
    

HEFAT2007 
5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 

Sun City, South Africa 
BM1 

 

HYDROMAGNETIC SORET CONVECTION IN A SHALLOW POROUS 
ENCLOSURE WITH A SHEAR STRESS APPLIED ON THE FREE UPPER 

SURFACE  
 

Bourich M.(1), Hasnaoui M.(2)*, Amahmid A.(2), Er-Raki M.(2) ,  Mamou. M.(3) and EL Ganaoui M.(4)   
 (1)Poly-disciplinary Faculty, Physics Department, Safi, Morocco 

(2) Faculty of Sciences Semlalia, Physics Department, UFR TMF, Marrakesh, Morocco 
(3) AL/IAR, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada 

(4) University of Limoges, SPCTS UMR 66 38 CNRS, Faculty of Sciences and Techniques,  
Limoges, France 

E-mail: hasnaoui@ucam.ac.ma 
 
 

ABSTRACT 
The fluid flow induced by combined effects of thermal 

gradient, thermal diffusion, magnetic field and an external  
shear stress in a horizontal porous layer, subject to uniform heat 
flux along its long horizontal walls is studied analytically and 
numerically. The shear stress is applied on the top horizontal 
free  surface while the bottom one is assumed to be rigid. The 
problem formulation is based on the Brinkman model with the 
Boussinesq approximation. The governing parameters are the 
thermal Rayleigh number, RT , the Lewis number, Le, the 
separation parameter, ϕ, the Darcy number, Da, the Hartmann 
number Ha, the dimensionless shear stress, τ and the aspect 
ratio of the enclosure, Ar. The analytical solution is derived on 
the basis of the parallel flow approximation and validated 
numerically using a finite difference method. The critical 
Rayleigh numbers for the onset of stationary, subcritical and 
oscillatory convection are determined explicitly as functions of 
the governing parameters for infinite layers in the absence of 
the external shear stress. The effect of the main governing 
parameters on the fluid flow and heat and mass transfer 
characteristics is discussed. 

 
INTRODUCTION 

 Increasing attention is actually devoted by the researches to 
examine the effect of a magnetic field on natural convection 
induced in an electrically conducting fluid owing to its 
implication in many engineering applications. Metallurgical 
melting, solidification process, and the mechanism of crystals 
manufacturing are some examples concerned with convective 
flows under magnetic fields [1, 2]. The list of published papers 
on the subject, either in porous or fluid media, is very long. 
Therefore, the literature review is restricted here to some recent 
papers.  

 Paramagnetic fluid convection under a strong magnetic 
field in a cubical enclosure has been studied experimentally and 

numerically by Bednarz et al. [3]. The enclosure was heated 
from one vertical copper wall with electric wire and cooled 
from the opposite wall with water pumped from a thermo-
stating bath. The working fluid is a glycerol aqueous solution 
containing a gadolinium nitrate hexahydrate to make it 
paramagnetic. It was observed that the increase of the magnetic 
induction leads to an intensification of the convection motion 
and to an improvement of heat transfer. Kaneda et al. [4] 
studied experimentally and numerically natural convection of 
liquid gallium under a uniform magnetic field with an external 
electric current. A cubic enclosure filled with the liquid metal 
was heated and cooled from the facing electro-conductive 
vertical sidewalls while other four walls were thermally and 
electrically insulated. The authors found that the magnetic field 
could lead to the suppression of the convection and the 
interaction between the magnetic field and the additional 
electric current induces the Lorenz force and affects the flow 
pattern and the heat transfer rate (depending on the combination 
of the external electric current and the direction of the magnetic 
field). Li and Stock [5] studied experimentally the natural 
convection of molten gallium in a cubic cell subject to a 
horizontal temperature gradient. They found that natural 
convection finished to be annihilated by increasing the applied 
field strength. The effect of the magnetic buoyancy forces on 
the convection in an inclined rectangular enclosure heated from 
one side and cooled from the opposite side has been examined 
by Ece et al. [6]. Their results show that the flow characteristics 
and the convective heat transfer depend strongly upon the 
strength and direction of the magnetic field, the aspect ratio and 
the inclination of the enclosure. In addition, the magnetic field 
significantly reduces the local Nusselt number by suppressing 
the convection currents.  

The literature review shows that the existing works are 
mainly focused on the effect of magnetic field on pure thermal 
convection but the effect of a magnetic field on thermosolutal 
convection in the presence of Soret effect is much less 



    

documented. Hence, the present paper is devoted to study  
analytically and numerically the combined effects of  a 
magnetic field, the  thermal diffusion, and an external shear 
stress on natural convection within an electrically conducting 
binary mixture confined in a horizontal porous enclosure heated 
from below.  

NOMENCLATURE 
 
Ar ( H/L ′′ ) Aspect ratio of the porous matrix 
D [m2/s] Mass diffusivity 
DT [m2K-1/s] Thermodiffusion coefficient 
q′  [Wm-2] Constant heat flux density 
Da [-] Darcy number 
RT [-] Thermal Darcy-Rayleigh number 
Le [-] Lewis number 
Ha [-] Hartmann number  
t [-] Dimensionless time 
 
Special characters 
α [m2/s] Thermal diffusivity of the saturated porous medium 
σ  [-] Saturated porous medium to fluid heat capacity ratio 
λ  [W/mK] Thermal conductivity 
ϕ  [-] Separation parameter 
ε [-] Normalized porosity of the porous medium 
 

MATHEMATICAL MODEL 
The configuration considered is a two-dimensional 

homogeneous horizontal porous layer of width L′  and height 
H ′ . All boundaries of the porous matrix are assumed 
impermeable. The top and bottom horizontal walls are 
subjected to uniform fluxes of heat, q′ , while the vertical short 
walls of the porous layer are assumed adiabatic. A shear stress 
is applied on the top horizontal free surface while the bottom 
one is assumed to be rigid. A magnetic field of strength B is 
applied normal to the horizontal walls. The porous medium is 
considered isotropic, homogeneous and saturated with an 
electrically conducting binary fluid mixture obeying the 
Boussinesq approximation. Using the Brinkman model and the 
vorticity-stream function formulation, the dimensionless 
governing equations are stated as follows: 
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The dimensionless variables were obtained using the scales 
H ′ , α/H' , /ασH' 2  and α  respectively for length, velocity, 
time and stream function. The remaining definitions are 

T/)TT(T 0 ′′−′= Δ and S/SS ′′= Δ with λ/HqTΔ ′′=′  and 
 /D)DS-(1STΔSΔ T00 ′′′−=′ ; the prime denotes dimensional 

variables where the subscript 0 refers to the conditions at the 
origin of the coordinate system.  
The hydrodynamic, thermal and concentration boundary 
conditions associated to the present problem are: 
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The heat and solute transfer across the layer are given in 
terms of the Nusselt and Sherwood numbers as: 
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Numerical Solution 

The numerical solution of the full governing equations was 
obtained by using a central finite difference scheme, as 
described in Bourich et al. [7]. The vorticity, temperature and 
concentration equations, Eqs. (1)-(3), were solved iteratively in 
a time accurate mode using the alternate direction implicit 
method. At the boundaries, the values of the vorticity were 
calculated using Wood’s relation (Roache [8]). Nodal values of 
the stream function were obtained, from equation (4), via a 
point successive-over-relaxation method. For large aspect ratio 
enclosures, a non-uniform grid was used in the horizontal 
direction in order to obtain a finer mesh in the end regions 
where strong gradient of temperature, concentration and 
velocity set in. A non-uniform grid was also used in the y-
direction to solve the thin shear layers near the horizontal 
boundaries. The results reported in this paper were obtained 
with computations performed with a grid size of 121×61 for 

rA =4 and 201×81 for rA 8≥ . 
Some typical numerical results, in terms of streamlines, 

isotherms and isosolutes contours, obtained within a shallow 
enclosure are illustrated in Fig. 1 for 100R T = , Le=10, 

1.0Da = , 5.0=ϕ , 10=τ , Ha =1.5 and Ar = 8 . For large 
aspect ratio enclosures, the streamlines clearly shows that, the 
flow is parallel to the long active walls of the layer if we except 
the end regions. In addition, the isotherms and isosolutes show 
a horizontal linear stratification of both temperature and 
concentration. Based on these remarks, an analytical solution is 
developed in order to allow a parametric study which is very 
useful to understand the flow behavior.  
 
 
 
 
 
 
 
 

 
Figure1 Streamlines, isotherms and iso-concentration lines for 

RT=100, Le=10, Da=0.1, Ha=1.5, ϕ=0.5, τ=10 and Ar=8 
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APPROXIMATE ANALYTICAL SOLUTION 
The analytical solution was developed for steady-state flows 

in shallow enclosures using the parallel flow assumption [9], 
which led to the following approximations: 

)(yy)(x, ΨΨ = ,  (y)xCy)T(x, TT θ+=   and  (y)xCy)S(x, SS θ+=  
where CT and CS are respectively unknown constant 
temperature and concentration gradients in the horizontal 
direction. Using the above approximations, together with the 
boundary conditions, equations (1)-(4) were reduced to a set of 
ordinary differential equations that can be solved to yield a 
closed form solution: 
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The expressions of TC  and SC  were determined by performing 
heat and solute balances across any transversal section of the 
porous layer [9]. This yields 
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Then, Nu and Sh are given by:  
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An equation for the constant rE  is established by 
substituting TC  and SC  in the expression of the latter (i.e. rE ) 
to obtain: 
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The above equation can be solved numerically using the 
bisection method. 
 
Case of τ = 0 

In the absence of the external shear stress ( 0=τ ), the 
analytical resolution of the previous equation is possible and 
leads to: 
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In both situations where rE  is negative (clockwise flows) or 
positive (counter-clockwise flows), the Nusselt and Sherwood 
numbers remain the same. For convenience, only the solution 
corresponding to positive rE will be considered. The solution 
with positive sign within the square root in equation. (7) will be 
denoted by +r

E  and the solution with the negative sign by −r
E . 

These two solutions exist only when the following conditions 
are satisfied: 

    0  c2Le42b b >−±− and    0  c2Le42b >−  
Based on the above conditions it was demonstrated that the ϕ-
Le plane can be divided into three regions exhibiting different 
behaviours. In the first region, stationary (i.e. supercritical 
convection) may exist. This region is defined by: 
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In the second region both subcritical and stationary bifurcations 
are possible. This region is defined by 
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The expression of the critical Rayleigh number, sub
TCR , for the 

onset of subcritical flows is given by: 
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In the third region, only the subcritical bifurcations are 
possible. This region is defined by 

Le1
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=≤ ϕϕ  
The subcritical Rayleigh number for the third region is given by 
equation (9). However, for this region, both solutions +r

E  and 

−r
E exist for any value of sub

TCT R  R > . 
For a shallow porous enclosure with an infinite aspect ratio, 

the onset of Hopf’s bifurcation can be derived analytically as: 
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Equation (10) shows clearly that the occurrence of the 
oscillatory flow depends not only on Le ,ϕ, Da, and Ha (as it is 
the case for    R sub

TC and  R sup
TC ) but also on ε.  

 
RESULTS AND DISCUSSION 

In the present study, the choice of the range of Darcy 
number was rather based on the literature review. Many authors 
have used values of Da as high as 0.1 (see for instance ref. [9]). 
In addition, the validity of the Brinkman model is largely 
discussed in the book by Nield and Bejan [10]; validity justified 
for porous media with large porosity (> 0.8). 

 
Stability Diagram 

Depending on the governing parameters of the problem, 
various regimes, with different flow behaviours, are found to 
exist. The stability diagram is used to analyze the flow 
behaviour and the nature of the existing bifurcations. Figure 2 
shows a stability diagram obtained for 10Le = , 95.0=ε , 

01.0Da = , 0=τ  and 5.1Ha = . In this diagram, drawn in the 
ϕ−TR  plane, four regions are delineated by the curves 

corresponding to sup
TCR , sub

TCR  and Hopf
TCR deduced from equations 

(8), (9) and (10), respectively. In region (I), below the 
subcritical Rayleigh number sub

TCR , the fluid is expected to 
remain in an unconditionally stable motionless state  in which 
any dynamic perturbation, regardless of its amplitude, decay 
with time. In region (II), between sub

TCR  and Hopf
TCR , finite-

amplitude convection exists and the rest state instability can be 
started only by large finite amplitude perturbations. The 
intersection between the thresholds of subcritical and stationary 
convection leads to a sub-codimension-2 point (represented in 
figure 2 by a triangle symbol). The sub-codimension-2 point 
results from the merging of subcritical and stationary 
bifurcations saddle-node points; it is localized by the following 
coordinates:  
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 In region (III), between Hopf
TCR and sup

TCR , persistent oscillatory 
or steady convection is possible depending essentially on the 
initial conditions used to start the numerical code. In the close 
vicinity of the Hopf’s bifurcation threshold Hopf

TCR , any small 
perturbation  will grow in time in an oscillatory manner. The 
Hopf-codimension-2 point (intersection between the thresholds 

of Hopf and stationary convection) is indicated on the stability 
diagram (square symbol); its coordinates are given by: 
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From equation (11), the onset of the overstability occurs for 
negative values of the separation coefficient (-ε< ϕ  < 2cHopf −ϕ ). 
The oscillatory convection region extends to an upper limit 
where the oscillation frequency vanishes )0( =ω . This line 
corresponds to the critical Rayleigh number 0w

TCR = , given by the 
following expression: 
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In region (IV), the fluid is unstable and any infinitesimal 
perturbation will initiate a convective flow. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure2 Stability diagram for 10Le = , 95.0=ε , 01.0Da = , 
0=τ  and 5.1Ha =  

 
Effect of Ha  

The Hartmann number, Ha, is a measure of the magnetic 
buoyancy forces. It could be varied by changing the strength of 
the magnetic field or by considering various working 
electrically conducting fluids or different porous media with 
different permeabilities. Figure 3(a)-(c) shows the evolutions of 
the flow intensity, 0Ψ , the Nusselt number, Nu, and the 
Sherwood number, Sh, with Ha for 200R T = , 10Le = , 

01.0Da = , 10=τ and 5.0±=ϕ . The analytical solutions for 

0Ψ , Nu and Sh, corresponding to the stable branches are seen 
to be in excellent agreement with the numerical ones obtained 
by solving the full governing equations. The results obtained 
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clearly show that the magnetic field has a strong effect on the 
fluid flow and heat and mass transfer characteristics. The value 

5.0−=ϕ  illustrates the case of subcritical convection for which 
both stable and unstable branches exist in the range 

932.2HaHa0 1c =≤≤ . For 5.0=ϕ , which corresponds to 
supercritical convection, only the stable branch is existing and 
vanishes for 9.10cHaHa 2 => . For the stable branches, the 
increase of Ha induces a decrease of 0Ψ  and Nu (for both 
values of ϕ )   indicating that the magnetic field reduces the 
flow intensity and the heat transfer. However, the evolution of 
Sh exhibits a different behaviour. For 5.0=ϕ , it goes through a 
maximum value 92.6Sh max ≅  at 4.3Ha max ≅ , then decreases 
after that. For 5.0−=ϕ , Sh increases globally with Ha for both 
stable and unstable solutions. It can be concluded from this 
section that the intensification of the magnetic field reduces 
considerably the heat transfer as it suppresses the motion and 
bring back the  fluid to a purely diffusive regime.  
 
Effect of τ  

The variations of 0Ψ , Nu and Sh with the shear stress, τ , is 
illustrated in figure 4(a)-(c) for RT =200, Le =10, Da = 0.1, 

2Ha =  and ϕ = ± 0.5.  The results presented in this figure 
show the existence of two steady state solutions (characterized 
by one clockwise and one counter-clockwise circulations) in 
some range of τwhich depends on ϕ. Theses solutions just 
exchange their roles when the sign of τ  is changed. Therefore, 
the following discussion will be focused only on the 
range 0≥τ . In the absence of the shear stress applied on the top 
of the layer )0( =τ , one of the two solutions is the mirror image   
of the other (across a vertical mirror), then they lead to the 
same values for 0Ψ , Nu and Sh. This feature is destroyed 
when the shear stress is not null and, consequently, one flow 
becomes more intense than the other depending on the sign of 
τ .  Qualitatively, the curves of figure 4(a)-(c)  present same 
trends for both values of  ϕ. However, ϕ = 0.5 is more 
favourable to the persistence of the multiplicity of solutions 
when τ  is increased. Also,  the quantities 0Ψ  and Nu, 
corresponding to the counter-clockwise solution ( 00 >Ψ ), 
decrease with τ (the latter solution vanishes when τ exceeds 
the critical value 17c =τ for ϕ = - 0.5 and 61c =τ  for ϕ = 0.5). 
However, these quantities increase with τ  in the case of the 
clockwise solution. The curve of Sh exhibit complex 
behaviours; it undergoes a monotonic decrease or goes through 
a maximum then decreases after that when τ  is increased 
above 0 and this,  depending on the considered solution.  

     
Conclusion 

The effect of an applied magnetic field and an external 
shear stress on the Soret natural convection developed in a 
horizontal layer heated from below with a constant heat flux is 
conducted analytically and numerically. The shear stress is 
applied on the top horizontal free surface. The thresholds for 
subcritical, oscillatory and stationary convection are obtained 

explicitly as functions of the governing parameters for 0=τ . 
The existence of a codimension-2 point is demonstrated and 
different flow regimes are delineated. The introduction of 
magnetic buoyancy forces, has a stabilizing effect on the 
system and reduces the flow intensity and heat transfer. 
However, it can engender an increase or a reduction of the mass 
transfer; depending  on the values of Ha and the separation 
ratio.  The application of a shear stress may suppress the 
multiplicity of solutions if τ  is large enough. Furthermore, it 
enhances one flow and damps the other depending on the sign 
of τ . 
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Figure3 Effect of Ha on (a)Ψ0 , (b) Nu and (c) Sh for RT=200, 
Le=10, Da=0.01, τ =10 and ϕ = ± 0.5. 
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Figure4 Effect of τ on (a) Ψ0, (b) Nu and (c) Sh for RT=200, 
Le=10, Da=0.1, Ha=2 and ϕ = ± 0.5. 
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