
Characterization of Correlations in Two-Fermion Systems Based on Measurement

Induced Disturbances

A.P. Majtey1∗, C. Zander2† and A.R. Plastino1, 3‡
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We introduce an approach for the characterization of quantum correlations in two-fermion systems
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quantum observables represented by one-body operators). This approach leads to a concept of
quantum correlations in systems of identical fermions different from entanglement.
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I. INTRODUCTION

Considerable attention has recently been devoted to
the applications of tools and concepts from quantum in-
formation theory to the study of correlations in systems
of identical fermions [1–16]. A key role in these develop-
ments was played by the work of Ghirardi and collabora-
tors [1, 2], who advanced a clear and physically motivated
formulation of the concept of separability for systems of
identical particles. Most of the research conducted on
quantum correlations in fermion systems has focused on
the analysis of quantum entanglement. However, it is
well-known that the concept of entanglement does not
capture all the relevant, information-theoretical aspects
of the quantum correlations exhibited by composite sys-
tems. Indeed, as was established in a pioneering work by
Zurek and Ollivier [17], even separable mixed states can
be endowed with correlations exhibiting non-trivial quan-
tum features. In the case of systems consisting of distin-
guishable parts various measures have been advanced to
characterize quantitatively the different ways (besides en-
tanglement) in which quantum correlations can manifest
themselves [17–31]. Prominent among these are quan-
tum discord and the measures of correlations based upon
the disturbances of quantum states due to local mea-
surements proposed by Luo [21–23] and by SaiToh and
collaborators [28, 29]. In the case of pure states these
measures reduce to quantum entanglement. In the case
of mixed states, however, these measures describe phys-
ical properties of quantum states that are different from
entanglement. A thermodynamical approach of quantum
correlations has been extensively studied by Oppenheim
et al. [32] and correlations related to non-locality have
been explored in [33].

Quantum discord, introduced by Ollivier and Zurek
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[17], is based on the difference between two quantum ver-
sions of classically equivalent expressions of the mutual
information. An alternative but closely related quantity
has been derived by Henderson and Vedral [18]. Quan-
tum discord characterizes in a bipartite system the quan-
tumness of correlations, quantifying the minimum change
in the state and in the information of one of the parts
of the system induced by a measurement on the other
part. This measure has been calculated for different fam-
ilies of quantum states and compared with entanglement
[20, 22, 23]. Several modified versions and generalizations
of quantum discord have been advanced [24, 25, 27].

The measurement induced disturbance notion of quan-
tum correlations introduced by Luo in [21] exhibits two
attractive features. First, it admits an intuitive straight-
forward interpretation in terms of the basic idea that
in classical scenarios one can perform a measurement
upon a system without disturbing it. On the contrary,
in the quantum domain measurements usually produce
disturbances on the systems being measured. Luo ap-
plies these concepts to the analysis of correlations in bi-
partite systems. According to this approach, a bipar-
tite system is endowed only with classical correlations if
there exist local measurements on both subsystems that
can be conducted without disturbing the global state
of the composite system. If this is not the case, the
(minimum) magnitude of the disturbance due to local
measurements can be regarded as a quantitative mea-
sure of the quantumness of the correlations exhibited by
the system. The second advantage of Luo’s proposal
is that this measure of the quantum character of cor-
relations is sometimes easier to compute than alterna-
tive measures, such as quantum discord. It is important
to emphasize that both quantum discord and the no-
tion of quantum correlations based upon measurement
induced disturbances determine the same family of clas-
sical states of a quantum bipartite system. These states
are those described by density matrices that are diagonal
in a product basis {|i〉|j〉, i = 1, . . . , N1; j = 1, . . . , N2},
where {|i〉, i = 1, . . . , N1} and {|j〉, j = 1, . . . , N2} are
orthonormal bases associated with the two subsystems,
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N1,2 being the dimensions of the concomitant Hilbert
spaces. Indeed, it is shown in [21] that a quantum state
ρ of a bipartite system is undisturbed by appropriate
(un-read) local measurements if and only if ρ is diago-
nal in a product basis. This suggests a natural way of
assessing the “amount of quantumness” exhibited by the
correlations present in a quantum state ρ, by recourse
to the minimum possible “distance” between ρ and the
disturbed state Π(ρ) resulting from a local measurement
[21].

There exist possible implementations of quantum com-
putation that could take advantage of quantum correla-
tions different from entanglement. Indeed, these corre-
lations seem to play a role in the exponential speedup
exhibited by the scheme of deterministic quantum com-
putation with one qubit (DQC1) introduced in [34], as
a model of mixed state quantum computation [35] (see,
however, [25]). Discord is also relevant in connection
with other quantum information protocols such as, for
example, assisted optimal state discrimination [26].

The purpose of the present work is to investigate mani-
festations of the quantum correlations in fermion systems
that do not correspond to quantum entanglement, focus-
ing on the measurement induced disturbance approach.
Quantum discord does not seem to admit a counterpart
in the case of systems of identical fermions, because its
definition involves a strong asymmetry between the con-
stituting parts of the composite system under consider-
ation. On the other hand, as we shall see, the measures
of correlations based upon measurement induced distur-
bances do admit a natural generalization to the fermion
systems.

II. PRELIMINARIES

A. Entanglement in systems of identical fermions

A pure state of a composite system consisting of two
identical fermions is regarded as separable (that is, non-
entangled) if and only if it can be described as a sin-
gle Slater determinant. Pure states like this are said to
have Slater rank 1. Here, by “entanglement” in fermion
systems we mean entanglement between particles (as op-
posed to entanglement between modes). Mixed separa-
ble states are those that can be expressed as a statistical
mixture of pure states of Slater rank 1. A separable pure
state of two identical fermions can be obtained by anti-
symmetrizing a product state |α1〉 ⊗ |α2〉,

|ψ(1, 2)〉 =
1√
2

[

|α1〉 ⊗ |α2〉 − |α2〉 ⊗ |α1〉
]

, (1)

where |α1〉, |α2〉 are two orthogonal and normalized
single-particle states.

It is useful to regard a system constituted by iden-
tical fermions with a single-particle Hilbert space of
dimension 2k (with k ≥ 2) as a system consisting of

spin-s particles, with s = (2k − 1)/2 [10, 12, 13]. An
orthonormal basis {|i〉, i = 1, . . . , 2k} of the single-
particle Hilbert space can then be identified with the
states |s,ms〉, with ms = s − i + 1, i = 1, . . . , 2k.
These states can be denoted by the shorthand notation
{|ms〉, ms = −s, . . . , s}, because each of the exam-
ples discussed here corresponds to a given value of
k (and therefore s). Within this angular momentum
representation, the antisymmetric joint eigenstates
{|j,m〉, −j ≤ m ≤ j, 0 ≤ j ≤ 2s} of the total angular
momentum operators Jz and J2 constitute a natural
basis for the Hilbert space associated with a system of
two identical fermions. The antisymmetric states |j,m〉
are those characterized by an even value of the quantum
number j [36, 37]. In what follows the notation |j,m〉
is always meant to refer to the angular momentum
representation.

The following is a list of the antisymmetric total angular
momentum eigenstates for two fermions of spin- 3

2 with
the value for the concurrence (see equation (5)) indicated
on the right:

C
|2, 2〉 = − 1√

2
| 12 3

2 〉 + 1√
2
| 32 1

2 〉 0

|2, 1〉 = − 1√
2
|-1

2
3
2 〉 + 1√

2
|32 -1

2 〉 0

|2, 0〉 = − 1
2 |- 3

2
3
2 〉 − 1

2 |-1
2

1
2 〉 + 1

2 |12 - 1
2 〉 + 1

2 | 32 -3
2 〉 1

|2,−1〉 = − 1√
2
|- 3

2
1
2 〉 + 1√

2
|12 - 3

2 〉 0

|2,−2〉 = − 1√
2
|- 3

2 -1
2 〉 + 1√

2
|- 1

2 -3
2 〉 0

|0, 0〉 = − 1
2 |- 3

2
3
2 〉 + 1

2 |-1
2

1
2 〉 − 1

2 |12 - 1
2 〉 + 1

2 | 32 -3
2 〉 1

Notice that the states |0, 0〉 and |2, 0〉 are maximally en-
tangled, while all the other states of two spin- 3

2 fermions
listed in the above table correspond to single Slater
determinants and therefore have zero entanglement.

Necessary and sufficient separability criteria for pure
states |Ψ〉 of two identical fermions can be formulated in
terms of appropriate entropic measures evaluated on the
single-particle reduced density matrix

ρr = Tr2 (|Ψ〉〈Ψ|) . (2)

A pure state |Ψ〉 of two identical fermions is separable
iff any of the following two conditions hold (see [11] and
references therein),

S[ρr] = 1,

T r(ρ2
r) =

1

2
, (3)

where S[ρr] = −Tr(ρr log ρr) is the von Neumann en-
tropy of ρr. We use log to denote logarithm of base 2
throughout the paper. The above separability criteria
naturally lead to the following quantitative measures of
entanglement for pure states of the fermion system,
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EvN [|Ψ〉] = S[ρr] − 1,

EL[|Ψ〉] =
1

2
− Tr(ρ2

r). (4)

The above two quantities are non-negative and vanish iff
|Ψ〉 has Slater rank 1. They provide quantitative indica-
tors of how strongly the separability conditions (3) are
violated and, consequently, of how entangled is the state
|Ψ〉 under consideration.

The development of entanglement criteria, or of practi-
cal entanglement measures or indicators for mixed states
of systems of two fermions remains a largely unexplored
field. A closed analytical expression for the amount of en-
tanglement exhibited by a general (pure or mixed) state
of a system of two fermions is known only for the case of
fermions described by a single-particle Hilbert space of
dimension four. This is, by the way, the fermion system
of lowest dimensionality exhibiting the phenomenon of
entanglement.

In order to compute the amount of entanglement, we
have an analytical expression for the concurrence of gen-
eral states of two fermions only for systems with a single-
particle Hilbert space of dimension four [10],

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4 − λ5 − λ6}, (5)

where the λi’s are, in decreasing order, the square roots
of the eigenvalues of ρρ̃ with ρ̃ = DρD−1, where D is
given by,

D =















0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1















κ, (6)

κ is the complex conjugation operator and D is expressed
with respect to the total angular momentum basis in the
following order |2, 2〉, |2, 1〉, |2, 0〉, |2,−1〉, |2,−2〉, and
i|0, 0〉.

B. Majorization

Suppose x = (x1, ..., xd) and y = (y1, ..., yd) are two
d-dimensional vectors with real, non-negative, and sum-

ming up to one components. x↓ = (x↓1, ..., x
↓
d) denotes

the vector with its components rearranged into decreas-

ing order, x↓1 ≥ x↓2 ≥ ... ≥ x↓d. Then x is majorized by y,
x ≺ y, if

k
∑

j=1

x↓j ≤
k

∑

j=1

y↓j , (7)

for k = 1, ..., d − 1 and with equality when k = d. This
relation is connected with disorder [38] and it can be
shown that majorization is a notion of disorder stronger
than entropy [39, 40] in the sense that if x ≺ y then it
follows that H(x) ≥ H(y).

III. CORRELATIONS IN FERMION SYSTEMS

AND MEASUREMENT INDUCED

DISTURBANCE

As already mentioned, a pure state of a system of two
identical fermions is non-entangled if and only if it can
be written as a single Slater determinant,

|ψ(1, 2)〉 =
1√
2

[

|α1〉 ⊗ |α2〉 − |α2〉 ⊗ |α1〉
]

, (8)

where the single-particle states |α1〉, |α2〉 are two orthog-
onal and normalized states. A state like (8) exhibits
the “classical-like” feature that both constituents of the
composite system possess a complete set of properties
[2]. That is, one can objectively say that one particle
possesses the complete set of properties associated with
the single-particle pure state |α1〉 and the other parti-
cle possesses the set of properties corresponding to |α2〉
(of course, it makes no sense to ask “which particle pos-
sesses which set of properties”). States having the form
(8) are the only pure states of two fermions exhibiting
this classical property. Indeed, the possibility of assign-
ing a definite set of properties to each of the two fermions
constitutes one of the strong conceptual reasons for re-
garding the state (8) as non-entangled.

The above discussion naturally leads to the question
of how to characterize the set of mixed states that share
the “classical-like” features of (8). There are at least two
possible ways of extending the above discussion to the
case of mixed states of systems of two identical fermions.
On the one hand, we can consider the set of mixed states
that are expressible as a statistical mixture of a family of
pure states, each one being of the form (8). That is, we
may consider states of the form,

ρsep. =
∑

k

pk

2

[

|φ(k)
1 〉 ⊗ |φ(k)

2 〉 − |φ(k)
2 〉 ⊗ |φ(k)

1 〉
]

×
[

〈φ(k)
1 | ⊗ 〈φ(k)

2 | − 〈φ(k)
2 | ⊗ 〈φ(k)

1 |
]

,

(9)

where 0 ≤ pk ≤ 1,
∑

k pk = 1, and the single-particle

pure states |φ(k)
i 〉 verify,

〈φ(k)
i |φ(k)

j 〉 = δij . (10)

Equation (9) represents the standard definition of a non-
entangled, or separable, mixed state of two identical
fermions. Notice that in (9) no special relation between
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states |φ(k)
i 〉 with different values of the label k is as-

sumed. In particular, the overlap between two states
with different labels k is not necessarily equal to 0 or 1.
This, in turn, means that the overlap between two dif-
ferent members of the family of (separable) two-fermion
pure states participating in the statistical mixture lead-
ing to (9) may be non-zero.

The above considerations suggest an alternative, and
complementary, way of extending to mixed states the
“classical-like” features exhibited by pure states of the
form (8). One can consider statistical mixtures of states
like (8) such that for all these states the two (complete)
sets of properties associated with the pair of particles be-
long to the same family F of mutually exclusive sets of
(complete) single-particle properties. This family F cor-
responds to an orthonormal basis {|αi〉, i = 1, 2, 3, . . .} of
the single-particle Hilbert space. Such a state then has
the form

ρclass. =
∑

i<j

pij

2

[

|αi〉 ⊗ |αj〉 − |αj〉 ⊗ |αi〉
]

×
[

〈αi| ⊗ 〈αj | − 〈αj | ⊗ 〈αi|
]

,

(11)

with 0 ≤ pij ≤ 1,
∑

i<j pij = 1. The density opera-

tor (11) is diagonal in an orthonormal basis of the two-
fermion state space consisting of all the states of the
Slater determinant form, 1√

2
(|αi〉⊗|αj〉−|αj〉⊗|αi〉), i <

j, that can be constructed with states belonging to the
single-particle basis {|αi〉}. Such a basis of the two-
fermion system will be called a “Slater basis”. We shall
say that this Slater basis is constructed from, or in-
duced or generated by the single-particle orthonormal
basis {|αi〉}. Let us now consider a single-particle non-
degenerate observableAsp with eigenbasis {|αi〉} and cor-
responding eigenvalues {ai}, Asp =

∑

i ai|αi〉〈αi|, and
also the two-fermion observable (which we also assume
to be non-degenerate)

A = A(1)
sp ⊗ I

(2) + I
(1) ⊗A(2)

sp . (12)

The two-fermion observable A has as its eigenbasis the
Slater basis constructed from the single-particle basis
{|αi〉}, the eigenvalue corresponding to the eigenvector
1√
2
(|αi〉 ⊗ |αj〉 − |αj〉 ⊗ |αi〉) being ai + aj . We shall

call the measurement of an observable of the form (12)
a “local” measurement. In other words, a local measure-
ment is a measurement in a Slater basis. To each possible
outcome of the measurement of A we can associate the
projector

Pij =
1

2

(

|αi〉 ⊗ |αj〉 − |αj〉 ⊗ |αi〉
)

×
(

〈αi| ⊗ 〈αj | − 〈αj | ⊗ 〈αi|
)

, i < j.
(13)

These projectors satisfy,

PijPi′j′ = Pijδii′δjj′ , i < j, i′ < j′
∑

i<j

Pij = I. (14)

The notion of locality for identical fermions considered
here is associated with operations or processes that do
not involve interaction between the particles constitut-
ing the system. An example of a local measurement is
given by the measurement of the energy of a system of
two non-interacting fermions. The Hamiltonian opera-
tor, associated with the energy observable, is then of the
form,

H = H(1)
sp ⊗ I

(2) + I
(1) ⊗H(2)

sp , (15)

where Hsp is the single-particle Hamiltonian. Local uni-
tary operations for a system of two identical fermions
are those corresponding to the time evolution operator
determined by a Hamiltonian of the form (15),

U = U (1)
sp ⊗ U (2)

sp , (16)

where Usp = exp [−iHspt/~]. An essential feature of the
concept of separability for fermions advanced by Ghirardi
and collaborators [1, 2], is that separable states evolve
into separable states under local unitary operations of
the above form. Moreover, the relevant quantitative mea-
sures of entanglement between particles for systems of
identical fermions are also invariant under local unitary
operations [10]. It is also clear that the two-fermion state
resulting from the application of a local unitary opera-
tion (16) upon a classically correlated state (11) yields
another classically correlated fermionic state.

The process of measurement in quantum mechanics is
associated with an alteration of the state. If the two-
fermion system is initially in the state ρ, the state imme-
diately after the measurement (and before the observa-
tion) is given by

Π(ρ) =
∑

i<j

PijρPij . (17)

If the initial state ρ is of the form (11) then one has
Π(ρ) = ρ. In other words, for a state of the form
(11) there always exists a local measurement that leaves
the state undisturbed. As a particular instance of two-
fermion states with this property we have the pure, sepa-
rable states (8). We then propose to adopt this property
as the criterion characterizing two-fermion states (pure
or mixed) with minimal quantum correlations, which we
shall call “classically correlated states” [43]. In summary,
a two-fermion state has minimal quantum correlations
if there exists a local measurement that leaves the state
undisturbed (in the sense that Π(ρ) = ρ). This consti-
tutes an extension to the case of systems of identical
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fermions of the approach to analyze quantum correlations
for distinguishable systems advanced by Luo in [21].

It follows from the above definition of classically cor-
related two-fermion states that the following statements
are equivalent (see Appendix A):

1. The state ρ is classically correlated.

2. There exists a local measurement, with associated
projectors Pij (of the form (13)) such that ρ com-
mutes with each Pij .

3. The state ρ can be represented as

ρ =
∑

i<j

pij

2

(

|αi〉 ⊗ |αj〉 − |αj〉 ⊗ |αi〉
)

×
(

〈αi| ⊗ 〈αj | − 〈αj | ⊗ 〈αi|
)

(18)

for some single-particle orthonormal basis {|αi〉}
and some probability distribution {pij} (normal-
ized as

∑

i<j pij = 1).

The above three statements are similar to the ones
obtained by Luo for distinguishable subsystems [21]. We
see that the structure of these statements is preserved
when going from the distinguishable subsystems scenario
to the one involving identical fermions, in spite of the fact
that the underlying formalism in the latter case (based
on Slater determinants) is quite different from the one
corresponding to distinguishable particles.

The single-particle reduced density matrix ρr (see
equation (2)) associated with a two-fermion state of the
form (18) is given by,

ρr =
∑

i<j

pij

2

(

|αi〉〈αi| + |αj〉〈αj |
)

. (19)

IV. MEASURE OF QUANTUM

CORRELATIONS FOR TWO-FERMION

SYSTEMS

The above definition of classically correlated two-
fermion states (states with minimal quantum correla-
tions) suggests that one adopts as a quantitative mea-
sure of quantum correlations of a two-fermion state ρ the
minimum “distance” between ρ and the disturbed state
Π(ρ) arising from an (un-read) local measurement. That
is, a measure of the form

ξD(ρ) = inf
Π
D(ρ,Π(ρ)), (20)

where the infimum is taken over all complete local pro-
jective measurements and D may be almost any distance
or divergence measure for quantum states. As already
mentioned in the Introduction, a similar proposal was
advanced by Luo for treating systems with distinguish-
able subsystems [21]. To calculate ξD from the above

definition it is necessary to implement an optimization
procedure to determine the local measurement leading
to the minimal disturbance, which is in general a very
difficult problem. A more tractable approach is given by
the expression

ξsp
D (ρ) = D(ρ,Πsp(ρ)), (21)

where the measurement Πsp is the one induced by the
spectral resolution of the single-particle reduced state ρr.
That is, in (21) we consider a local measurement in the
Slater basis constructed from the (single-particle) eigen-
basis of ρr. The main problem with the measure (21) is
that it is not unique when ρr has degenerate eigenvalues.
This problem obviously disappears if one introduces in
(21) a minimization over all the Slater bases induced by
an eigenbasis of ρr (a similar situation arises in the case
of distinguishable subsystems [30, 31], see Appendix C).
If we call these bases “local bases”, we can then adopt
the measure

ξlocal
D (ρ) = inf

local bases
D(ρ,Πsp(ρ)). (22)

It is clear that a measurement associated with a local
basis leaves the single-particle reduced density matrix ρr

undisturbed.
A convenient way of implementing the above ideas is

the one advanced by SaiToh et al. [28] in the case of
distinguishable subsystems: we can define as a measure
of correlations,

ξ(ρ) = min
local bases

S[Π(ρ)] − S[ρ]. (23)

This is the measure we are going to use in order to charac-
terize the quantum correlations in systems of two identi-
cal fermions. Notice that we always have S[Π(ρ)] ≥ S[ρ]
and, consequently, the measure (23) is always a non-
negative quantity. In fact, it vanishes if and only if ρ
is a classically correlated state.

In order to evaluate (23) we have to determine the lo-
cal measurement that minimizes S[Π(ρ)] under the con-
straint that ρr remains undisturbed (from here on this
constraint is always assumed when we discuss optimiza-
tion processes over the set of local measures or, equiva-
lently, over the set of Slater bases). As we are going to see
in the following Sections, in many cases this optimization
problem can be conveniently tackled using the concept of
majorization. Let us consider a local measurement asso-
ciated with the Slater basis {|sl1〉, |sl2〉, . . .}. We denote
by λ(Π(ρ)) = {〈sl1|ρ|sl1〉, . . .} the eigenvalues of Π(ρ). If
we now compare two local measurements, using the ma-
jorization technique introduced in Section II.B, we have
that

λ(Π(ρ)) ≺ λ(Π∗(ρ)) → S[Π∗(ρ)] ≤ S[Π(ρ)]. (24)
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Consequently, if we find a local measurement associ-
ated with a Slater basis {|sl∗i 〉} such that the eigenvalues

λ(Π∗(ρ)) satisfy λ(Π(ρ)) ≺ λ(Π∗(ρ)) for any other local mea-
surement, then we have that

ξ(ρ) = S[Π∗(ρ)] − S[ρ]. (25)

Summing up, the optimization problem is solved if one
finds a local measurement such that the set of eigenvalues
λ(Π∗(ρ)) majorizes the set of eigenvalues λ(Π(ρ)) associated
with any other local measurement.

V. PURE STATES OF TWO IDENTICAL

FERMIONS

First we are going to analyze the quantum correlations
exhibited by pure states of a two-fermion system. Now
we are going to evaluate the measure ξ(ρ) defined in (23)
on a pure state ρ = |ψ〉〈ψ| of a two-fermion system with
a single-particle Hilbert space of dimension 2k, k ≥ 2. In
order to evaluate ξ(ρ) in this case it will prove convenient
to use the fermionic Schmidt decomposition of the state
|ψ〉. It is always possible to find an orthonormal basis
{|1〉, |2〉, ..., |2k〉} of the single-particle Hilbert space (the
“Schmidt basis”) such that the state |ψ〉 can be cast as,

|ψ〉 =

k
∑

i=1

√

λi

2

(

|2i− 1〉|2i〉 − |2i〉|2i− 1〉
)

, (26)

with the Schmidt coefficients λi satisfying 0 ≤ λi ≤ 1

and
∑k

i=1 λi = 1. The single-particle reduced density
operator is,

ρr =

k
∑

i=1

λi

2

(

|2i− 1〉〈2i− 1| + |2i〉〈2i|
)

, (27)

so that the Schmidt basis is an eigenbasis of ρr, and the
halved Schmidt coefficients, λi/2, are the eigenvalues of
ρr. Notice that each of these eigenvalues is (at least)
two-fold degenerate. Since in this case we have S[ρ] = 0,
the correlations measure (23) reduces to the infimum of
S[Π(ρ)] over all the possible local measurements.

Let us first discuss the case where the k Schmidt coeffi-
cients are all different. Each eigenvalue of ρr is then two-
fold degenerate: the eigenvectors |2i − 1〉 and |2i〉 of ρr

share the same eigenvalue λi/2. Consequently, we have to
minimize S[Π(ρ)] over all possible local bases consisting
of Slater determinants constructed from single-particle
bases of the form,

|εi〉 = c
(i)
11 |2i− 1〉 + c

(i)
12 |2i〉,

|ε⊥i 〉 = c
(i)
21 |2i− 1〉 + c

(i)
22 |2i〉, i = 1, . . . , k, (28)

with appropriate coefficients c
(i)
jl such that |εi〉 and |ε⊥i 〉

are normalized and orthogonal. However, it can be veri-
fied that, for any of these local bases we have

Π(ρ) =

k
∑

i=1

λi

2

(

|2i− 1〉|2i〉 − |2i〉|2i− 1〉
)

×
(

〈2i− 1|〈2i| − 〈2i|〈2i− 1|
)

.

(29)

That is, in this case the disturbed two-fermion density
operator Π(ρ) is the same for all the possible local bases.
Consequently, S[Π(ρ)] is constant over all the associated
local measurements, and so we have that the quantum
correlations measure is,

ξ(ρ) = −
k

∑

i=1

λi logλi. (30)

Now, suppose that two or more λi’s are equal. Assume,
for instance, that t Schmidt coefficients have the same
value, λji

= λ, i = 1, 2, . . . , t. In such a case we have
within the Schmidt expansion of |ψ〉 a term of the form,

√

λ

2

t
∑

i=1

(

|2ji − 1〉|2ji〉 − |2ji〉|2ji − 1〉
)

, (31)

with t ≤ k. The eigenvalue λ/2 of ρr is then 2t-fold
degenerate. Consequently, within the single-particle or-
thonormal basis inducing the local (Slater) two-fermion
basis we can substitute the set {|2ji − 1〉, |2ji〉, i =
1, 2, . . . , t} by any other set of 2t orthonormal linear
combinations of these vectors. The corresponding two-
fermion local basis (characterizing a local measurement)
will then include the t(2t − 1) Slater determinants con-
structed with these new 2t single-particle vectors. Let
us now compare the set of eigenvalues λ(Π(ρ)) of the
disturbed density matrix Π(ρ) associated with this new
local basis (resulting from the above substitution) with
the set λ(Sch.) = {λ1, λ2, . . . , λk, 0, . . .} of eigenvalues of
the disturbed density matrix Π(Sch.)(ρ) associated with
the local (Slater) basis induced by the Schmidt basis
{|1〉, |2〉, . . . , |2k〉}. Let |ζ〉 be one of the Slater deter-
minants constructed with two of the above-mentioned
orthonormal linear combinations of the states {|2ji −
1〉, |2ji〉, i = 1, 2, . . . , t}. It can be shown, after some
algebra (see Appendix B), that

∣

∣

∣

∣

∣

〈ζ| 1√
2

t
∑

i=1

(

|2ji − 1〉|2ji〉 − |2ji〉|2ji − 1〉
)

∣

∣

∣

∣

∣

≤ 1. (32)

This means that, as a result of the above-mentioned
substitution, the eigenvalue λ, which appears t times in
λ(Sch.), is substituted in λ(Π(ρ)) by a new set of eigenval-
ues, each one of them less or equal to λ, and adding up to
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tλ. This substitution leads to a λ(Π(ρ)) that is majorized
by λ(Sch.). That is, we have

λ(Π(ρ)) ≺ λ(Sch.), (33)

and thus

−
k

∑

i=1

λi logλi ≤ S[Π(ρ)], (34)

meaning that the quantum correlation measure for the
pure two-fermion state is again given by (30).

The expression on the right hand side of equation (30)
coincides with the amount of entanglement of the two-
fermion pure state |ψ〉. This means that, in the case of
pure states the concept of quantum correlation for two-
fermion systems introduced here by us coincides with en-
tanglement. In particular, our measure vanishes for a
pure state if and only if this state has Slater rank equal
to one (that is, if we have one Schmidt coefficient λl = 1
and λi = 0 ∀ i 6= l).

VI. MIXED STATES OF TWO IDENTICAL

FERMIONS

In this Section we shall analytically compute the
above-introduced measure of quantum correlations for
some relevant instances of mixed states of two-fermion
systems. We shall consider fermionic analogues of im-
portant states, like the Werner states [41] and the Gisin
states [42], that in the context of distinguishable subsys-
tems constitute paradigmatic examples that proved to be
useful in illuminating numerous aspects of entanglement
and other types of quantum correlations. Aside from
their intrinsic interest, these states exhibit a high degree
of symmetry and typically allow for the exact, analytical
evaluation of relevant measures of quantum correlations.
In point of fact, some of these states have been success-
fully employed by Luo to illustrate his measurement in-
duced disturbance approach to quantum correlations.

Here we shall use the angular momentum representa-
tion for two-fermion states as described in Section II.
Within this representation, as already explained, the
states |j,m〉 with even j constitute a natural basis for
the two-fermion state space. We use a compact notation
according to which, for instance, the ket |0, 0〉 stands for
|j = 0,m = 0〉.

A. Werner-like states

We first consider fermions with a single-particle Hilbert
space of dimension four. We shall evaluate the correlation
measure for the Werner-like state [41],

ρ = p|0, 0〉〈0, 0|+ (1 − p)ρmix, (35)

where

ρmix =
1

6

(

|0, 0〉〈0, 0|+
2

∑

m=−2

|2,m〉〈2,m|
)

(36)

is the totally mixed state of the two-fermion system. The
state (35) is entangled if p > 0.4. The single-particle re-
duced density matrix ρr corresponding to this state is
proportional to the identity matrix. Then, the choice of
the local measurement (in a Slater basis constructed from
an eigenbasis of ρr) is not uniquely defined. Using the
majorization technique we can optimize this local mea-
surement, finding the one leading to the disturbed matrix
Π∗(ρ) of minimum entropy.

When performing a local measurement on ρ the eigen-
values of the resulting Π(ρ) are of the form,

〈Sl|ρ|Sl〉 = p|〈Sl|0, 0〉|2 +
1 − p

6
, (37)

where |Sl〉 is a two-fermion state of Slater rank 1. For
these states one always has |〈Sl|0, 0〉|2 ≤ 1

2 . Equality

here can be achieved by |Sl〉 = 1√
2
[| 32 〉|- 3

2 〉− |-3
2 〉|32 〉] [12].

Let us first consider the local measurement performed
in the Slater basis generated from the single-particle
basis {|32 〉, | 12 〉, |-1

2 〉, |- 3
2 〉}. Let Π∗(ρ) denote the den-

sity matrix resulting from this local measurement, and
λ(Π∗(ρ)) = {λ∗1, . . . , λ∗6} the corresponding set of eigen-
values. We now prove that this set majorizes the eigen-
values λ(Π(ρ)) = {λ1, . . . , λ6} corresponding to any other
local measurement. The members of λ(Π∗(ρ)) are λ∗1 =
λ∗2 = p

2 + 1−p
6 and λ∗3 = · · · = λ∗6 = 1−p

6 . The eigenval-
ues of the operator Π(ρ) corresponding to a general local
measurement are of the form,

〈Sli|ρ|Sli〉 = pǫi +
1 − p

6
, 0 ≤ ǫi ≤

1

2
;

6
∑

i=1

ǫi = 1. (38)

The majorization inequalities
∑t

i=1 λ
∗
i ≥ ∑t

i=1 λi, 1 ≤
t ≤ 6 are then satisfied, and consequently we have that
λ(Π(ρ)) ≺ λ(Π∗(ρ)), meaning that the quantum correla-
tions measure is equal to S[Π∗(ρ)] − S[ρ]. Thus, for the
state (35) we have,

ξ(ρ) =
1 − p

6
log

1 − p

6
+

1 + 5p

6

× log
1 + 5p

6
− 1 + 2p

3
log

1 + 2p

6
.

(39)

The concurrence of this state is given by
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FIG. 1: ξ(ρ) (solid line) and concurrence (dotted line) for the
state given by Eq.(35).

C(ρ) =

{

0, if 0 ≤ p ≤ 0.4
5p−2

3 , if 0.4 < p ≤ 1.
(40)

When p = 1, the state (35) is a pure, maximally en-
tangled state of two fermions, and the quantum correla-
tions measure adopts its maximum value, ξ(ρ) = 1. On
the other hand, when p = 0 the state is equal to the
maximally mixed one, ρmix and in this case ξ(ρ) = 0.
However, we have non-vanishing quantum correlations,
i.e. ξ(ρ) 6= 0, for non-entangled states. ξ(ρ) can be
larger than the concurrence for some states and it can
be smaller for other states, see Fig.1. In this respect, the
behaviour of the fermionic quantum correlations mea-
sure exhibits some similarities with the behaviour of the
quantum correlations measure corresponding to distin-
guishable systems [22].

The previous example admits a generalization to sys-
tems of two identical fermions with a d-dimensional
single-particle Hilbert space, where d = 2k, k ≥ 2. Let

d∗ = d(d−1)
2 denote the dimension of the corresponding

two-fermion state space. We consider states consisting
of a mixture of a maximally entangled state |ψ〉 and the
maximally mixed one,

ρ = p|ψ〉〈ψ| + (1 − p)
2

d(d− 1)
I. (41)

Here I is the (d∗×d∗) identity matrix, and |ψ〉 can be writ-
ten as a superposition of non-overlapping Slater terms

|ψ〉 =
1√
d

[

|2〉|1〉 − |1〉|2〉 + |4〉|3〉 − |3〉|4〉

+ ...+ |d〉|d − 1〉 − |d− 1〉|d〉
]

,

(42)

where {|1〉, |2〉, . . . , |d〉} is a single-particle orthonormal
basis. Let

|Sl〉 =
1√
2

[

|φ1〉|φ2〉 − |φ2〉|φ1〉
]

, (43)

be an arbitrary pure state of Slater rank one, constructed
from the pair of orthonormalized single-particle states,
|φ1〉 and |φ2〉. Then

|〈ψ|Sl〉| ≤
√

2

d
, (44)

with equality obtained for states of the form 1√
2
(|l +

1〉|l〉 − |l〉|l + 1〉), see Appendix B. The eigenvalues of ρ

are (1−p)
d∗

with multiplicity d∗−1 and p+ 1−p
d∗

with multi-
plicity 1, and the single-particle reduced density operator
is ρr = I/d.

Let Π∗(ρ) denote the density matrix resulting from
the local measurement associated with the Slater basis
generated by the single-particle basis {|1〉, . . . , |d〉}, and
λ(Π∗(ρ)) = {λ∗1, . . . , λ∗d∗} the corresponding set of eigen-

values. Let λ(Π(ρ)) = {λ1, . . . , λd∗} be the eigenvalues
of the Π(ρ) corresponding to any other local measure-

ment. The members of λ(Π∗(ρ)) are p(d−2)+1
d∗

with multi-

plicity d
2 and 1−p

d∗
with multiplicity d(d−2)

2 . On the other

hand, due to (44), the members of λ(Π(ρ)) are of the form

pǫi + 1−p
d∗

, with ǫi ≤ 2
d

and
∑d∗

i=1 ǫi = 1. It follows that

λ(Π(ρ)) ≺ λ(Π∗(ρ)), and therefore we have,

ξ(ρ) = S[Π∗(ρ)] − S[ρ] = (d∗ − 1)
(1 − p)

d∗
log

(1 − p)

d∗

+

(

p+
1 − p

d∗

)

log

(

p+
1 − p

d∗

)

− d(d− 2)

2

(1 − p)

d∗

× log
(1 − p)

d∗
− d

2

p(d− 2) + 1

d∗
log

p(d− 2) + 1

d∗
.

(45)

B. Gisin-like states

We shall now compute the quantum correlations mea-
sure of the Gisin-like state [42]

ρ = p|0, 0〉〈0, 0|+ (1 − p)
[

q|2,−2〉〈2,−2|
+(1 − q)|2, 2〉〈2, 2|

]

,
(46)

with 0 ≤ p, q ≤ 1. It will prove convenient to re-write this
state under the guise ρ = pρ1 + (1 − p)ρ2, where ρ1 =
|0, 0〉〈0, 0| and ρ2 = q|2,−2〉〈2,−2| + (1 − q)|2, 2〉〈2, 2|.
Then, it is possible to prove that the set of eigenval-
ues λ(Π∗(ρ)) of the density matrix Π∗(ρ) resulting from
the local measurement in the Slater basis generated by
the single-particle states {| 32 〉, | 12 〉, |- 1

2 〉, |- 3
2 〉} is the one
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that majorizes the set of eigenvalues λ(Π(ρ)) associated
with any other local measurement. The single-particle
reduced states corresponding to the three states ρ, ρ1

and ρ2 are all diagonal in the same single-particle basis.
Consequently, these three states share the same family of
admissible local measurements. Our strategy will be to
show that the local measurement in the Slater basis as-
sociated with the single-particle basis {| 32 〉, | 12 〉, |- 1

2 〉, |-3
2 〉}

is the optimal one both for ρ1 and ρ2, and then conclude
that it is optimal for ρ as well. To that effect first note
that, if one has four probability distributions λ(1), λ(1∗),
λ(2), λ(2∗), such that λ(1) ≺ λ(1∗) and λ(2) ≺ λ(2∗) then
for any p (0 ≤ p ≤ 1) we have that

pλ(1) + (1 − p)λ(2) ≺ pλ(1∗) + (1 − p)λ(2∗). (47)

Now, it is clear that for any local measurement we
have λ(Π(ρ1)) ≺ λ(Π∗(ρ1)), since this is a particular in-
stance of the previously considered case corresponding
to the state (35). Now, the state ρ2 is a convex lin-
ear combination of the states ρ2a = |2,−2〉〈2,−2| and
ρ2b = |2, 2〉〈2, 2|. It is plain that λ(Π(ρ2a)) ≺ λ(Π∗(ρ2a))

and λ(Π(ρ2b)) ≺ λ(Π∗(ρ2b)), since for both λ(Π∗(ρ2a)) and
λ(Π∗(ρ2b)) we have one eigenvalue equal to 1 and the
rest equal to zero (remember that the states |2,−2〉 and
|2, 2〉 are themselves members of the Slater basis in-
duced by the single-particle basis {| 32 〉, | 12 〉, |- 1

2 〉, |- 3
2 〉}).

Then, since λ(Π(ρ2)) = qλ(Π(ρ2a)) + (1 − q)λ(Π(ρ2b)) and
λ(Π∗(ρ2)) = qλ(Π∗(ρ2a)) + (1 − q)λ(Π∗(ρ2b)) it follows from
(47) that λ(Π(ρ2)) ≺ λ(Π∗(ρ2)). Then, taking into ac-
count that for any local measurement we have λ(Π(ρ)) =
pλ(Π(ρ1)) + (1 − p)λ(Π(ρ2)), and applying once more the
relation (47), we obtain that λ(Π(ρ)) ≺ λ(Π∗(ρ)).
So finally we find that

ξ(ρ) = p.

Thus, we see that for the family of states (46) the measure
ξ depends only on the parameter p. On the other hand,
the concurrence C(ρ) = C(p, q) of these states depends
on both parameters p and q. For the particular case
q = 1

2 we obtain

C(ρ) =

{

0, if 0 ≤ p ≤ 0.5

2p− 1, if 0.5 < p ≤ 1.
(48)

Note that in this case ρ is entangled for p > 0.5. We plot
the concurrence and ξ(ρ) in Fig.2 for this state, with
q = 1

2 .

C. Mixture of a pure and a maximally mixed state

We now consider the following state,

ρ = p|Ψ〉〈Ψ| + (1 − p)ρmix, (49)
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FIG. 2: ξ(ρ) (solid line) and concurrence (dotted line) for the
state given by Eq.(46). For this state ξ(ρ) does not depend
on q. The concurrence is evaluated by setting q = 1

2
.

with ρmix as in Eq.(36) and

|Ψ〉 =
sin θ√

2

[

∣

∣

∣-
3

2

〉∣

∣

∣

3

2

〉

−
∣

∣

∣

3

2

〉∣

∣

∣-
3

2

〉

]

+
cos θ√

2

[

∣

∣

∣-
1

2

〉∣

∣

∣

1

2

〉

−
∣

∣

∣

1

2

〉∣

∣

∣-
1

2

〉

]

.

(50)

The eigenvalues of ρ are { 1−p
6 , ..., 1−p

6 , 1+5p
6 } and the

eigenvalues of the single-particle reduced density matrix

ρr are p sin2θ
2 + (1−p)

4 (corresponding to the eigenvectors

|-3
2 〉 and | 32 〉) and p cos2θ

2 + (1−p)
4 (corresponding to the

eigenvectors |-1
2 〉 and | 12 〉). The admissible local measure-

ments are thus those done in the Slater basis generated
by a single-particle orthonormal basis {|αi〉} consisting
of four states of the form,

|α1〉 = d11

∣

∣

∣-
3

2

〉

+ d12

∣

∣

∣

3

2

〉

,

|α2〉 = d21

∣

∣

∣-
3

2

〉

+ d22

∣

∣

∣

3

2

〉

,

|α3〉 = d31

∣

∣

∣-
1

2

〉

+ d32

∣

∣

∣

1

2

〉

,

|α4〉 = d41

∣

∣

∣-
1

2

〉

+ d42

∣

∣

∣

1

2

〉

, (51)

with complex coefficients dij such that the vectors {|αi〉}
are orthonormal. Now, it can be verified after some alge-
bra that the eigenvalues of the statistical operator Π(ρ)
resulting from any of these local measurements are always
the same (that is, they do not depend on the particular
values adopted by the coefficients dij). These eigenvalues

are { 1−p
6 , ..., 1−p

6 , 1−p
6 + p cos2θ, 1−p

6 + p sin2θ}. Conse-
quently, we have ξ(ρ) = S[Π(ρ)] − S[ρ], yielding
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(c) ξ(ρ) (solid line) and concurrence
(dotted line) for p = 1.
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(d) Difference between concurrence and ξ(ρ), C(ρ) is
not always larger than ξ(ρ).

FIG. 3: The graphs pertain to the state given by Eq.(49).

ξ(ρ) =
1 − p

6
log

1 − p

6
+

1 + 5p

6
log

1 + 5p

6

−
[

1 − p

6
+ p cos2θ

]

log

[

1 − p

6
+ p cos2θ

]

−
[

1 − p

6
+ p sin2θ

]

log

[

1 − p

6
+ p sin2θ

]

.

(52)

The concurrence of the state (49) is,

C(ρ) =
1

6
(
√
c1 + c2 −

√
c1 − c2) − 4

1 − p

6
, (53)

where c1 and c2 are given by the following expressions,

c1 = 1 + 4p+ 4p2 − 9p2 cos(4θ)

c2 = 3p
√

2[2 + 8p− p2(1 + 9 cos(4θ))]

×| sin(2θ)|. (54)

We plot the concurrence and ξ for this state in Fig.3(a)
and 3(b) respectively. Setting p = 1 gives ρ = |Ψ〉〈Ψ|
and so we obtain

ξ(ρ, p = 1) = − sin2θ log(sin2θ) − cos2θ log(cos2θ). (55)

We plot the slice p = 1 in Fig.3(c) and the difference
C(ρ) − ξ(ρ) in Fig.3(d).

D. Mixture of two maximally entangled pure states

We consider now a mixture of two orthogonal, maxi-
mally entangled states,

|φ1〉 =
1√
2

(

|2, 2〉+ |2,−2〉
)

|φ2〉 =
1√
2

(

|2, 2〉 − |2,−2〉
)

. (56)

That is, we shall now study the state

ρ = p|φ1〉〈φ1| + (1 − p)|φ2〉〈φ2|. (57)

The concurrence of (57) is given by C = |2p − 1|. The
eigenvalues of the state Π∗(ρ) resulting from a local mea-
surement in the Slater basis induced by the single-particle
basis {|32 〉, | 12 〉, |- 1

2 〉, |- 3
2 〉}, are λ(Π∗(ρ)) =

{

1
2 ,

1
2 , 0, 0, 0, 0

}

.
Now, for any two-fermion state |Sl〉 of Slater rank 1 we
have

〈Sl|ρ|Sl〉 = p|〈φ1|Sl〉|2 + (1 − p)|〈φ2|Sl〉|2

≤ 1

2
. (58)

Thus, the two non-vanishing eigenvalues of Π∗(ρ) adopt
the maximum possible value, equal to 1

2 . It is plain
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then that λ(Π∗(ρ)) majorizes the set of eigenvalues λ(Π(ρ))

corresponding to any other possible local measurement.
This leads to a quantum correlations measure for (57)
equal to,

ξ(ρ) = 1 + p log p+ (1 − p) log(1 − p). (59)

VII. LINEAR SUBSPACES THAT ADMIT

NON-CLASSICAL STATES BUT HAVE NO

ENTANGLED ONES

Let us consider a system consisting of two identical
fermions with a single-particle Hilbert space of dimension
four. As usual, let {| 32 〉, | 12 〉, |-1

2 〉, |-3
2 〉} denote a single-

particle orthonormal basis. Let us focus on the linear
subspace (of the two-fermion Hilbert space) spanned by
the three Slater determinants that can be constructed
with the three single-particle states {| 12 〉, |-1

2 〉, |-3
2 〉}. This

subspace supports no entanglement. Any state belong-
ing to this subspace is expressible as one single Slater
determinant (see Appendix D) and, consequently, is non-
entangled (and any statistical mixture of such states is
non-entangled as well). However, this subspace does in-
volve non-classicality. For instance, consider a mixed
state of the form,

ρ = α|Φ1〉〈Φ1| + β|Φ2〉〈Φ2| + γ|Φ3〉〈Φ3|, (60)

where,

|Φ1〉 =
1√
2

(|Ψ1〉|Ψ2〉 − |Ψ2〉|Ψ1〉) ,

|Φ2〉 =
1√
2

(|Ψ3〉|Ψ4〉 − |Ψ4〉|Ψ3〉) ,

|Φ3〉 =
1√
2

(|Ψ3〉|Ψ5〉 − |Ψ5〉|Ψ3〉) , (61)

with 0 < α, β, γ < 1, α 6= β 6= γ, α+ β + γ = 1, and

|Ψ1〉 =
∣

∣

∣-
3

2

〉

, |Ψ2〉 =
∣

∣

∣-
1

2

〉

, |Ψ3〉 =
∣

∣

∣

1

2

〉

,

|Ψ4〉 =
1√
2

(

∣

∣

∣-
3

2

〉

+
∣

∣

∣-
1

2

〉

)

,

|Ψ5〉 =
1√
2

(

∣

∣

∣-
3

2

〉

−
∣

∣

∣-
1

2

〉

)

. (62)

The state (60) describes a statistical mixture of states
belonging to the aforementioned subspace. It is clear
that this state is not diagonal in a Slater basis: the
eigenstates of ρ are |Φ1〉, |Φ2〉, and |Φ3〉. Each of these
eigenstates is itself a Slater determinant, but they can
not be constructed from the members of one single-
particle orthonormal basis. Consequently, the state ρ
is non-entangled, but it is not classically correlated ei-
ther. Summing up, this means that systems of two iden-
tical fermions admit linear subspaces (of dimension larger

than one) involving no entanglement but admitting non-
classical states. A similar situation is impossible in the
case of bipartite systems consisting of two distinguishable
subsystems.

VIII. CONCLUSIONS

We introduced an approach for the analysis of quan-
tum correlations in fermion systems based upon the state
disturbances generated by the measurement of “local”
observables (that is, quantum observables represented
by one-body operators). The concomitant concept of
quantum correlations in systems of identical fermions dif-
fers from entanglement. According to this approach the
quantum states of two identical fermions exhibiting the
minimum amount of quantum correlations, i.e. classically
correlated states, are those that are diagonal in a Slater
basis (induced by a single-particle basis). We proposed
a quantitative measure for the quantum correlations of
two-fermion systems, and computed it analytically for
some relevant states. In the case of pure states of two
identical fermions the present concept of quantum corre-
lations coincides with entanglement, and the measure of
quantum correlations reduces to the amount of entangle-
ment exhibited by the fermionic state.
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APPENDIX A: QUANTUM STATES

UNDISTURBED BY A PROJECTIVE

MEASUREMENT

Let {|k〉} be an orthonormal basis of a quantum sys-
tem’s Hilbert space and {Pk = |k〉〈k|} the correspond-
ing complete set of one-dimensional projectors, so that
PkPk′ = δkk′Pk and I =

∑

k Pk is the identity opera-
tor. Then, given a quantum state ρ, the following three
statements are equivalent:

• (i) The state ρ is undisturbed by a measurement in
the basis {|k〉}. That is, ρ =

∑

k PkρPk.

• (ii) The density operator ρ commutes with all the
projectors: Pkρ = ρPk.

• (iii) The state ρ is of the form ρ =
∑

k λkPk, with
0 ≤ λk ≤ 1 and

∑

k λk = 1.

It follows from (i) that Pkρ = Pk

∑

k′ Pk′ρPk′ = ρPk.
Therefore (i) → (ii). Now, if ρ verifies (ii) we have ρ =
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∑

kk′ PkρPk′ =
∑

kk′ ρPkPk′ =
∑

k ρPk =
∑

k PkρPk =
∑

k λkPk, with λk = 〈k|ρ|k〉. Therefore, (ii) → (iii). Fi-
nally, it is plain that (iii) → (i).

The equivalence between the three statements concern-
ing classically correlated states of two fermions, discussed
in Section III, follows immediately from the above con-
siderations if we identify the projectors {Pk} with the
projectors associated with a local measurement of the
system (that is, with the projectors corresponding to a
Slater basis of the two-fermion system).

APPENDIX B: UPPER BOUND FOR THE

OVERLAP BETWEEN A MAXIMALLY

ENTANGLED STATE AND A STATE OF SLATER

RANK ONE

A maximally entangled state of two fermions with
single-particle Hilbert space of dimension d (d = 2k, k ≥
2) can be written as a superposition of non-overlapping
Slater determinants,

|ψ〉 =
1√
d

[

|2〉|1〉 − |1〉|2〉 + |4〉|3〉 − |3〉|4〉

+ ...+ |d〉|d− 1〉 − |d− 1〉|d〉
]

,

(B1)

where {|1〉, |2〉, . . . , |d〉} is a single-particle orthonormal
basis. Let

|Sl〉 =
1√
2

[

|φ1〉|φ2〉 − |φ2〉|φ1〉
]

, (B2)

be an arbitrary pure state of Slater rank one, constructed
from the pair of orthonormalized single-particle states,

|φ1〉 =
∑d

i=1 αi|i〉 and |φ2〉 =
∑d

i=1 βi|i〉. Then

〈ψ|Sl〉 =

√

2

d

[

α2β1 − α1β2 + α4β3 − α3β4

+ ...+ αdβd−1 − αd−1βd

]

(B3)

|〈ψ|Sl〉| =

√

2

d

∣

∣α2β1 − α1β2 + α4β3

− α3β4 + ...+ αdβd−1 − αd−1βd

∣

∣

≤
√

2

d
[|α2||β1| + |α1||β2| + |α4||β3|

+ |α3||β4| + ...+ |αd||βd−1| + |αd−1||βd|]

(B4)

and using the Schwartz inequality we obtain

|〈ψ|Sl〉| ≤
√

2

d
. (B5)

The equality is obtained for states of the form,

1√
2

(

|l + 1〉|l〉 − |l〉|l+ 1〉
)

. (B6)

APPENDIX C: OPTIMIZATION OF THE

MEASUREMENT INDUCED DISTURBANCE

FOR SYSTEMS OF TWO DISTINGUISHABLE

QUBITS

We consider as an example a Werner-like state of two
distinguishable qubits

ρ = p|ψ〉〈ψ| + (1 − p)

4
I (C1)

where |ψ〉 = (|00〉 + |11〉)/
√

2. The marginal density
matrices corresponding to both qubits are equal to 1

2 I2,
where I2 is the 2×2 identity matrix. Both marginal den-
sity matrices have a degenerate eigenvalue spectrum and,
therefore, the local measurements leaving the marginal
density matrices unchanged are not unique. Conse-
quently, in this case one has to solve a nontrivial opti-
mization problem in order to find the local measurement
that generates the smallest possible disturbance upon the
global state of the two qubits. Using the majorization ar-
gument we can find the local basis that optimizes

ξ(ρ) = min
local bases

S[Π(ρ)] − S[ρ]. (C2)

This optimization problem was numerically solved using
a random search of local bases in [28]. Lets define

|ψb〉 = |φ1〉|φ2〉 (C3)

with normalized, orthogonal single-particle states

|φ1〉 = a0|0〉 + a1|1〉 (C4)

|φ2〉 = b0|0〉 + b1|1〉.

Then

〈ψ|ψb〉 =
1√
2
(a0b0 + a1b1) (C5)

and

|〈ψ|ψb〉| ≤
1√
2
(|a0||b0| + |a1||b1|). (C6)

Using the Schwartz inequality

|〈ψ|ψb〉| ≤
1√
2

(C7)

and thus

max |〈ψ|ψb〉| =
1√
2
. (C8)

Choosing the single-particle basis {|0〉, |1〉}, we obtain
for the eigenvalues of Π∗(|ψ〉〈ψ|): { 1

2 ,
1
2 , 0, 0}. Then we

have

λ[Π∗(ρ)] =

(

1 + p

4
,
1 + p

4
,
1 − p

4
,
1 − p

4

)

(C9)
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FIG. 4: ξ(ρ) for the two-qubit Werner-like state (C1).

and given the condition

〈ψb|ρ|ψb〉 = p|〈ψ|ψb〉|2 +
1 − p

4
(C10)

≤ p

2
+

1 − p

4

we have that λ[Π(ρ)] ≺ λ[Π∗(ρ)]. Then we can analyt-
ically calculate ξ(ρ) = minlocal bases S[Π(ρ)] − S[ρ], ob-
taining the exact result

ξ(ρ)=
1 + 3p

4
log

1 + 3p

4
+

1 − p

4
log

1 − p

4
−1 + p

4
log

1 + p

4
,

(C11)
which coincides with the numerical calculation of ξ(ρ)
reported in [28]. We plot ξ(ρ) against the parameter p in
Fig.4.

APPENDIX D: LINEAR COMBINATIONS OF

THE SLATER DETERMINANTS

CONSTRUCTED WITH THREE

ORTHONORMAL SINGLE-PARTICLE STATES

Any linear combination of the three Slater determi-
nants that can be constructed with the single-particle
states {|12 〉, |- 1

2 〉, |- 3
2 〉} is itself always expressible as one

Slater determinant. This is the basic reason for the well-
known fact that the system of two identical fermions of
smallest dimension admitting entanglement is the one
corresponding to a single-particle Hilbert space of dimen-
sion four. For the sake of completeness we provide here
a brief discussion. Considering a normalized linear com-
bination of the alluded Slater determinants, we have

α√
2

(

∣

∣

∣-
3

2

〉∣

∣

∣-
1

2

〉

−
∣

∣

∣-
1

2

〉∣

∣

∣-
3

2

〉

)

+
β√
2

(

∣

∣

∣-
3

2

〉∣

∣

∣

1

2

〉

−
∣

∣

∣

1

2

〉∣

∣

∣-
3

2

〉

)

+
γ√
2

(

∣

∣

∣-
1

2

〉∣

∣

∣

1

2

〉

−
∣

∣

∣

1

2

〉∣

∣

∣-
1

2

〉

)

=
1√
2

(|ξ1〉|ξ2〉 − |ξ2〉|ξ1〉) , (D1)

where

|ξ1〉 =
√

α2 + β2

(

∣

∣

∣
-
3

2

〉

+
βγ

α2 + β2

∣

∣

∣
-
1

2

〉

− αγ

α2 + β2

∣

∣

∣

1

2

〉

)

|ξ2〉 =
1

√

α2 + β2

(

α
∣

∣

∣-
1

2

〉

+ β
∣

∣

∣

1

2

〉

)

. (D2)

The single-particle states |ξ1〉 and |ξ2〉 are orthonormal
and, therefore, the right hand side of equation (D1) is
clearly a Slater determinant. We assumed that the co-
efficients α and β are not both equal to zero. If, on the
contrary, α = β = 0 it is obvious that the linear combi-
nation on the left hand side of equation (D1) reduces to
one Slater determinant.
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