η2, . . . , ηN , ξ, β and a positive def-
inite diagonal matrix P > 0 such that the following

conditions hold:

θjIN −Ξ + cγjA− ξ

λmax(P )
IN ≤ 0, (25)

θjIN − ξ

λmax(P )
IN + cγjA− βIN ≤ 0, (26)

where j = 1, 2, . . . , n, Γ = diag(γ1, γ2, . . . , γn), Ξ =

diag(η1, η2, . . . , ηN ), Θ = diag(θ1, θ2, . . . , θn) and IN is
the N ×N identity matrix. Then the error system (4)
is synchronized under the periodically intermittent con-

trollers (3) in a finite time:

t ≤ V
1−µ
2 (0)e

1−µ
2 β(1−θ)t

kθ(1− µ)
= T1, (27)

where V (0) =
∑N

i=1 e
T
i (0)Pei(0), ei(0) is the initial

condition of ei(t).

Proof. Construct the following Lyapunov function:

V (t) =
N∑
i=1

eTi (t)Pei(t). (28)

Then the derivative of V (t) with respect to time t along

the solutions of Eq. (4) can be calculated as follows:

When lT ≤ t < (l + θ)T , for l ∈ ȷ,

V̇ (t) = 2
N∑
i=1

eTi (t)P ėi(t)

= 2
N∑
i=1

eTi (t)P [f(yi(t))− f(xi(t)) +

c
N∑
j=1

aijΓej(t) + ui(t)]

= 2
N∑
i=1

{eTi (t)P [f(yi(t))− f(xi(t))−Θei(t)] +

eTi (t)PΘei(t) + eTi (t)Pui(t) +

ceTi (t)PΓ
N∑
j=1

aijej(t)}

≤ −2ξ
N∑
i=1

eTi (t)ei(t) + 2
N∑
i=1

eTi (t)(ΘP − ηiP )ei(t)

+2c
N∑
i=1

eTi (t)Γ
N∑
j=1

aijPej(t)

−2k
N∑
i=1

(λmax(P ))
1+µ
2

λmin(P )
eTi (t)Psign(ei)|ei|µ

≤ − 2ξ

max(P )

N∑
i=1

eTi (t)Pei(t) + 2
n∑

j=1

pj ẽ
T
j (t)(θjIN

−Ξ + cγjA)ẽj(t)−

2k

N∑
i=1

(λmax(P ))
1+µ
2

λmin(P )
|ei(t)|TP |ei|µ

≤ 2
n∑

j=1

pj ẽ
T
j (t)(θjIN −Ξ + cγjA−

ξ

max(P )
IN )ẽj(t)−

2k

N∑
i=1

(λmax(P ))
1+µ
2

λmin(P )
|ei(t)|TP |ei|µ.

Since
∑N

i=1 |ei(t)|T |ei|µ =
∑N

i=1

∑n
j=1 |eij |1+µ and us-

ing Lemma 3, it can be implied that

(
N∑
i=1

n∑
j=1

|eij |µ+1)
1

1+µ ≥ (
N∑
i=1

n∑
j=1

|eij |2)
1
2 .

Hence,

N∑
i=1

n∑
j=1

|eij |1+µ ≥ (
N∑
i=1

n∑
j=1

|eij |2)
1+µ
2

= (
N∑
i=1

eTi (t)ei(t))
1+µ
2 .

Then V̇ becomes

V̇ (t) ≤ 2
n∑

j=1

pj ẽ
T
j (t)Zj ẽ

T
j (t)−

2k(
N∑
i=1

λmax(P )eTi (t)ei(t))
1+µ
2 .

where ẽj(t) = [ẽj1, ẽj2, . . . , ẽjN ]T is a column vector of
ej(t), Zj is defined as

Zj = θjIN −Ξ + cγjA− ξ

max(P )
IN , j = 1, 2, . . . , n.

It follows from inequality (25) that

Zj ≤ 0,



6 Jun Mei et al.

which shows that V̇ (t) ≤ −2kV
1+µ
2 (t).

When (l + θ)T ≤ t < (l + 1)T , for l ∈ ȷ, we have

V̇ (t) =
N∑
i=1

eTi (t)P ėi(t)

=

N∑
i=1

{eTi (t)P [f(yi(t))− f(xi(t))−Θei(t)]

+eTi (t)PΘei(t) + c

N∑
j=1

aije
T
i (t)PΓej(t)}

≤ −ξ
N∑
i=1

eTi (t)ei(t) +
n∑

j=1

pj ẽ
T
j (t)θjIN ẽj(t)

+c

n∑
j=1

pj ẽ
T
j (t)γjAẽj(t)−

β
N∑
i=1

eTi (t)Pei(t) + β
N∑
i=1

eTi (t)Pei(t)

≤ −
n∑

j=1

pj ẽ
T
j (t)

ξ

λmax(P )
IN ẽj(t) +

n∑
j=1

pj ẽ
T
j (t)θjIN ẽj(t) + c

n∑
j=1

pj ẽ
T
j (t)γjAẽj(t)

−
n∑

i=1

pje
T
i (t)βINei(t) + β

N∑
i=1

eTi (t)Pei(t)

=
n∑

j=1

pj ẽ
T
j (t)Sj(ẽ

T
j (t) + β

N∑
i=1

eTi (t)Pei(t),

where ẽj(t) = [ẽj1, ẽj2, . . . , ẽjN ]T is a column vector of

ej(t), Sj is defined as

Sj = θjIN − ξ

λmax(P )
IN + cγjA− βIN , j = 1, 2, . . . , n.

It follows from inequality (26) that

Sj ≤ 0,

which shows that V̇ (t) ≤ βV (t).

Namely, we have{
V̇ (t) ≤ −2kV

1+µ
2 (t), lT ≤ t < lT + θT,

V̇ (t) ≤ βV (t), lT + θT ≤ t < (l + 1)T.
(29)

Using Lemma 3, we obtain

V
1−µ
2 (t) ≤ V

1−µ
2 (0)e

1−µ
2 β(1−θ)t − kθ(1− µ)t. (30)

By Lemma 2, we have

t ≤ V
1−µ
2 (0)e

1−µ
2 β(1−θ)t

kθ(1− µ)
= T1.

This implies the conclusion and the proofs is complet-

ed.

Remark 4. From condition (4.5) of Theorem 2 in Re-
f. [48], one can known that the derivative of the Lya-

punov function V̇ (t) ≤ 0 when no controllers are added
into the network. This means that network can be self-
synchronization without control inputs. This strong in-

equality condition has limited the application. In this
paper, a novel differential inequality (see Lemma 3) is
established, based on which some new and useful results

are then derived, that is, the derivative of the Lyapunov
function V̇ (t) ≤ βV (t) when no controllers are added
into networks. Hence, in such sense the results derived

here generalize the results in Ref. [48].

If the Lyapunov function V̇ (t) ≤ 0 (β = 0) when
no controllers are added into networks, that is, we can

clear the term βV (t). Then, it is easy to see that The-
orem 1 can be restate as the following form.

Corollary 1. Under Assumption 1, if there exist pos-

itive constants η1, η2, . . . , ηN , ξ and a positive define
diagonal matrix P > 0 such that the following condi-
tions hold:

θjIN −Ξ + cγjA− ξ

λmax(P )
IN ≤ 0, (31)

θjIN − ξ

λmax(P )
IN + cγjA ≤ 0, (32)

where j = 1, 2, . . . , n, Γ = diag(γ1, γ2, . . . , γn), Ξ =

diag(η1, η2, . . . , ηN ), Θ = diag(θ1, θ2, . . . , θn) and IN is
the N ×N identity matrix. Then the error system (4)
is synchronized under the periodically intermittent con-

trollers (3) in a finite time:

t ≤ V 1−η(0)

kθ(1− µ)
= T2, (33)

where V (0) = 1
2

∑N
i=1 e

T
i (0)Pei(0), ei(0) is the initial

condition of ei(t).

Remark 5. Corollary 1 in this paper is the main result

of Theorem 2 in Ref. [48].

Suppose θ = 1, the periodically intermittent control
problem becomes a general control problem, then based

on Theorem 1, the following Corollary 1 is immediate.

Corollary 2. Under Assumption 1, if there exist pos-
itive constants η1, η2, . . . , ηN , ξ and a positive definite

diagonal matrix P > 0 such that the following condi-
tions hold:

θjIN −Ξ + cγjA− ξ

λmax(P )
IN ≤ 0, (34)

where j = 1, 2, . . . , n, Γ = diag(γ1, γ2, . . . , γn), Ξ =

diag(η1, η2, . . . , ηN ), Θ = diag(θ1, θ2, . . . , θn) and IN is



Periodically intermittent controlling for finite-time synchronization of complex dynamical networks 7

the N×N identity matrix. Then the error system (4) is

synchronized under the controllers (3) in a finite time:

t ≤ V 1−η(0)

k(1− µ)
= T3, (35)

where V (0) =
∑N

i=1 e
T
i (0)Pei(0), ei(0) is the initial

condition of ei(t).

Remark 6. According to the Eqs. (27), (33) and (35),

and the convergence time T1, T2, T3, we can conclude
that the convergence time satisfies: T3 ≤ T2 ≤ T1.
Hence, the term βV (t) should cost the setting time.

Let ϑ = θ1 = . . . = θn and γ = γ1 = . . . = γn in
Theorem 1, then we have the following corollary.

Corollary 3. Under Assumption 1, if there exist posi-

tive constants η1, η2, . . . , ηN , ξ, β, and a positive define
diagonal matrix P > 0 such that the following condi-
tions hold:

ϑIN − Ξ + cγA− ξ

λmax(P )
IN ≤ 0, (36)

ϑIN − ξ

λmax(P )
IN + cγA− βIN ≤ 0, (37)

where Γ = diag(γ, γ, . . . , γ), Ξ = diag(η1, η2, . . . , ηN ),
Θ = diag(ϑ, ϑ, . . . , ϑ) and IN is the N × N identity

matrix. Then the error system (4) is synchronized under
the periodically intermittent controllers (3) in a finite
time:

t ≤ V
1−µ
2 (0)e

1−µ
2 β(1−θ)t

kθ(1− µ)
= T4, (38)

where V (0) = 1
2

∑N
i=1 e

T
i (0)Pei(0), ei(0) is the initial

condition of ei(t).

Remark 7. Our objective is to seek an appropriate
control gain η for which synchronization happens. In
inequalities (36) and (37), the control gain is required

to be large enough [η ≥ ϑ+ cγλmax(A)− ξ
max(P ) ], but

it may be much large than the needed value. So, some
previous works adopted adaptive control approach [14-

15], but here we can choose a parameter ξ to adjust the
appropriate control gain η.

4. Simulation example

In this section, an example is presented to show the

validity and effectiveness of the derived results.

Example 4.1. Consider the network:

ẋi = f(xi) +
100∑
j=1

aijΓxj , i = 1, 2, . . . , 100, (39)

for

xi =

 ẋi1

ẋi2

ẋi2

 , f(xi) = C

xi1

xi2

xi3

+

 0
−xi1xi3

xi1xi2

 ,

C =

−a a 0
c −1 0
0 0 −b

 , Γ = I3, c = 1,

where the parameters are selected as a = 10, c =

28, b = 8/3, the single Lorenz system has a chaotic
attractor (see Ref. [48]). And from [53], we take P =
diag(24, 0.002, 12) and Θ = diag(3, 3, 3), the Lorenz

system is easily satisfies Assumption 1.A = (aij)100×100

is a symmetrically diffusive coupling configuration ma-
trix with aij = 0 or 1 (j ̸= i).

System (39) is considered as a drive system, the con-
trolled response system is given by

ẏi = f(yi) +

100∑
j=1

aijΓyj + ui, i = 1, 2, · · · , 10, (40)

where c, aij , and fi(·) are the same as (39) and the
controllers are given as (3) and k = 10.

In the simulation, the values of the parameters for
the controllers (3) are taken as T = 0.2 and δ = 0.16.
Since θj = 3 and λmax(A) = −1.6414. By using LMI

toolbox in Matlab, it is easy to verify that inequalities
(25) and (26) in Theorem 1 is satisfied and we can ob-
tain ηi = 6.4142.

The initial conditions of the numerical simulation
are as follows: xi(0) = (−8 + 0.5i,−5 + 0.5i,−10 +
0.5i)T , yi(0) = (2 + 0.5i, 0.2 + 0.5i, 0.3 + 0.5i), where

1 ≤ i ≤ 100. The synchronous errors ei(t) are illustrat-
ed in Figs. 1-3.

5 Conclusion

In this paper, we have investigated the finite-time

synchronization between two complex networks by us-
ing intermittent control. Some novel and useful synchro-
nization criteria ensuring the systems to synchronize

up to zero in a given time are obtained. In the previous
works, the derivative of the Lyapunov function V (t) is s-
maller than zero, but the strong results have released for

the V̇ (t) ≤ βV (t) (β is an arbitrary positive constant)
in this paper. An example is presented to verify the ef-
fectiveness of the proposed synchronization criteria fi-

nally. Currently, semi-global finite-time synchronization
criteria of complex dynamical networks via periodically
intermittent control have been discussed in this paper,

the global problem will be investigated and it will be
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Fig. 1 The synchronization errors ei1 (1 ≤ i ≤ 100) with
periodically intermittent controllers (3) under parameters
T = 0.2, θ = 0.8
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Fig. 2 The synchronization errors ei2 (1 ≤ i ≤ 100) with
periodically intermittent controllers (3) under parameters
T = 0.2, θ = 0.8

worth to solve in the future.
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