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Abstract

When algorithms solve dynamic multi-objective optimisation problems (DMOOPs),

performance measures are required to quantify the performance of the algorithm and

to compare one algorithm’s performance against that of other algorithms. However,

for dynamic multi-objective optimisation (DMOO) there areno standard performance

measures. This article provides an overview of the performance measures that have

been used so far. In addition, issues with performance measures that are currently

being used in the DMOO literature are highlighted.
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1. Introduction

In order to determine whether an algorithm can solve dynamicmulti-objective optimi-

sation problems (DMOOPs) efficiently, the algorithm’s performance should be quan-

tified with functions referred to as performance measures. The set of performance

measures chosen for a comparative study of dynamic multi-objective optimisation al-

gorithms (DMOAs) influence the results and effectiveness of the study. Comprehensive

overviews of performance measures used for dynamic single-objective optimisation

(DSOO) [2; 50; 53] and static MOO (SMOO) [4; 11; 45] do exist inthe literature.

However, a lack of standard performance measures is one of the main problems in the
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field of dynamic multi-objective optimisation (DMOO). Furthermore, a comprehensive

overview of performance measures used for DMOO does not exist in the literature.

Therefore, the selection of appropriate performance measures to use for DMOO is not

a trivial task. This article seeks to address this problem by:

• providing a comprehensive overview of performance measures currently used in

the DMOO literature, and

• highlighting issues with performance measures that are currently used to evaluate

the performance of DMOAs.

It should be noted that this article does not discuss DMOOPs.However, the reader

is referred to [32] for a comprehensive overview of DMOOPs.

The rest of the article is outlined as follows: Formal definitions of concepts that are

required as background for this article are provided in Section 2. Section 3 discusses

performance measures that have been used for multi-objective optimisation (MOO)

and that have been adapted for DMOO. Performance measures that are currently used

in the DMOO literature are discussed in Section 4. Section 5 highlights issues with

current performance measures that are frequently used to measure the performance of

DMOAs. This section also makes proposals as to which performance measures can be

used for DMOO. Finally, the conclusions are discussed in Section 6.

2. Definitions

This section provides definitions with regards to MOO and DMOO that are required as

background for the rest of the article.

2.1. Multi-objective Optimisation

The objectives of a multi-objective optimisation problem (MOOP) are normally in con-

flict with one another, i.e. improvement in one objective leads to a worse solution for

at least one other objective. Therefore, when solving MOOPsthe definition of optimal-

ity used for single-objective optimisation problems (SOOPs) has to be adjusted. For

MOOPs, when one decision vector dominates another, the dominating decision vector

is considered as a better decision vector.
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Let thenx-dimensional search space ordecision spacebe represented byS ⊆ Rnx

and the feasible space represented byF ⊆ S, whereF = S for unconstrained optimisa-

tion problems. Letx = (x1, x2, . . . , xnx) ∈ S represent thedecision vector, i.e. a vector

of the decision variables, and let a single objective function be defined asfk : Rnx → R.

Thenf (x) = ( f1(x), f2(x), . . . , fnk(x)) ∈ O ⊆ Rnk represents anobjective vectorcontain-

ing nk objective function evaluations, whereO is theobjective space.

Using the notation above, decision vector domination is defined as follows:

Definition 1. Decision Vector Domination: Let fk be an objective function. Then,

a decision vectorx1 dominates another decision vectorx2, denoted byx1 ≺ x2, iff

fk(x1) ≤ fk(x2), ∀k = 1, . . . ,nk and ∃i = 1, . . . ,nk : fi(x1) < fi(x2) .

The best decision vectors are called Pareto-optimal, defined as follows:

Definition 2. Pareto-optimal: A decision vectorx∗ is Pareto-optimal if∄k: fk(x) <

fk(x∗), wherex , x∗ ∈ F. If x∗ is Pareto-optimal, the objective vector,f (x∗), is also

Pareto-optimal.

The set of all the Pareto-optimal decision vectors are referred to as the Pareto-

optimal set (POS), defined as:

Definition 3. Pareto-optimal Set: The POS,P∗, is formed by the set of all Pareto-

optimal decision vectors, i.e.P∗ = {x∗ ∈ F |∄x ∈ F : x ≺ x∗}.

The POS contains the best trade-off solutions for the MOOP. The set of correspond-

ing objective vectors are called the Pareto-optimal front (POF) or Pareto front, which

is defined as follows:

Definition 4. Pareto-optimal Front: For the objective vectorf (x) and the POSP∗, the

POF,PF∗ ⊆ O, is defined asPF∗ = {f = ( f1(x∗), f2(x∗), . . . , fnk(x
∗)) |x∗ ∈ P∗}.
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2.2. Dynamic Multi-objective Optimisation

Using the notation defined in Section 2.1, an unconstrained DMOOP can be mathemat-

ically defined as:

minimise: f (x,W(t))

sub ject to: x ∈ [xmin , xmax]
nx (1)

whereW(t) is a matrix of time-dependent control parameters of an objective func-

tion at time t, W(t) = (w1(t), . . . ,wnk(t)), nx is the number of decision variables,

x = (x1, . . . , xnx) ∈ Rnx andx ∈ [xmin , xmax]nx refers to the boundary constraints.

In order to solve a DMOOP the goal of an algorithm is to track the POF over time,

i.e. for each time step, find

PF∗(t) = {f (t) = ( f1(x∗,w1(t)), f2(x∗,w2(t)), . . . , fnk(x
∗,wnk(t))) |x∗ ∈ P∗(t)} (2)

3. Static MOO Performance Measures

Performance measures enable the quantification of an algorithm’s performance with re-

gards to a specific requirement, such as the number of non-dominated solutions found,

closeness to the true POF (accuracy), and the diversity or spread of the solutions. Ac-

cording to Zitzleret al. [76], a performance measure is defined as follows:

Definition 5. Performance Measure: An m-ary performance measure,P, is a function

P : Ωm→ R, that assigns each of themapproximated POFs,POF∗1,POF∗2, . . . ,POF∗m,

a real valueP(POF∗1,POF∗2, ...,POF∗m).

This section discusses static MOO measures that have been adapted in the literature

and used in DMOO. The discussion on static MOO performance measures is by no

means complete, and the reader is referred to [13; 41; 48; 71]for detailed information

on performance measures used for static MOO.

Outperformance relations that are used to evaluate performance measures are dis-

cussed in Section 3.1. Section 3.2 discusses performance measures that quantify an

4



algorithm’s performance with regards to accuracy, i.e. thefound non-dominated so-

lutions’ (POF∗) closeness to the true POF (POF). Performance measures that calcu-

late the diversity or spread of the solutions found are discussed in Section 3.3. Sec-

tion 3.4 discusses performance measures that calculate theoverall quality of the solu-

tions found, taking into account both accuracy and diversity.

3.1. Outperformance Relations

When an algorithm solves a MOOP where the objective functionsare in conflict with

one another, the algorithm tries to find the best possible setof non-dominated solutions,

i.e. a set of solutions that are as close as possible toPOF and where the solutions are

diverse and evenly spread alongPOF∗. However, oncePOF∗ is found, a decision

maker selects one of these solutions according to his/her own defined preferences.

Hansen and Jaszkiewicz [29] introduced an outperformance relation under the fol-

lowing assumptions:

• The preferences of the decision maker are not known a priori.

• Let POF∗A and POF∗B be two approximated POFs. Then,POF∗A outperforms

POF∗B if the decision maker finds:

– a better solution inPOF∗A than inPOF∗B for specific preferences, and

– for another set of preferences the solution selected fromPOF∗A is not worse

than solutions found inPOF∗B.

• All possible preferences of the decision maker can be modeled with functions,

referred to as a set of utility functions,U.

Definition 6. Outperformance Relation (subject to a set of utility functions) : Let

A and B be two sets representing approximations of the same POF. Letu denote an

utility function and{U |A > B} ⊆ U denote a subset of utility functions for whichA is

better thanB, i.e. {U |A > B} = {u ∈ U |u(A) > u(B)}. ThenA outperformsB, denoted

asA OU B, if U(A > B) , ∅ and U(B > A) = ∅.

The weakest assumption about the decision maker’s preferences that is generally

made when solving MOOPs is that the utility function is compatible with the domi-

nance relation, i.e. the decision maker prefers non-dominated solutions [52]. There-

fore, the decision maker can limit his/her selection of the best solution to the set of
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non-dominated solutions (ND) in A ∪ B, i.e. ND(A ∪ B). Based on the dominance

relation assumption, Hansen and Jaszkiewicz [29] defined three dominance based re-

lations, namely weak, strong and complete outperformance.These three relations are

presented in Table 1.

Table 1: Outperformance relations defined by Hansen and Jaszkiewicz [29]

Relation Symbol Definition

Weak outperformance OW A , B andND(A∪ B) = A

Strong outperformance OS A , B, ND(A∪B) = A and B\ND(A∪B) , ∅

Complete outperformance OC A , B, ND(A∪B) = A and B∩ND(A∪B) = ∅

The outperformance relations only identify whether one setis better than another

set, but doesn’t quantify with how much the one set is better than the other. Therefore,

based on the outperformance relations, Hansen and Jaszkiewicz [29] defined compati-

bility and weak compatibility with an outperformance relation. In addition to the out-

performance relations, Knowles [41] introduced the concepts of monotony and relativ-

ity that are important when evaluating the efficiency of performance measures. These

concepts are presented in Table 2. In Table 2, PM refers to performance measure.

Table 2: Performance measure concepts defined by Hansen and Jaszkiewicz [29] and Knowles [41]

Concept Definition

Weak compatibility If A O B, PM evaluates A as being not worse than B

Compatibility If A O B, PM evaluates A as being better than B

Monotony Let C contain a new non-dominated solution. Then, PM evalu-

atesA
⋃

C as being not worse thanA

Relativity Let D contain solutions ofPOF. Then, PM evaluatesD as being

better than anyPOF∗

Weak compability withOW is sufficient for weak monotony and weak relativ-

ity [41].

From the above definitions it should be clear thatOC ⊂ OS ⊂ OW, i.e. complete

outperformance is the strongest outperformance relation,and weak outperformance is
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the weakest outperformance relation. Therefore, it is mostdifficult for a performance

measure to be compatible withOW, and the easiest for a performance measure to be

compatible withOC [41]. According to Knowles [41], performance measures thatare

not compatible with these outperformance relations, cannot be relied on to provide

evaluations that are compatible with Pareto dominance.

If a performance measure is compatible with the concept of monotony, it will not

decrease a set’s evaluation if a new non-dominated point is added, which adheres to

the goal of finding a diverse set of solutions. Furthermore, if a performance measure

does not adhere to the concept of relativity, it will evaluate some approximation sets as

being better than the true POF, which is not accurate.

Knowles [41] evaluated the performance measures frequently used in MOO ac-

cording to their compatibility with the outperformance relations defined by Hansen

and Jaszkiewicz. The performance measures’ compatabilitywith the outperformance

relations, as indicated by Knowles, are highlighted below where the performance mea-

sures are discussed in more detail.

3.2. Accuracy Performance Measures

Generational Distance

The generational distance (GD) measures the convergence ofthe approximated set to-

wards the true POF (POF). The GD is defined as:

GD =

√

∑nPOF∗
i=1 d2

i

nPOF∗
(3)

wherenPOF∗ is the number of solutions inPOF∗ anddi is the Euclidean distance in the

objective space between solutioni of POF∗ and the nearest member ofPOF′. POF′

contains sampled solutions ofPOF that are used as a reference set. Therefore, GD

determines how closePOF∗ is to the sampled solutions ofPOF.

GD is easy to calculate and intuitive. However, knowledge about POF is required

and a reference set,POF′, has to be available. It is important that the reference set

contains a diverse set of solutions, since the selection of the solutions will impact on

the results obtained from this performance measure. Furthermore, since the distance

metric is used, scaling and normalisation of the objectivesare required. GD is not
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weakly compatible withOW, but is compatible withOS. Unfortunately, this perfor-

mance measure will rate aPOF∗ with only one solution that is onPOF′ better than

anotherPOF∗ that has one hundred solutions that are very close toPOF′. Therefore,

GD does not adhere to the property of monotony. Furthermore,GD does adhere to the

concept of weak relativity, because any subset ofPOF′ will always equal or improve

the GD value obtained byPOF∗s found by MOO algorithms.

It should be noted that GD is computationally expensive, especially for large or

unlimited archives, or when DMOOPs with a large number of objectives are used.

Inverted Generational Distance

To overcome non-adherence to the concept of monotony by GD, Sierra and Coello

Coello [56] introduced the inverse generational distance (IGD). The mathematical defin-

tion of IGD is the same as GD in Equation (3), except for the wayin which the distance

is calculated:

IGD =

√

∑nPOF′
i=1 d2

i

nPOF′
(4)

wherenPOF′ is the number of solutions inPOF′ anddi is the Euclidean distance in the

objective space between solutioni of POF′ and the nearest member ofPOF∗.

IGD is compatible with relativity, sincePOF′ always obtains an IGD value of zero

andPOF∗ will only receive an IGD value of zero ifPOF∗ = POF′. Furthermore, IGD

is compatible with monotony, because it will rate aPOF∗ with more non-dominated

solutions that are close toPOF as a better set than anotherPOF∗ that only has one

solution that falls withinPOF′. However, IGD is computationally expensive to cal-

culate for a largerPOF′ or a largerPOF∗, since for each point inPOF′, the distance

between that point and each of the points inPOF∗ has to be calculated. The usage of

the distance function also requires scaling and normalisation of the objective function

values, as is the case with GD.

Error Ratio

Van Veldhuizen [62] introduced the error ratio that measures the ratio of non-dominated

solutions inPOF∗ that are not elements ofPOF′ to the non-dominated solutions in

POF∗ that are elements ofPOF′. The error ratio is defined as
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E =

∑nPOF∗
i=1 ei

nPOF∗
(5)

whereei = 0 if xi ∈ POF′, ∀xi ∈ POF∗ andei = 1 if xi < POF′, ∀xi ∈ POF∗. A

small error ratio indicates a good performance.

If POF∗A has two solutions with one solution inPOF′, E = 0.5. However, if

POF∗B has one hundred solutions with one solution inPOF′ and the other solutions

very close toPOF′, E = 0.99. According toE, POF∗A is a better set of solutions than

POF∗B. However,POF∗B is more desirable. Therefore,E is only weakly compatible

with OC. E has weak relativity, because any subset ofPOF′ will achieve the lowestE

value, namelyE = 0. It is not compatible with monotony, because if a non-dominated

solution is added toPOF∗ that is not an element ofPOF′, E will increase.

The compatibility of the accuracy performance measures with the outperformance

relations and the concepts of monotony and relativity is summarised in Table 3. In Ta-

bles 3 to 5 and Tables 6 to 10,M andR refer to the concepts of monotony and relativity

respectively,C andW indicate that the performance measure is compatible or weakly

compatible with the relation respectively, and “–” indicates that the performance mea-

sure is neither compatible nor weakly compatible with the relation.

Table 3: Compatibility of accuracy performance measures
Performance Measure OW OS OC M R

GD – C C – W
IGD W C C W C

E – – W – W

3.3. Diversity Performance Measures

Diversity can be measured either by measuring how evenly thesolutions are spread

alongPOF∗ or the extent ofPOF∗.

Number of Solutions

The easiest performance measure to calculate is the number of non-dominated solutions

(NS) inPOF∗. Van Veldhuizen [62] referred to this metric as the overall nondominated

vector generation (ONVG). Even though this measure does notprovide any information

with regards to the quality of the solutions, it provides additional information when
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comparing the performance of various algorithms. For example, one algorithm may

have a better GD value, but only half of the NS that have been found by the other

algorithm.

NS is not weakly compatible with any of the outperformance relations. According

to Knowles [41] weak compatability withOW is necessary to ensure weak monotony.

However, withNS this is not the case. Adding a non-dominated solution toPOF∗ in-

creases, and thereby improves, NS. Therefore, NS is compatible with monotony. Fur-

thermore,NS is weakly compatible with relativity only if the size ofPOF∗ is smaller

or equal to the size ofPOF′.

Spacing Metric of Schott

The Spacingmetric, introduced by Schott [54], measures how evenly the points of

POF∗ are distributed in the objective space. Spacing is calculated as:

S =

√

√

1
nPOF∗ − 1

nPOF∗
∑

m=1

(davg− dm)2

with

dm = minj=1,...,nPOF∗















nk
∑

k=1

| fkm(x) − fk j(x)|














(6)

wheredm is the minimum value of the sum of the absolute difference in objective

function values between them-th solution inPOF∗ and any other solution inPOF∗,

davg is the average of alldm values andnk is the number of objective functions. IfS = 0,

the non-dominated solutions ofPOF∗ is uniformly spread or spaced [13]. However,

this does not mean that the solutions are necessarily good, since they can be uniformly

spaced inPOF∗, but not necessarily uniformly spaced inPOF [41; 18].

The spacing metric of Schott is not even weakly compatible with OW [41]. Adding

a non-dominated solution toPOF∗ will not necessarily decrease the value ofS and

POF′ does not necessarily have the lowest spacing metric value. Therefore,S does not

adhere to the principles of either monotony or relativity.

It should be noted that this performance measure was designed to be used with

other performance measures, has a low computational cost, and can provide useful

information about the distribution of the solutions found [41]. Since the Euclidean
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distance is used in the calculation of the measure, the objectives should be normalised

before calculating the measure.

Spacing Metric of Deb

S provides information with regards to how evenly the non-dominated solutions are

spaced onPOF∗. However, it does not provide any information with regards to the

extent or spread of the solutions. To address this shortcoming, Deb [15] introduced a

measure of spread, defined as:

∆ =

∑nk

k=1 de
k +
∑nPOF∗

i=1 |di − davg|
∑nk

k=1 de
k + nPOF∗davg

(7)

with di being any distance measure between neighbouring solutions, davg is the mean of

these distance measures, andde
k is the distance between the extreme solutions ofPOF∗

andPOF′.

Similar to S, ∆ is not compatible withOW and does not adhere to monotony or

relativity.

Maximum Spread

Zitzler [71] introduced a measure of maximum spread that measures the length of the

diagonal of the hyperbox that is created by the extreme function values of the non-

dominated set. The maximum spread is defined as:

MS =

√

√

nk
∑

k=1

(

POF∗i − POF∗i

)2

(8)

wherePOF∗k andPOF∗k is the maximum and minimum value of thek-th objective in

POF∗ respectively. A highMS value indicates a good extent (or spread) of solutions.

This measure can be normalised in the following way [13]:

MSnorm =

√

√

√

√

√

1
nk

nk
∑

k=1



















POF∗k − POF∗k

POFk − POFk



















2

(9)

If POF∗A outperformsPOF∗B (weakly, strongly or completely), but the non-dominated

solutions ofPOF∗B have a larger extent than the non-dominated solutions ofPOF∗B, then

POF∗A will obtain a higherMS value. Therefore,MS is not weakly compatible with

any of the outperformance relations. Adding a non-dominated solution toPOF∗ will

not necessarily lead to a higherMS value. Therefore, MS adheres to weak monotony.
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POF′ will obtain the maximumMS value, but even aPOF∗ that only has two non-

dominated solutions at the extreme points ofPOF′ will also obtain the maximum MS

value. Therefore,MS adheres to weak relativity.

C-Metric

The set coverage metric (C-metric) introduced by Zitzler [71] measures the proportion

of solutions in set B that are weakly dominated by solutions in set A. TheC-metric is

defined as:

C(A, B) =
|{b ∈ B| ∃a ∈ A: a � b}|

|B| (10)

If C(A, B) = 1, all solutions in set B are weakly dominated by set A and ifC(A, B) =

0 no solution in set B is weakly dominated by set A. LetPOF∗A andPOF∗B be the ap-

proximated POFs found by two algorithms withPOF∗A ⊂ POF∗B, ND(POF∗B) = POF∗B.

ThenC(POF∗A,POF∗B) < 1 andC(POF∗B,POF∗A) = 1. Therefore,POF∗B outperforms

POF∗A. Under the assumption that, ifC(A, B) = 1 andC(B,A) < 1 evaluates set A as

being better than set B, theC-metric is compatable withOW [41].

It is important to note that the domination operator is not a symmetric operator,

i.e. C(A, B) is not necessarily equal to 1−C(B,A). Therefore, if many algorithms are

compared against each other, this metric would have to be calculated twice for each

possible combination of algorithms. However, it should be noted that theC-metric is

cycle-inducing, in other words if more than two sets are compared, the sets may not be

ordered and in these cases no conclusions can be made [41].

If POF is known, set A can be selected as the set of sampled points of the true

POF,POF′, and set B as thePOF∗ found by the algorithm. Then theC-metric can

be calculated separately for each algorithm. LetPOF∗A and POF∗B be the approxi-

mated POFs found by two algorithms as defined above andPOF′ a reference set with

ND(POF′) = POF′ andPOF∗B ⊆ POF′. Then,C(POF′,POF∗A) = C(POF∗B) = 1 and

C(POF∗A,POF′) < C(POF∗B,POF′). In order to ensure compatibility withOW, POF∗A

has to be evaluated by theC-metric as being worse thanPOF∗B. Therefore, the follow-

ing assumption should be made: ifC(R,E) = C(E,R) = 1 andC(E,R) < C(D,R),

thenE performs worse thanD with regards to theC-metric, whereD andE are two

sets that are compared with one another using the reference set R [41]. Under this
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aforementioned assumption, theC-metric is compatible withOW when a reference set

is used.

TheC-metric does not adhere to the concept of monotony, sincePOF∗ can add a

non-dominated solution that is weakly dominated by the set that POF∗ is compared

against. However, theC-metric is weakly compatible with relativity, since

C(POF∗,POF′) cannot obtain a higherC-metric value thanC(POF′,POF∗).

U-measure

Leung and Wang [44] introduced theU-measure to measure the diversity of the found

non-dominated solutions. LetR = rk be the set of reference points, whererk is the

extreme point of objectivek of the union of all non-dominated solution of allPOF∗’s

found by the algorithms for the samePOF that are compared with one another. Letχ

be the set{di} andχ the set of{d j}, wheredi is the distance between two neighbouring

solutions andd j is the distance between a reference point,rk, and its nearest neighbour.

Let d be the average of the distances inχ and letχ∗ be the set{d′j |d′j = d j + d}. Then,

theU-measure is defined as:

U =
1

nPOF∗

nPOF∗
∑

j=1

∣

∣

∣

∣

∣

∣

d′j
dideal

− 1

∣

∣

∣

∣

∣

∣

with

dideal =

nPOF∗
∑

j=1

d′j
nPOF∗

(11)

A smallerU value indicates better uniformity of the non-dominated solutions of

POF∗. Since distances are calculated in theU-measure, the objectives have to be

normalised. Similar toS and∆, theU-measure is not weakly compatible with any of

the outperformance relations and does not adhere to monotony or relativity.

Table 4 summarises the compatibility of the diversity performance measures with

the outperformance relations and the concepts of monotony and relativity. In Tables 4

to 5, C∗ and W∗ indicate that the performance measure is either compatibleor weakly

compatible with the relation, but only under certain conditions.

3.4. Combined Performance Measures

Hypervolume

The hypervolume orS-metric (first referred to as “the size of the space covered”)mea-
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Table 4: Compatibility of diversity performance measures
Performance Measure OW OS OC M R

NS – – – C W∗

S – – – – –
∆ – – – – –

MS – – – W W
C W∗ C C – W
U – – – – –

sures how much of the objective space is dominated by a non-dominated set [74; 75].

The definition of a dominated region and the traditional definition of the hypervolume

are as follows:

Definition 7. Dominated Region: Let f1 = { f11, f12, . . . , f1k} be a solution in the

objective space andfre f a reference vector dominated byf1. Then the region that is

dominated byf1 and bounded byfre f is defined as the set,

R(f1, fre f ) ,
{

fb | fb ≺ fre f and f1 ≺ fb, fb ∈ Rnk
}

(12)

Let A be a non-dominated set of vectors,f i , for i = 1, . . . , |A|. Then the region domi-

nated byA and bounded by the reference vector,fre f , is defined as the set:

R(A, fre f ) ,
⋃

i=1,...,|A|
R(f i , fre f ) (13)

Definition 8. Hypervolume: The hypervolume (HV) orS-metric of setA with respect

to the reference vectorfre f is the hyperarea or Lebesgue integral of the setR(A, fre f ).

The reference vector can be any vector outside the feasible objective space, since

this will result in a non-negative value for all possible non-dominated sets in the fea-

sible objective space. Usually, the reference vector or reference point that is used in

the HV calculation is the vector that consists of the worst value for each objective of

the union of all non-dominated solutions of allPOF∗ that are compared against each

other. It should be noted that the selected reference vectorwill affect the ordering

of the non-dominated sets that are compared against each other, since all of the non-

dominated sets use the same reference vector [41]. A high HV value indicates a good

approximation set.

The HV is compatible withOW if the upper boundary of the dominated region is

set in such a way that all feasible non-dominated sets that are evaluated have a positive
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HV value. The HV is therefore compatible with the outperformance relations. The

HV is weakly compatible with monotony and weakly compatiblewith relativity. It is

scaling independent and no prior knowledge of the true POF isrequired. According

to Zitzler et al. [72] the HV is the only performance measure in the literaturethat has

the following two qualities: if an approximation setA dominates another setB the HV

provides a strictly better value forA; and if a set obtains the maximum possible HV

value for a MOOP, it contains all Pareto-optimal objective values.

One flaw of the HV is that it is biased towards convex areas of the POF [72]. Fur-

thermore, it is computationally expensive to calculate, with a computational cost of

O(nk+1) with k representing the number of objectives [41]. However, recent research

developed algorithms that reduce the computational cost ofthe HV. For example, Fon-

secaet al. [22] proposed anO(|A| log |A|) algorithm and Beume and Rudolph [5] pro-

posed an algorithm with a complexity ofO(|A|k/2), whereA is the non-dominated set

andk is the number of objectives.

Hypervolume Ratio

To overcome the bias of the HV towards convex regions of the POF, Van Veldhuizen [62]

proposed the hypervolume ratio (HVR), defined as:

HVR=
HV(POF∗)
HV(POF)

(14)

The HVR normalises the HV and, assuming that the maximum HV isobtained by

the true POF, the value of the HVR will be between 0 and 1. A highHVR indicates a

good approximated POF. It should be noted that, for the HVR calculation, the reference

vector is selected as the worst objective values for each objective from the union of the

non-dominated solutions of allPOF∗ that are compared against each other, as well as

POF′.

Similar to the HV, the HVR is compatible withOW if the upper boundary of the

dominated region is set in such a way that all feasible non-dominated sets that are

evaluated have a positive HV value. Therefore, the HVR is compatible with the outper-

formance relations. Furthermore, the HVR is weakly compatible with monotony and

relativity.
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ǫ-metric

Zitzler et al. [76] presented theǫ-metric to compare approximation sets. It measures

the factor by which an approximation set is worse than another approximation set with

respect to all objectives, i.e. it provides the factorǫ where for any solution in set B

there is at least one solution in set A that is not worse by a factor of ǫ in all objectives.

The ǫ-measure uses the concept ofǫ-dominance. The definition of objective vector

ǫ-domination is:

Definition 9. Weak Objective Vectorǫ-Domination: An objective vectorf1 ǫ-dominates

another objective vectorf2, denoted byf1 ≺ǫ f2, iff f1(xi)/(1 + ǫ) ≤ f2(xi), ∀i =

1, . . . ,ni , and ∃ j = 1, . . . ,ni : f1(x j)/(1+ ǫ) < f2(x j).

Using the above definition, theǫ-metric is defined as:

Iǫ(A, B) = inf
ǫ∈R
{∀f2 ∈ B ∃f1 ∈ A: f1(xi) ≺ǫ f2(xi)} (15)

Theǫ-metric is not weakly compatible withOW, but is compatible withOS andOC.

Adding a non-dominated solution may lead to a worseIǫ value. Therefore, theǫ-metric

is not weakly compatible with monotony.Iǫ(POF∗,POF′) = 1 if POF∗ = POF′. In

addition,Iǫ(POF∗,POF′) = 1 if POF∗ contains some solutions fromPOF′. Therefore,

Iǫ is weakly compatible with relativity.

The compatibility of the combined performance measures with the outperformance

relations are summarised in Table 5.

Table 5: Compatibility of combined performance measures
Performance Measure OW OS OC M R

HV C∗ C∗ C∗ W∗ W∗

HVR C∗ C∗ C∗ W∗ W∗

Iǫ – C C – W

4. Current DMOO Performance Measures

This section discusses performance measures that are currently being used to evalu-

ate the performance of DMOO algorithms. Section 4.1 discusses performance mea-

sures that quantify the accuracy of the found POF. Performance measures that are
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used to measure the diversity of the non-dominated solutions are discussed in Sec-

tion 4.2. Combined performance measures that measure accuracy and diversity of the

non-dominated solutions are discussed in Section 4.3. Section 4.4 discusses the mea-

surement of an algorithm’s robustness when an environment change occurs.

4.1. Accuracy Performance Measures

GD Measure

Mehnenet al. [49] used the GD metric to evaluate the performance of algorithms solv-

ing DMOOPs. They calculated the GD metric in decision space,since the DMOOPs

that were used in the study had POSs that dynamically shiftedover time, and named the

performance measureGτ. If GD is calculated in decision space, GD measures the dis-

tance of the approximated POS,POS∗, to the true POS,POS. Zhouet al.[70] used the

GD metric (and the variance ofGD) in objective space for DMOO, but referred to the

performance measure as the distance indicatorD. A number of other researchers have

usedGD to evaluate DMOO algorithms, as shown in Table 7. Goh and Tan adapted

GD for DMOO as follows:

VD =
1
τ

τ
∑

t=1

VD(τ)

with

VD(τ) =

√

nPOF∗
∑nPOF∗

i=1 d2
i (τ%τt)

nPOF∗
(16)

whereτ is the current iteration number,τt is the frequency of change and % is the

modulo operator. The performance measure, referred to as variational distance (VD), is

calculated in the decision space every iteration just before a change in the environment

occurs.

Similar to GD, VD is not weakly compatible withOW, but is compatible withOS

andOC. If a new non-dominated solution is added toPOF∗ that is further away from

POF than the other solutions inPOF∗, VD will increase. Therefore, VD is not weakly

compatible with monotony. However, the GD value ofPOFwill always be less or equal

to the GD value of anyPOF∗. Therefore, GD is weakly compatible with relativity.

Since distance is used in the calculation of VD, the objectives have to be normalised.
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When solving DMOOPs, similar to VD, the performance measure is calculated

every iteration just before an environmental change occurs. Therefore, prior knowledge

of when changes occur is required. However, if a performancemeasure is calculated

while the algorithm is running (also referred to as online calculation), prior knowledge

about changes in the environment is not required. In this case the performance measure

can be calculated on the non-dominated solutions that were obtained at the iteration

just before the change occurred. Furthermore, if the performance measure is calculated

after the algorithm has completed its runs (also referred toas offline calculation), the

algorithm can keep record of the iterations when changes occurred.

Success Ratio

Similar to the error ratio (refer to Section 3.2), Mehnenet al. [49] used the success

ratio to quantify the ratio of the solutions found that are members of the true POF. The

success ratio is defined as

SCτ =
|{x| f (x) ∈ POF′}|

|POF∗| (17)

where a high success ratio, SCτ, indicates good performance.

If an algorithm finds many non-dominated solutions that are not Pareto-optimal but

very close toPOF′, the POF∗ will obtain a lower SCτ value than an algorithm that

finds only one Pareto-optimal solution. Therefore, SCτ is only weakly compatible with

OC and is not weakly compatible with eitherOW or OS.

If a non-dominated solution is added toPOF∗ that is not Pareto-optimal, the value

of SCτ decreases and therefore SCτ is not compatible with monotony. SincePOF′

will obtain the same SCτ value than subsets ofPOF′, SCτ is weakly compatible with

relativity.

The compatibility of the accuracy performance measures with the outperformance

relations and the concepts of monotony and relativity is summarised in Table 6.

Table 6: Compatibility of accuracy performance measures
Performance Measure OW OS OC M R

GD – C C – W
SCτ – – W – W

In Tables 7 to 9, x indicates that the performance measure wasused, x∗ indicates

18



that the performance measure was calculated in decision space and x⊲ indicates that the

variance of the performance measure was used. The usage of the accuracy performance

measures in the DMOO literature is summarised in Table 7 (refer to Tables 3 and 6).

Table 7 shows that most researchers have used theGD or VD performance measure to

quantify the accuracy ofPOF∗.

Table 7: Usage of DMOO accuracy performance measures
PM Usage Authors
GD x [20; 28; 30; 70; 36; 10; 37; 43; 51]

x∗ [20; 30; 49; 36; 37; 51]
x⊲ [28; 30; 70; 43]
x∗⊲ [30]

IGD x [46; 64; 65]
x⊲ [64]

VD x [31]
x∗ [60; 25; 24; 42]

Acc x [9; 6; 7; 8; 57; 31]
SCτ x [49]

4.2. Diversity Performance Measures

MS′ measure

Goh and Tan [25] introduced an adapted version ofMS (refer to Equation (9) in Sec-

tion 3.3) to measure how wellPOF∗ coversPOF′. Contrary toMS, the adaptedMS,

MS′, takes into account the proximity ofPOF∗ to POF′. MS′ is defined as:

MS′ =

√

√

√

√

√

1
nk

nk
∑

k=1



















min[POF∗k,POF′k] −max[POF∗k,POF′k]

POF′k − POF′k



















2

(18)

Similar to MS, MS′ is not weakly compatible with any of the outperformance

relations. Adding a non-dominated solution toPOF∗ will not necessarily lead to a

higherMS′ value. Therefore,MS′ adheres to weak monotony.POF′ will obtain the

maximum MS value, but even aPOF∗ that only has two non-dominated solutions at

the extreme points ofPOF′ will also obtain the maximum MS value. Therefore,MS′

adheres to weak relativity.

PL measure

Since many diversity performance measures are based on the Euclidean distance and
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therefore do not take the shape of the POF into account, Mehnen et al. [49] introduced

a performance measure, thePL measure, that is based on path lengths or path integrals.

The length of the path between two solutions is defined as:

Definition 10. Length of Path between Two Solutions: Let γ be the path between

two solutions in objective space,a andb, that is differentiable in [a,b]. Then the length

of a path between [a,b] on γ is defined as:

L(γ,a,b) :=
∫ a

b
|γ̇| dt =

∫ a

b

√

γ̇1
2 + . . . + γ̇m

2 dt (19)

whereγ̇ is the derivative ofγ and|γ̇| is the Euclidean norm of ˙γ.

ThePL performance measure is the normalised product of the path between sorted

neighbouring solutions onPOF, defined as

PL :=
ln
(

∏

f (xi )∈POF ζ(x)
)

ln eLPOF
=

∑

f (xi )∈POF ln(ζ(x))

LPOF

(20)

whereζ(xi) = L(γ, f (xi), f (xi+1)) + 1 andf represents the objective functions. For the

calculation ofPL, a solution is considered as being inPOF if the solution is within an

ǫ-region nearPOF.

In order to calculate thePL performance measure, an analytic closed description

of the true POF is required. However, according to Mehnenet al. the calculation of

thePL measure is complicated when a DMOOP has more than two objectives, or has

a discontinuous POF. In these situations Mehnenet al. [49] recommend the usage of

S [54] (refer to Section 3.3).

PL is not weakly compatible with the outperformance relations. However, it is

weakly compatible with monotony, since the value ofPL increases when a new non-

dominated solution that is withinǫ-distance ofPOF is added toPOF∗.

Set Coverage Metric

Guanet al.[28] introduced a set coverage measure that is based on theS andD metrics

introduced by Zitzler [71]. The HV of the objective space that is dominated byPOF∗

but not byPOF′, referred to as theD-metric, is defined as

D(POF∗,POF′) = HV(POF∗ + POF′) − HV(POF′) (21)

The set coverage metric is then defined as

η =
D(POF∗,POF′)

HV(POF′)
+

D(POF′,POF∗)
HV(POF′)

(22)
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Therefore, the set coverage metric,η, is the normalised sum of the:

• HV of the objective space that is dominated byPOF∗ and not byPOF′, and

• HV of the objective space that is dominated byPOF′ and not byPOF∗.

η is weakly compatible withOW if the HV is weakly compatible withOW. There-

fore, η is weakly compatible withOW if the reference vector is selected in such a

manner that that all feasible non-dominated sets that are evaluated have a positive HV

value. If the reference vector is selected in this manner,η is compatible with all the

outperformance relations. Furthermore,η is then weakly compatible with monotony

and weakly compatible with relativity.

Pareto Front Extent

Zhang and Qian [68] introduced the coverage scope (CS) measure to quantify the av-

erage width or coverage of the non-dominated set. CS is calculated by averaging the

maximum distance between each solution inPOF∗ and the other solutions inPOF∗.

Therefore, CS is defined as

CS =
1

nPOF∗

nPOF∗
∑

i=1

max{‖ f (xi) − f (x j) ‖} (23)

with xi , x j ∈ POF∗, i ≥ 1 and j ≤ nPOF∗ .

A higher CS value indicates a better performance. CS is similar to S [54] (refer

to Section 3.3), but uses the maximum distance whereS uses the minimum distance

between the non-dominated solutions inPOF∗. Similar toS, CS is not weakly com-

patible with the outperformance relations. Furthermore, CS is not weakly compatible

with monotony, since adding a non-dominated solution toPOF∗ can decrease the CS

value. The CS value ofPOF′ can be smaller than the CS value ofPOF∗. Therefore, CS

is not weakly compatible with relativity. A summary of the compatibility of diversity

performance measures is shown in Table 8.

Table 8: Compatibility of diversity performance measures
Performance Measure OW OS OC M R

MS′ – – – W W
PL – – – W –
η C∗ C∗ C∗ W∗ W∗

CS – – – – –

Table 9 summarises the usage of the diversity performance measures in the DMOO
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literature (refer to Tables 4 and 8). In Table 9, Entropy refers to the normalised entropy

between thePOF∗s, Accum refers to the accumulated genetic diversity that measures

the moment of inertia and NE refers to the variation of the minimum normalised Eu-

clidean distance of thePOF∗ solutions. Table 9 indicates that most researchers usedS

andMS to quantify the diversity of the non-dominated solutions inPOF∗.

Table 9: Usage of DMOO diversity performance measures
PM Authors
NS [28; 27]
C [63; 1; 68]
η [28]
CS [68]
S [49; 27; 26; 31; 68]
U [63; 47]
PL [49]
MS, MS’ [60; 25; 24; 42; 31]
∆ [67]
Entropy [10; 3]
Accum [3]
NE [28]

4.3. Combined Performance Measures

Accuracy Measure

A measure of accuracy introduced by Weicker [66] for DSOO wasadapted by Ćamara

et al. [57] for DMOO. This measure quantifies the quality of the solutions as a relation

between the HV ofPOF∗ and the maximum HV (HVmax) that has been found so far.

The accuracy measure is defined as

acc(t) =
HV(POF∗(t))

HVmax(POF∗(t))
(24)

The accuracy measure,acc, is compatible withOW if the upper boundary of the

dominated region is set in such a way that all feasible non-dominated sets that are

evaluated have a positive HV value (refer to Section 3.4). Under these conditions,acc

is compatible with the outperformance relations and weaklycompatible with monotony

and relativity.

Hypervolume Difference

Zhou et al. [70] suggested to use the hypervolume difference (HVD) to measure the
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quality of the found POF. HVD is defined as

HVD = HV(POF) − HV(POF∗) (25)

However, when the true POF is unknown, the HVD cannot be used.Zheng [69]

used the maximum HV to measure the quality of the found POF.

Cámaraet al. [8] extended the definition of their accuracy measure (Equation (24))

to use the HVD when the true POF is known. The alternative accuracy measure is

defined as

accalt(t) = |HV(POF(t)) − HV(POF∗(t))| (26)

whereaccalt(t) is the absoluteHVDat timet. The absolute values ensures thataccalt(t) ≥

0, even ifHV(POF∗) > HV(POF′).

HVD is compatible with the outperformance relations if HV iscompatible with the

outperformance relations.

Optimal Subpattern Assignment Measure

Recently Tantaret al. [61] introduced performance measures that are based on per-

formance measures used in quantifying the tracking qualityin multi-object tracking

problems. The performance measures are developed based on the optimal subpattern

assignment (OSPA) measure that can be used to compare sets with different cardinal-

ity [55].

Let P = (F,X,N) define a DMOOP withF andX representing a set of objective

functions and a set of decision variables respectively.N represents the neighbourhood

function described by a sphere of centerc and radiusr, defined as

N(c, r) = {x ∈ X| d(x, c) < r and ∃h| xhc} (27)

whered is the distance between a solution,x, and the center point of the neighbour-

hood,c, and∃h|xhc indicates that the neighbourhood can be reached through a trans-

formationh.

Let A andB represent two approximated POFs,POF∗A andPOF∗B. Then the fol-

lowing two performance measures are defined:

Mloc(X,Y) =



















1
nPOF∗B

min
j∈P

nPOF∗A
∑

i=1

d(xi , yj(i))
p)



















1
p

(28)
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whered(x, y) = min{c,d(x, y)} is the minimum distance between two solutions that are

cut off by c. When comparingA and B, the solutions fromB that are in the neigh-

bourhood of a given solution fromA are determined by considering all permutations of

solutions fromB, referred to as the setP. Mloc quantifies the quality of the coverage

of A as compared toB. A drawback of this performance measure is the computational

cost, because of the calculation of permutations for each solution under consideration.

The other performance measure is defined as

Mcard(X,Y) =













cp(nPOF∗B
− nPOF∗A

)

nPOF∗B













1
p

(29)

Mcard is a cardinality penalty function that is used when|A| , |B|, and is zero if the

two sets have the same cardinality.Mcard measures the influence of the cardinality

difference on the overall quality of the larger set, with the cut-off term as the error

quantification factor.

The OSPA metric is then defined as:

OS PA(X,Y) = Mloc(X,Y) + Mcard(X,Y) (30)

OS PA is not weakly compatible with the outperformance relations. However,

OS PAis weakly compatible with monotony.

Table 10 summarises the compatibility with the outperformance relations by the

combined performance measures.

Table 10: Compatibility of combined performance measures
Performance Measure OW OS OC M R

HVD C∗ C∗ C∗ W∗ W∗

accalt C∗ C∗ C∗ W∗ W∗

OS PA – – – W –

The usage of the combined performance measures in the DMOO literature is sum-

marised in Table 11 (refer to Tables 5 and 10).

4.4. Robustness Performance Measures

The robustness of an algorithm refers to how well the algorithm recovers after an

environment change occurs.

Stability Measure

The effect of the changes in the environment on the accuracy (acc defined in Equa-
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Table 11: Usage of DMOO combined performance measures
PM Usage Authors
HV x [9; 6; 27; 59; 1; 7; 3; 26; 65]
HVR x [17; 46; 69; 39; 8; 57; 14; 31]
HVD x [70; 8; 57]
HVmax x [69; 7]

x⊲ [69]
Iǫ x [40]
OSPA x [61]

tion 24) of the algorithm can be quantified by the measure of stability that was in-

troduced by Weicker [66] for DSOO and adapted for DMOO by Cámaraet al. [57].

Stability is defined as

stab(t) = max{0,acc(t − 1)− acc(t)} (31)

where a lowstabvalue indicates good performance.

The compatibility ofstabdepends on the definition ofacc. If acc as defined in

Equation (24) is used,stabis compatible withOW if acc is compatible withOW. Un-

der these conditions,stabis compatible with the outperformance relations and weakly

compatible with monotony and relativity.

Reactivity Measure

Cámaraet al.[57] presented a measure of reactivity based on the reactivity performance

measure introduced by Weicker [66] for DSOO. Reactivity measures how long it takes

for an algorithm to recover after a change in the environment, by determining how

long it takes for an algorithm to reach a specified accuracy threshold. The reactivity

performance measure is defined as

react(t, ǫ) = min{t′ − t|t < t′ < τmax, t
′ ∈ N, acc(t′)

acc(t)
≥ (1− ǫ)} (32)

whereτmax is the maximum number of iterations or generations.

Similar to stab, react is weakly compatible withOW if acc is weakly compatible

with OW. react’s compatibility with monotony and relativity also dependson acc’s

compatibility with monotony and relativity.

The compatibility with the outperformance relations by therobustness performance

measures is summarised in Table 12.
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Table 12: Compatibility of robustness performance measures
Performance Measure OW OS OC M R

stab C∗ C∗ C∗ W∗ W∗

react C∗ C∗ C∗ W∗ W∗

Table 13 summarises the usage of performance measures that quantifies robustness

in the DMOO literature.

Table 13: Usage of DMOO robustness performance measures
PM Authors
stab [9; 6; 7; 8; 57; 31]
react [9; 6; 7; 8; 57]

When algorithms solve DMOOPs, five major issues should be taken into consider-

ation when selecting performance measures to quantify the performance of the algo-

rithms, namely: algorithms losing track of the changing POF, the effect of outlier so-

lutions in the found POF, boundary constraints violations,calculating the performance

measures in either the objective or decision space, and comparing the performance of

the various algorithms. These issues are discussed in the next section.

5. Issues with Current DMOO Performance Measures

Section 4 discussed a number of performance measures that have been used to quantify

the performance of algorithms on DMOOPs. Even though these measures have been

used in a number of articles, they suffer from a number of problems mostly related to

aspects of dynamic environments [33]. These problems make general applicability of

these performance measures to all DMOOPs not possible.

Section 5.1 discusses misleading results that can occur when algorithms lose track

of the changing POF. The effect of outlier solutions inPOF∗ on the quantification of

an algorithm’s performance is discussed in Section 5.2. Section 5.3 discusses the effect

of boundary constraints violations on the performance of DMOO algorithms. Further-

more, performance measures can be calculated in either the objective or decision space

as discussed in Section 5.4. Finally, Section 5.5 discussesissues when comparing the

performance of the various algorithms.
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5.1. Losing Track of the Changing POF

When a DMOO algorithm loses track of the changing POF, andPOFchanges over time

in such a way that itsHV value decreases, many of the current performance measures

will give misleading results [33]. Figure 1 illustrates example POFs where the POF

changes over time in such a way that, if theHV is calculated with the reference vector

being the worst values of each objective, theHV will decrease over time. A decrease

in the HV will occur if for each example the POF changes from convex to concave.

Figure 1 illustrates three such POFs. In Figure 1, the first POF is represented by the

bottom line and the last POF by the top line.

(a) FDA3 (b) FDA2 (c) dMOP2

Figure 1: Examples of DMOOPs where theHV value ofPOF decreases over time for certain time steps

The problem of losing track of the POF was first observed by Helbig and En-

gelbrecht [34], where five algorithms were used to solve the FDA2 DMOOP. These

algorithms included a dynamic VEPSO (DVEPSO) which uses clamping to manage

boundary constraint violations (DVEPSO-A) [34]; DVEPSO that uses per element re-

initialisation to manage boundary constraint violations (DVEPSO-B) [34]; DNSGA-

II-A, a variation of NSGA-II where a percentage of individuals are randomly selected

and replaced with newly created individuals if an environment change occurs [17];

DNSGA-II-B, a variation of NSGA-II where, after an environment change, a percent-

age of individuals are randomly selected and replaced with individuals that are mutated

from existing individuals [17]; and dCOEA [25]. Figure 2 illustrates example POFs ob-

tained by these algorithms in comparison withPOF (Figure 2(f)). It is clear from these

figures that DNSGA-II-A, DNSGA-II-B and dCOEA lost track of the changing POF,

with the DVEPSO algorithms being more successful in tracking the POF. It is therefore

27



expected that the values of the performance measures shouldbe better for the DVEPSO

algorithms than for the evolutionary algorithms.

The performance measure values of these algorithms for a change frequency of

10 is presented in Table 14, whereNS refers to the number of non-dominated solu-

tions found,S refers to the spacing measure defined by Schott [54],HVR refers to

the HV ratio [46],AccandS tabrefers to measures of accuracy and stability presented

by Cámaraet al. [9], andVD andMS refer to the adapted generational distance and

maximum spread performance measures for dynamic environments proposed by Goh

and Tan [25].

As shown in Table 14, performance measuresVD andMS indicate the DVEPSO

algorithms to be better than the evolutionary algorithms. However, the measures that

make use of theHV, namelyHVR, AccandS tab, rank the evolutionary algorithms as

being better than the DVEPSO algorithms. This occurs since the HV value ofPOF

decreases over time and therefore from the time where an algoritm loses track of the

changing POF, itsHV value is higher than that ofPOF and therefore higher than that of

algorithms that are tracking the changing POF. Since theHV value ofPOF decreases

over time,HVR (which divides theHV of POF∗ by the HV of POF) still does not

address this problem.

The following papers used theHV or HVRwithout using any accuracy measure that

requires knowledge of the true POF: [1; 3; 6; 7; 8; 9; 14; 17; 26; 27; 39; 57; 59; 69].

Therefore, if any of the algorithms that were evaluated in these studies lost track of the

changing POF, the performance measure values that were obtained may be misleading.

Table 14: Performance Measure Values for FDA2
τt Algorithm NS S HVR Acc Stab VD MS R
10 DVEPSO-A 73.4 0.00118 0.99533 0.97848 0.00049 0.458240.90878 4
10 DVEPSO-B 63 0.00391 0.99905 0.98157 0.00029 0.43234 0.88916 3
10 DNSGAII-A 39.4 0.00044 1.0044 0.98681 9.565x10−06 0.71581 0.77096 2
10 DNSGAII-B 39.6 0.00042 1.00441 0.98683 9.206x10−06 0.71681 0.77866 1
10 dCOEA 38.4 0.00051 1.00209 0.98454 0.00122 0.70453 0.61923 5

The issue of an algorithm losing track of the changing POF is unique to DMOO.

In order to overcome this problem,accalt proposed by Ćamaraet al. (refer to Equa-

tion (26) in Section 4.3) should be used when thePOF is known. Furthermore, ifaccalt
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(a) POF∗ found by DVEPSO-A (b) POF∗ found by DVEPSO-B

(c) POF∗ found by DNSGA-II-A (d) POF∗ found by DNSGA-II-B

(e) POF∗ found by dCOEA (f) POF of FDA2

Figure 2:POF andPOF∗ found by various algorithms for FDA2 withnt = 10,τt = 10 and 1000 iterations

is used foracc, S tabwill also be reliable even if an algorithm loses track ofPOF.

If POF is unknown, as is the case with most real-world problems, thedeviation

of the performance measures that use theHV measure should also be calculated. If

the performance measure’s deviation varies much more for certain algorithms, it may

indicate that one or more of the algorithms have lost track ofthe changing POF and that
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the performance measure can not reliably be used to compare the performance of the

different algorithms. Therefore, the graphs ofPOF∗s should be plotted and checked to

determine whether any algorithm has lost track of the changing POF.

Even though various performance measures were used, the misleading performance

measures can play a large enough role to influence the overallranking of the algorithms.

This is shown in Table 14. Even though the DVEPSO algorithms ranked the highest

with regards toNS, VD andMS, the measures that make use of theHV value affected

the ranking in such a way that the DVEPSO algorithms ranked asnumber 3 and 4

respectively and were outranked by the DNSGA-II algorithms- portraying incorrect

ordering.

It should be noted that the stability measure,S tab, proposed by Ćamaraet al. [9]

measures the change in the values ofaccat two consecutive time steps (refer to Sec-

tion 4.4). Under normal circumstances a lowS tabvalue indicates that the performance

of the algorithm is not severely affected by the change in the environment. However,

in situations where one or more algorithm(s) lost track of the changing POF, the low-

estS tabvalue will be obtained by the algorithms that lost track of the changing POF.

Therefore, the results obtained with theS tabperformance measure will be mislead-

ing. Table 14 shows that the NSGA-II algorithms obtained a betterS tabvalue than the

DVEPSO algorithms. Clearly, as indicated by the POFs shown in Figure 2, this is not

the case.

Even thoughS tabhas been proposed to provide additional information an not to

be used on its own, it should be noted that the choice of the performance measure used

to measureacc influences the reliability ofS tab.

5.2. Outliers in the POF

When algorithms solve DMOOPs and the environment changes frequently, thePOF∗

that has been found by the algorithm for a specific time step may contain outliers [33].

This occurs, because in the number of iterations or generations available to the algo-

rithm to solve the specific POF, the algorithm found non-dominated solutions that are

further away from the true POF. In the time available before the environment changes,

the algorithm has not found any solutions closer to the true POF that dominates these
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outlier solutions. Figure 3 illustrates an examplePOF∗ that contains outliers.

(a) POF∗ of dMOP2 with outliers(b) Zoomed into POF region of (a) (c) POF of dMOP2

Figure 3: Example of aPOF∗ that contains outlier solutions.

Outliers will skew results obtained using:

• distance-based performance measures, such asGD, VD, PL, CS andMloc,

• performance measures that measure the spread of the solutions, such asMS, and

• the HV performance measure.

The influence of outlier solutions on the calculation ofGD andVD is illustrated in

Table 15. Due to the large distance between the outliers andPOF as shown in Figures 3

and 4, the resultingGD andVD is much larger with the outliers present compared to

when the outliers are not present. However, it should be noted that the severity of the

influence of outliers on distance calculations depends on the number of outliers and

their distance fromPOF.
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Figure 4:POF∗ of FDA1 with outlier solutions
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Table 15: GD, VD and MS values for FDA1
Outliers GD VD MS
Yes 2.05565 4.596574 0.91833
No 0.00942 0.016311 0.4342

Furthermore, when a performance measure, such asMS of Cámaraet al. [9], mea-

sure the extent or spread of the approximated POF, these outlier solutions may cause

the performance measure to be misleading with regards to theperformance of the algo-

rithm. In Figure 4, the outlier solutions’f1 and f2 values will become thePF∗i andPF∗i

in the f2 and f1 objective in Equation (9) respectively. In Figure 4,POF∗ only contains

non-dominated solutions withf1 values in the range of [0.2,0.7] and f2 values in the

range of [0,0.5] without the outlier solutions. However, with the outliersolutions the

f1 values will be calculated as being in the range of [0,1.0] and f2 values in the range

of [0.2,3]. This will result in the maximumMS value and will not give a true reflection

of the diversity of solutions that has been found by the algorithm. The influence of the

outliers on the value ofMS is shown in Table 15.

When solving DMOOPs, many researchers use theHV performance measure, es-

pecially whenPOF is unknown. When comparing various algorithms’POF∗s, the

same reference vector is used.HV values that are calculated with different reference

vectors cannot be compared against each other. Furthermore, outlier solutions influence

the reference vector values that are used to calculate the HV. Typically, the reference

vector is chosen as the worst values obtained for each objective. Therefore, forPOF∗

in Figure 4 the reference vector for theHV is [1.1,3.1] and [1.1,1.1] with and without

the outlier values respectively. This results in much larger HV values when outliers

are present, as shown in Table 16. From Table 16 it is clear that HVRandaccalt pro-

vide a more accurate representation of the performance of the algorithm, resulting in

a betterHVR value without outliers than with the outliers. However, when the HV

is used, thePOF∗ with outliers obtain a betterHV value than thePOF∗ without the

outliers. Therefore, ifPOF is unknown and theHV is used, outlier solutions may lead

to misleading results and algorithms being ranked incorrectly.

One approach to manage outliers inPOF∗ is to remove the outliers fromPOF∗.
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Table 16: HV, HVR and HVD values for FDA1
Outliers HV HVR accalt
Yes 2.49898 0.84461 0.45974
No 0.69798 0.91994 0.06074

However, no consensus exists on the approach that should be followed to decide which

non-dominated solutions inPOF∗ should be classified as outliers.

It should be noted that, as the number of objectives increases, more outlier solutions

may become present inPOF∗. This is the case, since as the number of objectives

increases, more solutions that are found by the algorithm will be non-dominated with

regards to the other solutions inPOF∗. Furthermore, outliers inPOF∗ will cause the

same problems when solving static MOOPs. However, since algorithms generally have

longer time to converge towardsPOF with static MOOPs than with DMOOPs where

the environment changes, the possibility of the occurrenceof outliers increases when

solving DMOOPs.

5.3. Boundary Constraint Violations

The candidate solutions of certain computational intelligence algorithms tend to move

outside the boundary constraints of an optimisation problem while searching for so-

lutions. For example, it has been shown theoretically that most particles in a particle

swarm optimisation (PSO) algorithm [38] leave the bounds within the first few iter-

ations [18; 23]. If a particle finds a better solution outsidethe bounds, its personal

best position is set to this new position. Should this position be better than the current

neighbourhood or global best, other particles are also pulled outside of the bounds.

Consequently, particles may converge on a solution outsidethe bounds of the search

space. This behaviour of particles is empirically analyzedby Engelbrecht [19].

If a genetic algorithm (GA) [35] uses blending cross-over, such as parent-centric

cross-over [16], offspring may be generated outside the boundaries of the searchspace

due to the stochastic component of the blending process.

Most evolutionary programming [21] algorithms sample mutational step sizes from

zero-mean distributions with tails that asymptotically approach infinity and negative in-

finity. Consequently, large mutational step sizes can potentially be added to parent in-
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dividuals, moving offspring outside of the bounds. If such offspring have better fitness

than parent individuals, these offspring survive to the next generation with a chance of

obtaining a solution that does not lie within the bounds of the search space.

With differential evolution’s [58] mutation operator, a weighted difference of two

vectors are added to the parameter vector. If this weighted difference is large, it may

cause the trial vector to move outside the boundary constraints of the optimisation

problem.

Most unconstrained DMOOPs have boundary constraints that limit the search space.

However, if an algorithm does not manage boundary constraint violations, infeasible

solutions may be added toPOF∗. These infeasible solutions may dominate feasible

solutions inPOF∗, which will cause the feasible solutions to be removed fromPOF∗.

Furthermore, the infeasible solutions may cause misleading results with regards to an

algorithm’s performance.

Figure 5(a) illustrates aPOF∗ that was found by dynamic VEPSO (DVEPSO)

that did not manage boundary constraint violations (DVEPSOu) when solving dMOP2,

DVEPSO that manages boundary constraint violations (DVEPSOc), and the true POF

(POF). From Figure 5 it is clear thatPOF∗ of DVEPSOu has a larger HV value than

bothPOF∗ of DVEPSOc (refer to Figure 5(b)) andPOF (refer to Figure 5(c)). This is

confirmed in Table 17. This incorrectly indicates that thePOF∗ that contains solutions

that are outside the bounds of the search space to be better. Therefore, when comparing

various algorithms with one another, it is important to check that all algorithms manage

boundary contraint violations to ensure a fair comparison.It should be noted that the

issue of boundary constraint violations is applicable to both SMOO and DMOO.

Table 17: HVR values for dMOP2
Algorithm HVR
DVEPSOu 1.00181
DVEPSOc 0.99978

5.4. Objective Space versus Decision Space

Accuracy measures, such asVD or GD, can be calculated with respect to either the

decision or the objective space. Using objective space,VD measures the distance be-
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(a) POF∗ of dMOP2 with feasi-

ble and infeasible solutions

(b) POF∗ of dMOP2 with only

feasible solutions

(c) POF of dMOP2

Figure 5: Example of aPOF∗ that contains infeasible solutions due to boundary constraint violations

tween the non-dominated solutions ofPOF∗ andPOF′. Therefore,VD measures the

closeness ofPOF∗ to POF. Since one of the goals of solving a DMOOP is to track

the changing POF, the accuracy should be measured in the objective space. If theVD

measure is calculated in the decision space, the distance betweenPOS∗ andPOS is

calculated. Calculating theVD measure in the decision space may be useful to deter-

mine how closePOS∗ is from POS. However, if for a DMOOP a small change in the

POS causes a big change in the POF, it may occur that even though the algorithm’s

POS∗ is very close toPOS, POF∗ is quite far fromPOF. This is illustrated with an

example DMOOP defined as:
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Minimize: f (x, t) = ( f1(xI),g(xII) · h (xIII, f1(xI),g (xII) , t))
f1(xI) = x1

g(xII) = 1−∑xi∈xII

√
xi −G(t) −∑x j∈xIII

(

xj −G(t)
)2

h(xIII, f1,g, t) = 1−
(

f1
g

)H(t)

where:
G(t) = sin(0.5πt), t = 1

nt

⌊

τ

τt

⌋

H(t) = 1.5+G(t)
xI ∈ [0,1]; xIIi , xIIIi ∈ [−1,1]

(33)

wherexI, xII andxIII are subsets of the decision variables,f1 affects the spread of solu-

tions ofPOF, g affects the level of difficulty an algorithm experiences when converging

to POF andh influences the discontinuity or convexity ofPOF [73].

For DMOOP1, both its POS and POF changes over time, defined as:

POS : xi = G(t), ∀xi ∈ xII, xIII

POF : y = 1− f H(t)
1
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Let xII = {x1, x2, x3}, xIII = {x4, x5, x6}, t = 0.1,G(t) = 0.156,x1 = {0.14,0.16,0.16,

0.16,0.16,0.16} andx2 = {0.16,0.16,0.16,0.16,0.14,0.16}. Then, measuring the dis-

tance between the solution and the true POS (i.e. in decisionspace),d(x)dec, x1 and

x2 obtains the sameddec value. However,x1 andx2 produces the followinggh values

respectively: 0.937512 and 0.93183. The true POF value forx1 andx2 are 0.961453

and 0.951914 respectively. The difference between thegh values found byx1 andx2

and the true POF values,dob j, are 0.023941 and 0.020084 respectively. Therefore, even

though in the decision space the difference betweenx1 andx2 and the true POS pro-

duces the sameddec value, their difference in objective space,dob j, is different, withx2

being closer to the true POF thanx1.

MeasuringVD in the decision space will indicate how close the decision variable

values are fromPOS. However, theVD value measured in decision space will not give

a true reflection of the accuracy ofPOF∗ with regards toPOF. Therefore, measuring

VD in decision space to determine the accuracy of the algorithm’s solutions found, is

only appropriate for DMOOPs of Type I where the POS changes over time, but the

POF remains static. However, for DMOOPs of Type II and III, measuringVD in the

decision space will not provide any information with regards to how well the algorithm

has tracked the changing POF and therefore for these type of DMOOPsVD should be

measured in objective space.

The following papers measured eitherGD or VD in only the decision space: [24;

25; 42; 49; 60]. In [60] only FDA1, which is a Type I DMOOP, was used and therefore

measuring in the decision variable space is appropriate. In[42], three DMOOPs of

Type I (FDA1, DIMP1 and DIMP2) were used and one DMOOP of Type II (FDA3).

For the Type II DMOOP, calculating in the decision space willonly provide informa-

tion with regards to tracking of the changing POS, but not with regards to the track-

ing of the changing POF. In [24; 25; 49], DMOOPs of Types I, II and III were used.

For the DMOOP of Type III, measuring in the decision space only indicates whether

POS∗ remains close toPOS, which remains static over time. Therefore, it provides

no information with regards to how well the algorithm has tracked the changingPOF.

The issue of calculating performance measures in either decision or objective space is

unique to DMOO, since with SMOO both the POS and POF remain static.
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5.5. Comparing Performance of Algorithms

When the performance of various algorithms are compared against one another, typi-

cally various performance measures are used. Some algorithms will perform very well

with regards to certain performance measures and not so wellwith regards to other per-

formance measures. Therefore, typically each algorithm will be ranked according to

its performance with regards to each performance measure. Then, for each algorithm

its average rank is calculated. These averaged ranks are then used to determine how

well each algorithm performed with regards to the other algorithms. Examples can be

found in [12; 33]. However, it should be noted that the performance measures that

are used for comparing various algorithms should be chosen with care. If the wrong

performance measures are selected, it may lead to incorrectordering as discussed in

Section 5.1 and illustrated in Table 14 and [34]. Therefore,if POF is known, the us-

age ofaccalt is suggested. However, more research is required to determine the best

performance measure(s) for cases wherePOF is unknown.

6. Conclusion

This article provided an overview of the performance measures that are currently being

used to measure the performance of DMOO algorithms. Problems with current perfor-

mance measures were discussed, showing that algorithms that lose track of the POF

and outliers in the found POF can produce misleading resultswhen performance mea-

sures based on distance calculations, performance measures measuring the extend or

spread of the non-dominated solutions, the hypervolume or the hypervolume ratio are

used to measure the performance of DMOO algorithms. The importance of managing

boundary constraint violations were highlighted. Furthermore, the difference between

calculating accuracy performance measures in decision variable space and objective

space was discussed.

Taking into consideration the issues with current performance measures, the impor-

tance of performance measure selection when comparing various DMOO algorithms’

performance and the influence that this selection of performance measures can have on

the ordering of the algorithms, were presented.
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Future work includes testing the performance of DMOO algorithms using theaccalt

performance measure, i.e. the absolute value of the difference in HV values of the

approximated POF and the true POF, to quantify the performance of the algorithms.

Furthermore, more research is required with regards to performance measures that are

not vulnerable to the issues discussed in this article and that can be used when the true

POF is unknown.
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