

Molecular epidemiology and pathogenesis of Lagos bat virus, a rabies-related virus specific to Africa

by

Wanda Markotter

Submitted in partial fulfillment of the requirements for the degree

PHILOSOPHIAE DOCTOR

(MICROBIOLOGY)

in the

Department of Microbiology and Plant Pathology

Faculty of Natural and Agricultural Science

University of Pretoria

Pretoria, South Africa

Supervisor: Professor Louis H. Nel

July 2007

I declare that the thesis, which I hereby submit for the degree PhD at the
University of Pretoria, South Africa, is my own work and has not been submitted
by me for a degree at another university
Wanda Markotter

ACKNOWLEDGEMENTS

To the following people a very special word of thanks,

Prof. Louis H. Nel (University of Pretoria, South Africa)

Dr. Jacqueline Weyer (Formerly part of University of Pretoria, South Africa)

Dr. Charles E. Rupprecht (The Centers for Disease Control and Prevention, USA)

Dr. Ivan Kuzmin (The Centers for Disease Control and Prevention, USA)

Michael Niezgoda (The Centers for Disease Control and Prevention, USA)

My deepest gratitude also goes to the following people,

From the University of Pretoria, South Africa

Students and colleagues at the University of Pretoria

From the Agricultural Research Council, Onderstepoort Veterinary Institute, Rabies Unit, South Africa

Dr. Claude T. Sabeta

Debrah Mohale

Dr. Antoinette Liebenberg (Formerly part of ARC, Rabies Unit)

From Allerton Provincial Veterinary Laboratory, South Africa

Dr. Jenny Randles

Kevin le Roux

Jackie le Roux

From KwaZulu Natal Bat Interest Group, South Africa

Dr. Peter J. Taylor

Kate Richardson

Wendy White

Fiona Mackenzie

From The Centers for Disease Control and Prevention, USA

Pamela Yager

Josh Self

Colleagues and friends at the Rabies Unit

From Canadian Food Inspection Agency, Canada

Dr. Alex I. Wandeler

From Agence Française de Sécurité Sanitaire des Aliments (AFSSA), France

Dr. Florence Cliquet

From Veterinary Laboratory Agency, UK

Dr. Anthony R. Fooks

From National Institute for Communicable Diseases, Special Pathogens Unit, South Africa

Prof. Robert Swanepoel

From University of Fort Hare, South Africa

Dr. Rod Baxter

Funding of this project

National Research Foundation, South Africa

University of Pretoria, International Affairs Office (IAO), Postgraduate Study Abroad Bursary Programme, South Africa

USA vaccine program, USA

SUMMARY

Molecular epidemiology and pathogenesis of Lagos bat virus, a rabies-related virus specific to Africa

by

Wanda Markotter

Supervisor: Prof. Louis H. Nel

Department of Microbiology and Plant Pathology

University of Pretoria

For the degree PhD (Microbiology)

Lagos bat virus (LBV) belongs to genotype (gt) 2 of the lyssavirus genus in the family Rhabdoviridae, order Mononegavirales. This virus causes fatal rabies encephalitis in vertebrate animals and has only been reported from the African continent except for an imported case from African origin identified in France. The prototype lyssavirus is in fact rabies virus (gt 1) for which a variety of different vaccines are commercially available. These vaccines, however, do not provide protection against the gt 2 viruses. Genotype 2 viruses have not been well studied to date and the true risk for humans and animals is uncertain. The aim of this study was to investigate the epidemiology and pathogenicity of this uniquely African virus. In this project, our surveillance in South Africa reported six new LBV cases after this virus was not reported for the previous 12 years prior to this study. These results indicated that the incidence of this virus is greatly underestimated due to lack or absence of surveillance or ineffective diagnostic abilities of laboratories in Africa. Molecular epidemiological analysis of previously identified and new gt 2 isolates from this study indicated a high intragenotypic nucleotide and amino acid sequence diversity with respect to the Nucleo-, Phospho-, Matrix- and Glycoprotein genes. Based on these analyses, it has been proposed that two virus isolates that were previously reported as gt 2 LBV, may in fact constitute a new lyssavirus genotype. These findings emphasize the need to investigate different criteria for lyssavirus classification. As more lyssaviruses are discovered and with rapid progress in full genome sequencing, diversity becomes accentuated and challenges the criteria upon which lyssavirus

taxonomy is based. As a compliment to these genetic findings, our study of viral pathogenicity in a murine model, identified that the pathogenicity of phylogroup II viruses has previously been underestimated. LBV poses a potential risk to humans and animals and future vaccine strategies should ideally include protection against phylogroup II viruses.

 \mathbf{v}

TABLE OF CONTENTS

Acknowledgements	ii
Summary	iv
Table of contents	vi
List of abbreviations	xii
Chapter I: Introduction	
1.1 Background and motivation	1
1.2 Layout of the thesis	2
Chapter II: Literature review	
2.1 History of rabies	3
2.2 Taxonomy of the <i>Lyssavirus</i> genus	5
2.3 Morphology and structure of a lyssavirus virion	8
2.4 Properties of the lyssavirus genome	9
2.4.1 Nucleoprotein gene	10
2.4.2 Phosphoprotein gene	12
2.4.3 Matrixprotein gene	12
2.4.4 Glycoprotein gene	13
2.4.5 RNA polymerase gene	15
2.5 Analysis of lyssavirus infection	15
2.5.1 Host species	16
2.5.2 Route of infection	18
2.5.3 Replication cycle	19
2.5.4 Spread of the virus	20
2.5.5 Immune response	20
2.5.6 Clinical presentation	21
2.6 Diagnostics of lyssaviruses	22

2.6.1 The fluorescent antibody test (FAT)	23
2.6.2 Histological examination	24
2.6.3 Immunohistochemistry (IHC)	24
2.6.4 Molecular methods	24
2.6.5 Enzyme-linked Immunoassay (ELISA)	26
2.6.6 Virus isolation methods	26
2.6.7 Neutralization tests	26
2.7 Preventative measures against lyssavirus infection	27
2.8 Global epidemiology of lyssaviruses	29
2.8.1 Asia	29
2.8.2 Europe	30
2.8.3 North America	31
2.8.4 South America and the Caribbean	31
2.8.5 Australia	32
2.8.6 Africa	32
2.9 Molecular epidemiology of lyssaviruses	37
2.9.1 N gene analysis	38
2.9.2 M gene analysis	38
2.9.3 P gene analysis	39
2.9.4 G gene and pseudogene analysis	39
2.9.5 L gene analysis	40
2.10 Lagos bat virus	40
2.11 Aims of this study	42
Chapter III: Identification and characterization of new Lagos bat virus isolates from South Africa	
3.1 Introduction	44
3.2 Materials and methods	47
3.2.1 Sample collection	47

3.2.2 Analysis of samples	52
3.2.2.1 The fluorescent antibody test (FAT)	52
3.2.3 Virus characterization	53
3.2.3.1 Mouse inoculation test	53
3.2.3.2 Monoclonal antibody typing	53
3.2.3.3 Isolation of total RNA	53
3.2.3.4 Primer design	54
3.2.3.5 Reverse transcription	54
3.2.3.6 Polymerase chain reaction (PCR)	55
3.2.3.7 Purification of PCR products	55
3.2.3.8 DNA nucleotide sequencing	56
3.2.3.9 Phylogenetic analysis	56
3.2.4. Characterization of the host species	57
3.2.4.1 DNA isolation	57
3.2.4.2 PCR and DNA sequencing	57
3.2.4.3 Phylogenetic analysis	58
3.3 Results	58
3.3.1 Results of epidemiological surveillance using the FAT	58
3.3.2 Characterization of new LBV isolates	60
3.3.3 Species identification of LBV-infected mongoose	63
3.4 Discussion	64
Chapter IV: Non-neuronal viral tissue distribution and serology of naturally infected frugivorous bats with Lagos bat virus	
4.1 Introduction	67
4.2 Materials and methods	70
4.2.1 Collection of bat tissues	70
4.2.2 Total RNA isolation from bat tissues	70

4.2.3 Assessment of RNA template quality using RT-PCR	71
4.2.4 Primer design	72
4.2.5 RT-PCR and nested PCR to detect LBV RNA	72
4.2.6 Determining the threshold of viral and rRNA detection	73
4.2.7 PCR product purification	73
4.2.8 DNA sequencing	74
4.2.9 The fluorescent antibody test (FAT)	74
4.2.10 Virus isolation from bat tissues	75
4.2.11 Determination of the presence of neutralizing antibodies	75
4.2.11.1 Preparation of LBV challenge virus	76
4.2.11.2 The Rapid Fluorescent Focus Inhibition Test (RFFIT)	76
4.3 Results	77
4.3.1 Determination of the sensitivity of RT-PCR and nested PCR to detect LBV RNA .	77
4.3.2 Detection of LBV RNA in naturally infected bat tissues	79
4.3.3 Detection of LBV antigens and virus isolation from tissues collected from naturally LBV infected bats	82
4.3.4 The presence of neutralizing antibodies in naturally LBV-infected bats	86
4.4 Discussion	86
Chapter V: Molecular epidemiology of Lagos bat virus	
5.1 Introduction	89
5.2 Materials and methods	90
5.2.1 Source of LBV isolates	90
5.2.2 Total RNA extraction	91
5.2.3 Primer design	92
5.2.4 RT-PCR	92
5.2.5 PCR product purification	93
5.2.6 DNA sequencing	93

5.2.7 Phylogenetic analysis	93
5.3 Results	94
5.3.1 Phylogenetic tree construction	94
5.3.2 P-distances	106
5.3.3 Antigenic sites	114
5.3.4 Nucleoprotein binding motif	121
5.3.5 Binding site for the cytoplasmic light chain of dynein, LC8	122
5.4 Discussion	123
Chapter VI: Pathogenesis of Lagos bat virus	
6.1 Introduction	127
6.2 Materials and methods	128
6.2.1 Animals	128
6.2.2 Viruses	129
6.2.3 Experimental infections	130
6.2.4 Fluorescent antibody test (FAT)	130
6.2.5 RT-PCR and DNA sequencing	130
6.2.6 Analysis of amino acid sequences	131
6.2.7 Determination of the presence of neutralizing antibodies	131
6.2.7.1 Preparation of challenge viruses	131
6.2.7.2 The Rapid Fluorescent Focus Inhibition Test (RFFIT)	131
6.3 Results	132
6.3.1 Titration of viruses	132
6.3.2 Susceptibility	133
6.3.3 Serological responses	138
6.3.4 Molecular determinants of pathogenesis	139
6.4 Discussion	144
Chapter VII: Conclusions	147

Appendix 1	151
Appendix 2	161
Appendix 3	165
References	171
Communications	185
Papers	185

LIST OF ABBREVATIONS

aa Amino acid

ABLV Australian bat lyssavirus

BBB Blood brain barrier

bp Basepair

CDC Centers for Disease Control and Prevention

CNS Central nervous system
CVS Challenge virus strain

ddNTP Dideoxynucleotide triphosphate

DEPC Diethylpyrocarbonate

dNTP Deoxynucleotide triphosphate

DUVV Duvenhage virus
EBLV European bat virus

ELISA Enzyme linked immunosorbent assay

ERA Evelyn Rokitniki Abelseth
FAT Fluorescent antibody test

FAVN Fluorescent antibody virus neutralization test

FFD Focus forming dose

FITC Fluorescein isothiocyanate

G Glyco gt Genotype

HEP High egg passage

HRIG Human rabies immunoglobulin i.c. Intracerebral inoculation

i.m. Intramuscular inoculation

i.p. Interperitonial

IHC Immunohistochemistry

L Polymerase
LBV Lagos Bat virus
LD Lethal dose

LEP Low egg passage

M Molar
M Matrix
mg Milligram

MIT Mouse inoculation test

ml Milliliter

MNA Murine neuroblastoma

MOKV Mokola virus

MP Maximum parsimony

N Nucleo

NJ Neighbor-joining

nt Nucleotide
P Phospho

PBS Phosphate buffered saline
PCR Polymerase chain reaction

PM Pittman Moore
PV Pasteur virus
RABV Rabies virus

RFFIT Rapid Fluorescent Focus Inhibition Test

RTCIT Rabies tissue culture infection test

s.c. Subcutaneous

SAD Street Alabama Dufferin

SD Standard deviation

USA United States of America

UV Ultra-violet

VNA Virus neutralizing antibodies
VSV Vesicular Stomatitis virus
WCBV West Caucasian Bat virus

WHO World Health Organization