

Reconfigurable contour beam synthesis using a mechanical FEM surface description of dual offset reflector antenna surfaces

W.H. THEUNISSEN

A thesis submitted in partial fulfillment of the requirements for the degree of Philosophiae Doctor

in the FACULTY OF ENGINEERING UNIVERSITY OF PRETORIA SOUTH AFRICA January 1999

© University of Pretoria

TABLE OF CONTENTS

LIST OF FIGURES	v
Chapter 1: Introduction	1
1.1. Geostationary satellites	1
1.2. Antenna systems on geostationary satellites	. 6
1.3. The mechanical finite element diffraction synthesis technique	. 8
Chapter 2: Diffraction synthesis and radiation pattern computation for	
reflector antennas	. 11
2.1. Geometry of the dual reflector antenna and coordinate	
description	13
2.2. Subreflector analysis	. 15
2.2.1. Calculation of specular points	. 15
2.2.2. Edge diffraction	. 21
2.3. Calculation of the far-field radiation pattern	. 24
2.3.1. The p-series method	. 24
2.3.2. The Jacobi-Bessel series expansion method	26
2.3.3. The Gaussian beam technique	. 36
2.4. Surface expansion in terms of the Modified Jacobi	
polynomials.	. 44
2.5. Verification of the accuracy of the developed codes	47
2.5.1. The p-series method	47

· · · · ·

11 (H

and it

2.5.2. The Gaussian beam technique
2.6. Calculation of the antenna footprint
Chapter 3: Optimization of the contour beam gain cost function
3.1. Cost function
3.2. Optimization methods 57
3.2.1. The Steepest Gradient Solver
3.2.2. The Genetic Algorithm Solver
3.3. Design of a CONUS beam
Chapter 4: Mechanical design of the reflector
4.1. Mechanical description of the surfaces using shell elements
4.2. Diffraction synthesis results and mechanical design performance
Chapter 5: Contour beam synthesis using the mechanical FEM
surface description
5.1. Mechanical FEM diffraction synthesis
5.2. The effect of mechanical surface properties on
actuator number and placement
5.3. Synthesis of an adjustable elliptical beam using
the mechanical FEM surface description
5.4. Synthesis of an reconfigurable beam using the mechanical
FEM surface description
Chapter 6: Conclusion
References

ACKNOWLEDGEMENTS

I would like to acknowledge the help and encouragement of the following people:

Professors J. Joubert and W.J. Odendaal of the University of Pretoria, my study leaders, Professor W.D. Burnside of The Ohio State University ElectroScience Laboratory, for all his help and advice, Professor G. Washington of the Smart Materials and Structures Laboratory at The Ohio State University.

I would also like to thank Hwansik Yoon for his valuable help in understanding mechanical finite element analysis and for writing the FEM unit of the diffraction synthesis code and Dr. Teh-Hong Lee, Dr. Hsi-Tseng Chou and Prof. P.H. Pathak for their help and support.

This dissertation is dedicated to Heidi.

LIST OF FIGURES

Figure 1. The subtended angle of the earth as seen from a geostationary
satellite is approximately 17° 4
Figure 2. Geometry of the dual offset reflector antenna
Figure 3. Geometry of Cassegrain dual offset reflector antenna
Figure 4. Perfectly conducting wedge for calculation of diffraction
from subreflector edge
Figure 5 (a) Modified Jacobi polynomial for m=0
Figure 5 (b) Modified Jacobi polynomial for m=1
Figure 5 (c) Modified Jacobi polynomial for m=2
Figure 6. Co-polarized surface current density for a Cassegrain type dual
offset reflector antenna
Figure 7. Far-field radiation pattern for the Cassegrain DOSR geometry
shown in figure 6
Figure 8(a). Calculated far-field for a dual offset reflector antenna
showing the subreflector edge diffraction effect for an oversized
subreflector
Figure 8(b). Subreflector edge diffraction effect on the radiation pattern
of a dual offset reflector antenna
Figure 9. Diagram to determine sampling interval effect on the visible
k-space spectrum
Figure 10. Mapping of GB's onto the solid angle subtended at the feed
Figure 10. Mapping of GB's onto the solid angle subtended at the feed by the reflector rim
Figure 10. Mapping of GB's onto the solid angle subtended at the feed by the reflector rim 37 Figure 11. Samples of coordinate systems used for launched beams showing
 Figure 10. Mapping of GB's onto the solid angle subtended at the feed by the reflector rim
 Figure 10. Mapping of GB's onto the solid angle subtended at the feed by the reflector rim
 Figure 10. Mapping of GB's onto the solid angle subtended at the feed by the reflector rim
 Figure 10. Mapping of GB's onto the solid angle subtended at the feed by the reflector rim
 Figure 10. Mapping of GB's onto the solid angle subtended at the feed by the reflector rim
Figure 10. Mapping of GB's onto the solid angle subtended at the feed 37 by the reflector rim 37 Figure 11. Samples of coordinate systems used for launched beams showing location of the real part of the saddle point (magenta circles) for a 10° offset angle from boresight going around in 36° increments 39 Figure 12. Projection showing unit circle used for surface series expansion 45 Figure 13 (a). Co-polarized far-field calculated using the developed 48

p-series code
Figure 14 (a). Co-polarized far-field calculated using OSU NECREF Version 3.0 50
Figure 14 (b). Cross-polarized far-field calculated using OSU NECREF
Version 3.0
Figure 15. Far-field calculated using PO and the GB technique for a front
fed offset parabolic reflector shaped using the modified Jacobi
polynomial expansion
Figure 16. u-v-space test grid mapping onto geocentric surface. Test points
are used to calculate the cost function during synthesis
Figure 17. Required main and subreflector surface deviation in 1mm contour
intervals for CONUS type contour beam
Figure 18. Template used to calculate cost function during synthesis of the
CONUS beam
Figure 19. CONUS beam generated using combination of genetic and steepest
gradient solvers in synthesis algorithm
Figure 20. Actuator positions projected on the x_s - y_s plane
Figure 21. Showing individual stack showing clamshell configuration
Figure 22. Rainbow actuators in stacked clam configuration
Figure 23. Required deviation from the initial hyperboloid surface in 2 mm
contour intervals and the calculated co-polarized antenna radiation
footprint for case 2
Figure 24. Required deviation from the initial hyperboloid surface in 2 mm
contour intervals and the calculated co-polarized antenna radiation
footprint for case 4
Figure 25. The achievable subreflector surface with no actuator adjustment and
the resulting co-polarized radiation footprint
Figure 26. Mechanically achievable surface and the calculated co-polarized
radiation pattern for case 2
Figure 27. Mechanically achievable surface and the calculated co-polarized
radiation pattern for case 4
Figure 28. FEM shell element geometry
Figure 29. Subreflector projection in the x_s - y_s plane showing the FEM node-

.

and element positions)
Figure 30. Subreflector surface deviation due to displacement of actuator 66 by	
10mm)
Figure 31. Required surface deviation contours in 1 mm contour intervals for the	
subreflector surface with an unshaped main reflector giving a cost	
function of 59.5 units on an elliptical contour beam case	I
Figure 32 (a) Surface deviation contours for 16 actuators arranged in a triangular	
pattern and bonded to different surface material thickness of 0.05",	
0.1" and 0.3" respectively	1
Figure 32 (b) Surface deviation contours for 22 actuators arranged in a triangular	
pattern and bonded to different surface material thickness of 0.05",	
0.1" and 0.3" respectively 85	5
Figure 32 (c) Surface deviation contours for 38 actuators arranged in a triangular	
pattern and bonded to different surface material thickness of 0.05",	
0.1" and 0.3" respectively 80	5
Figure 33 (a) Surface deviation contours for 15 actuators arranged in a rectangular	
pattern and bonded to different surface material thickness of 0.05",	
0.1" and 0.3" respectively	7
Figure 33 (b) Surface deviation contours for 21 actuators arranged in a rectangular	
pattern and bonded to different surface material thickness of 0.05",	
0.1" and 0.3" respectively	8
Figure 33 (c) Surface deviation contours for 40 actuators arranged in a rectangular	
pattern and bonded to different surface material thickness of 0.05",	
0.1" and 0.3" respectively 89	9
Figure 34 (a) Surface deviation contours for 14 actuators arranged in a radial	
pattern and bonded to different surface material thickness of 0.05",	
0.1" and 0.3" respectively 90	C
Figure 34 (b) Surface deviation contours for 21 actuators arranged in a radial	
pattern and bonded to different surface material thickness of 0.05",	
0.1" and 0.3" respectively	1
Figure 34 (c) Surface deviation contours for 39 actuators arranged in a radial	
pattern and bonded to different surface material thickness of 0.05",	

0.1" and 0.3" respectively	92
Figure 35. Co-polarized far-field for the 0° elliptical beam case	94
Figure 36. Co-polarized far-field for the 45° elliptical beam case	95
Figure 37. Co-polarized far-field for the 90° elliptical beam case	96
Figure 38. Synthesized subreflector surface and Brazilian co-polarized	
radiation pattern footprint	98
Figure 39. Synthesized subreflector surface and Southern Africa co-polarized	
radiation pattern footprint	99
Figure 40. Synthesized subreflector surface and Australian co-polarized	
radiation pattern footprint	100

12

-