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Abstract

When algorithms solve dynamic multi-objective optimisatioroblems (DMOOPS),
performance measures are required to quantify the perfarenaf the algorithm and
to compare one algorithm’s performance against that ofradlgorithms. However,
for dynamic multi-objective optimisation (DMOO) there are standard performance
measures. This article provides an overview of the perfageameasures that have
been used so far. In addition, issues with performance mesdbat are currently
being used in the DMOO literature are highlighted.
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1. Introduction

In order to determine whether an algorithm can solve dynamilti-objective optimi-
sation problems (DMOOPs)iiently, the algorithm’s performance should be quan-
tified with functions referred to as performance measurelBe Jet of performance
measures chosen for a comparative study of dynamic mukictibe optimisation al-
gorithms (DMOAS) influence the results anieetiveness of the study. Comprehensive
overviews of performance measures used for dynamic siigjlective optimisation
(DSOO) [2; 50; 53] and static MOO (SMOO) [4; 11; 45] do existtire literature.

However, a lack of standard performance measures is one ofi#fin problems in the
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field of dynamic multi-objective optimisation (DMOOQO). Fhgrmore, a comprehensive
overview of performance measures used for DMOO does not iexibe literature.
Therefore, the selection of appropriate performance nreaga use for DMOO is not

a trivial task. This article seeks to address this problem by

e providing a comprehensive overview of performance meastugently used in
the DMOQO literature, and
¢ highlighting issues with performance measures that arently used to evaluate

the performance of DMOAs.

It should be noted that this article does not discuss DMO®#@s:ever, the reader
is referred to [32] for a comprehensive overview of DMOOPS.

The rest of the article is outlined as follows: Formal defamis of concepts that are
required as background for this article are provided ini8e@. Section 3 discusses
performance measures that have been used for multi-olgesfitimisation (MOO)
and that have been adapted for DMOO. Performance measatemr¢hcurrently used
in the DMOO literature are discussed in Section 4. Sectiofighlights issues with
current performance measures that are frequently useddasureethe performance of
DMOAs. This section also makes proposals as to which pedooa measures can be

used for DMOO. Finally, the conclusions are discussed iriG@z6.

2. Definitions

This section provides definitions with regards to MOO and DMtbat are required as

background for the rest of the article.

2.1. Multi-objective Optimisation

The objectives of a multi-objective optimisation proble@OP) are normally in con-
flict with one another, i.e. improvement in one objectivedieto a worse solution for
at least one other objective. Therefore, when solving MOtBPslefinition of optimal-
ity used for single-objective optimisation problems (SGPPRas to be adjusted. For
MOOPs, when one decision vector dominates another, therdaimg decision vector

is considered as a better decision vector.



Let theny,-dimensional search spacedgcision spacée represented b§ ¢ R™
and the feasible space representedrlly S, whereF = S for unconstrained optimisa-
tion problems. Lek = (Xq, X2, . .., Xn,) € S represent thelecision vectari.e. a vector
of the decision variables, and let a single objective furrchie defined af: R™ — R.
Thenf(x) = (fi(x), f2(x), ..., f, (X)) € O € R™ represents aabjective vectorontain-
ing nk objective function evaluations, whe@eis theobjective space

Using the notation above, decision vector domination isnéeffias follows:

Definition 1. Decision Vector Domination Let f, be an objective function. Then,
a decision vectox; dominates another decision vecta, denoted byx; < X», iff

fk(Xl) < fk(Xz), vk=1,...,n¢ and Ji=1,...,n: fi(Xl) < fi(Xz) .

The best decision vectors are called Pareto-optimal, dkéisdollows:

Definition 2. Pareto-optimal: A decision vectox* is Pareto-optimal ifik: fi(x) <
f(x*), wherex # x* € F. If x* is Pareto-optimal, the objective vectdfx*), is also

Pareto-optimal.

The set of all the Pareto-optimal decision vectors are refieto as the Pareto-

optimal set (POS), defined as:

Definition 3. Pareto-optimal Set The POSP*, is formed by the set of all Pareto-

optimal decision vectors, i.€* = {x* € F|#x € F: x < x*}.

The POS contains the best trad&swlutions for the MOOP. The set of correspond-
ing objective vectors are called the Pareto-optimal fr&®F) or Pareto front, which

is defined as follows:

Definition 4. Pareto-optimal Front: For the objective vectdi(x) and the PO%*, the
POF,PF* C O, is defined a®PF* = {f = (fi(x), f2(<"), ..., T, (X)) X" € P*).



2.2. Dynamic Multi-objective Optimisation

Using the notation defined in Section 2.1, an unconstraifd®DP can be mathemat-

ically defined as:

minimise:  f(x, W(t))

subject to. X € [Xmin» Xmax™ 1)

whereW(t) is a matrix of time-dependent control parameters of anabbje func-
tion at timet, W(t) = (wa(t),...,wn(t)), Nk is the number of decision variables,
X=(Xq,...,%,) € R™andx € [Xmin, Xmax]™ refers to the boundary constraints.

In order to solve a DMOOP the goal of an algorithm is to track OF over time,

i.e. for each time step, find

PE(t) = {f() = (fu(x", wa (D)), Fo(X", W2 (1)), . ... fn (X", W (D)) X" € P* (D)} (2)

3. Static MOO Performance Measures

Performance measures enable the quantification of an #dgosiperformance with re-
gards to a specific requirement, such as the number of normrdted solutions found,
closeness to the true POF (accuracy), and the diversityreadmf the solutions. Ac-

cording to Zitzleret al.[76], a performance measure is defined as follows:

Definition 5. Performance Measure An mary performance measute, is a function
P Q™ — R, that assigns each of tneapproximated POF®OF;, POF;, ..., POF;,
areal valueP(POF;, POF;, ..., POF).

This section discusses static MOO measures that have bapteddn the literature
and used in DMOO. The discussion on static MOO performancasures is by no
means complete, and the reader is referred to [13; 41; 48pv tletailed information
on performance measures used for static MOO.

Outperformance relations that are used to evaluate pesfacenmeasures are dis-

cussed in Section 3.1. Section 3.2 discusses performanasungs that quantify an



algorithm’s performance with regards to accuracy, i.e. fthend non-dominated so-
lutions’ (POF*) closeness to the true POPQF). Performance measures that calcu-
late the diversity or spread of the solutions found are dised in Section 3.3. Sec-
tion 3.4 discusses performance measures that calculateénall quality of the solu-

tions found, taking into account both accuracy and diversit

3.1. Outperformance Relations
When an algorithm solves a MOOP where the objective functimasn conflict with
one another, the algorithm tries to find the best possiblefsein-dominated solutions,
i.e. a set of solutions that are as close as possibRCB and where the solutions are
diverse and evenly spread aloRF. However, oncePOF* is found, a decision
maker selects one of these solutions according fthéisown defined preferences.
Hansen and Jaszkiewicz [29] introduced an outperformagiation under the fol-
lowing assumptions:

e The preferences of the decision maker are not known a priori.
e Let POF, and POF; be two approximated POFs. TheRQOF, outperforms

POF; if the decision maker finds:

— a better solution ifPOF, than inPOF; for specific preferences, and
— for another set of preferences the solution selected #Q#; is not worse

than solutions found iPOF;.
e All possible preferences of the decision maker can be mddeith functions,

referred to as a set of utility functionls,.

Definition 6. Outperformance Relation (subject to a set of utity functions) : Let

A and B be two sets representing approximations of the same PORu tlehote an
utility function and{U|A > B} € U denote a subset of utility functions for whichis

better tharB, i.e. {U|A > B} = {u € UJu(A) > u(B)}. ThenA outperformsB, denoted
asA Oy B, if UA>B)# @ and UBB> A) =g.

The weakest assumption about the decision maker’s prefesehat is generally
made when solving MOOPs is that the utility function is cotitga with the domi-
nance relation, i.e. the decision maker prefers non-damihsolutions [52]. There-

fore, the decision maker can limit Hier selection of the best solution to the set of



non-dominated solutiond\(D) in AU B, i.e. ND(A U B). Based on the dominance
relation assumption, Hansen and Jaszkiewicz [29] defines tilominance based re-
lations, namely weak, strong and complete outperformahhbese three relations are

presented in Table 1.

Table 1: Outperformance relations defined by Hansen andiéasek [29]

Relation Symbol | Definition

Weak outperformance Ow A+ BandND(AUB) = A

Strong outperformance Os A+ B, ND(AUB)=A and B\ND(AUB) # &
Complete outperformance Oc A% B, ND(AUB)=A and BNND(AUB) = o

The outperformance relations only identify whether oneiséetter than another
set, but doesn’t quantify with how much the one set is belti@n the other. Therefore,
based on the outperformance relations, Hansen and Ja$zki@®] defined compati-
bility and weak compatibility with an outperformance réat In addition to the out-
performance relations, Knowles [41] introduced the cot&epmonotony and relativ-
ity that are important when evaluating th&&ency of performance measures. These

concepts are presented in Table 2. In Table 2, PM refers forpaance measure.

Table 2: Performance measure concepts defined by Hansen akibddsz [29] and Knowles [41]

Concept Definition

Weak compatibility If A O B PM evaluates A as being not worse than B
Compatibility If A O B PM evaluates A as being better than B

Monotony Let C contain a new non-dominated solution. Then, PM evalu-

atesAJ C as being not worse thahk

Relativity Let D contain solutions oPOF. Then, PM evaluate as being

better than anfPOF

Weak compability withOyy is suficient for weak monotony and weak relativ-
ity [41].
From the above definitions it should be clear that c Os c Oy, i.e. complete

outperformance is the strongest outperformance relagiod weak outperformance is



the weakest outperformance relation. Therefore, it is rdigBtult for a performance
measure to be compatible wi,y, and the easiest for a performance measure to be
compatible withOc¢ [41]. According to Knowles [41], performance measures Hrat

not compatible with these outperformance relations, caberorelied on to provide
evaluations that are compatible with Pareto dominance.

If a performance measure is compatible with the concept afatamy, it will not
decrease a set’s evaluation if a new non-dominated poirdded which adheres to
the goal of finding a diverse set of solutions. Furthermdra,performance measure
does not adhere to the concept of relativity, it will evatusdme approximation sets as
being better than the true POF, which is not accurate.

Knowles [41] evaluated the performance measures frequesdd in MOO ac-
cording to their compatibility with the outperformanceatsbns defined by Hansen
and Jaszkiewicz. The performance measures’ compatawilitythe outperformance
relations, as indicated by Knowles, are highlighted beldvere the performance mea-

sures are discussed in more detail.

3.2. Accuracy Performance Measures

Generational Distance
The generational distance (GD) measures the convergeribe approximated set to-
wards the true POFPOF). The GD is defined as:

Z”POF* diz

Gp= Y% ®3)
NpoF+

wherenpor: is the number of solutions IBROF* andd; is the Euclidean distance in the
objective space between solutibpof POF* and the nearest member BOF. POF
contains sampled solutions BOF that are used as a reference set. Therefore, GD
determines how closBOF* is to the sampled solutions 8OF.

GD is easy to calculate and intuitive. However, knowledgauaBOF is required
and a reference sePOF’, has to be available. It is important that the reference set
contains a diverse set of solutions, since the selectioheolutions will impact on
the results obtained from this performance measure. FRuntre, since the distance

metric is used, scaling and normalisation of the objectaesrequired. GD is not



weakly compatible wittOy, but is compatible wittDs. Unfortunately, this perfor-
mance measure will rate ROF* with only one solution that is oROF better than
anotherPOF* that has one hundred solutions that are very clogeQ&’. Therefore,
GD does not adhere to the property of monotony. Furthern@bedoes adhere to the
concept of weak relativity, because any subsaPOfF will always equal or improve
the GD value obtained by OF*s found by MOO algorithms.

It should be noted that GD is computationally expensiveeeigly for large or
unlimited archives, or when DMOOPSs with a large number oéotiyes are used.
Inverted Generational Distance
To overcome non-adherence to the concept of monotony by @GraSand Coello
Coello [56] introduced the inverse generational distat@®]. The mathematical defin-
tion of IGD is the same as GD in Equation (3), except for the imayhich the distance
is calculated:

o &

IGD = —— 4
Npor @

wherenpop is the number of solutions IROF andd; is the Euclidean distance in the
objective space between solutioof POF and the nearest memberBOF*.

IGD is compatible with relativity, sincPOF always obtains an IGD value of zero
andPOF* will only receive an IGD value of zero POF* = POF'. Furthermore, IGD
is compatible with monotony, because it will ratde*®F* with more non-dominated
solutions that are close BOF as a better set than anotHe©OF* that only has one
solution that falls withinPOF'. However, IGD is computationally expensive to cal-
culate for a largePOF or a largerPOF*, since for each point ifOF’, the distance
between that point and each of the pointi@F* has to be calculated. The usage of
the distance function also requires scaling and normadisatf the objective function
values, as is the case with GD.

Error Ratio
Van Veldhuizen [62] introduced the error ratio that meastine ratio of non-dominated
solutions inPOF* that are not elements ¢fOF to the non-dominated solutions in

POF* that are elements ¢fOF’. The error ratio is defined as



NpoF+
E_ Zier @
NpoF-

whereg = 0if x, € POF, Vx, € POF* andg = 1if x; ¢ POF, Vx, € POF". A

®)

small error ratio indicates a good performance.

If POF; has two solutions with one solution IROF’, E = 0.5. However, if
POF; has one hundred solutions with one solutiolP@F" and the other solutions
very close toPOF', E = 0.99. According toE, POF, is a better set of solutions than
POF;. However,POF is more desirable. Thereforg, is only weakly compatible
with O¢. E has weak relativity, because any subseP6fF will achieve the lowesE
value, namel\E = 0. It is not compatible with monotony, because if a non-dated
solution is added t®OF* that is not an element (fOF’, E will increase.

The compatibility of the accuracy performance measurels thi¢ outperformance
relations and the concepts of monotony and relativity israanised in Table 3. In Ta-
bles 3to 5 and Tables 6 to 1P| andR refer to the concepts of monotony and relativity
respectivelyC andW indicate that the performance measure is compatible or lweak
compatible with the relation respectively, and “-” indieaithat the performance mea-

sure is neither compatible nor weakly compatible with tHatien.

Table 3: Compatibility of accuracy performance measures

Performance Measure | Ow | Os | Oc | M R
GD - C cC | - |w

IGD W C cC |w|C

E - - w - | W

3.3. Diversity Performance Measures

Diversity can be measured either by measuring how evenlgohgions are spread
alongPOF* or the extent oPOF*.

Number of Solutions

The easiest performance measure to calculate is the nurin@m-alominated solutions
(NS) inPOF*. Van Veldhuizen [62] referred to this metric as the overabhdominated
vector generation (ONVG). Even though this measure dogsrootde any information

with regards to the quality of the solutions, it provides iiddal information when



comparing the performance of various algorithms. For exapgne algorithm may
have a better GD value, but only half of the NS that have beanddy the other
algorithm.

NS is not weakly compatible with any of the outperformandatiens. According
to Knowles [41] weak compatability witlyy is necessary to ensure weak monotony.
However, withN S this is not the case. Adding a non-dominated solutioR@F* in-
creases, and thereby improves, NS. Therefore, NS is cobfpatith monotony. Fur-
thermore NS is weakly compatible with relativity only if the size &fOF* is smaller
or equal to the size dPOF'.

Spacing Metric of Schott
The Spacingmetric, introduced by Schott [54], measures how evenly thietp of

POF* are distributed in the objective space. Spacing is caledlas:

J 1 nf*
S= (davg - dm)2
Npor: — 1 e

with
Nk
O = MM oo {;mm(x) - fkj(x)|} ()

wheredy, is the minimum value of the sum of the absolutéeatience in objective
function values between the-th solution inPOF* and any other solution iROF*,
davg is the average of atly, values anahy is the number of objective functions.$f = 0,
the non-dominated solutions &OF* is uniformly spread or spaced [13]. However,
this does not mean that the solutions are necessarily gome, they can be uniformly
spaced irPOF*, but not necessarily uniformly spacedR®F [41; 18].

The spacing metric of Schott is not even weakly compatibtla ®jy [41]. Adding
a non-dominated solution tBOF* will not necessarily decrease the valueand
POF does not necessarily have the lowest spacing metric valerelore S does not
adhere to the principles of either monotony or relativity.

It should be noted that this performance measure was dekignbe used with
other performance measures, has a low computational acodtcan provide useful

information about the distribution of the solutions fourl]. Since the Euclidean
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distance is used in the calculation of the measure, the tl@scshould be normalised
before calculating the measure.
Spacing Metric of Deb
S provides information with regards to how evenly the non-@ated solutions are
spaced orPOF*. However, it does not provide any information with regardghe
extent or spread of the solutions. To address this shortagniieb [15] introduced a
measure of spread, defined as:

Tty O + X7 10 — dag
T X, 2+ Npor tag

with d; being any distance measure between neighbouring solutiggés the mean of

A (7)

these distance measures, @fds the distance between the extreme solutiorBOF"
andPOF .

Similar to S, A is not compatible withOy, and does not adhere to monotony or
relativity.
Maximum Spread
Zitzler [71] introduced a measure of maximum spread thatsmess the length of the
diagonal of the hyperbox that is created by the extreme immatalues of the non-
dominated set. The maximum spread is defined as:

MS = Ji(ﬁﬁ*— POFi*)z ®)

k=1

wherePOF; and POF; is the maximum and minimum value of tiketh objective in

POF* respectively. A highVS value indicates a good extent (or spread) of solutions.

This measure can be normalised in the following way [13]:
_ 2
POF; - POF;

1
Msnorm = pr—
Ne ZM POF, — POF,

If POF; outperformsPOF; (weakly, strongly or completely), but the non-dominated

9)

solutions ofPOF; have a larger extent than the non-dominated solutioRQF;, then
POF, will obtain a higherMS value. ThereforeMS is not weakly compatible with
any of the outperformance relations. Adding a non-domuhatdution toPOF* will

not necessarily lead to a highstS value. Therefore, MS adheres to weak monotony.
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POF will obtain the maximumMS value, but even #OF* that only has two non-
dominated solutions at the extreme pointP@F will also obtain the maximum MS
value. ThereforeMS adheres to weak relativity.

C-Metric

The set coverage metri€{metric) introduced by Zitzler [71] measures the propartio
of solutions in set B that are weakly dominated by solutionsat A. TheC-metric is

defined as:

be Bl Jac A:a<bj
Bl

If C(A, B) = 1, all solutions in set B are weakly dominated by set A ai@( A, B) =

C(A,B) = i (10)

0 no solution in set B is weakly dominated by set A. B&DF, andPOF; be the ap-
proximated POFs found by two algorithms wRIOF, c POF;, ND(POFg) = POF;.
ThenC(POF;, POF;) < 1 andC(POF;, POF,) = 1. Therefore POF; outperforms
POF,. Under the assumption that,G{(A, B) = 1 andC(B, A) < 1 evaluates set A as
being better than set B, tli&metric is compatable wityy [41].

It is important to note that the domination operator is noyymmetric operator,
i.e. C(A, B) is not necessarily equal to-1C(B, A). Therefore, if many algorithms are
compared against each other, this metric would have to loelleééd twice for each
possible combination of algorithms. However, it should beed that theC-metric is
cycle-inducing, in other words if more than two sets are carag, the sets may not be
ordered and in these cases no conclusions can be made [41].

If POF is known, set A can be selected as the set of sampled pointedfue
POF,POF, and set B as theOF* found by the algorithm. Then th@-metric can
be calculated separately for each algorithm. P@F, and POF; be the approxi-
mated POFs found by two algorithms as defined abovePADHE a reference set with
ND(POF’) = POF andPOF; C POF'. Then,C(POF’, POF;) = C(POF;) = 1 and
C(POF,, POF) < C(POF;, POF). In order to ensure compatibility witBy, POF,
has to be evaluated by tiizmetric as being worse thd?OF;. Therefore, the follow-
ing assumption should be made:GfR, E) = C(E,R) = 1 andC(E,R) < C(D,R),
thenE performs worse tha® with regards to th&-metric, whereD and E are two

sets that are compared with one another using the referené¢e[41]. Under this

12



aforementioned assumption, t@emetric is compatible witlDy, when a reference set
is used.

The C-metric does not adhere to the concept of monotony, Sr@E* can add a
non-dominated solution that is weakly dominated by the ls&tROF* is compared
against. However, th€-metric is weakly compatible with relativity, since
C(POF*, POF) cannot obtain a highe2-metric value thail©(POF, POF*).
U-measure
Leung and Wang [44] introduced tlhemeasure to measure the diversity of the found
non-dominated solutions. L& = r¢ be the set of reference points, wheges the
extreme point of objectiv& of the union of all non-dominated solution of #0OF"'s
found by the algorithms for the sanROF that are compared with one another. ket
be the setd;} andy the set of(d;}, whered; is the distance between two neighbouring
solutions andl; is the distance between a reference paigtand its nearest neighbour.
Let d be the average of the distancesiand lety” be the setd}ld} =d; + d}. Then,

the U-measure is defined as:
1 NpoF*

2,

NpoF+ =

d
J _1‘

Jigeal

with
NpoF* d}

dideaI: Z NPor- (11)

=1

A smallerU value indicates better uniformity of the non-dominatedusohs of
POF*. Since distances are calculated in tdhemeasure, the objectives have to be
normalised. Similar t& andA, theU-measure is not weakly compatible with any of
the outperformance relations and does not adhere to monotaelativity.

Table 4 summarises the compatibility of the diversity perfance measures with
the outperformance relations and the concepts of monotodyedativity. In Tables 4
to 5, C and W indicate that the performance measure is either compatiblecakly

compatible with the relation, but only under certain coiodis.

3.4. Combined Performance Measures
Hypervolume

The hypervolume o8-metric (first referred to as “the size of the space coveraa-

13



Table 4: Compatibility of diversity performance measures
Performance Measure | Ow | Os | Oc | M R
NS - — - Cc | w

S _ _ — — —

A — — — — —

MS — — - W | W

W

Cc W C C -
U — — — -

sures how much of the objective space is dominated by a nonrdbed set [74; 75].
The definition of a dominated region and the traditional didin of the hypervolume

are as follows:

Definition 7. Dominated Region Letf; = {fi, fi,,..., f1,} be a solution in the
objective space anfle; a reference vector dominated by Then the region that is
dominated byf; and bounded b¥;. is defined as the set,

R(f1. frer) 2 {folfp < frer and fy <fp, f, € R%) (12)

Let A be a non-dominated set of vectofs,fori = 1,...,|Al. Then the region domi-
nated byA and bounded by the reference vecfqy;, is defined as the set:
RAfe) 2 [ R(fifrer) (13)
i=1,...,|Al
Definition 8. Hypervolume: The hypervolume (HV) o8-metric of setA with respect

to the reference vectdy.¢ is the hyperarea or Lebesgue integral of theR{&{ fret).

The reference vector can be any vector outside the feadilgetive space, since
this will result in a non-negative value for all possible rdominated sets in the fea-
sible objective space. Usually, the reference vector @resice point that is used in
the HV calculation is the vector that consists of the worsti@dor each objective of
the union of all non-dominated solutions of BOF* that are compared against each
other. It should be noted that the selected reference vedtbaffect the ordering
of the non-dominated sets that are compared against eaeh sihce all of the non-
dominated sets use the same reference vector [41]. A highdaiyévndicates a good
approximation set.

The HV is compatible witlOyy if the upper boundary of the dominated region is

set in such a way that all feasible non-dominated sets teahaluated have a positive
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HV value. The HV is therefore compatible with the outperfamoe relations. The
HV is weakly compatible with monotony and weakly compatibii¢h relativity. It is
scaling independent and no prior knowledge of the true POEgaired. According
to Zitzler et al. [72] the HV is the only performance measure in the literathet has
the following two qualities: if an approximation sa&tdominates another sBtthe HV
provides a strictly better value f@gk; and if a set obtains the maximum possible HV
value for a MOOP, it contains all Pareto-optimal objectiatues.

One flaw of the HV is that it is biased towards convex areas®PROF [72]. Fur-
thermore, it is computationally expensive to calculatethvé computational cost of
O(n**1) with k representing the number of objectives [41]. However, recesearch
developed algorithms that reduce the computational casiedflV. For example, Fon-
secaet al.[22] proposed ai®O(|Allog|A]) algorithm and Beume and Rudolph [5] pro-
posed an algorithm with a complexity 6f|A/2), whereA is the non-dominated set
andk is the number of objectives.

Hypervolume Ratio
To overcome the bias of the HV towards convex regions of the,R@n Veldhuizen [62]
proposed the hypervolume ratio (HVR), defined as:

_ HV(POF)
HVR= HV(POF)

The HVR normalises the HV and, assuming that the maximum Hibtained by
the true POF, the value of the HVR will be between 0 and 1. A iR indicates a

(14)

good approximated POF. It should be noted that, for the HVM&utation, the reference
vector is selected as the worst objective values for eaatctig from the union of the
non-dominated solutions of HOF* that are compared against each other, as well as
POF.

Similar to the HV, the HVR is compatible witByy if the upper boundary of the
dominated region is set in such a way that all feasible nanidated sets that are
evaluated have a positive HV value. Therefore, the HVR isgatible with the outper-
formance relations. Furthermore, the HVR is weakly conigpativith monotony and

relativity.
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e-metric

Zitzler et al. [76] presented the-metric to compare approximation sets. It measures
the factor by which an approximation set is worse than am@thproximation set with
respect to all objectives, i.e. it provides the factawhere for any solution in set B
there is at least one solution in set A that is not worse by @faif € in all objectives.
The e-measure uses the conceptesflominance. The definition of objective vector

e-domination is:

Definition 9. Weak Objective Vectore-Domination: An objective vectof; e-dominates
another objective vectdr, denoted byf; <. fa, iff f1(X)/(1 +¢€) < fo(x), Vi =
1,....n, and 3j=1,...,n;: fl(Xj)/(1+ €) < fz(Xj).

Using the above definition, themetric is defined as:
1.(A,B) = inng {¥f, € B 3f; € A: f1(Xi) <e f2(Xi)} (15)

Thee-metric is not weakly compatible wit®yy, but is compatible witlDs andOc.
Adding a non-dominated solution may lead to a wdgsealue. Therefore, the-metric
is not weakly compatible with monotony.(POF*, POF’) = 1 if POF* = POF'. In
addition,l.(POF*, POF) = 1 if POF* contains some solutions froROF . Therefore,
| is weakly compatible with relativity.

The compatibility of the combined performance measurels i outperformance

relations are summarised in Table 5.

Table 5: Compatibility of combined performance measures
Performance Measure | Ow | Os | Oc¢ M R

HV c C cr | We | W
HVR c c cr| W | W
le - C C - W

4. Current DMOO Performance Measures

This section discusses performance measures that arenttyilpeing used to evalu-
ate the performance of DMOO algorithms. Section 4.1 disssigerformance mea-

sures that quantify the accuracy of the found POF. Perfocmaneasures that are
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used to measure the diversity of the non-dominated solitése discussed in Sec-
tion 4.2. Combined performance measures that measuresagcamd diversity of the
non-dominated solutions are discussed in Section 4.3idBet# discusses the mea-

surement of an algorithm’s robustness when an environnterige occurs.

4.1. Accuracy Performance Measures

GD Measure

Mehnenet al.[49] used the GD metric to evaluate the performance of algms solv-

ing DMOOPSs. They calculated the GD metric in decision spatee the DMOOPSs
that were used in the study had POSs that dynamically stoftedtime, and named the
performance measufg;. If GD is calculated in decision space, GD measures the dis-
tance of the approximated POBOS", to the true POSPOS. Zhouet al.[70] used the
GD metric (and the variance @D) in objective space for DMOO, but referred to the
performance measure as the distance indidatok number of other researchers have
usedGD to evaluate DMOO algorithms, as shown in Table 7. Goh and taptad
GD for DMOO as follows:

l T
VD =>3'VD()
Er=n

with

\/nPOF* Zin:fﬁ di2 (%)

VD(7) = -

(16)

wherer is the current iteration number; is the frequency of change and % is the
modulo operator. The performance measure, referred taadigaal distance (VD), is
calculated in the decision space every iteration just leedorhange in the environment
occurs.

Similar to GD, VD is not weakly compatible witByy, but is compatible witfOg
andOc. If a new non-dominated solution is addedROF* that is further away from
POF than the other solutions IROF*, VD will increase. Therefore, VD is not weakly
compatible with monotony. However, the GD valudR@dF will always be less or equal
to the GD value of anyPOF*. Therefore, GD is weakly compatible with relativity.

Since distance is used in the calculation of VD, the objestivave to be normalised.
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When solving DMOOPSs, similar to VD, the performance meassreaiculated
every iteration just before an environmental change ocdursrefore, prior knowledge
of when changes occur is required. However, if a performaneasure is calculated
while the algorithm is running (also referred to as onlinkegkation), prior knowledge
about changes in the environment is not required. In this ttesperformance measure
can be calculated on the non-dominated solutions that wetarned at the iteration
just before the change occurred. Furthermore, if the pedioce measure is calculated
after the algorithm has completed its runs (also referreastdtline calculation), the
algorithm can keep record of the iterations when changesroext.

Success Ratio
Similar to the error ratio (refer to Section 3.2), Mehretral. [49] used the success
ratio to quantify the ratio of the solutions found that arembers of the true POF. The

success ratio is defined as

[{x|f(x) e POF}|

SC =" lpoF

17

where a high success ratio, S@dicates good performance.

If an algorithm finds many non-dominated solutions that artePareto-optimal but
very close toPOF/, the POF* will obtain a lower SG value than an algorithm that
finds only one Pareto-optimal solution. Therefore, &®nly weakly compatible with
Oc and is not weakly compatible with eith€xy or Os.

If a non-dominated solution is addedRP®F* that is not Pareto-optimal, the value
of SC, decreases and therefore ;Si€ not compatible with monotony. SindeOF
will obtain the same SCvalue than subsets #fOF, SC. is weakly compatible with
relativity.

The compatibility of the accuracy performance measurels thi¢ outperformance

relations and the concepts of monotony and relativity isrmanised in Table 6.

Table 6: Compatibility of accuracy performance measures
Performance Measure | Ow | Os | O¢c | M R
GD - C C - | W
SC, - - W | - | W

In Tables 7 to 9, x indicates that the performance measureuged, X indicates
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that the performance measure was calculated in decisiae spal X indicates that the
variance of the performance measure was used. The usageagfdtracy performance
measures in the DMOO literature is summarised in Table 2i(itef Tables 3 and 6).
Table 7 shows that most researchers have use@ her VD performance measure to

quantify the accuracy d?OF*.

Table 7: Usage of DMOO accuracy performance measures

PM | Usage | Authors

GD X [20; 28; 30; 70; 36; 10; 37; 43; 51]
x* [20; 30; 49; 36; 37; 51]
X [28; 30; 70; 43]
x* [30]

IGD X [46; 64; 65]
e [64]

VD X [31]
x* [60; 25; 24; 42]

Acc X [9; 6;7;8;57; 31]

SC. X [49]

4.2. Diversity Performance Measures

MS’ measure

Goh and Tan [25] introduced an adapted versioM& (refer to Equation (9) in Sec-
tion 3.3) to measure how welROF* coversPOF'. Contrary toMS, the adaptedS,
MS’, takes into account the proximity & OF to POF'. MS’ is defined as:

1 & [min[POF;, POF,] - max[POF;, POF] |’
N &= POF, - POF,

MS’ = (18)

Similar to MS, MS’ is not weakly compatible with any of the outperformance
relations. Adding a non-dominated solution ROF* will not necessarily lead to a
higherMS’ value. ThereforeMS’ adheres to weak monotonPOF will obtain the
maximum MS value, but even ROF* that only has two non-dominated solutions at
the extreme points d?POF will also obtain the maximum MS value. TherefoMS’
adheres to weak relativity.

PL measure

Since many diversity performance measures are based oruthieléan distance and
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therefore do not take the shape of the POF into account, Medtrad. [49] introduced
a performance measure, tARé measure, that is based on path lengths or path integrals.

The length of the path between two solutions is defined as:

Definition 10. Length of Path between Two SolutionsLet y be the path between
two solutions in objective spaceaandb, that is diferentiable in§, b]. Then the length
of a path betweerg] b] on y is defined as:

L(y.a,b) :=f bl dt:f P2+t ym? dt (19)
b b

wherey is the derivative oy and|y| is the Euclidean norm of.

The PL performance measure is the normalised product of the patreba sorted
neighbouring solutions oROF, defined as
_ I (TTreepor §69) _ Sigeyepor () 20)

PL:=
In eLPOF Lpo|:
wherel(x) = L(y, f(xi),f(Xi+1)) + 1 andf represents the objective functions. For the

calculation ofPL, a solution is considered as beingROF if the solution is within an
e-region nealPOF.

In order to calculate th®L performance measure, an analytic closed description
of the true POF is required. However, according to Meheeal. the calculation of
the PL measure is complicated when a DMOOP has more than two olgsctr has
a discontinuous POF. In these situations Mehetal. [49] recommend the usage of
S [54] (refer to Section 3.3).

PL is not weakly compatible with the outperformance relatiohfowever, it is
weakly compatible with monotony, since the valueRif increases when a new non-
dominated solution that is withigrdistance oPOF is added tdPOF*.

Set Coverage Metric
Guanet al.[28] introduced a set coverage measure that is based @&ahdD metrics
introduced by Zitzler [71]. The HV of the objective spacettisadominated byPOF*
but not byPOF, referred to as th®-metric, is defined as
D(POF', POF) = HV(POF" + POF) — HV(POF) (21)
The set coverage metric is then defined as

_ D(POF, POF) _ D(POF’,POF")
T= Thv(POF) HV(POF)

(22)
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Therefore, the set coverage metrjcis the normalised sum of the:

e HV of the objective space that is dominated®@F* and not byPOF, and
e HV of the objective space that is dominated®®F and not byPOF".

n is weakly compatible witlDyy if the HV is weakly compatible witlDy,. There-
fore, n is weakly compatible withOy, if the reference vector is selected in such a
manner that that all feasible non-dominated sets that alei@ed have a positive HV
value. If the reference vector is selected in this manmés,compatible with all the
outperformance relations. Furthermorgeis then weakly compatible with monotony
and weakly compatible with relativity.

Pareto Front Extent

Zhang and Qian [68] introduced the coverage scope (CS) messguantify the av-
erage width or coverage of the non-dominated set. CS isle#étliby averaging the
maximum distance between each solutiorP@F* and the other solutions iIROF*.

Therefore, CS is defined as
NpOF*

>, maxil f(x) = () 11 (23)
i=1

Npor: 4=
with X, Xj € POF", i>1andj < npof.

CS=

A higher CS value indicates a better performance. CS is ainalS [54] (refer
to Section 3.3), but uses the maximum distance wisetses the minimum distance
between the non-dominated solutionsF@F*. Similar toS, CS is not weakly com-
patible with the outperformance relations. Furthermor®,i€not weakly compatible
with monotony, since adding a non-dominated solutioR@F* can decrease the CS
value. The CS value ®OF can be smaller than the CS valueRlDF*. Therefore, CS
is not weakly compatible with relativity. A summary of thenapatibility of diversity

performance measures is shown in Table 8.

Table 8: Compatibility of diversity performance measures

Performance Measure | Ow | Os | Oc¢ M R
Ms’ - - - w w

PL - - - w -

n c* c* C | W* | W

CS - - - - -

Table 9 summarises the usage of the diversity performanesumes in the DMOO
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literature (refer to Tables 4 and 8). In Table 9, Entropyn®te the normalised entropy
between thd?OF*'s, Accum refers to the accumulated genetic diversity thasues
the moment of inertia and Nrefers to the variation of the minimum normalised Eu-
clidean distance of thBOF* solutions. Table 9 indicates that most researchers 8sed

andMS to quantify the diversity of the non-dominated solution®i@F*.

Table 9: Usage of DMOO diversity performance measures

PM Authors

NS [28; 27]

C [63; 1; 68]

n [28]

CsS [68]

S [49; 27; 26; 31; 68]
U [63; 47]

PL [49]

MS, MS’ | [60; 25; 24; 42; 31]
A [67]

Entropy | [10; 3]

Accum [3]

Ne [28]

4.3. Combined Performance Measures

Accuracy Measure

A measure of accuracy introduced by Weicker [66] for DSOO adepted by @mara
et al.[57] for DMOO. This measure quantifies the quality of the solus as a relation
between the HV oPOF* and the maximum HVH V) that has been found so far.

The accuracy measure is defined as

HV(POF:(t))
HVima{ POF(t))

The accuracy measuregg is compatible withOyy if the upper boundary of the

acqt) = (24)
dominated region is set in such a way that all feasible nanidated sets that are
evaluated have a positive HV value (refer to Section 3.4)dddnhese conditiongcc
is compatible with the outperformance relations and weegiypatible with monotony
and relativity.

Hypervolume Difference

Zhou et al. [70] suggested to use the hypervolumé&eatience (HVD) to measure the
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quality of the found POF. HVD is defined as
HVD = HV(POF) — HV(POF*) (25)

However, when the true POF is unknown, the HVD cannot be uZbdeéng [69]
used the maximum HV to measure the quality of the found POF.

Camaraet al.[8] extended the definition of their accuracy measure (EqngR4))
to use the HVD when the true POF is known. The alternative racyumeasure is

defined as
acgy(t) = |[HV(POF(t)) — HV(POF*(1))| (26)

whereacg(t) is the absolutélV D at timet. The absolute values ensures thed,(t) >
0, even ifHV(POF*) > HV(POF).

HVD is compatible with the outperformance relations if H\e@mpatible with the
outperformance relations.
Optimal Subpattern Assignment Measure
Recently Tantaet al. [61] introduced performance measures that are based on per-
formance measures used in quantifying the tracking qualitywlti-object tracking
problems. The performance measures are developed bashd optimal subpattern
assignment (OSPA) measure that can be used to compare #etiffierent cardinal-
ity [55].

Let P = (F, X, N) define a DMOOP wittF and X representing a set of objective
functions and a set of decision variables respectivélyepresents the neighbourhood

function described by a sphere of cemtend radiug, defined as
N(c,r) = {x € X] d(x,c) < r and 3h|xhc} (27)

whered is the distance between a solutiof,and the center point of the neighbour-
hood,c, and3dh|xhc indicates that the neighbourhood can be reached througims:tr
formationh.

Let A and B represent two approximated POROF, andPOF;. Then the fol-

lowing two performance measures are defined:

n 1
POF} p

1
— i - Vi )P
Mioc(X, Y) = ror, T él d(%. yin)") (28)
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whered(x, y) = min{c, d(X, y)} is the minimum distance between two solutions that are

cut of by c. When comparingA and B, the solutions fromB that are in the neigh-

bourhood of a given solution fror are determined by considering all permutations of

solutions fromB, referred to as the s€& M, quantifies the quality of the coverage

of A as compared t8. A drawback of this performance measure is the computdtiona

cost, because of the calculation of permutations for ealthign under consideration.
The other performance measure is defined as

1
cP(Npory, — nPOF;)) P

Npor;

Mcard(xa Y) = [ (29)
Mcarg is @ cardinality penalty function that is used whéh # |B|, and is zero if the
two sets have the same cardinalitiyl;;.¢ measures the influence of the cardinality
difference on the overall quality of the larger set, with the atfiterm as the error
quantification factor.

The OSPA metric is then defined as:
OSPAX,Y) = Mic(X, Y) + Mcara(X, Y) (30)
OS PAis not weakly compatible with the outperformance relatioridowever,
OS PAis weakly compatible with monotony.

Table 10 summarises the compatibility with the outperfarogarelations by the

combined performance measures.

Table 10: Compatibility of combined performance measures
Performance Measure | Ow | Os | O¢ M R
HVD C* C* (o9 w* | wW*
acCa C* C* (o9 w* | wW*
OSPA — - — W -

The usage of the combined performance measures in the DM&a@tlire is sum-
marised in Table 11 (refer to Tables 5 and 10).
4.4. Robustness Performance Measures

The robustness of an algorithm refers to how well the algoritecovers after an
environment change occurs.
Stability Measure

The dfect of the changes in the environment on the accuracg defined in Equa-
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Table 11: Usage of DMOO combined performance measures

PM Usage | Authors
HV X [9; 6; 27; 59; 1; 7; 3; 26; 65]
HVR X [17; 46; 69; 39; 8; 57; 14; 31]
HVD X [70; 8; 57]
HV max X [69; 7]
X [69]
le X [40]
OSPA X [61]

tion 24) of the algorithm can be quantified by the measure afikty that was in-
troduced by Weicker [66] for DSOO and adapted for DMOO n@raet al. [57].
Stability is defined as

stal(t) = max0, acqt — 1) — acdt)} (31)

where a lowstabvalue indicates good performance.
The compatibility ofstabdepends on the definition @fcc If acc as defined in

Equation (24) is usedstabis compatible withOy, if accis compatible withOy. Un-

der these conditionstabis compatible with the outperformance relations and weakly

compatible with monotony and relativity.

Reactivity Measure

Camareet al.[57] presented a measure of reactivity based on the regqgtieiformance

measure introduced by Weicker [66] for DSOO. Reactivity sugas how long it takes

for an algorithm to recover after a change in the environmeyntdetermining how

long it takes for an algorithm to reach a specified accuramstiold. The reactivity

performance measure is defined as

aa‘;oo((tt)) > (1-e) (32)

wherermaxis the maximum number of iterations or generations.

reac{t,e) = min{t’ —tlt <t’' < Tmant €N,

Similar to staly reactis weakly compatible witlOyy if accis weakly compatible
with Oy. reacts compatibility with monotony and relativity also depenais accs
compatibility with monotony and relativity.

The compatibility with the outperformance relations by thieustness performance

measures is summarised in Table 12.
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Table 12: Compatibility of robustness performance measures

Performance Measure | Ow | Os | O¢ M R
stab C* C* C" | W* | W
react cr c* C* wW* | W*

Table 13 summarises the usage of performance measuresitmifigs robustness
in the DMOO literature.

Table 13: Usage of DMOO robustness performance measures
PM Authors

stab | [9; 6;7;8;57; 31]
react | [9; 6; 7; 8; 57]

When algorithms solve DMOOPs, five major issues should bentaite consider-
ation when selecting performance measures to quantify ehfengmance of the algo-
rithms, namely: algorithms losing track of the changing P@®E dtect of outlier so-
lutions in the found POF, boundary constraints violatiaradgulating the performance
measures in either the objective or decision space, andaximgpthe performance of

the various algorithms. These issues are discussed in dhasection.

5. Issues with Current DMOO Performance Measures

Section 4 discussed a number of performance measures tledbéen used to quantify
the performance of algorithms on DMOOPSs. Even though thesssores have been
used in a number of articles, theyfar from a number of problems mostly related to
aspects of dynamic environments [33]. These problems makergl applicability of
these performance measures to all DMOOPSs not possible.

Section 5.1 discusses misleading results that can occur algerithms lose track
of the changing POF. Thdfect of outlier solutions iPOF* on the quantification of
an algorithm’s performance is discussed in Section 5.2ti@e8.3 discusses thdfect
of boundary constraints violations on the performance of@Mlalgorithms. Further-
more, performance measures can be calculated in eithebjbetive or decision space
as discussed in Section 5.4. Finally, Section 5.5 discussass when comparing the

performance of the various algorithms.
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5.1. Losing Track of the Changing POF

When a DMOO algorithm loses track of the changing POF ,R@& changes over time

in such a way that it§lV value decreases, many of the current performance measures
will give misleading results [33]. Figure 1 illustrates exale POFs where the POF
changes over time in such a way that, if tH¥ is calculated with the reference vector
being the worst values of each objective, the will decrease over time. A decrease

in the HV will occur if for each example the POF changes fromwex to concave.
Figure 1 illustrates three such POFs. In Figure 1, the firde BQrepresented by the
bottom line and the last POF by the top line.

(a) FDA3 (b) FDA2 (c) dMOP2

Figure 1: Examples of DMOOPs where tH& value of POF decreases over time for certain time steps

The problem of losing track of the POF was first observed byblgednd En-
gelbrecht [34], where five algorithms were used to solve tDAFDMOOP. These
algorithms included a dynamic VEPSO (DVEPSO) which usesplag to manage
boundary constraint violations (DVEPSO-A) [34]; DVEPSQ@tthises per element re-
initialisation to manage boundary constraint violatioB& EPSO-B) [34]; DNSGA-
II-A, a variation of NSGA-II where a percentage of individsiare randomly selected
and replaced with newly created individuals if an environinehange occurs [17];
DNSGA-II-B, a variation of NSGA-Il where, after an enviroemt change, a percent-
age of individuals are randomly selected and replaced witlviduals that are mutated
from existing individuals [17]; and dCOEA [25]. Figure 2ifitrates example POFs ob-
tained by these algorithms in comparison W®F (Figure 2(f)). Itis clear from these
figures that DNSGA-II-A, DNSGA-II-B and dCOEA lost track di¢ changing POF,
with the DVEPSO algorithms being more successful in tragkiire POF. It is therefore
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expected that the values of the performance measures dhmblktter for the DVEPSO
algorithms than for the evolutionary algorithms.

The performance measure values of these algorithms for rgehfrequency of
10 is presented in Table 14, whelsS refers to the number of non-dominated solu-
tions found,S refers to the spacing measure defined by Schott [BA]R refers to
the HV ratio [46],AccandS tabrefers to measures of accuracy and stability presented
by Camaraet al.[9], andVD and MS refer to the adapted generational distance and
maximum spread performance measures for dynamic envinotsnpeoposed by Goh
and Tan [25].

As shown in Table 14, performance measwésandMS indicate the DVEPSO
algorithms to be better than the evolutionary algorithmswelver, the measures that
make use of thélV, namelyHV R, AccandS tah rank the evolutionary algorithms as
being better than the DVEPSO algorithms. This occurs siheddl value of POF
decreases over time and therefore from the time where anmitafgloses track of the
changing POF, itslV value is higher than that 6fOF and therefore higher than that of
algorithms that are tracking the changing POF. SinceHkevalue of POF decreases
over time,HVR (which divides theHV of POF* by the HV of POF) still does not
address this problem.

The following papers used th¢V or HV Rwithout using any accuracy measure that
requires knowledge of the true POF: [1; 3; 6; 7; 8; 9; 14; 17;28 39; 57; 59; 69].
Therefore, if any of the algorithms that were evaluated @séhstudies lost track of the

changing POF, the performance measure values that werie@ttaay be misleading.

Table 14: Performance Measure Values for FDA2
T Algorithm NS S HVR Acc Stab VD MS R
10 DVEPSO-A 734 0.00118 0.99533 0.97848 0.00049 0.458240.90878 4
10 DVEPSO-B 63 0.00391 0.99905 0.98157 0.00029 0.43234 0.88916 3
10 DNSGAII-A 394 0.00044 1.0044 0.98681 9.565x%0 0.71581 0.77096 2
10 DNSGAII-B  39.6 0.00042 1.00441 0.98683 9.206x%0 0.71681 0.77866 1
10 dCOEA 38.4 0.00051 1.00209 0.98454 0.00122 0.70453 P319 5

The issue of an algorithm losing track of the changing PORigue to DMOO.
In order to overcome this probleracc,; proposed by @maraet al. (refer to Equa-

tion (26) in Section 4.3) should be used when®@F is known. Furthermore, HCGy
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Figure 2:POF andPOF* found by various algorithms for FDA2 withy = 10, 7; = 10 and 1000 iterations

is used foracg Stabwill also be reliable even if an algorithm loses trackRiDF.

If POF is unknown, as is the case with most real-world problems déheation
of the performance measures that use Hié measure should also be calculated. If
the performance measure’s deviation varies much more ftainealgorithms, it may

indicate that one or more of the algorithms have lost track@fthanging POF and that
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the performance measure can not reliably be used to compagetformance of the
different algorithms. Therefore, the graph$2@F*s should be plotted and checked to
determine whether any algorithm has lost track of the chranBiOF.

Even though various performance measures were used, tteadiigy performance
measures can play a large enough role to influence the oxenétlhg of the algorithms.
This is shown in Table 14. Even though the DVEPSO algorithamked the highest
with regards td\N'S, VD andMS, the measures that make use of Hh¢ value dfected
the ranking in such a way that the DVEPSO algorithms rankeduasber 3 and 4
respectively and were outranked by the DNSGA-II algorithnpertraying incorrect
ordering.

It should be noted that the stability measuse¢ah proposed by @maraet al. [9]
measures the change in the valuesiof at two consecutive time steps (refer to Sec-
tion 4.4). Under normal circumstances a IBwabvalue indicates that the performance
of the algorithm is not severelyffacted by the change in the environment. However,
in situations where one or more algorithm(s) lost track ef¢hanging POF, the low-
estStabvalue will be obtained by the algorithms that lost track a thanging POF.
Therefore, the results obtained with tBeabperformance measure will be mislead-
ing. Table 14 shows that the NSGA-II algorithms obtainedtse& tabvalue than the
DVEPSO algorithms. Clearly, as indicated by the POFs showfigure 2, this is not
the case.

Even thoughsS tabhas been proposed to provide additional information anmot t
be used on its own, it should be noted that the choice of tHeymeance measure used

to measuraccinfluences the reliability 0§ tab

5.2. Outliers in the POF

When algorithms solve DMOOPs and the environment changgqedrely, thePOF*
that has been found by the algorithm for a specific time stepaoatain outliers [33].
This occurs, because in the number of iterations or gelastvailable to the algo-
rithm to solve the specific POF, the algorithm found non-dwted solutions that are
further away from the true POF. In the time available befbeednvironment changes,

the algorithm has not found any solutions closer to the t1Q€ Ehat dominates these
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outlier solutions. Figure 3 illustrates an exampI@F* that contains outliers.

. Q\\\\\\\
A
§ \\\\\\

S N

(a) POF* of dMOP2 with outliers(b) Zoomed into POF region of (a) (c) POF of dMOP2

Figure 3: Example of ®OF* that contains outlier solutions.

Ouitliers will skew results obtained using:

o distance-based performance measures, su@iba¥ D, PL, CS and M,

e performance measures that measure the spread of the se|ich ad1S, and
e the HV performance measure.

The influence of outlier solutions on the calculatiorGId andV D is illustrated in
Table 15. Due to the large distance between the outlier®&@tdas shown in Figures 3
and 4, the resulting D andV D is much larger with the outliers present compared to
when the outliers are not present. However, it should bednibtat the severity of the
influence of outliers on distance calculations depends emtimber of outliers and

their distance fronPOF.

T
True POF.

Sampled Points of True POF &

Approximated POF @

Figure 4:POF* of FDA1 with outlier solutions
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Table 15: GD, VD and MS values for FDA1
Outliers [GD VD MS

Yes 2.055654.5965740.91833
No 0.009420.0163110.4342

Furthermore, when a performance measure, sudh@sf Camaraet al.[9], mea-
sure the extent or spread of the approximated POF, theseradlutions may cause
the performance measure to be misleading with regards feettiermance of the algo-
rithm. In Figure 4, the outlier solutiond; and f, values will become th@_Fi* andPF!
in the f, and f; objective in Equation (9) respectively. In FigureRDF* only conﬁs
non-dominated solutions with, values in the range of [R, 0.7] and f, values in the
range of [00.5] without the outlier solutions. However, with the outlgslutions the
f, values will be calculated as being in the range ofL[0] and f, values in the range
of [0.2, 3]. This will result in the maximunMS value and will not give a true reflection
of the diversity of solutions that has been found by the atlgor. The influence of the
outliers on the value df1S is shown in Table 15.

When solving DMOOPs, many researchers useHheperformance measure, es-
pecially whenPOF is unknown. When comparing various algorithni®OF*s, the
same reference vector is usddV values that are calculated withfidirent reference
vectors cannot be compared against each other. Furtheroutlier solutions influence
the reference vector values that are used to calculate th@pically, the reference
vector is chosen as the worst values obtained for each algedtherefore, foPOF*
in Figure 4 the reference vector for the/ is [1.1,3.1] and [11, 1.1] with and without
the outlier values respectively. This results in much latg® values when outliers
are present, as shown in Table 16. From Table 16 it is cleaHkdR andacg,; pro-
vide a more accurate representation of the performanceeddltiorithm, resulting in
a betterHVR value without outliers than with the outliers. However, whae HV
is used, thePOF* with outliers obtain a bettdfdV value than thd?OF* without the
outliers. Therefore, iPOF is unknown and thé&lV is used, outlier solutions may lead
to misleading results and algorithms being ranked inctlgrec

One approach to manage outliers”R@OF* is to remove the outliers frorROF".
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Table 16: HV, HVR and HVD values for FDA1
Outliers [HV HVR acCyt

Yes 2.49898 0.84461 0.45974
No 0.697940.91994 0.06074

However, no consensus exists on the approach that shoutdldwedd to decide which
non-dominated solutions IROF* should be classified as outliers.

It should be noted that, as the number of objectives inceeasere outlier solutions
may become present IROF*. This is the case, since as the number of objectives
increases, more solutions that are found by the algorithib@inon-dominated with
regards to the other solutions ROF*. Furthermore, outliers iPOF* will cause the
same problems when solving static MOOPs. However, sinagithgns generally have
longer time to converge toward®OF with static MOOPs than with DMOOPs where
the environment changes, the possibility of the occurreiamitliers increases when

solving DMOOPs.

5.3. Boundary Constraint Violations

The candidate solutions of certain computational intetice algorithms tend to move
outside the boundary constraints of an optimisation prabl¢hile searching for so-
lutions. For example, it has been shown theoretically thastrparticles in a particle
swarm optimisation (PSO) algorithm [38] leave the boundhiwithe first few iter-
ations [18; 23]. If a particle finds a better solution outsile bounds, its personal
best position is set to this new position. Should this posibe better than the current
neighbourhood or global best, other particles are alseguutside of the bounds.
Consequently, particles may converge on a solution outbieldounds of the search
space. This behaviour of particles is empirically analylzgdngelbrecht [19].

If a genetic algorithm (GA) [35] uses blending cross-oveiGtsas parent-centric
cross-over [16], fispring may be generated outside the boundaries of the sgaack
due to the stochastic component of the blending process.

Most evolutionary programming [21] algorithms sample rtiotzal step sizes from
zero-mean distributions with tails that asymptoticallpegach infinity and negative in-

finity. Consequently, large mutational step sizes can (igiénbe added to parent in-
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dividuals, moving €spring outside of the bounds. If sucispring have better fitness
than parent individuals, theséspring survive to the next generation with a chance of
obtaining a solution that does not lie within the bounds efgharch space.

With differential evolution’s [58] mutation operator, a weighteffetience of two
vectors are added to the parameter vector. If this weighiiéerence is large, it may
cause the trial vector to move outside the boundary conssraif the optimisation
problem.

Most unconstrained DMOOPs have boundary constraintsithéthe search space.
However, if an algorithm does not manage boundary constvaations, infeasible
solutions may be added BOF*. These infeasible solutions may dominate feasible
solutions inPOF*, which will cause the feasible solutions to be removed fflROF".
Furthermore, the infeasible solutions may cause mislegadisults with regards to an
algorithm’s performance.

Figure 5(a) illustrates #OF* that was found by dynamic VEPSO (DVEPSO)
that did not manage boundary constraint violations (DVERS@en solving dMOP2,
DVEPSO that manages boundary constraint violations (DV&P3nd the true POF
(POF). From Figure 5 it is clear tha®OF* of DVEPSQ, has a larger HV value than
bothPOF* of DVEPSQ (refer to Figure 5(b)) an®OF (refer to Figure 5(c)). This is
confirmed in Table 17. This incorrectly indicates that B@F* that contains solutions
that are outside the bounds of the search space to be béteefdre, when comparing
various algorithms with one another, it is important to dhbhat all algorithms manage
boundary contraint violations to ensure a fair comparidoshould be noted that the

issue of boundary constraint violations is applicable tthi®MOO and DMOO.

Table 17: HVR values for dMOP2
Algorithm JHVR

DVEPSQ [1.0018]
DVEPSQ [0.99978

5.4. Objective Space versus Decision Space

Accuracy measures, such ¥® or GD, can be calculated with respect to either the

decision or the objective space. Using objective spsd@measures the distance be-
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Figure 5: Example of # OF* that contains infeasible solutions due to boundary coimtvélations

tween the non-dominated solutionsPOF* andPOF'. Therefore VD measures the
closeness oPOF* to POF. Since one of the goals of solving a DMOORP is to track
the changing POF, the accuracy should be measured in thetigbjspace. If thé&/D
measure is calculated in the decision space, the distaneedePOS" and POS is
calculated. Calculating théD measure in the decision space may be useful to deter-
mine how closé?OS* is from POS. However, if for a DMOOP a small change in the
POS causes a big change in the POF, it may occur that evenhthibeglgorithm’s
POS* is very close taPOS, POF* is quite far fromPOF. This is illustrated with an
example DMOOP defined as:

Minimize: f(x,t) = (f1(x), 9(u) - h (X, f10¢), g (Xn) 1))

fi(x) = %

90) = 1= Sex, V=G0 = Loy (%) — GO)’

DMOOP; ={ h(xy, fr.g.t) = 1 (2)""
where:

G(t) = sin(Q5nt), t=2|z|
H(t) = 1.5 + G(t)

X €[0,1]; Xy, Xuy; € [-1,1]

wherex,, x;; andx,, are subsets of the decision variablésaffects the spread of solu-

(33)

tions of POF, g affects the level of diiculty an algorithm experiences when converging
to POF andh influences the discontinuity or convexity BOF [73].
For DMOOR, both its POS and POF changes over time, defined as:

POS: x = G(t), VX € Xy, Xy

POF: y=1- {0
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Letx, = {Xq, X2, X3}, Xy = {X4, X5, X}, t = 0.1, G(t) = 0.156,x; = {0.14,0.16,0.16,
0.16,0.16,0.16} andx, = {0.16,0.16,0.16,0.16,0.14,0.16}. Then, measuring the dis-
tance between the solution and the true POS (i.e. in dec&gane)d(X)gec, X1 and
Xo obtains the samégye; value. Howeverx; andx, produces the followingh values
respectively: 37512 and ®3183. The true POF value fag andx, are 0961453
and 0951914 respectively. Theftierence between thgh values found by; andx,
and the true POF valuedyy), are 0023941 and 20084 respectively. Therefore, even
though in the decision space thdfdrence betweer; andx; and the true POS pro-
duces the samdye value, their diference in objective spacey;, is different, withx,
being closer to the true POF than

MeasuringV D in the decision space will indicate how close the decisiamde
values are fronPOS. However, thé/ D value measured in decision space will not give
a true reflection of the accuracy BOF* with regards tdPOF. Therefore, measuring
VD in decision space to determine the accuracy of the algostboiutions found, is
only appropriate for DMOOPs of Type | where the POS changes time, but the
POF remains static. However, for DMOOPs of Type Il and lll,asngingV D in the
decision space will not provide any information with regata how well the algorithm
has tracked the changing POF and therefore for these typ#@@PsV D should be
measured in objective space.

The following papers measured eith@D or VD in only the decision space: [24;
25;42; 49; 60]. In [60] only FDA1, which is a Type | DMOOP, wasadl and therefore
measuring in the decision variable space is appropriatd43f) three DMOOPs of
Type | (FDA1, DIMP1 and DIMP2) were used and one DMOOP of Tyip@DA3).
For the Type Il DMOOP, calculating in the decision space willy provide informa-
tion with regards to tracking of the changing POS, but nohwigards to the track-
ing of the changing POF. In [24; 25; 49], DMOOPs of Types |,nddll were used.
For the DMOOP of Type Ill, measuring in the decision space amllicates whether
POS* remains close t&?OS, which remains static over time. Therefore, it provides
no information with regards to how well the algorithm hagked the changin@OF.
The issue of calculating performance measures in eithésidacr objective space is
unigue to DMOO, since with SMOO both the POS and POF rematitsta
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5.5. Comparing Performance of Algorithms

When the performance of various algorithms are comparedhsigane another, typi-
cally various performance measures are used. Some algarithll perform very well
with regards to certain performance measures and not sewtkliegards to other per-
formance measures. Therefore, typically each algorithihb&iranked according to
its performance with regards to each performance meastren, Tor each algorithm
its average rank is calculated. These averaged ranks araufieel to determine how
well each algorithm performed with regards to the other @igms. Examples can be
found in [12; 33]. However, it should be noted that the perfance measures that
are used for comparing various algorithms should be chosgmnocare. If the wrong
performance measures are selected, it may lead to incaméeting as discussed in
Section 5.1 and illustrated in Table 14 and [34]. Therefdr&OF is known, the us-
age ofacg,; is suggested. However, more research is required to detertné best

performance measure(s) for cases wHe@d is unknown.

6. Conclusion

This article provided an overview of the performance measthiat are currently being
used to measure the performance of DMOO algorithms. Prableith current perfor-
mance measures were discussed, showing that algorithinkdeatrack of the POF
and outliers in the found POF can produce misleading restien performance mea-
sures based on distance calculations, performance msasagesuring the extend or
spread of the non-dominated solutions, the hypervolumbehypervolume ratio are
used to measure the performance of DMOO algorithms. Therlirapce of managing
boundary constraint violations were highlighted. Funthere, the dference between
calculating accuracy performance measures in decisidablarspace and objective
space was discussed.

Taking into consideration the issues with current perforceameasures, the impor-
tance of performance measure selection when comparinguaBPMOO algorithms’
performance and the influence that this selection of perdioice measures can have on

the ordering of the algorithms, were presented.
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Future work includes testing the performance of DMOO alpaons using th@ccy
performance measure, i.e. the absolute value of tiferdnce in HV values of the
approximated POF and the true POF, to quantify the perfocmai the algorithms.
Furthermore, more research is required with regards t@mpaence measures that are
not vulnerable to the issues discussed in this article aaidcm be used when the true

POF is unknown.
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