
DEVELOPMENT OF A ROBUST ACTIVE INFRARED-BASED EYE

TRACKING SYSTEM

by

Reinier Casper Coetzer

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Computer Engineering)

in the

Faculty of Engineering, Built Environment and Information Technology

Department of Electrical, Electronic and Computer Engineering

UNIVERSITY OF PRETORIA

October 2011

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

“Engineering: where the noble, semi-skilled laborers execute the vision of those who think and

dream. Hello, Oompa Loompas of science!”

Sheldon Cooper PhD, The Big Bang Theory

SUMMARY

DEVELOPMENT OF A ROBUST ACTIVE INFRARED-BASED EYE

TRACKING SYSTEM

by

Reinier Casper Coetzer

Promoters: Prof. G.P. Hancke

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Computer Engineering)

Keywords: Eye detection, eye tracking, bright/dark pupil effect

Eye tracking has a number of useful applications ranging from monitoring a vehicle driver

for possible signs of fatigue, providing an interface to enable severely disabled people to com-

municate with others, to a number of medical applications. Most eye tracking applications

require a non-intrusive way of tracking the eyes, making a camera-based approach a natural

choice. However, although significant progress has been made in recent years, modern eye

tracking systems still have not overcome a number of challenges including eye occlusions,

variable ambient lighting conditions and inter-subject variability. This thesis describes the

complete design and implementation of a real-time camera-based eye tracker, which was de-

veloped mainly for indoor applications. The developed eye tracker relies on the so-called

bright/dark pupil effect for both the eye detection and eye tracking phases. The bright/dark

pupil effect was realised by the development of specialised hardware and near-infrared illu-

mination, which were interfaced with a machine vision camera. For the eye detection phase

the performance of three different types of classifiers, namely neurals networks, SVMs and

AdaBoost were directly compared with each other on a dataset consisting of 17 individual

subjects from different ethnic backgrounds. For the actual tracking of the eyes, a Kalman fil-

ter was combined with the mean-shift tracking algorithm. A PC application with a graphical

user interface (GUI) was also developed to integrate the various aspects of the eye tracking

system, which allows the user to easily configure and use the system. Experimental results

have shown the eye detection phase to be very robust, whereas the eye tracking phase was also

able to accurately track the eyes from frame-to-frame in real-time, given a few constraints.

OPSOMMING

ONTWIKKELING VAN ’N ROBUUSTE AKTIEWE INFRAROOI

GEBASEERDE OOGVOLGINGSSTELSEL

deur

Reinier Casper Coetzer

Promotors: Prof. G.P. Hancke

Departement: Elektriese, Elektroniese en Rekenaaringenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Rekenaaringenieurswese)

Sleutelwoorde: Oog deteksie, oog volging, helder/donker pupil effek

Oogvolging het ’n beduidende aantal toepassings wat wissel van die deteksie van bestuur-

deruitputting, die voorsiening van ’n rekenaarintervlak vir ernstige fisies gestremde mense,

tot ’n groot aantal mediese toepassings. Die meeste toepassings van oogvolging vereis ’n

nie-indringende manier om die oë te volg, wat ’n kamera-gebaseerde benadering ’n natuurlike

keuse maak. Alhoewel daar alreeds aansienlike vordering gemaak is in die afgelope jare, het

moderne oogvolgingstelsels egter nogsteeds verskeie uitdagings nie oorkom nie, insluitende

oog okklusies, veranderlike beligtingsomstandighede en variansies tussen gebruikers. Die

verhandeling beskryf die volledige ontwerp en implementering van ’n kamera-gebaseerde oog-

volgingsstelsel wat in reële tyd werk. Die ontwikkeling van die oogvolgingsstelsel maak staat

op die sogenaamde helder/donker pupil effek vir beide die oogdeteksie en oogvolging fases.

Die helder/donker pupil effek was moontlik gemaak deur die ontwikkeling van gespesialiseerde

hardeware en naby-infrarooi illuminasie. Vir die oogdeteksie fase was die akkuraatheid van

drie verskillende tipes klassifiseerders getoets en direk vergelyk, insluitende neurale netwerke,

SVMs en AdaBoost. Die datastel waarmee die klassifiseerders getoets was, het bestaan uit

17 individuele toetskandidate van verskillende etniese groepe. Vir die oogvolgings fase was

’n Kalman filter gekombineer met die gemiddelde-verskuiwings algoritme. ’n Rekenaar pro-

gram met ’n grafiese gebruikersintervlak was ontwikkel vir ’n persoonlike rekenaar, sodat al

die verskillende aspekte van die oogvolgingsstelsel met gemak opgestel kon word. Eksperi-

mentele resultate het getoon dat die oogdeteksie fase uiters akkuraat en robuust was, terwyl

die oogvolgings fase ook hoogs akuraat die oë gevolg het, binne sekere beperkinge.

ACKNOWLEDGEMENTS

The author would like to thank the following persons and institutions for their support:

• Professor G.P. Hancke for his continual advice and financial support for equipment and

international conference attendance during the course of this research.

• Centre for Teletraffic Engineering in an Information Society (CeTEIS) for their bursary

during 2010.

• Asheer Buchoo and Jason de Villiers at DPSS at the CSIR for their suggestions and

insights into some of the image processing problems I encountered.

• Jason Page at EBV Elektronik for all his help during the development of the hardware.

• Noelanie, my fianceé, who patiently supported me during the writing of this thesis.

• My family who also supported me during the writing of this thesis.

• The Lord Almighty who provided me with the opportunity and ability to perform this

research.

LIST OF ABBREVIATIONS

AAM Active Appearance Model

AdaBoost Adaptive Boosting

ANN Artificial Neural Network

API Application Programming Interface

CIE International Commission on Illumination

COTS Commercial Off-The-Shelf

CSIR Council for Scientific and Industrial Research

DPSS Department of Defense, Peace, Safety and Security

EKF Extended Kalman Filter

FNR False Negative Rate

FPR False Positive Rate

FPS Frames Per Second

GigE Gigabit Ethernet

GUI Graphical User Interface

HMM Hidden Markov Models

ISR Interrupt Service Routine

LED Light Emitting Diode

MLP Multi-layer perceptron

NIR Near-Infrared

PCA Principle Component Analysis

PCB Printed Circuit Board

PPCA Probabilistic Principle Component Analysis

PWM Pulse Width Modulation

RBF Radial Basis Function

ROI Region Of Interest

SDK Software Development Kit

SVM Support Vector Machine

TNR True Negative Rate

TPR True Positive Rate

UKF Unscented Kalman Filter

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Structure of this Thesis . 4

CHAPTER 2 BACKGROUND 5

2.1 The Bright/Dark Pupil Effect . 5

2.2 Support Vector Machines . 9

2.2.1 History . 9

2.2.2 SVM classification . 9

2.3 Adaptive Boosting . 14

2.3.1 History . 14

2.3.2 AdaBoost Classification . 16

2.3.3 AdaBoost Classification Error . 17

2.4 Kalman Filtering . 19

2.4.1 History . 19

2.4.2 Kalman Filtering for Object Tracking 19

2.5 Mean-shift . 22

2.5.1 History . 22

2.5.2 Mean-shift Tracking . 23

2.6 Concluding Remarks . 26

CHAPTER 3 EYE TRACKING TECHNIQUES 27

3.1 Eye Detection . 27

3.1.1 Shape-Based Approaches . 28

3.1.2 Feature-Based Approaches . 29

3.1.3 Appearance-Based Approaches . 30

3.1.4 Hybrid Approaches . 32

3.2 Eye Tracking . 33

3.3 Concluding Remarks . 36

CHAPTER 4 DESIGN AND IMPLEMENTATION 38

4.1 Functional Overview . 38

4.1.1 Functional Unit 1: Embedded System 38

4.1.2 Functional Unit 2: Camera . 40

4.1.3 Functional Unit 3: Personal Computer 40

4.1.4 Functional Unit 4: Eye Tracking Application Software 40

4.1.5 Interfaces . 42

4.2 Hardware Development . 42

4.2.1 Hardware Selection . 43

4.2.2 Constant Current LED Driver Design 48

4.2.3 Embedded Controller Circuit Design 52

4.3 Software Development . 55

4.3.1 Embedded Firmware . 55

4.3.2 Classifier Selection . 57

4.3.3 Application Software . 59

4.4 Concluding Remarks . 76

CHAPTER 5 RESULTS AND APPLICATIONS 79

5.1 The Bright Pupil Effect . 79

5.1.1 Discussion . 84

5.2 Eye Detection . 85

5.2.1 Eye Candidate Extraction . 85

5.2.2 Preliminary Eye Classification Results 87

5.2.3 Final Eye Classification Results . 94

5.2.4 Eye Detection Results . 99

5.2.5 Discussion . 104

5.3 Eye Tracking . 106

5.3.1 Frame Pre-processing . 106

5.3.2 Kalman Filtering Combined with Mean-shift Tracking 109

5.3.3 Discussion . 119

5.4 Applications of Eye Tracking . 121

5.4.1 Driver Fatigue Detection . 121

5.4.2 A User Interface for the Severely Disabled 122

5.4.3 Human Behavior Research . 122

5.5 Concluding Remarks . 123

CHAPTER 6 CONCLUSION 124

6.1 Future Work . 125

BIBLIOGRAPHY 127

APPENDIX A SERIAL COMMUNICATION PROTOCOL 134

APPENDIX B PROSILICA GC1380 TRIGGERING 136

Chapter 1

INTRODUCTION

1.1 MOTIVATION

This research started out as problem posed by Eskom, the major electricity public utility

company of South Africa. Eskom noticed that they were losing millions of rands and human

lives every year due to a number of fatigue related accidents involving their coal carrying

trucks. As a result they were interested in a system that would be able to non-intrusively

monitor their truck drivers to pro-actively detect fatigue. Consequently an extensive literat-

ure survey [1] was performed to identify the most suitable fatigue detection approaches and

the conclusion was made that a hybrid fatigue detection approach, consisting of a camera-

based driver monitoring component (directly) and a component that monitors how the driver

handles the vehicle (indirectly), would be the most suitable.

However, following the power shortages in South Africa during 2007 and 2008, Eskom lost

interest in such a system and had to channel their resources elsewhere to contain the nation-

wide power shortages. In addition, consultation with the local trucking industry revealed

that installing a camera in a truck to monitor the driver would be unacceptable for the trade

unions, since it implies that the employer could at all times “keep an eye” on the employee,

which could be perceived as a violation of human rights. Therefore Eskom could no longer

afford the development of a driver fatigue detection system and a camera-based approach for

monitoring driver fatigue was in any case ruled out as a possibility, although not even on

technical grounds!

Nevertheless, the literature also revealed that there is a number of other applications for eye

tracking systems and despite extensive research in the field, eye tracking remains a challenging

Chapter 1 Introduction

problem that has not yet been completely solved [2]. The main challenges that eye tracking

systems still face are eye occlusions, variable ambient lighting conditions and inter-subject

variability. Currently, a number of commercial eye tracking systems are available, but they

are regrettably still expensive and also still suffer from the aforementioned limitations.

As a result eye tracking was indentified as an interesting and challenging research problem

with a number of applications besides driver fatigue monitoring, which were ultimately the

main motivations for the research presented in this thesis.

1.2 OBJECTIVES

The main objective of this research was therefore to develop a robust eye tracking system,

based on active near-infrared illumination that would be capable of tracking the eyes of a

user with little to no initialization and under as many different situations as possible. Due

to a lack of resources in terms of manpower, time and funding it was never expected that

this research would be able solve all of the above mentioned challenges that current eye

tracking systems still face. Eye tracking is a real-world problem, which implies that an eye

tracking system is typically only considered useful if it is capable of functioning with as little

constraints as possible. However, based on the magnitude of the problem, it was decided to

impose the following constraints on the operating conditions of the system:

• The system shall only be used for indoor applications.

• The user shall be at a relatively fixed distance from the camera, depending on the actual

lens being used (1400mm to 1600mm in this case).

• The system shall be capable of tracking the eyes under reasonable free head move-

ments. Reasonable head movements are defined as smooth head movements that are

not excessively fast and do not rapidly change direction.

• Apart from normal eye tracking without glasses, the system shall only be capable of

tracking the eyes when the user is wearing selected types of glasses.

Given these constraints, the system shall be capable of tracking the eyes in real-time by

means of two phases:

1. Eye detection: The bright/dark pupil effect shall be used to produce eye candidates

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

2

Chapter 1 Introduction

at a very low computational cost. The resulting eye candidates shall then have to be

classified as either eyes or non-eyes using a strong classifier such as Support Vector

Machines or AdaBoost. The final step shall then be the verification of the detected

eyes, by using geometric constraints.

2. Eye tracking: Once the eyes have been successfully detected, it shall be tracked from

frame to frame using a combination of Kalman filtering and mean-shift tracking to

compensate for their relative weaknesses.

It was decided to follow this particular approach based on an extensive literature survey

performed on existing eye tracking techniques.

1.3 CONTRIBUTIONS

During the course of the work presented in this thesis, the following research outputs have

been produced:

1. “Driver fatigue detection : A survey” in the proceedings of IEEE AFRICON 2009,

Nairobi, Kenya [3].

2. “Driver fatigue detection based on eye tracking” a work-in-progress paper in the pro-

ceedings of the South African Telecommunication, Networks and Applications Confer-

ence (SATNAC 2010), Stellenbosch, South Africa [4].

3. “Eye detection for a real-time vehicle driver fatigue monitoring system” in the proceed-

ings of the IEEE Intelligent Vehicles Symposium (IV 2011), Baden-Baden, Germany [5].

Besides the above mentioned research papers, the work presented in this thesis made the

following contributions:

• A complete proof-of-concept eye tracking system (hardware and software) was designed

and developed from first principles in which much practical research had to be per-

formed to determine the best possible combination of different hardware components,

to ultimately obtain a strong bright pupil effect. The complete and detailed design of

this system is also presented in this thesis, which would enable a competent engineer

to almost exactly reproduce the system.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

Chapter 1 Introduction

• In terms of the bright pupil effect, a number of practical limitations (presented through-

out this thesis) were identified during the course of this research. It was found that

these limitations were very seldomly mentioned in the literature (perhaps for the sake

of good results) and the author feels that by presenting these results, albeit negative

results in some instances, a significant contribution has been made.

• In terms of eye detection, the classification accuracy and the ability to generalize on

unseen examples were tested for three strong machine learning techniques including

Support Vector Machines (SVMs), Adaptive Boosting (AdaBoost) and Artificial Neural

Networks (ANN). These machine learning techniques were directly compared to each

other, specifically for the purpose of eye classification. To the author’s knowledge this

comparison has not been presented the literature before [5].

• In terms of eye tracking, the author believes that a novel approach has been followed

in tracking the eyes, by combining Kalman filtering with mean-shift tracking.

• The developed eye tracking system can therefore serve as a platform for various other

research activities (not related to eye tracking research itself), which only requires an

eye tracker to enable the particular research.

1.4 STRUCTURE OF THIS THESIS

This thesis is structured as follows: Chapter 2 provides the reader with a background of

the most important concepts and techniques that were used in this research, while Chapter

3 provides a literature survey of the current state of eye tracking, as well as related work.

Chapter 4 provides the complete detailed hardware and software design of the developed eye

tracking system, while Chapter 5 provides the results thereof. Finally, Chapter 6 draws some

conclusions and suggests some future work.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4

Chapter 2

BACKGROUND

2.1 THE BRIGHT/DARK PUPIL EFFECT

The concept of using near-infrared (NIR) illumination to track the human eye was first

suggested in the late 1980s by Hutchinson et al [6] with the development of their eye-gaze

tracker Erica, which served as a human interface for severely handicapped people. Hutchinson

et al found that if the NIR illumination (a LED in their case) was placed on-center with the

camera lens, a fraction of the light was reflected off the corneal surface of the human eye

(called the first Purkinje image) to produce an intense area of NIR light in the captured

images, called the glint. In addition, some of the NIR light also entered the pupil and was

reflected of the retina to produce the so-called bright pupil effect. This bright pupil was found

to be much larger than the glint and although less intense than the glint, both the bright

pupil and the glint were significantly more intense than the surrounding iris of the eye.

As a result of this contrast it was relatively easy to detect the position of both the glint and

the bright pupil in an image and this was exactly what Hutchinson et al used to determine

the direction of a person’s eye-gaze. If the center of a person’s glint coincided with the center

of the bright pupil, the person was looking directly at the camera and this could be used as

the reference eye-gaze position. The relative positions of the bright eye and the glint could

then be used to determine the direction in which the person was looking. Thomas Hutchinson

also filed a patent [7] for this technique.

The bright pupil effect was already at that point in time not an unknown phenomenon, since

it is very similar to the red-eye effect that frequently occurs in general photography. The

red-eye effect is usually a result of the combination of relatively low ambient light and the

Chapter 2 Background

flash being too close to the camera’s lens. Yoshinobu Ebisawa and Shin-ichi Satoh [8] realized

that they could use this red-eye effect (or bright pupil effect for grayscale images) to robustly

detect the pupils in an image, by using two NIR light sources that were synchronized with a

CCD camera.

For their NIR light sources, Ebisawa and Satoh simply used two NIR LEDs that were placed

in a specific manner with regards to the camera’s lens. One LED was placed on-center with

the camera’s lens, while the second LED was placed 23mm away from the center of the lens.

These LEDs were then synchronized with the even and odd field signals from the camera,

with the on-center LED being switched on with odd fields (to produce the bright pupil effect)

and the off-center LED with even fields (to produce the dark pupil effect). The NIR light

from the off-center LED is reflected differently from the retina and typically away from the

camera’s lens. An example of the bright pupil effect is shown in Figure 2.1, whereas an

example of the dark pupil effect is shown in Figure 2.2.

Figure 2.1: The bright pupil effect as produced by on-center NIR illumination.

Figure 2.2: The dark pupil effect as produced by off-center NIR illumination.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

6

Chapter 2 Background

Normally the even and odd fields of a camera are combined to form a single image, but in

this case they were used as two separate images. These images were essentially the same,

but with an important difference: the pupils. By subtracting the dark pupil image from

the bright pupil image (i.e. the pixel intensity values), the pupils were almost effectively

segmented from the background in the resulting difference image.

Ebisawa further improved the pupil segmentation by thresholding the difference image and

also attempted to remove light reflected from normal transparent eye glasses, which was

successful under some conditions according to his article [9]. Morimoto et al [10] developed a

system that was very similar to the one developed by Ebisawa, but used rings of NIR LEDs

as opposed to single LEDs to obtain the bright/dark pupil effect. By using this LED ring

configuration, Moritmoto et al found that the glint detection was more robust. In addition

Morimoto et al developed an eye tracker by means of the bright/dark pupil difference images.

However, this was not exactly a tracking algorithm in the true sense of the word, but more

of a repeated eye detection process.

The implication of using the bright/dark pupil effect is that the eyes can be robustly detected

with minimal computational effort at the expense of some additional hardware. This is an

important advantage for real-time eye tracking systems, since the eye candidates are readily

available as opposed to first scanning the entire image in order to detect the eyes. Although

the bright pupil effect is more easily obtained under low ambient lighting conditions, it has

been proven to be relatively insensitive to ambient lighting conditions. In addition, NIR light

is barely visible to the human eye and will therefore not immediately interfere with the given

task at hand, while being used for either detecting or tracking the eyes.

Although the bright/dark pupil effect is indeed a very robust method for eye segmentatation,

it is not without limitations. The first problem that has not yet been completely overcome is

in situations where a person is wearing glasses. Glasses also reflect the incident NIR light to

form intense spots on both the bright and dark pupil images. Since the position of the NIR

light sources differs, the position of the reflected spots from the glasses are also located at

different positions in a bright/dark pupil image pair. As a result, the image differencing step

does not necessarily diminish the effect from the light reflected of the glasses. If the position

of the reflected light does not overlap with the actual position of the eye, this problem can be

overcome. However, the problem becomes particularly severe if the position of the reflected

light coincides with the actual position of the eye. Eye detection even becomes impossible

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

7

Chapter 2 Background

when certain sunglasses are worn. In particular, high quality polarized sunglasses almost

completely prevents NIR light from passing through the glass, nullifying the bright/dark

pupil effect. This is of course a deliberate feature of the polarized sunglass design in order to

prevent glare. These problems are further discussed in Chapter 5.

A second potential problem with the bright pupil effect is that it is not consistent among

certain groups of people. These inconsistencies were first observed by Nguyen et al [11] while

developing their gaze tracker and as a result Nguyen et al did a further study to determine

which factors influence the bright pupil effect (i.e. average pupil intensity for on-center

illumination). The first factor that they considered was how far the NIR light source can be

horizontally translated, away from the center of the lens to still obtain the bright pupil effect.

They found that for a horizontal translation beyond approximately 20 mm from the center of

the lens (for their setup at least), the bright pupil effect proved difficult to obtain. However,

this particular problem can easily be mitigated since its controllable by the designer.

From all the other factors that Nguyen et al considered, the two factors that resulted in the

most variation among subjects were the pupil size and ethnicity. It is well known that pupil

sizes are not uniform among people and as a result larger pupil sizes are expected to produce a

more intense bright pupil effect. However, in their experiments Nguyen et al forced the pupil

sizes of different subjects to be of the same size, but still found large variations in the average

pupil intensities. Nguyen et al noted that a possible cause for these variations could perhaps

be attributed to ethnicity, where they found large variations in the bright pupil effect among

Hispanic, Caucasian and Asian people. Hispanic people had the highest average bright pupil

intensity, followed by Caucasians and finally Asian people who had the lowest average bright

pupil intensity. The authors did note that their sample size was too small to conclusively

prove this observation, but in this research a similar trend was observed among Caucasian,

African and Indian people.

The final potential limitation of the bright/dark pupil effect was not so much a technical

problem but more of a practical one. The human eye may not be able to perceive light at

wavelengths above 700 nm, but this of course does not mean that the light is not potentially

harmful. In fact the potential risk can then even be higher, since the eye cannot adapt to the

light or trigger an aversion reaction. For example, a person is typically not able to directly

look into the sun since it will result in a painful and unpleasant experience and it is exactly

this aversion reaction that helps prevent damage to the human eye.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8

Chapter 2 Background

It is generally accepted that short bursts of NIR light used in the current eye tracking sys-

tems are not harmful to the human eye. However, there is still quite a lot of uncertaintity

surrounding the continuous exposure to NIR light for extended periods of time. This is typ-

ically the case for eye trackers used by severely disabled people, which use their eyes as the

only means of interaction. Another example is driver fatigue detection systems based on eye

tracking, where the eyes have to be tracked for long periods while driving.

To determine how safe the continuous exposure to NIR light is, Mulvey et al [12] did a survey

on existing eye tracking systems. From the five separate potential eye hazards specified by the

optical radiation safety guidelines, Mulvey et al identified thermal injury to the retina (400

nm to 1400 nm) and NIR thermal hazards to the eye lens (800 nm to 3000 nm) as the only

hazards relevant to NIR based eye tracking. From their measurements, the authors found that

for brief periods (minutes to hours) the current available eye trackers did not pose any hazards

to the eyes. However, for extended periods (days to years) their findings were inconclusive.

As a result of these inconclusive findings Division 6 of the International Commission on

Illumination (CIE) formed a technical committee (TC6-64) to perform research on this topic.

At the time of writing this thesis their findings have not yet been published.

2.2 SUPPORT VECTOR MACHINES

2.2.1 History

The concept of Support Vector Machines (SVMs) was initiated in the late 1970’s by Vladimir

Vapnik, but was only fully developed during the early 1990’s while he worked at AT&T Bell

Labs and was subsequently published in [13] and [14]. SVMs are a set of supervised learning

methods for pattern recognition in machine learning, which started out in its simplest form as

binary classification but was subsequently extended to multi-class classification and regression

analysis. SVMs have been successfully used in a number of real-world applications including

handwritten character recognition [14], [15], spam classification [16], speaker verification [17],

facial recognition [18] and eye detection [19] to name only a few.

2.2.2 SVM classification

SVMs start out by trying to solve the general binary classification problem of estimating

a function f : RN → {-1, +1} from a set of training examples with unknown probability

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

Chapter 2 Background

distribution P (x, y):

(x1, y1), ..., (xn, yn) ∈ RN × Y, Y = {−1, 1} (2.2.1)

in such a way so that f will be able to correctly classify an unseen example, (x, y), assumed

to be drawn from the same probability distribution P (x, y) as the training examples. If

f(x) ≥ 0, the example will be assigned to the +1 class and otherwise to the −1 class. The

optimal function f can be obtained by minimizing the expected error or risk, but this cannot

be directly performed since the underlying probability distribution P (x, y) is unknown. As

a result, a function should be estimated that is as close as possible to the optimal solution,

based upon the given training examples and the properties of the function class F from which

f is chosen.

Perhaps the most simple induction rule to approximate the minimum risk, is by minimizing

the empirical risk. However, with a small set of examples, large deviations are typical, which

can result in overfitting. A possible way to mitigate the problem of overfitting is by restricting

the complexity of the function class F from which the function f is chosen. This implies that

a simple function, such as a linear function, is preferable to a complex function.

It is at this point where Vapnik-Chervonenkis (VC) theory and the structural risk min-

imization (SRM) principle come into play, which is a particular method of controlling the

complexity of the function class F . The complexity of the function class F is described by

the VC dimension, which in essence measures the amount of training examples that can be

shattered (i.e. separated) for all possible functions in each function class. Next the SRM pro-

ceeds by selecting the function class, say Fi, and the particular function of that class, say fi,

that minimizes the upper bound of the generalization error. However, in practice this bound

is typically difficult to compute or not very useful, for example the VC dimension of the class

might be unknown or infinite in which case the bound cannot be minimized. Fortunately

in cases where the training examples can be separated by the function class of hyperplanes,

it was shown that the VC dimension itself can be bounded by the margin. The margin is

defined as the minimal distance of a sample to the decision surface (i.e. the hyperplane).

Although the VC dimension itself can now be bounded by using hyperplanes as classifiers, the

next obvious problem is that in practice it is rarely the case that the training examples can be

properly separated by such a simple linear classifier (resulting in underfitting). Fortunately,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

10

Chapter 2 Background

there is again an elegant way that this problem can be overcome by making use of kernels.

Let’s first consider why one would use kernels in the first place. As mentioned before, it is

frequently the case that training examples in the input space cannot be separated by a linear

classifier. However, if this training examples can somehow be mapped (non-linearly) to a

potentially much higher dimensional feature space, F , the training examples might then be

effectively linearly separable:

Φ : RN → F (2.2.2)

x 7→ Φ(x) (2.2.3)

where Φ is the mapping function from the input space to the feature space. The implication

is that the same linear classifier (or any other classifier for that matter) can now be used

to separate the non-linear training examples in the feature space, F , instead of in the input

space, RN . At first glance this concept might seem like a bad idea when considering the curse

of dimensionality from statistics, which in short states that the complexity of an estimation

problem increases severely when mapping to a higher dimension. Fortunately, statistical

learning theory also states that the contrary can be true, i.e. if the complexity of the classifier

is low (read linear) then learning can actually be easier in the feature space.

Although learning in a higher dimensional feature space can be easier (given a simple linear

classifier), there are practical problems associated with mapping to a higher dimension. In

the real-world it is often the case that the patterns that have to be classified are large and

highly non-linear, which implies that the training examples might only be linearly separable

in an extremely high dimensional feature space. As a result it becomes computationally

infeasible to first map and then execute the algorithm in the feature space. It is at this point

where the concept of kernels comes to rescue. In the case of a linear classifier, the separating

hyperplane is of the general form

f(x) = (w · x) + b (2.2.4)

From equation 2.2.4 it is evident that the computation of the scalar product of two input

vectors will be a frequent occurrence in the feature space. Without going into any of the

mathematical formulation, a kernel will directly compute the scalar product of the vectors

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11

Chapter 2 Background

in F , without explicitly using or even knowing the mapping function, Φ. As a result, kernels

make it possible to compute scalar products in higher dimensional spaces, where it would

have hardly been possible otherwise. This is one of the most important concepts of SVMs.

SVMs is based upon all the concepts discussed thusfar. When considering hyperplanes (as

defined in equation 2.2.4) as a classifier, the decision function to classify an unseen example

is:

y = sign((w · x) + b) (2.2.5)

which implies that

w · xi + b ≥ 1 if yi = 1, (2.2.6)

w · xi + b ≤ −1 if yi = −1 (2.2.7)

Consequently the conditions for classification without any training error are

yi((w · xi) + b) ≥ 1, i = 1, . . . , n (2.2.8)

However, as previously mentioned, the linear classifier will typically not be able to separate

the training examples in the input space, so it should first be mapped to the feature space.

The resulting conditions for perfect classification in the feature space are therefore

yi((w · Φ(xi)) + b) ≥ 1, i = 1, . . . , n (2.2.9)

The goal of SVM learning is to obtain w ∈ F and b, so that the expected risk is minimized.

As previously discussed, the expected risk cannot be directly obtained so the bound will

instead be minimized. By means of some rigorous math (which is far beyond the scope of this

research) and the introduction of Lagrange multipliers and kernel functions, the minimization

of the bound results in a dual quadratic optimization problem:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

12

Chapter 2 Background

maxα
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk(xi,xj) (2.2.10)

subject to αi ≥ 0, i = 1, . . . , n, (2.2.11)
n∑
i=1

αiyi = 0 (2.2.12)

where the αi’s are the Lagrange multipliers and (Φ(xi) ·Φ(xj)) was replaced by some kernel

function, k(xi,xj). By solving the dual optimization problem, the coefficients αi, i = 1, . . . , n

are obtained which are in turn used to minimize the bound of the expected risk. Therefore

the resulting decision function that will be used to classify an unseen sample is:

f(x) = sgn(
n∑
i=1

αiyik(xi,xj) + b) (2.2.13)

Up to this point, only the perfectly separable case of training examples was considered,

corresponding to an empirical risk of zero. In reality however, the examples will be noisy

and typically not perfectly separable and if the aim remains to obtain an empirical risk of

zero, overfitting is likely to occur. In order for SVMs to generalize better on noisy (real-

world) data, the use of slack-variables was first suggested by [20] to relax the hard-margin

constraints. These slack-variables are introduced in equation 2.2.9:

yi((w · Φ(xi)) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n (2.2.14)

The slack-variables from equation 2.2.14 will now allow for some classification errors. The

goal of the SVM solution is still to minimize the upper bound of the VC dimension, but now

the upper bound,
∑n
i=1 ξi, on the empirical bound is additionally minimized. In the process of

minimization a regularization constant, C > 0, is also introduced which controls the tradeoff

between the empirical error and the complexity term of the VC bounding function. As a

consequence, the dual quadratic optimization problem from equations 2.2.10 - 2.2.12 are

slightly modified:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

Chapter 2 Background

maxα
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk(xi,xj) (2.2.15)

subject to 0 ≤ αi ≤ C, i = 1, . . . , n, (2.2.16)
n∑
i=1

αiyi = 0 (2.2.17)

By making use of the slack-variables, box constraints are formed that limit the size of the

Lagrange multipliers (αi ≤ C) and by tuning C, the generalization performance of the SVM

can be enhanced.

The solution to most of these optimization problems are based on the Karush-Kuhn-Tucker

(KKT) second order optimality conditions, which state necessary and in some cases sufficient

conditions for a set of variables to be optimal for a given optimization problem. In turn

there are a number of proposed approaches (based on the KKT conditions) to solve the

particular SVM dual optimization problem including chunking, decomposition methods and

sequential minimal optimization (SMO), with the latter approach being used in the SVM

implementation of OpenCV. SVM optimization techniques are also far beyond the scope of

this research, and the reader is referred to the SVM literature for more details.

2.3 ADAPTIVE BOOSTING

2.3.1 History

Compared to all the techniques presented in this chapter, boosting has the most recent

origins dating back to the late 1980’s when Robert Schapire [21] published the first boosting

algorithm. Boosting is the notion of combining a number of “weak" classifiers to form a

single “strong" classifier. In effect the “weak" classifiers are “boosted" to obtain an arbitrarily

accurate learning algorithm. In this context a classifier is considered “weak" if it performs

only slightly better than random guessing (e.g. the flipping of a coin). The accuracy of the

resulting learning algorithm is described as arbitrarily since the accuracy can be controlled

by the amount of “weak" classifiers used.

Boosting deliberately does not specify the “weak" classifiers, since any type of classifier can

be “boosted" to improve its accuracy. In addition, the chosen base classifier does not even

have to be “weak", it can be a “strong" classifier in its own right. In fact, Li et al [22]

have illustrated how the SVM classifier can be used as the base classifier for the AdaBoost

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

14

Chapter 2 Background

algorithm. However, such an approach probably defies the goal of simplicy of boosting, but

just illustrates its flexibility in essentially improving any classifier. In practice “stumps"

(single-split trees with only two terminal nodes) have been found to be very effective “weak"

classifiers for boosting.

The first boosting algorithm that was presented by Schapire [21] was further improved by

Freund [23], but both these algorithms still required previous knowledge of the weak classi-

fiers to obtain a single accurate prediction rule. However, these requirements were no longer

necessary with the adaptive boosting (AdaBoost) algorithm developed by Freund and Scha-

pire [24]. With their version of the boosting algorithm, the algorithm adapts to the accuracies

of the weak classifiers to obtain a weighted majority prediction rule with the weight of each

weak classifier being a function of its accuracy. Their AdaBoost algorithm for the binary

classification problem is explained in Table 2.1.

Table 2.1: The AdaBoost algorithm as first presented by Freund and Schapire [24].

The Adaptive Boosting (AdaBoost) algorithm

1. Given: (x1, y1), ..., (xm, ym) where xi ∈ X, yi ∈ Y = {−1,+1}

2. Initialize wi = 1
m

3. For t = 1, ..., T :

(a.) Train the weak classifier using the distribution wi
(b.) Get the weak hypothesis ht : X→ {−1,+1} :

εt = Pri∼wi = [ht(xi) 6= yi]

(c.) Choose αt = 1
2 ln

(
1−εt

εt

)
(d.) Update:

wt+1(i) = wt(i)
Zt
×

e
−αt , if ht(xi) = yi

eαt , if ht(xi) 6= yi

Where Zt is a normalization factor, for wt+1 to be a distribution

4. Output the final prediction rule:

H(x) = sign
(∑T

t=1 αtht(x)
)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

15

Chapter 2 Background

2.3.2 AdaBoost Classification

AdaBoost starts out by taking as input the training set (x1, y1), ..., (xm, ym) where each xi is

an example from some feature space X and yi is the corresponding label of the example and

belongs to the label set Y. For the binary classification problem Y = {−1,+1}. Given some

weak classifier, AdaBoost then calls this weak classifier repeatedly in a number of rounds

t = 1, ..., T . A main goal of AdaBoost is to obtain a distribution over the training set and

therefore the weight of a distribution of a training example i for round t is denoted as wt(i).

All of these weights are initialized to 1/m, but for each round the weights are increased for

the example distributions that were incorrectly classified by the weak classifier. In effect the

weak classifier is forced to concentrate on the difficult examples in the training set.

For each round t, the weak classifier is trained to find a weak hypothesis ht : X→ {−1,+1}

based on the weights wi for that round. The goodness of the weak hypothesis is measured by

its classification error:

εt = Pri∼wt = [ht(xi) 6= yi] =
∑

i:ht(xi 6=yi)
wt(i) (2.3.1)

Given the classification error of the weak hypothesis ht, AdaBoost calculates the parameter:

αt = 1
2 ln

(1− εt
εt

)
(2.3.2)

Intuitively, the parameter αt serves as a weight for ht to indicate its importance in the final

classifier. From 2.3.2, it can be seen that αt ≥ 0 if εt ≤ 1
2 and as εt becomes smaller, the

weight αt becomes larger. This simply means that a more accurate weak classifier will have

more “say" in the final majority vote.

The next step is to update the weights wt according to the following rule:

wt+1(i) = wt(i)
Zt
×

e−αt , if ht(xi) = yi

eαt , if ht(xi) 6= yi

(2.3.3)

The effect of this step is necessary to increase the weights of the training examples that were

misclassified by ht and to decrease the weights of the examples that were actually correctly

classified. Consequently the weights wt force AdaBoost to focus on the difficult examples.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

16

Chapter 2 Background

The final prediction rule H(x) is thus the weighted majority vote of the T weak hypotheses

together with their associated weights:

H(x) = sign
(

T∑
t=1

αtht(x)
)

(2.3.4)

2.3.3 AdaBoost Classification Error

As with most classification techniques, AdaBoost is concerned with the reduction of the

training and generalization error. What is particularly important about the relatively simple

AdaBoost algorithm is that it is seemingly resistant to overfitting. In recent years it has been

shown to eventually overfit with enough boosting rounds, but this can mainly be attributed

to noise in the data. Due to this very interesting characteristic of AdaBoost, this section

attempts to provide some insight into this occurrence.

Given the binary classification problem, a hypothesis that guesses the class of a sample at

random, has an error rate of 1
2 . Freund and Schapire [24] defined the training error of

AdaBoost as εt = 1
2 − γt, which essential measures how much better than random guessing

the weak hypotheses ht are. They then proved that the upper bound of the training error of

the final classifier H(x) is:

∏
t

[
2
√
εt(1− εt)

]
=
∏
t

√
1− 4γ2

t ≤ exp
(
−2
∑
t

γ2
t

)
(2.3.5)

From Equation 2.3.5 it can therefore be seen that if the individual weak hypotheses are only

slightly better than random guessing, the training error reduces exponentially as the number

of boosting rounds are increased. An important advantage of AdaBoost is that it does not

require the lower error bound (which is in practice difficult to obtain) of the individual weak

hypotheses a priori, but adapts (hence the name) to these individual error rates.

The generalization error of a classifier is defined as the classification errors made on previously

unseen examples, in other words how well the classifier can formulate a general prediction

rule, based only on training on a sub-set of the actual data distribution. To initially char-

acterize the performance of AdaBoost, Freund and Schapire [24] found an upper bound on

the generalization error in terms of the training error (Equation 2.3.5), the training sample

size m, the VC dimension d of ht and finally the number of boosting rounds. Recall from

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

17

Chapter 2 Background

the previous section on SVMs that the VC dimension is a measure of the complexity of a

function class, which is the space of the weak hypotheses in the case of AdaBoost. This upper

bound of the generalization error was found to be:

P̂ r[H(x) 6= y] + Ô

√Td

m

 (2.3.6)

where P̂ r[·] is the empirical training error probability. From Equation 2.3.6 it is evident that

AdaBoost should be prone to overfitting as the number of rounds T are increased. Although

overfitting does occur in a few instances, AdaBoost is remarkably resistant to overfitting in

most cases. A number of authors, including [25], [26] and [27], have empirically observed

AdaBoost not to overfit even when executing it on thousands of rounds.

Based on these findings, Schapire et al [28] provided an alternative analysis of the upper

generalization bound in terms of the margins of the training examples. They defined the

margin of a training example (x, y) as:

margin(x,y) = y
∑
t αtht(x)∑
t αt

(2.3.7)

This training margin is a number in the range [−1,+1] and is positive if and only if H

classifies the example correctly. In addition the magnitude of the margin can be seen as an

indication of the confidence of the prediction. For larger margins Schapire et al proved that

the training set provided a much improved upper bound on the generalization error:

P̂ r[margin(x,y) ≤ θ] + Ô

√ d

mθ2

 (2.3.8)

The upper bound from Equation 2.3.8 is defined for any θ > 0 with high probability. The

reader should notice that this bound is completely independent of the number of boosting

rounds T , which gives an indication as to why the upper bound from Equation 2.3.6 could not

explain why the generalization error bound decreased (instead of increasing) as the number

of boosting rounds increased.

However, the upper bound from Equation 2.3.8 is still rather conservative and in practice

AdaBoost typically performs significantly better than this bound would suggest. In a further

attempt to explain why AdaBoost is relatively immune against overfitting, Friedman et al [29]

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

18

Chapter 2 Background

described AdaBoost from a statistical point of view as an additive logistic regression model,

that optimizes a criterion similar to binomial log-likelihood by means of an adaptive Newton

method. Their work provides new insights into the workings of AdaBoost, but are quite

involved and far beyond the scope of this research. However, the interested reader are referred

to [29] for more details.

2.4 KALMAN FILTERING

2.4.1 History

The Kalman filter was developed by Rudolf E. Kalman and Richard S. Bucy in the 1960’s

and was originally used in the Apollo navigation computer for trajectory estimation. After

its success in the Apollo program, the Kalman filter has been widely used in space and

military applications but has since been found useful in a number of additional applications, in

particular computer vision. The aim of this section is not to provide an extensive description

of Kalman filtering, but rather a brief introduction (based upon [30]) to the concepts that are

relevant to this research. For a more in-depth discussion of Kalman filtering, especially with

regards to the mathematical deduction of the equations, the reader is referred to [31], [32]

and [33].

2.4.2 Kalman Filtering for Object Tracking

Given some discrete-time controlled process with noisy measurements of the process, the

aim of the Kalman filter is to estimate the actual state of the process. The Kalman filter

estimates the process by making use of feedback control: the current state of the process is

first predicted and then corrected by an actual measurement made (which is noisy). In cases

where the process to be estimated is linear, it is governed by the linear stochastic difference

equation:

xk = Axk−1 +Buk−1 + wk−1, x ∈ Rn (2.4.1)

with measurements

zk = Hxk + vk, z ∈ Rm (2.4.2)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

19

Chapter 2 Background

The process and measurement noise are represented by the random variables wk and vk,

respectively. These variables are assumed to be white noise, independent of each other and

with normal probability distributions:

p(w) ∼ N(0, Q), (2.4.3)

p(v) ∼ N(0, R) (2.4.4)

Matrix Q is the process noise covariance and matrix R is the measurement noise covariance

both of which will in practice change with each time step. However, for this research they

are assumed to be constant. The n × n matrix A in equation 2.4.1 relates the state of the

previous time step (k − 1) to the state of the current time step (k), with no presence of a

driving function or process noise. In practice, A might also change with each time step, but

is also assumed to be constant in this case. The n× l matrix B relates the optional control

input, u ∈ Rl, to the state x. When considering the measurement equation from 2.4.2, the

m × n matrix H relates the state (xk) to the measurement (zk). Once again, in practice H

might change with each time step or measurement but this is also assumed to be constant in

this case.

Due to the feedback control that is employed, the discrete Kalman filter equations are divided

into two groups: time update equations and measurement update equations. The time update

(or predictor) equations are responsible for forward projecting the current state and error

covariance estimates, which is the a priori estimates that will be used in the next time step.

The measurement update (or corrector) equations are responsible for the feedback, which will

then be combined with the a priori estimate to obtain a more accurate a posteriori estimate

of the process. The time update equations are:

x̂−k = Ax̂−k−1 +Buk−1 (2.4.5)

P−k = APk−1A
T +Q (2.4.6)

Firstly note that equation 2.4.5 is the a priori estimate (as indicated by the superscript minus)

of the actual process state (equation 2.4.1). Next the a priori error covariance estimate is

given by equation 2.4.6. Once the time update step has finished, the results from this step is

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

20

Chapter 2 Background

combined with an actual measurement in order to correct the predicted process state. The

measurement update equations are:

Kk = P−k H
T (HP−k H

T +R)−1 (2.4.7)

x̂k = x̂−k +Kk(zk −Hx̂−k) (2.4.8)

Pk = (I −KkH)P−k (2.4.9)

The reader should firstly note the definition of a new matrix, Kk, in equation 2.4.7. Kk is

a n × m matrix and is known as the Kalman gain or blending factor, which is chosen to

minimize the a posteriori error covariance. As mentioned previously, the derivation of the

Kalman gain is beyond the scope of this work. Secondly note that equation 2.4.8 is the a

posteriori estimate (as indicated by the lack of any superscript) of the actual process state.

In essence equation 2.4.8 is the predicted state of the process (equation 2.4.5) corrected with

the noisy measurement of the process (zk). The purpose of the Kalman gain in equation 2.4.8

is to provide a weighting factor for the process that is “trusted” more. If the measurement

process error covariance R approaches zero (i.e. the measurement is considered accurate), the

Kalman gain will increase the weight of the residual in equation 2.4.8 and the measurement

will be “trusted“ more. If the estimation process error covariance P−k approaches zero (i.e.

the forward predicted state is considered accurate), the Kalman gain will decrease the residual

in equation 2.4.8 and the forward prediction will be ”trusted“ more.

Finally equation 2.4.9 is the updated or a posteriori estimate of the error covariance. The

Kalman filter is typically first initialized with the estimates for x̂k−1 and Pk−1 (reasonable

initial estimates depend on the application). The process state and error covariance are then

projected ahead in the time update step and are then fed to the measurement update step.

In the measurement update step the first task is to calculate the Kalman gain. The Kalman

gain is then combined with an measurement of the state of the observed process, together

with the projected state from the previous time update step in order to obtain an updated

estimation of the actual process state. Next the error covariance matrix is then updated

with the calculated Kalman gain and the previously projected error covariance. Finally the

feedback loop is closed with the updated state estimation and the error covariance being fed

back to the next time update step.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

Chapter 2 Background

The performance of the Kalman filter can often be increased by tuning the measurement

noise covariance (R) and the process noise covariance (Q) parameters, with tuning typically

being performed off-line by means of another distinct Kalman filter. In general it is possible

to measure R, since it should be possible to measure the process in any case. It is however

often the case that Q cannot be easily determined, since it is typically not possible to directly

observe the process that is being estimated (if this was possible, there would be no need for

the Kalman filter in the first place). In cases where Q and R are in reality constant (as

usually assumed), the estimation error covariance, Pk and the Kalman gain, Kk will quickly

stabilize and then remain constant.

Up to this point the aim of the Kalman filter was to estimate the actual state of a process

governed by the linear stochastic equation from 2.4.1. However, it is frequently the case that

the process itself that must be estimated is non-linear or the measurement relationship to the

process is non-linear. In such cases the normal discrete Kalman filter will fail to accurately

estimate the process. Solutions to this problem is to either linearize about the current estim-

ate, known as the extended Kalman filter (EKF), or to use the unscented transformation to

propagate mean and covariance information through non-linear transformations, known as

the unscented Kalman filter (UKF). The extended and unscented Kalman filters are beyond

the scope of this research, but the inquisitive reader is referred to [30] and [34] for more

information.

2.5 MEAN-SHIFT

2.5.1 History

The mean-shift algorithm is a non-parametric estimator of the density gradient of some

density distribution of a data set, and is consequently very robust in finding the local extrema

of such a density distribution. The algorithm was originally developed by Fukunaga and

Hostetler [35] in 1975, but it was only in the late 1990’s when its application to video object

tracking was realized. As with the other sections in this chapter, the aim of this section is

not to produce a rigorous mathematical deduction of the mean-shift procedure, but rather

to give a higher level explanation of how the mean-shift procedure can be applied to object

tracking. For a more indepth discussion on the mean-shift procedure, the reader is referred

to [35] and [36].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

22

Chapter 2 Background

In the previous paragraph the mean-shift procedure was described as a robust method for

find local extrema. If the data distribution is continuous, this process is quite simple since

it is essentially ‘hill climbing’ applied to the the histogram of the data. However, in the

case of discrete data sets the problem becomes less trivial. The word robust is used in the

formal statistical sense of the word, in that mean-shift ignores outliers in the data. This is

accomplished by only processing points within a local window of data and then shifting the

window.

The mean-shift procedure is related to the field of kernel density estimation, where some

kernel function (a function that is mostly concerned with local processing) is used to express

the distribution of data in terms those kernels. Mean-shift is different from kernel density

estimation, in the sense that it is only concerned with the estimation of the gradient of the

data distribution. Consequently, when the mean-shift vector is calculated it will always point

in the direction of maximum increase in density. This behavior of mean-shift in estimating the

direction of change, allows it to seek local maxima. By repeatedly executing the mean-shift

procedure the gradient estimation will eventually converge to a value of 0, which indicates a

peak (global or local) in the distribution. The prove of a sufficient condition for convergence

can be found in die appendix of [36].

2.5.2 Mean-shift Tracking

The mean-shift procedure starts out by estimating the probability distribution by means of

a kernel density estimator:

f̂(x) = 1
n

n∑
i=1

K(x− xi) (2.5.1)

given n data points xi, some kernel K(x) and calculated in the point x. For the purpose of

mean-shift, only the special class of radially symmetric kernels have to be considered:

K(x) = ck,dk(‖x‖2) (2.5.2)

where the function k(x) is called the profile of the kernel and is only defined for x ≥ 0. The

normalization constant, ck,d, results in K(x) integrating to one. By parameterizing K(x)

with a bandwidth matrix proportional to the identity matrix, H = h2I, only one bandwidth

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

23

Chapter 2 Background

parameter h > 0 is necessary. In the context of mean-shift tracking, the parameter h is

used to control the window size. By incorporating the kernel from equation 2.5.2 with the

bandwidth parameter h into equation 2.5.1, the kernel density estimator can be rewritten as:

f̂(x) = ck
nh

n∑
i=1

k(‖x− xi
h
‖2) (2.5.3)

Now given the underlying density f(x), the mean-shift procedure attempts to find the modes

(i.e. maxima) of the distribution in an elegant way, without actually estimating the density.

The modes of the distribution are located at the zeros of the gradient (i.e. ∇f(x) = 0) and

therefore a natural way to obtain the distribution modes is to compute the gradient of the

density estimator from equation 2.5.3 due to its linearity:

∇̂f(x) ≡ ∇f̂(x) = 2ck
nh

n∑
i=1

(x− xi)k′(‖
x− xi
h
‖2) (2.5.4)

By assuming that the derivative of k(x) exists for almost all x ∈ [0,∞), a new function can

be defined:

g(x) = −k′(x), (2.5.5)

which is then substituted into equation 2.5.4, which results in:

∇̂f(x) = 2ck
nh

n∑
i=1

(xi − x)g(‖x− xi
h
‖2) (2.5.6)

= 2ck
nh

n∑
i=1

[
g(‖x− xi

h
‖2)
] [∑n

i=1 xig(‖x−xi
h ‖

2)∑n
i=1 g(‖x−xi

h ‖2)
− x

]
(2.5.7)

The two terms that are bracketed in equation 2.5.7 both have an important meaning, with

the first bracketed term being proportional to the density estimate at x computed with the

kernel G and the second bracketed term being the actual mean-shift vector:

m(x) =
∑n
i=1 xig(‖x−xi

h ‖
2)∑n

i=1 g(‖x−xi
h ‖2)

− x (2.5.8)

Equation 2.5.8 effectively calculates the difference between the weighted mean of the kernel

(window) and x, the center of the kernel. Therefore by repeatedly calculating the mean-shift

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

24

Chapter 2 Background

vector and then adjusting the window with this difference vector, implies that the window

will move and eventually settle at a local maxima of the distribution. Adjusting h, controls

how much of the distribution the window ‘sees’.

Two of the first successful applications of the mean-shift procedure were discontinuity pre-

serving smoothing (similar to bilateral filtering) and image segmentation, both of which are

presented in [36]). However, for this research the mean-shift procedure was found to be very

effective for object tracking (i.e. the eyes). The mean-shift procedure adapted for tracking, as

implemented by the OpenCV library [37], was used for this research and is given in Table 2.2.

Table 2.2: The mean-shift procedure for object tracking as implemented in OpenCV [37].

The mean-shift tracking algorithm

1. Initialize the search window:

(a.) its starting position

(b.) its type (i.e. uniform, polynomial, exponential or Gaussian)

(c.) its shape (i.e. symmetric or skewed, possibly rotated, rounded or rectangular)

(d.) its size (i.e. the extent to which it rolls off or is cut off)

2. Calculate the window’s center of mass

3. Center the window at the calculated center of mass

4. Return to Step 2 until the window converges (i.e. a mean-shift vector of 0)

For the mean-shift tracking algorithm from Table 2.2 to function properly, the first step is to

detect the object to be tracked and secondly to pre-process the image with the probability

distribution of this object, in order to effectively separate the object from the image back-

ground. This pre-processing is typically the backprojection of the histogram of the object,

applied to the original image. In effect the histogram of the object to be tracked serves as

a lookup table for pixel brightness values by assigning the associated histogram bin value to

the pixels of the output image, based on the associated pixel values in the original image.

In terms of statistics, it implies that the pixel values of the output image characterize the

probability of the corresponding pixels in the original image to belong to the object being

tracked.

Once the image have been pre-processed, the initial search window is placed at the position

of the detected object to be tracked in the pre-processed image. The mean-shift algorithm is

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

Chapter 2 Background

then applied to the pre-processed image, resulting in the search window to converge to the

position of the object to be tracked from frame to frame. Since back projection is a very

effective method for color segmentation in an image, the mean-shift algorithm is frequently

used to track objects of a specific color from frame to frame. However, for this research only

grayscale images were available but fortunately the objects to be tracked (i.e. the eyes) could

be easily separated from the background by modeling the eyes as circles. More details on

this approach can be found in Chapter 4.

2.6 CONCLUDING REMARKS

The aim of this chapter was to present a thorough introduction to the most important tech-

niques used for this research in the development of a robust eye tracker. The first section

introduced the bright/dark pupil effect, which is a physical characteristic of how the human

eye responds to near-infrared light. This particular property of the human eye have been

exploited to easily and robustly obtain the potential eye candidates for eye detection.

Given a number of potential eye candidates, these candidates have to be classified as either

eyes or non-eyes and for this reason support vector machines (SVMs) and AdaBoost were

presented in sections 2.2 and 2.3, respectively. Both of these classifiers have been proven to be

highly accurate in similar image processing applications and were therefore natural choices.

The classification results of SVMs and AdaBoost are shown in Chapter 5 of this thesis.

Once the eyes have been detected, it should then be tracked from frame to frame and to

this extend Kalman filtering and the mean-shift procedure have been identified as suitable

techniques for eye-tracking and were therefore presented in sections 2.4 and 2.5, respectively.

The chapters to follow will describe how these techniques can be combined to produce a

robust eye-tracker that was able to track the eyes under various environmental conditions.

The next chapter will present an overview of the existing eye detection and eye tracking

techniques, as well as some of the current commercially available eye tracking systems.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

26

Chapter 3

EYE TRACKING TECHNIQUES

This chapter will present an overview of current video-based eye detection and eye tracking

techniques, with the purpose of putting this research into context. Video-based eye detection

and tracking have been an active research field since the early 1980’s and although major

progress has been made since then, there still remains a number of challenging problems that

have not yet been effectively solved. The current main challenges of eye tracking systems

are the inter-subject variability of the human eye, occlusion, variability in scale as well as

ambient lighting conditions. This chapter is divided into three main sections with the first

section covering current eye detection techniques, while the second section covers current eye

tracking techniques. The third and final section provides some concluding remarks.

3.1 EYE DETECTION

As mentioned before, the first phase of an eye tracking system is to first detect the eyes

accurately. An effective eye detection approach should identify some model for the eyes that

will able to handle large variability in appearance, while also being computationally effective

in order to achieve real-time detection. Eye detection faces some very challenging issues,

including occlusion of the eyes due to the eyelids, the degree of eye openness and, depending

on the approach being followed, variability in either size, reflectivity or head pose. Although

occlusions and shape variations are also common problems in other computer vision tasks,

such as people tracking and face detection, it is seldomly so severe as in eye detection.

Hansen and Ji [2] did a comprehensive survey on different approaches followed for eye detec-

tion and gaze estimation, and much of the work presented in this chapter is based on their

survey. According to their survey eye detection techniques can be divided into four main

Chapter 3 Eye Tracking Techniques

categories, including shape-based approaches, feature-based approaches, appearance-based

approaches and hybrid approaches. In turn, the techniques used in each of these categories

will be discussed in the sections to follow.

3.1.1 Shape-Based Approaches

As the name suggests, shape-based approaches are concerned with modeling the shape of the

eye, which is characterized by the iris and pupil contours as well as the exterior shape of the

eye (i.e. the eyelids). The most simple shape-based approach is to model the iris or pupil as

an ellipse and then attempt to detect ellipses in the image, which should in turn be identified

as either an eye or a non-eye using some similarity measure.

Kim and Ramakrishna [38] detected the center of the iris of the eye by modeling the iris

as an ellipse and then used the notion that the center of an ellipse lies at the center of the

longest line inside the boundary of the ellipse. They achieved this by first thresholding the

input image into a binary image according to typical pixel intensities of the iris. Canny

edge detection was then performed on the binary image and longest line scanning was then

performed on the resulting image to detect the center of the iris.

Young et al [39] followed a similar approach by modeling the eyes as an ellipse, due to the

orthogonal projection of the imaging system. Their eye model had four fixed parameters,

namely (Xc, Yc) which is the center coordinates of the eye in the image, Ri which is the

radius of the outer boundary of the iris and Re which is the distance from the center of the

eye to the plane of the iris boundary. Their eye model also had two varying parameters which

specified the position of the iris center in the image. As with [38], Canny edge detection was

then also performed, but the Hough transform was instead used to detect ellipses (i.e. the

eyes) based on their eye model parameters.

Yuille et al [40] used a more complex eye model for eye detection, based on a deformable

template, essentially consisting of two parabolas that represent the eyelids and a circle that

represents the iris. Their eye model had a total of 11 parameters that were allowed to vary

during template matching. This model was fitted to the image by means of an update rule

and their experimental results have shown that the initial position of the template is critical

to its success.

Although deformable templates are in general an accurate way of modeling the eyes, Hansen

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

28

Chapter 3 Eye Tracking Techniques

and Ji [2] identified the following important limitations:

• They are computationally intensive.

• They typically require high contrast in images.

• Initialization typically has to be close to the eye to obtain successful localization, which

implies that they usually struggle with large head movements.

• In situations where infrared light is used, the boundary between the scelera (the white

of the eye) and the face may appear weak, which can cause problems for deformable

contour models.

• In general they also struggle with significant face pose changes and eye occlusions.

Shape-based approaches are in general an accurate method for detecting the eyes in applica-

tions where the subject is relatively stationary, but they tend to struggle with large variability

in the eye shape as a result of large head movements or eye occlusions.

3.1.2 Feature-Based Approaches

Feature-based approaches are concerned with the characteristics of the human eye and its

surroundings, as opposed to modeling the eye. With these approaches the limbus (the border

of the cornea and the sclera), pupil (based on bright/dark pupil images) and cornea reflections

are frequently used for localizing the eyes.

Feng and Yuen [41] proposed variance projection functions to describe the change of variance

in the vertical and horizontal directions, which they then used for image segmentation. They

defined six eye landmarks, which were detected from the variance projection functions of a

given eye image. In turn these landmarks were used to detect the positions of the iris, the

upper eyelid and the lower eyelid. Although variance projection functions have been shown

to be orientation and scale invariant, experimental results have indicated that this approach

was ineffective when the eyes were closed or partially occluded by hair or facial orientation.

Kawato and Ohya [42], [43] followed an interesting alternative approach for eye detection, by

first detecting the area between the eyes. The area between the eyes is characterized by dark

parts to the left and right (as a result of the eyes and eyebrows) and comparably bright upper

and lower parts (as a result of the forehead and the nose bridge, respectively). Kawato and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

29

Chapter 3 Eye Tracking Techniques

Ohya argued that this area between the eyes is viewable from a wider range of angles and

is also more stable and easier to detect than the actual eyes. However, experimental results

have shown that this approach was prone to failure when hair covered the forehead or when

the subject wore black rimmed glasses.

The pupil is a popular feature used for eye detection (especially when viewed sufficiently

close), since the pupil and iris are together much darker than the surrounding scelera. This

high contrast between the pupil and its surroundings is typically exposed for eye detection

by means of thresholding. Pupil detection is usually made more effective by using active

infrared light to obtain the so-called bright/dark pupil effect as a result of the illumination

being placed either on-center (bright pupil) or off-center (dark pupil) with regards to the

camera’s sensor. The eyes can then typically be detected from the difference image resulting

from the subtraction of the dark pupil image from the bright pupil image. A number of

authors have employed this approach, including [11], [8], [9], [10] and [44].

The bright/dark pupil effect has already been discussed in the previous chapter and shall

not be repeated here. However, it is worth noting that this approach is mostly suitable for

indoor usage and is particularly robust in situations where the ambient light is relatively

low. In situations of high ambient light (e.g. outdoors during day time), the pupils will

typically contract in order to limit the amount of light entering the eye, which implies that

the bright pupil effect is not very apparent in such cases. Nevertheless, despite this limitation

the bright/pupil effect remains a very robust method of detecting the eyes and was therefore

used in this research.

3.1.3 Appearance-Based Approaches

The third main category of eye detection approaches is based upon eye appearance, which is

also known as image template matching or holistic methods. Appearance-based approaches

are concerned with the color distribution or filter responses of the actual eye and therefore

detect the eyes directly, as opposed to either modeling the eye as a certain shape or relying

on certain features of the eye (or its surroundings).

Appearance-based approaches are a general way of detecting almost any type of object in an

image and is therefore not limited to detecting eyes. These methods can either operate in the

spatial domain (i.e. template-based) or in some transformed domain (i.e. holistic). Template-

based methods preserve the individual pixel intensity information, whereas holistic-based

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

30

Chapter 3 Eye Tracking Techniques

methods are concerned with the pixel intensity distribution of the entire object appearance.

Detecting eyes (or any object for that matter) by means of template-based correlation max-

imization is simple and effective, but is also inherently more sensitive to scale and rotational

changes. A major advantage of detecting eyes through a holistic approach in some trans-

formed domain, is that the significant impact of variable illumination can be suppressed to a

certain extend. However, this type of approach is typically only computationally viable in a

low-dimensional transformed domain.

Grauman et al [45] used the motion of eye blinks to detect the eyes. Given a video stream of

frames, Grauman et al subtracted the previous frame from the current frame and thresholded

the resulting difference image. This produced a binary image containing white blobs, which

indicate significant differences between the frames, in other words the motion. This binary

image is passed through a number of filters to detect the eyes, subject to anthropomorphic

constraints. Although this is a novel approach for detecting the eyes in the spatial domain,

it is highly limited for general purpose eye detection, since the subject’s head is assumed to

be stationary with eye blinks being the only major form of motion.

Samaria and Young [46] were confronted with the problem of face identification, which they at-

tempted to solve by using stochastic modeling in the form of Hidden Markov Models (HMMs)

to holistically describe frontal facial information. By using a HMM, the authors have shown

how the face image could be segmented from which various features (including the eyes)

could then be extracted for identification. This approach only made coarse-scale eye location

possible, and therefore further processing was necessary if the exact positions of the eyes were

required.

Huang and Wechsler [47] used optimal wavelet packets for eye representation, which were used

to first find candidate eye regions. These candidate eye regions were then classified as either

eyes or non-eyes by using the Radial Basis Function (RBF). Optimal eye wavelet packets

were derived from the filter response of the Daubechies family of order two, which Huang

and Wechsler [47] found to improve the RBF classification performance when compared to

using raw eye intensity images.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

31

Chapter 3 Eye Tracking Techniques

3.1.4 Hybrid Approaches

All of the eye detection approaches discussed thusfar are more suitable for specific types

of applications, mainly due to their respective limitations. A natural approach therefore

would be to combine different techniques to compensate for their individual weaknesses, to

form a hybrid eye detection approach. A good example of a hybrid eye detection approach,

combining appearance and shape, was presented by Ishikawa et al [48]. In their approach

they first modeled the face using Active Appearance Models (AAMs), which allowed them to

detect and track the entire face as a single object. From the detected face the locations of the

eye corners were then estimated, which were in turn used to detect the iris using template

matching. As with deformable models, AAMs also have to be initialized close the eyes to

obtain an accurate fit, which also implies that AAMs struggle with large eye appearance

variability.

Hansen et al [49] also used AAMs, but instead of modeling the face, they modeled the eyes

directly. The shape and texture formed the main properties of their eye model and by using

prior knowledge of the optimization space, their model is able to rapidly fit to an unseen

example, if provided with reasonable initialization.

Arguably, one of the most effective eye tracking approaches that is currently available, is

achieved by using the bright/dark pupil effect (i.e. feature-based) to extract eye candidates

from the original image for classification (i.e. appearance-based). Zhu and Ji [19] illustrated

such a system, in which they used active near-infrared illumination to obtain the bright/dark

pupil effect. The dark pupil image was then subtracted from the bright pupil image to obtain

a difference image, which was then thresholded to obtain a binary image. In the resulting

binary image a number of white blobs were formed, which indicated potential eye candidates.

The locations of these white blobs were mapped back to the original dark pupil image, from

which the corresponding sub-images were extracted. The extracted sub-images were then

classified as either eyes or non-eyes, using a Support Vector Machine (SVM) classifier. Zhu

and Ji’s work was based on previous work by done by [50] and [51].

Due to the robust nature of the eye tracking system presented by Zhu and Ji [19], much of

the work presented in this thesis is based on their ideas. In terms of eye detection, their work

was extended by considering different classifiers as well as using anthropometric constraints

on detected eyes in order to verify correct eye classification, in an attempt to further reduce

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

32

Chapter 3 Eye Tracking Techniques

the number of false positives.

3.2 EYE TRACKING

There is a lot of overlap between the eye detection techniques discussed in the previous section

and the actual tracking of the eyes. This is due to some of the eye detection approaches

being repeatedly executed for each frame, which implies that eye tracking is simply the re-

detection of the eyes from frame to frame. This may seem like a logical approach, and indeed

a number of authors have successfully demonstrated such systems, but in general the eye

detection process is computationally intensive, which in turn limits its use for real-time eye

tracking applications. This is especially true for applications that have to perform a higher

level or processing over and above tracking to draw a conclusion from the eyes, for example

determining in which direction the user is looking at (i.e. eye gaze) or the percentage of eye

closure as a metric for monitoring fatigue.

For real-time eye tracking systems, the approach is therefore usually to first detect the eyes

with some approach discussed in the previous section, and then initialize a simpler eye track-

ing approach with the detected eyes, which then tracks the eyes from frame to frame. By

using this type of approach, the task of tracking is moved into the realm of general purpose

tracking techniques, which can typically be used to track almost any type of object. As a

consequence, the eye tracking approaches presented in this section cannot be as easily cat-

egorized as the eye detection approaches from the previous section and will be presented as

a whole. However, the focus will be mainly of real-time eye tracking systems.

Talmi and Jiu [52] used the Principle Component Analysis (PCA) to detect the eyes directly

(as opposed to first detecting the face), by transforming the luminance description of the

eyes into a new coordinate system. The principle components of this new coordinate system

were the calculated eigenvectors with the highest associated eigenvalues, which were referred

to as the eigeneyes. The typical characteristics of eigenvectors that represent the eyes were

learned beforehand and a similarity measure was used to detect the eyes during operation.

Their system tracked the eyes from frame to frame by repeating this process, but severely

limited the search region for the eyes once they have initially been detected. The goal of their

system was to track the eye gaze of a user on an interactive screen to determine the fixation

position, in order to produce a limited depth of focus (similar to human binocular focus)

by only displaying the fixation areas on the screen in full resolution and gradually blurring

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

33

Chapter 3 Eye Tracking Techniques

the surrounding areas. Mainly due to the computational cost of the eye gaze tracker, their

system could only achieve near real-time performance.

Morris et al [53] presented a real-time eye tracking system that could detect blinks to enable

people with motor difficulties to interact with a computer. In fact, their system used invol-

untarily eye blinks to detect the eyes. This was achieved by first detecting the face, in order

to obtain a bounding box for detecting and tracking the eyes. Once the bounding box have

been established, a variance map from this section of the first frame was initialized to zero

and a mean image was created from the pixels in the bounding box from this first frame.

Then for each following frame, both the variance map and the mean image were updated

and a thresholded version of the variance map was calculated. A decision on blink detections

were made by looking at the ratio of the number of thresholded pixels to the number of pixels

in the bounding box. Once a blink have been detected the eye corners were located, which

were in turned passed to the eye tracking phase as the feature points to track from frame to

frame.

For eye tracking Morris et al [53] used the Lucas-Kanade feature tracker, which tracks feature

points to sub-pixel accuracy by means of optical flow based on a pyramid representation of the

image. The Lucas-Kanade method was first proposed in [54], and rests on three assumptions:

brightness consistency, temporal persistence (i.e. small movements) and spatial coherence

(i.e. neighboring points belong to the same surface and have similar motion). The Lucas-

Kanade method is widely used in different tracking applications in computer vision, but is

usually quite limited in handling large movements of the object being tracked.

Haro et al [55] exploited the bright/dark pupil effect for both eye detection and tracking.

Adaptive thresholding was applied to the difference image formed by the subtraction of the

bright and dark pupil images. From this binary image, pixels that were at least three con-

nected were considered as eye candidate regions. All of the resulting candidate regions (eyes

and non-eyes) were then tracked from frame to frame using Kalman filtering. A Probabilistic

Principle Component Analysis (PPCA) (based on texture information) was performed for all

of the candidate regions being tracked, in order to provide the probability of the particular

candidate regions being eyes or non-eyes. Finally, the tracked candidate regions were actu-

ally classified as eyes or non-eyes, by means of a weighted probability function based on the

probabilities obtained from the PPCA and the Kalman tracker’s covariance matrix. Their

system could track the eyes in real-time for indoor environments, under relatively smooth

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

34

Chapter 3 Eye Tracking Techniques

head movements. Experimental results have shown that for fast and jerky head movements,

their system struggled to accurately track the eyes. For a more in-depth discussion of the

Kalman filter as applied to object tracking, the reader is referred to the Chapter 2.

Hansen and Pece [56] did not automatically detect the eyes, but relied on the users to initialize

the eye tracking process by requesting the to position their eyes within a rectangle that was

displayed on the screen. This would then be used to initialize an iris model, from which

the state variables were estimated recursively in each following frame, in order to enable the

tracking of the iris. Their model consisted of three components:

• A dynamic model defining the probability density function (pdf) over the iris in the

current frame, based on the state from the previous frame.ity function (pdf) over the

iris in the current frame, based on the state from the previous frame.

• A geometric model defining the pdf over the contours of the current frame, based on

the iris state in the current frame.

• An observation model defining the pdf over the gray-level difference, based on the

contours in the current frame.

Hansen and Pece [56] made some assumptions for the observation model, which meant that

no explicit features had to be first detected and then matched to the model for tracking

purposes. The actual tracking of the iris was then performed by the combination of particle

filtering with the Expectation Maximization (EM) algorithm. Particle filtering was chosen

based on its ability to maintain multiple hypotheses, enabling the system to robustly track

the irises in the presence of noise and also to recover from occlusions (e.g. eye blinks).

Particle filtering was first introduced into the field of computer vision by Isard and Blake [57]

with their proposed conditional density propagation (CONDENSATION) algorithm, which is

a general purpose algorithm for tracking the contour of an object in a cluttered environment.

It is interesting to note that although the CONDENSATION algorithm (or particle filtering

in general) appears to be well suited for eye tracking applications, at the time of writing this

paper and to the authors knowledge, it has been very seldomly used to this extend.

As mentioned in Section 3.1.4, Zhu and Ji [19] used a hybrid approach for eye detection by

exploiting the bright/dark pupil effect to obtain eye candidates, which were then classified as

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

Chapter 3 Eye Tracking Techniques

either eyes or non-eyes through a SVM classifier. Once their system has successfully detected

the eyes, the locations of the detected eyes were used to initialize a Kalman tracker. From

this point onwards, the Kalman tracker was used to track the bright pupils from frame to

frame. Their experimental results have shown that the Kalman tracker works reasonably well

under smooth head movements, as long as the bright pupils were present in the image. If the

bright pupils disappeared or became weak due to eye occlusion (as a result of eye closure or

large head rotations) the Kalman filter would fail.

Zhu and Ji compensated for this limitation of the Kalman tracker, by combining it with

mean-shift tracking. An eye appearance model was created for their mean-shift tracker based

upon the intensity distribution of eyes and non-eyes. As a result, the mean-shift tracker was

therefore not dependent on the bright pupils. However, they noticed that the mean-shift

tracker could in certain situations be easily distracted by objects close to the eyes that had

a similar intensity distribution, which implied that the mean-shift tracker would eventually

drift off and loose track since there was no feedback mechanism. For this reason the Kalman

tracker was combined with the mean-shift tracker to compensate for their relative weaknesses.

The Kalman filter was therefore used to track the eyes for as long as the bright pupils were

present and when the bright pupils dissapeared, the mean-shift tracker would take over the

tracking responsibilities until either the bright pupils again reappeared, or the mean-shift

tracker drifted off. If the bright pupils reappeared, the Kalman tracker would again be

responsible for eye tracking, otherwise the eye detection process would be re-initiated to

restart the entire tracking phase.

The hybrid eye tracking approach followed by Zhu and Ji were able to robustly track the

eyes under various illumination conditions and head poses, as well as in situations where the

subject wore glasses. Their robust eye tracking results also inspired the tracking approach

followed in this research, by combining Kalman filtering with mean-shift tracking. However,

the way in which Kalman filtering and mean-shift tracking are combined in this research is

slightly different as proposed by Zhu and Ji. The details of how these two approaches were

combined are presented in the next chapter.

3.3 CONCLUDING REMARKS

The aim of this chapter was to present an overview of the existing work done on eye tracking

and as a result placed the work done for this research into context. This chapter was divided

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

36

Chapter 3 Eye Tracking Techniques

into two main parts, with the first part discussing the most influential approaches that have

been followed for eye detection and the second part discussing some of the most successful

approaches followed for tracking the eyes in real-time.

As can be seen from the literature presented in this chapter, the challenges of eye detection

and eye tracking are rather complex and are yet to be completely solved. A vast number of

approaches have already been suggested, with some working better than others, depending

on the particular application. The conclusion that can be drawn from this chapter is that no

single approach will be robust enough to detect and track the eyes under all of the multitude

of scenarios, and therefore currently a hybrid approach seems like the most likely technique

of compensating for the weaknesses of the individual approaches. Indeed, hybrid approaches

were followed for both the eye detection and tracking phases in this research and will be

presented in the next chapter.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

37

Chapter 4

DESIGN AND IMPLEMENTATION

In this chapter the detailed design and implementation of the eye tracking system will be

presented. The system required both hardware and software components that had to be de-

veloped and therefore the first section provides a functional overview of the complete system,

followed by a section that covers all the aspects of the hardware design and implementa-

tion, with the third section covering the software development. The fourth and final section

provides some concluding remarks on the complete design and implementation.

4.1 FUNCTIONAL OVERVIEW

In this section the system will be discussed at a high level to provide the reader with an

overview of all the functional units of the implemented eye tracking system, as well as how

these functional units interface with each other. The system consists of four main functional

units, which are shown in the functional block diagram of Figure 4.1.

4.1.1 Functional Unit 1: Embedded System

Description

The first functional unit is the embedded system and its main purpose was to synchronize

the NIR illumination with the camera. To achieve this functionality, the embedded system

that was developed consisted of three separate sub-units:

• Microcontroller (FU 1.1): The microcontroller which receives commands from the

personal computer (FU 3), switches the NIR LED drivers and triggers the camera for

image acquisition. The firmware developed for the microcontroller will be discussed

Chapter 4 Design and Implementation

C

FU2: GigE camera

with optical filer

(Prosilica GC1380)

FU3: Personal Computer

I/F 3

Image subtraction
Adaptive

thresholding

Obtain eye

candidates
Eye classification

Detection

FU4.1 FU4.2 FU4.3 FU4.4

Kalman filtering

combined with mean-

shift tracking

Image pre-processing

Tracking

FU4.6 FU4.5

FU4: Eye tracking application software

I/F 4

Microcontroller

(PIC16F887)

500mA LED driver

On-center NIR LEDs

(780nm)

Off-center NIR LEDs

(780nm)

500mA LED driver

FU1: Embedded system

FU1.1

FU1.2

FU1.2

FU1.3

FU1.3

Switch

Switch

I/F 2

I/F 1

Figure 4.1: The complete functional block diagram of the designed eye tracking system.

later in this chapter. The PIC16F887 microcontroller from Microchip was used to this

extend.

• 500mA LED drivers (FU 1.2): This sub-unit is in fact two identical 500mA constant

current sources to drive the on-center and off-center NIR LEDs (FU 1.3) separately.

The 500mA LED drivers were specifically designed and manufactured for the particular

LEDs that were used.

• NIR LEDs (FU 1.3): The NIR LEDs which provide the actual illumination to obtain

the bright/dark pupil effect. The specific NIR LEDs emit light at a wavelength of 780nm

and were obtained from Roithner Lasertechnik (H11A1-780-30).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

Chapter 4 Design and Implementation

4.1.2 Functional Unit 2: Camera

The second functional unit was a commercial off-the-shelf (COTS) camera that was used

to capture images of a subject. The actual triggering of the camera was controlled by the

embedded system (FU 1), while the transferring of images and other camera configurations

(e.g. sensor exposure control, capturing mode, trigger settings, etc.) were controlled by the

personal computer (FU 3). As previously mentioned, the camera that was used was the

Prosilica GC1380 (monochrome).

4.1.3 Functional Unit 3: Personal Computer

The third functional unit was a normal personal computer (PC) that was used to control and

ci the camera and to execute the image processing algorithms. The PC that was used had

the following specifications:

• Intel Core 2 Quad CPU (Q8300 with a clock speed of 2.5 GHz)

• Gigabit Ethernet adapter

• 2GB of a RAM (later upgraded to 6GB)

• Operating system: Ubuntu 10.04 (Lucid Lynx)

• A USB-to-serial converter was used for RS-232 communication

4.1.4 Functional Unit 4: Eye Tracking Application Software

The final functional unit was the application software that had to be developed to perform

the image processing necessary for tracking the eyes and were executed on the PC (FU 3).

The application software was divided into two phases, namely detection and tracking, both

with its own sub-units. As input the first phase received a bright and dark pupil image pair

and as output produced the locations of the individual eyes in the dark pupil image. The eye

detection phase consisted of four sub-units:

• Image subtraction (FU 4.1): The corresponding pixel intensity values of the bright

and dark pupil images were subtracted from each other to form a difference image.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

40

Chapter 4 Design and Implementation

• Adaptive thresholding (FU 4.2): Given the difference image, an adaptive threshold

was calculated and was then used to binarize the difference image, i.e. only black or

white pixels. A fixed threshold will not be optimal, since the ambient lighting conditions

can vary greatly in different scenarios.

• Obtain eye candidates (FU 4.3): The resulting binary image will contain a number

of binary blobs, which may or may not be eyes. A connected component analysis was

performed on the binary image and the locations of the resulting blobs were mapped

back to the dark pupil image and the corresponding sub-images at those locations were

extracted, which served as the potential eye candidates.

• Eye classification (FU 4.4): Given the extracted sub-images, a trained classifier was

used to classify the sub-images as either eye or non-eye images.

The second eye tracking phase received as input the locations of the detected eyes and were

used to initialize the tracker, which from thereon attempted to track the eyes from frame to

frame, based upon the bright pupil effect. The eye tracking phase consisted of two sub-units:

• Image pre-processing (FU 4.5): As discussed in the Chapter 2, the mean-shift

tracker is non-parametric and therefore the bright pupil frames first had to be pre-

processed to effectively segment the feature to be tracked (i.e. the bright pupils) from

the background. In applications that use mean-shift tracking to track color objects,

color histogram backprojection is typically used. However, in this case the images

were grayscale and therefore this approach was not very effective. An alternative pre-

processing approach was thus followed by first smoothing the image and then applying

Canny edge detection, which effectively presented the bright pupils as circles. These

circles, in effect the eyes, were then detected using the Hough transform. The details

of this pre-processing step is presented later in this chapter.

• Mean-shift and Kalman tracking (FU 4.6): The mean-shift procedure (discussed

in Section 2.5) was then applied to the pre-processed image and will typically move to,

and settle at the locations of the pupils. These locations then served as the measure-

ments for Kalman filtering (discussed in Section 2.4). The combination of mean-shift

tracking with Kalman tracking proved to be very effective. Finally metrics (to be dis-

cussed later) were applied in this sub-unit to detect when eye tracking was lost, in

which case the eyes will have to be detected again.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

41

Chapter 4 Design and Implementation

4.1.5 Interfaces

The eye tracker system has four important interfaces to facilitate communication between

the functional units:

• RS-232 (I/F 1): A standard RS-232 serial interface between the PIC16F887 and the

PC (FU 3), through which the embedded system received commands. The communic-

ation protocol can be found in Appendix A.

• Triggering I/O’s (I/F 2): This was the control signals necessary to trigger the

camera (FU 2) for image acquisition. The timing diagrams, as specified by the camera’s

manufacturer, as well as the timing realization with the GPIO pins of the PIC16F887

can be found in Appendix B.

• Gigabit Ethernet (I/F 3): Gigabit Ethernet (GigE) is an industry standard specified

in IEEE 802.3-2008 and was used to transmit Ethernet frames between the camera (FU

2) and the PC (FU 3). Due to GigE’s high data rate, it was ideally suited for streaming

high quality images from the camera. In addition it also provided a high level of

flexibility on the physical placement of the camera, since the typical Cat5 twisted pair

cable length can be up 100 meters long.

• Application programming interface (I/F 4): The application programming in-

terface (API) was an abstract interface to the PC (FU 3) that provided the necessary

functionality for the eye tracking application software (FU 4) to access the camera (FU

2), in order to communicate with the embedded system (FU 1) and to perform image

processing on the resulting images. In reality there were actually a number of distinct

APIs used that will be discussed later in this chapter.

4.2 HARDWARE DEVELOPMENT

As discussed in previous chapters, the eye tracker was based upon the bright/dark pupil

effect. To achieve the bright/dark pupil effect, near-IR LEDs had to be synchronized with a

camera. In terms of hardware, there were consequently two needs: firstly hardware to drive

the LEDs and secondly hardware to interface with the camera so that the LEDs could be

synchronized with the camera. This section will discuss how these two needs were addressed

and the subsequent design and implementation of the associated hardware.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

42

Chapter 4 Design and Implementation

4.2.1 Hardware Selection

Camera Selection

In any real-world scenario there are a number of constraints that have to be considered

when developing hardware, with financial considerations typically being the most profound

constraint. For this research it was no different, with the camera being the most expensive

piece of hardware. Although the ultimate goal of any commercial camera-based eye tracking

system would be to use an as affordable (and perhaps customized) camera as possible, the

aim of this research was rather to illustrate the proof-of-concept.

As a result there was a need for a general purpose, high resolution machine vision camera.

In this case the need for a general purpose camera, implied a camera that provided a relative

simple interface so that it could easily be synchronized with some external source. The

specific need for a high resolution camera implied that the performance of the developed

software will be increased since the images would contain more information. The camera also

had to be monochrome, since color images would provide no significant additional benefits

for this particular application, in fact color images would actually increase the complexity of

the image processing. A camera with all of these characteristics would also result in a more

accurate comparison between the different classification and tracking techniques that were

considered in this research.

Given the lack of knowledge on which specific camera would be the most suitable for this

application, experts in the field of computer vision had to be consulted to obtain recom-

mendations. A few individual experts in the field were consulted and the consensus recom-

mendation was the range of Prosilica Gigabit Ethernet (GigE) machine vision cameras from

Allied Vision. Machine vision cameras are in general expensive equipment and an important

consideration was to first have access to some of these cameras for testing purposes before

actually purchasing one. Fortunately the Department of Defense, Peace, Safety and Security

(DPSS) at the CSIR provided unrestricted access to their Prosilica cameras for this research.

Admittedly, the range of Prosilica cameras that were considered in this research were by no

means the only cameras that would have been suitable for the application of eye tracking. In

fact, cameras with sensors that were more sensitive in the NIR range would probably result in

the use of more standardized and easily obtainable NIR LEDs (discussed later). However, the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

Chapter 4 Design and Implementation

major challenges were firstly just to get access to any machine vision camera and secondly to

obtain a camera with a proper hardware interface for synchronizing the NIR LEDs in order

to capture images. The latter proved to be an important consideration in choosing a suitable

camera.

Since the illumination that had to be synchronized with the camera emitted light in the NIR

range, the chosen camera’s sensor also had to be sensitive to light in the NIR range. At the

time of this research, DPSS had the following Prosilica GigE cameras available:

• GC1380 - Monochrome, high sensitivity 1.4 megapixel (1360 × 1024) CCD sensor

• GC1600 - Monochrome, ultra compact 2 megapixel (1620 × 1220) CCD sensor

• GC1900 - Monochrome, high resolution 2 megapixel (1920 × 1080) CCD sensor

The next step was to determine what the sensor responses of these cameras were, and this

information was found in the datasheets of each camera (see [58], [59] and [60] for the relevant

figures of the sensor responses). Both the GC1380 and GC1600 had Sony CCD sensors, while

the GE1900 had a Kodak CCD sensor. The International Commission on Illumination (CIE)

defined the NIR band as light with a wavelength between 700nm and 1400nm and it was

therefore decided that the camera which was the most sensitive in the 750 nm to 900 nm

range would be chosen. This particular requirement was mainly due to the results obtained

for similar eye tracking systems found in the literature.

When considering the figures of the three camera sensor responses from their respective

datasheets, it is evident that the Sony ICX285AL CCD sensor from the GC1380 [58] was the

most sensitive of the three cameras in the NIR range, with a quantum efficiency of close to

30% at 750nm and close to 10% at 900nm. Eventhough the GC1380 had the lowest resolution

of the three cameras, a 1.4 megapixel resolution was still deemed more than sufficient for this

application.

NIR Illumination Selection

Once the camera was selected, associated illumination in the wavelength range of 750nm to

900nm had to be obtained. The natural choice was LED illumination due to the wide variety

of LEDs that were readily available, but as it turned out LEDs in the NIR range were not

nearly as widely used when compared to LEDs in the visible light waveband. As a result the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

Chapter 4 Design and Implementation

NIR LEDs were not as easily obtainable as was expected. In addition high powered LEDs

(which had to be within safety regulations) were also required, since the person’s face had

to be properly illuminated even in complete darkness. This implied that high-powered NIR

LEDs were expensive and not available in a wide variety of wavelengths between 750nm to

900nm. Fortunately it was possible to obtain 850nm high-powered NIR LEDs from EBV

Elektronik.

The specific type of LED that was sampled was the SFH4232 High Power Infrared Emitter

from Osram. The SFH4232 had an emitting area of 1 × 1 mm2, a center of spectral emis-

sion at 850nm and could typically be driven at a forward current of 1A as specified in its

datasheet [61]. The SFH4232 was specifically designed for infrared illumination for cameras

in surveillance, driver assistance and machine vision systems and was therefore expected to

be well suited for this application. Since these LEDs were high powered, only a few were

required for the on-center and off-center illumination sets and therefore it was decided to use

four of these LEDs per set. Also due to the high powered nature of these LEDs, a specific

constant current driver circuit had to be developed. The design of a 1A constant current

LED driver are presented later in this chapter.

As it turned out, preliminary test results have shown that the Prosilica GC1380 sensor was

not sensitive enough to light at 850nm, as necessary to produce the bright pupil effect.

Consequently NIR LEDs at lower wavelengths had to be considered, where the camera’s

sensor was more sensitive, in particularly wavelengths at 780nm and 810nm were identified

as suitable candidates. At that point in time, LEDs at these wavelengths could not be

found in South Africa and were sourced from an Austrian-based company called Roithner

Lasertechnik. Both the 780nm (H11A1-780-30) and 810nm (H2A1-H810) LEDs were designed

to operate at a constant current of 500mA and therefore the initial 1A LED driver designed

for the 850nm LEDs was not be suitable for these LEDs. Consequently a second 500mA

constant current LED driver had to be developed and its design is also presented later in this

chapter.

Optical Filter Selection

The ambient lighting conditions under which the eye tracker operates will have a major

influence on the image processing and since one of the initial goals of this research was to

develop an eye tracker that could potentially be used in a vehicle for fatigue detection, the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

Chapter 4 Design and Implementation

system would typically have no control over the ambient light. To this extent it was decided

to use an optical bandpass filter to suppress all light with wavelengths outside of the near-

infrared band (750nm to 1400nm), in an attempt to at least have some control over which

wavelengths of light would enter the camera’s sensor.

Mainly due to financial constraints, but also due to the initial uncertainty of the ideal specific-

ations, it was not possible to develop a customized optical bandpass filter for the eye tracking

system. Fortunately, DPSS at the CSIR had an assortment of optical filters available that

they graciously made available for this research. Since the selected type of NIR LEDs for the

final design of the eye tracker have a center of spectral emission at a wavelength of 780nm,

the goal was to find an optical bandpass filter that had good transmission characteristics for

wavelengths in this region. From the available optical filters that met this requirement, the

final two candidates are shown in Figure 4.2 and Figure 4.3, respectively.

Figure 4.2: The filter response graph of the first optical bandpass filter candidate that was con-

sidered, but was ultimately not chosen in the final design. This optical filter was supplied by DPSS,

a department at the CSIR.

Note that the low quality of these images was a result of the original electronic versions of

the graphs not being available, and therefore the original printouts had to be scanned. The

reader will notice that the filter response graphs of the two optical filters are very similar in

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

46

Chapter 4 Design and Implementation

Figure 4.3: The filter response graph of the optical bandpass filter that was used in the final design of

the eye tracker, as a result of some field trials. This optical filter was supplied by DPSS, a department

at the CSIR.

shape, with the filter from Figure 4.2 having a larger passband and also less attenuation for

incident light that falls within the passband, when compared to the filter from Figure 4.3.

The bright pupil effect was critical for both eye detection and the actual tracking of the eyes,

and therefore the chosen optical filter had to maximize the bright pupil effect for various

ambient lighting conditions. This could of course only be determined once the LED drivers

and the embedded system were fully functioning, as necessary for synchronizing the NIR

LEDs with the camera to ultimately obtain the bright pupil effect. After this phase was

completed, a few trials under different daylight conditions were performed and the results

suggested that the optical bandpass filter from Figure 4.3 was more effective in suppressing

daylight and therefore enhancing the bright pupil effect.

These results were mainly due to the fact that the passband of the filter from Figure 4.3

started at a wavelength that was also closer to the 780nm wavelength of the NIR LEDs. In

addition, the passband for the filter from Figure 4.3 was also narrower and the attenuation

more. This was important since normal everyday light sources, in particular the sun, also

emit light in the NIR spectrum of light and should therefore also be suppressed to a certain

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

47

Chapter 4 Design and Implementation

extend.

The reader should note that the chosen optical bandpass filter from Figure 4.3 was not

necessarily the ideal optical filter for this application, but was the best suited from the

available optical filter. It is expected that an optical bandpass filter, with a narrower passband

centered around 780nm would be more appropriate and might also result in requiring less

NIR illumination. However, this would most likely also require a camera with a different

sensor that would be more sensitive to NIR light in the region of these wavelengths.

Microcontroller Selection

Given the camera and the NIR LEDs (with their driver circuits), there was a need for a

simple embedded system that would be able to synchronize the LEDs with the camera, based

on commands it received from a personal computer (PC). It was decided that the simplest

method to achieve this controlling functionality was to interface a microcontroller with a

PC through a serial RS-232 port, which could at a later stage perhaps be upgraded to USB

communication. Based upon the user manual of the Prosilica GC1380 [62], the capturing

of images could be triggered through the general purpose I/O port. The LED driver circuit

should therefore also be designed so that the NIR LEDs could be switched through the normal

I/O pins of the microcontroller.

Consequently, the only important requirements for the microcontroller were a few I/O pins

and an UART. Since the processing speed of almost any modern microcontroller would be

sufficient to realize this controlling functionality, the main consideration was a microcontroller

with a programmer that was readily available, which in this case was the PIC16F887 together

with the PICkit 2 programmer from Microchip. Admittedly, the PIC16F887 was superfluous

for this particular scenario, but could be tolerated since this was not a critical aspect of the

complete system. More details on the camera synchronization are given later in this chapter.

4.2.2 Constant Current LED Driver Design

The current-to-voltage characteristics of LEDs are very similar to that of other diodes, and

therefore the current through the LED is exponentially dependent on its voltage. The im-

plication is that small changes in the voltage will result in large changes in current. Large

variations in current can damage an LED, in particular the high powered LEDs used for

this research, but can be solved by using a constant current driver. To this extend, the on-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

48

Chapter 4 Design and Implementation

line WEBENCH Designer from National Semiconductor [63] was used to design the constant

current drivers required for this research.

1A Constant Current Driver Design

The SFH4232 by OSRAM is an infrared light source that emits light with a center of spectral

emission at 850nm, which was specifically designed for the purpose of infrared illumination

for cameras [61]. The SFH4232 LED was designed for a safe maximum DC current of 1A,

and therefore it was decided to design 1A constant current driver for up to four SFH4232

LEDs in series. The design parameters, as were required by the WEBENCH Designer, can

be found in Table 4.1.

Table 4.1: The design parameters (and design consideration) for the 1A constant current LED driver,

as required by the WEBENCH Designer.

Parameter Value Design Consideration

Input voltage 9V - 16V The typical output voltage of a car battery.

Ambient temperature 30◦C An overestimate of the average environmental

operating ambient temperature.

LED operating current 1A As specified in the datasheet.

Part number Custom WEBENCH does not have the specific LED.

VForward 1.5V @ 1A As specified in the datasheet.

RDynamic 0.7Ω ∆VF

∆IF
= 1.5−0.8

1−10−2 ≈ 0.7Ω (datasheet graphs)

LEDs in series 4 The maximum LED set size (can be less).

LEDs in parallel 1 Only LEDs in series.

Given the specified parameters, the WEBENCH Designer provided a number of designs

with a trade off between the highest efficiency and the smallest footprint. However, the main

design considerations were the availability of components and a footprint that did not require

specialized equipment for component placement, and as a result the chosen design was based

upon the LM3404 constant current buck regulator. The LM3404 regulator also provided LED

dimming through pulse width modulation (PWM), but for this purpose it was only required

to switch the LEDs on or off and to this extend the chosen design was slightly modified, with

a 2N7000 MOSFET transistor that was placed between the RON pin and ground to enable

on and off switching. The resulting schematic of the design is shown in Figure 4.4.

The 1A constant current LED driver from Figure 4.4 was duplicated (since there were two

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

Chapter 4 Design and Implementation

Figure 4.4: The 1A constant current driver that was designed to drive up to four 850nm high-powered

LEDs (SFH4232) in series.

separate sets of NIR LEDs that had to be driven) and then integrated with a PIC16F887

microcontroller based embedded system that was able to control the LED drivers, trigger

the camera for image acquisition and communicate with a PC through its UART interface.

The design of the PIC based embedded system is not shown in this section, since the LED

driver and the embedded system was separated in the final design, with the latter design

being presented later in this chapter. The PCB design and layout was realized with EAGLE

Light.

500mA Constant Current LED Driver

The 1A constant current LED driver from the previous section worked well in driving and

switching the SFH4232 NIR LEDs, but when tested with the Prosilica GC1380 camera it

was found that it was not really effective in producing the bright pupil effect. This was not

a result of the SFH4232 LEDs not being bright enough in the NIR range (in fact they were

probably brighter than required), but due to a mismatch between the emitting wavelength

and the camera’s sensor sensitivity, i.e. the Sony ICX285AL CCD sensor of the Prosilica

GC1380 was simply not sensitive enough to NIR light at 850nm.

The simple solution was to use NIR illumination at a lower wavelength, but as mentioned

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

50

Chapter 4 Design and Implementation

earlier, it turned out not be so easily obtainable in South Africa and had to be sourced

from Austria. The chosen LEDs had to emit light just outside of the visible spectrum (i.e.

above 750nm) so that it could not be perceived by the human eye, but that it could still

be effectively detected by the Prosilica GC1380’s sensor. At that point in time, there was

uncertainty as to exactly which wavelength would be the most effective and as a result

two types of LEDs at 780nm (H11A1-780-30) and 810nm (H2A1-H810) were chosen, both

manufactured by Roithner Lasertechnik.

These LEDs were also chosen so that they had the same driving current and forward voltage

drop requirements, so that only a single LED driver had to be developed that could be

used for both the LED configurations. As with the development of the 1A LED driver from

the previous section, the WEBENCH Designer was used to generate designs for the 500mA

constant current LED driver and the design parameters are shown in Table 4.2.

Table 4.2: The design parameters (and design consideration) for the 500mA constant current LED

driver, as required by the WEBENCH Designer.

Parameter Value Design Consideration

Input voltage 9V - 16V The typical output voltage of a car battery.

Ambient temperature 40◦C An overestimate of the average environmental

operating ambient temperature.

LED operating current 500mA As specified in the datasheet.

Part number Custom WEBENCH does not have the specific LED.

VForward 1.6V @ As specified in the datasheet.

500mA

RDynamic 0.8Ω An estimate (datasheets did not specify).

LEDs in series 5 The maximum LED set size (can be less).

LEDs in parallel 1 Only LEDs in series.

As with the 1A LED driver from the previous section, the main requirements for the generated

WEBENCH designs were also component availability and a footprint that did not require

specialized equipment for component placement. The chosen design was based upon the

LM3401 hysteretic PFET switching controller. There was just one modification made to this

design: the Fairchild p-channel MOSFET (FDC602P) was difficult to obtain, and was just

exchanged with a different p-channel MOSFET (FDC642P) with similar specifications. The

LM3401 switching controller also provided a CMOS logic level PWM input pin for dimming,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

51

Chapter 4 Design and Implementation

which was just used to switch the LEDs on or off. The resulting schematic of the design is

shown in Figure 4.5.

Figure 4.5: The 500mA constant current driver that was designed to drive up to five 780nm (H11A1-

780-30) or 810nm (H2A1-H810) LEDs in series.

The 500mA LED driver as shown in Figure 4.5 was duplicated, as necessary to drive the

inner and outer sets of NIR LEDs separately, and both drivers were placed together on a

single PCB. The 500mA LED drivers were decoupled from the PIC based microcontroller

embedded system, in order for both systems to be more general purpose, i.e. so that the

same PIC based embedded system could control different types of LED drivers or that the

same 500mA LED drivers could be controlled by any embedded system, provided that CMOS

logic level signals were provided. The PCB layout of the 500mA LED driver was realized

with EAGLE Light.

4.2.3 Embedded Controller Circuit Design

Given the LED drivers from the two previous sections, it was now possible to individually

switch the two sets of NIR LEDs, and therefore it was now also possible to synchronize these

sets with the camera to obtain the bright/dark pupil effect. Naturally, the next step was

to develop an embedded system that could receive commands from the application software

running on the PC, and switch the appropriate NIR LED set and finally to provide the control

signals for external triggering of the camera.

As mentioned earlier, the most important design consideration for the embedded system

was the availability of a microcontroller and its associated programmer, and to this extend

the PIC16F887 microcontroller (40-pin PDIP package) and the PICKit 2 programmer were

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

52

Chapter 4 Design and Implementation

selected. The only important requirements for the microcontroller were a UART module for

serial communication, a number of general purpose I/O pins for the control signals and a

timer module for the timing of the camera’s triggering signals. Admittedly, the PIC16F887

has considerably more features than required, but since the aim of the current work was more

research orientated than developing an optimized commercial product, it could be tolerated.

In fact, the additional features could prove useful for future work, in particular the PWM

module could perhaps be used to adapt the brightness (through dimming) of the NIR LEDs

to the current ambient light conditions.

Figure 4.6: The embedded controller circuit (based on the PIC16F887) that received commands

from the PC and triggered the camera accordingly.

The complete embedded controller circuit schematic is shown in Figure 4.6 and is used from

the point onwards to explain the individual parts of the design. The first step of the design

was to ensure that system received a regulated power input, since large variations in the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53

Chapter 4 Design and Implementation

input voltage could potentially damage the PIC microcontroller. For this reason the 7805,

3-terminal 5V voltage regulator (in a TO-220 package) was used to allow an input DC voltage

of a typical car battery (9V - 16V). The regulator circuit is shown in the top right corner of

Figure 4.6.

The next important step was to ensure that the PIC16F887 could be programmed in-circuit,

so that any modifications to the firmware could be easily made without first removing the

PIC from the circuit and programming it separately. To enable serial in-circuit programming,

a simple isolation circuit had to be inserted, as specified in the user guide of the PICKit 2 [64]

and can seen in the top left corner of Figure 4.6.

To ensure that the timing of the triggering control signals to the camera were accurate enough,

an external 8MHz quartz crystal oscillator was used and was connected to the PIC16F887 as

specified in its datasheet [65] (see middle left of Figure 4.6). The resistor R5 was deliberately

not given a value, but only placed there since a series resistor may be required for some

crystals with a low drive level (see the PIC16F887 datasheet). The use of an external crystal

with PIC microcontrollers is in general good practice and will improve the timing accuracy

of other modules within the PIC, in particular the baud rate generator as required by the

UART module for serial communication.

Once it was possible to program the PIC16F887 in-circuit, it was necessary to enable serial

communication between a standard RS-232 serial port (from a PC in this case) and the

PIC. Fortunately, the PIC16F887 was equipped with an UART module that enabled RS-232

control signals. However, the voltage levels of these UART signals were not according to the

RS-232 standard (±10V to ±12V) and it was necessary for a level shifting circuit, which was

realized with the MAX232 IC that was specifically designed for this purpose. The MAX232

level shifter circuit is shown in the bottom right corner of Figure 4.6.

Finally, it was necessary to enable the actual transmission of the control signals necessary

to switch the LEDs and trigger the camera. Both the LED driver circuit and the triggering

input circuit of the camera would work with the TTL logic level signals as directly provided

by the I/O ports of the PIC16F887. However, it was decided to buffer the I/O ports to

protect the PIC microcontroller from any power surges on these lines. The chosen IC was the

high speed, non-inverting 74HC541N octal buffer, and its connections to the PIC16F887 can

be seen in the bottom left corner of Figure 4.6. Two status LEDs were also connected to the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

54

Chapter 4 Design and Implementation

an I/O port of the PIC16F887, which were just used to indicate activity on the embedded

system (see middle right of Figure 4.6).

All of the ICs from the schematic shown Figure 4.6 (i.e. the PIC16F887, MAX232 and

74HC541N) were also connected through the appropriate DIP sockets, to enable effortless

replacement in case of an IC being damaged. The PCB layout of the designed embedded

controller circuit was realized with EAGLE Light.

4.3 SOFTWARE DEVELOPMENT

The software developed for the eye tracking system can be divided into two parts: the embed-

ded firmware and the application software. The firmware was developed for the PIC16F887

microcontroller and was mainly concerned with triggering the camera and synchronizing the

sets of NIR LEDs with the triggering signals of the camera. The application software was

mainly concerned with obtaining the images resulting from the camera triggering and per-

forming the image processing necessary to detect and track the eyes in these images. The two

sections to follow will discuss the details of the developed firmware and application software,

respectively.

4.3.1 Embedded Firmware

Table 4.3: The UART configuration of the PIC16F887 for serial communication.

UART parameter Value

Baud rate 19,200 bps

Data bits 8 bits

Parity None

Stop bits 1 bit

Flow control None

The primary tasks of the embedded firmware, running on the PIC16F887, were to control

the NIR illumination and the triggering of the camera based upon commands received on

the serial interface from the PC. The first step was to enable the serial communication by

configuring the UART module of the PIC16F887 with its setup shown in Table 4.3. A baud

rate of 19,200 bits per second was deemed sufficient since the serial interface was only used for

transmitting short commands from the PC to the PIC16887, and not for any data transfer.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

Chapter 4 Design and Implementation

It should also be noted that in order to achieve an accurate higher baud rate, a crystal

with a higher oscillating frequency should be used. The reader is referred to the PIC16F887

datasheet [65] for more information.

All of the embedded firmware was developed using the C programming language, in particular

using the HI-TECH C Compiler for PIC10-12-16 microcontrollers (version 9.80) together with

Microchip’s MPLAB IDE (version 8.63). The flowchart describing the embedded firmware is

shown in Figure 4.7.

Initialize system

UART bytes

received?

Process bytes

Valid packet?

Process packet

Bright / dark

pupil pair

command?

Ping command?
Switch inner LEDs

command?

Switch outer LEDs

command?

Start / stop

capture command?

Transmit ACK

Wait for

TriggerReady to

go high

Switch inner LEDs

ON

Tx trigger pulse

Switch inner LEDs

OFF

Switch outer LEDs

ON

Wait for

TriggerReady

Transmit trigger

pulse

Transmit ACK

Set inner LEDs

according to

command

parameters

Set outer LEDs

according to

command

parameters

Transmit ACK Transmit ACK

Set / clear

bStopContCap

flag

Transmit ACK

Is

bStopContCap

set?

Wait for

TriggerReady

Transmit trigger

pulse

Yes

Yes

Yes

Yes

No No No No

Yes Yes Yes Yes

Entry point

No

No

No

Transmit NACK

No

Figure 4.7: The flowchart of the firmware running on the PIC16F887.

The UART module was configured to generate an interrupt with every byte received, upon

which the byte was packed into an implemented circular buffer during the interrupt service

routine (ISR). Meanwhile in the foreground, the firmware would poll the circular buffer to

see if any new bytes were written into it, and process the bytes as they were received. If valid

packet bytes were received, the packet would then be parsed (without processing the packet

contents) and would be written into a generic packet structure. Only once an entire packet

has been received, it would be processed and the resulting command would then be executed.

With the current design, the embedded firmware supports five commands as described in

Table 4.4. For more details on the serial protocol and the triggering of the camera, the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

56

Chapter 4 Design and Implementation

reader is referred to Appendix A and Appendix B, respectively.

Table 4.4: The serial commands currently supported by the embedded firmware.

Command Action Description

Ping Transmit ACK A ping packet is transmitted

to the embedded system and

is simply acknowledged.

Capture bright/dark - Set RD5, clear RD6 The inner set of NIR LEDs

pupil image pair - Wait for RD0 to go high is first switched on and the

- Pulse RD1 for 15 µs camera is then triggered for

- Clear RD5, Set RD6 the bright pupil image,

- Wait for RD0 to go high followed by switching the

- Pulse RD1 for 15 µs outer set of NIR LEDs on, and

- Clear RD5 and RD6 again triggering the camera

- Transmit ACK for the dark pupil image.

Switch inner set of - Set or clear RD5 Switch the inner set of

NIR LEDs - Transmit ACK NIR LEDs on or off, based

on the parameter.

Switch outer set of - Set / clear RD6 Switch the outer set of

NIR LEDs - Transmit ACK NIR LEDs on or off, based

on the parameter.

Start or stop video - Set / clear bStopContCap Start or stop the

capture - Transmit ACK continuous capturing of

images (i.e. video)

4.3.2 Classifier Selection

Before continuing onto the design of the application software, it is worth discussing the reas-

oning behind the selection of the particular classifiers that were used during the eye detection

phase of the application software. The first steps of the eye detection phase were concerned

with obtaining a number of eye candidates by means of the bright/dark pupil effect. Given a

number of possible eye candidates, it was therefore necessary to use a classifier to discriminate

between actual eye and non-eye images. The first requirement of the chosen classifier was

that it had to be strong enough to be able to generalize well on unseen eye candidates, i.e.

eye candidates that were not used during training. The second requirement was that there

should be a readily available implementation for the chosen classifier, preferably in OpenCV,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

57

Chapter 4 Design and Implementation

since this research was more concerned with the ultimate goal of eye tracking.

At the time of performing this research the current version of OpenCV was 2.1, which imple-

mented 9 different machine learning techniques. Therefore, if possible, the suitable classifiers

had to be selected from OpenCV’s implemented algorithms. During the course of the literat-

ure study (Chapter 2), the author came across various eye detection techniques, in particular

the work performed by Zhu and Ji [19] on which much of this research was based. In their

proposed system, they used various SVM classifiers to discriminate between eyes and non-

eyes and obtained a very high accuracy rate of 95.5%. Based on the high accuracy rate that

they obtained, the SVM classifier was a natural choice and was also already implemented by

OpenCV.

Besides comparing the SVM classification results obtained in this research with the similar

results obtained by Zhu and Ji, it was also decided to compare the results with other strong

classifiers since there was an intuitive expectation that other strong classifiers should have

comparable discriminating abilities for eye images. Face detection is a closely related problem

to eye detection and was a topic that frequently occurred during the literature study. In

particular, the author inevitably came across the highly referenced work of Viola and Jones

[66], which used the AdaBoost classifier for feature selection in their face detector. Given that

an average detection rate of above 90% was achieved with their face detector, it was expected

that similar results could potentially be obtained for eye detection based on AdaBoost. For

this reason and the fact that AdaBoost was already implemented in OpenCV, it was selected

as the second classifier.

Finally, it was decided that there should also be some baseline for comparing the classification

results of both SVM’s and AdaBoost. The artificial neural network is arguably one of the

most well known and widely used type of classifier, which forms a standard topic in any

undergraduate course on artificial intelligence and based purely on its status and the fact

that it was already implemented in OpenCV, made it the final selected classifier.

For this research the following classifiers, as implemented by OpenCV (version 2.1), were

used:

• Support Vector Machines (SVM) (see Chapter 2)

• Adaptive Boosting (AdaBoost) (see Chapter 2)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

58

Chapter 4 Design and Implementation

• Multi-layer perceptron (MLP) feedforward artificial neural network

As already mentioned, SVM and AdaBoost were the classifiers of interest while the MLP

feedforward artificial neural network classifier was merely used as a baseline for comparison.

For each category of classifier there were different configurations available for selection (as

provided by their OpenCV implementations):

• SVM kernels:

– Polynomial

– Radial basis functions (RBF)

– Sigmoid

• AdaBoost types:

– Discrete

– Real

– Gentle

– Logit

• MLP feedforward artificial neural network types:

– Sequential random backpropagation

– Batch resilient backpropagation

The configuration selection of each classifier is discussed in Chapter 5.

4.3.3 Application Software

The application software was the final major component of the eye tracker that had to

be developed, and executed all of the image processing algorithms that performed the eye

detection and ultimately the tracking of the eyes. The application software was mainly

dependent on the proper functioning of the embedded system and therefore the embedded

system (hardware and firmware) first had to be completed before the development of the

application software could commence.

The application software was developed with a graphical user interface (GUI), with the

following main design goals in mind to enable a relatively unskilled person to use the software:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

Chapter 4 Design and Implementation

• The entire system should be easily configurable (especially the camera),

• Classifier training samples should be obtainable with the click of a button,

• The process of training the classifier should be simple and finally,

• Perform the actual tracking of the eyes.

Table 4.5: The additional SDKs and libraries that were used in the development of the application

software.

SDK / Library Version Description

Qt SDK 4.7 An open source, cross-platform application

framework for developing the GUI.

AVT PvAPI SDK 1.24 An extensive cross-platform application

programmers interface (API) developed

by Allied Vision Technologies as

necessary for interfacing with their

range of GigE cameras (the Prosilica

GC1380 in this case).

OpenCV Library 2.1 An open source, cross-platform library

used for real time computer vision

applications.

cvBlobsLib 6.1 A library for OpenCV to perform

connected component labeling in binary

images.

QextSerialPort 1.0.0 A cross-platform serial port class

written by Stefan Sander.

The application software was written in the C++ programming language under the Ubuntu

10.04 (Lucid Lynx) operating system and made use of a few additional software development

kits (SDKs) and libraries, that are shown in Table 4.5. This section is divided into five sub-

sections, which describes the five main components of the application software as necessary

to track the eyes.

Extracting Eye Training Samples

As mentioned before, the first step of eye tracking is detecting the eyes and in order to detect

the eyes there was a need for an accurate classifier that would be able to determine if a given

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

60

Chapter 4 Design and Implementation

Capture

a bright / dark

pupil image pair

System initialization

Subtract images

Adaptive threshold

the difference image

Get white blobs

Map blobs to dark

pupil image

Extract

corresponding 50x50

pixel sub-images

Save sub-images to

disk

Capture more

training samples?

Yes

No

Figure 4.8: The application software flowchart for extracting training samples for eye classification.

sub-image is either an eye or a non-eye. To ensure that the classifier was accurate enough,

it required a number of training images that were representative of the actual operating

conditions. For this reason, the first major component of the application software was to

extract the possible eye candidates as produced by the bright/dark pupil effect, which were

then used to perform the supervised training of the classifiers. The flowchart for this process

is shown in Figure 4.8, with the first step of the process being the proper initialization of the

system, which included the following:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

61

Chapter 4 Design and Implementation

• Camera initialization:

– Initialization of the PvAPI SDK.

– Creation of a thread that continuously scans the Gigabit Ethernet interface of the

PC for connected cameras.

– Configuration of a connected camera to enable external triggering.

• Serial port initialization:

– Configuration settings of the serial port (i.e. baud rate, data bits, stop bits, parity

and flow control).

– Detection of the available serial ports on the PC.

– Creation of a thread that continuously monitors the serial port connected to the

embedded system for received bytes, which also process valid packets as they are

received.

• Frame buffer initialization:

– Allocation of a circular frame buffer to store frames as they were received from

the camera.

Once the system has been correctly configured, the user could initiate the capturing of a

bright/dark pupil image pair with the click of button. This would result in the application

software transmitting a command to the embedded system, instructing it to trigger the

camera with the appropriate NIR illumination as necessary to obtain the bright/dark pupil

effect (see Figure 4.7).

The resulting bright/dark pupil image pair would then be subtracted from each other to

obtain a difference image. This was simply achieved by creating an empty image with the same

dimensions as a bright (or dark) pupil image and populating the individual pixel intensities

with the absolute difference between the corresponding pixel intensities in the bright and dark

pupil images. Adaptive thresholding would then be applied to this difference image, which

resulted in a binary image containing a black background with a number of white blobs.

The locations of the white blobs in the binary image were then detected using a connected

component analysis and the location of each blob were mapped back to its corresponding

location in the original dark pupil image. For each detected blob, a 65x65 pixel sub-image

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

62

Chapter 4 Design and Implementation

was extracted from the dark pupil image, which may or may not be an actual eye. The

number of sub-images extracted from the dark pupil image can vary greatly and is typically

a function of how the objects within the captured images reflect the on-center and off-center

NIR illumination. These extracted sub-images therefore served as the training examples for

the classifiers and were finally saved to disk, where it had to be manually classified as either

eyes or non-eyes. The user of the application software can capture as many training examples

as deemed necessary, by simply repeating this entire process with the click of a button.

Eye Classifier Training

Since supervised learning classifiers were used, it was necessary to first manually classify the

resulting extracted sub-images from the previous section. For each of the subjects that was

used to extract training examples, the resulting sub-images were divided into two separate

directories containing eyes and non-eyes. One of the research goals was to develop a classifier

for eye detection that would be able to accurately classify the eyes of a wide variety of people

from different ethnic backgrounds. To determine the feasibility of this goal, it was therefore

necessary to train the classifiers with the data of a subset of the total amount of subjects and

then test the classifiers with the data from the remaining unseen subjects.

Once the two final training directories (one for eyes and one for non-eyes) have been prepared,

the application software could then be used for training the classifiers. The flowchart for

training the classifiers are shown in Figure 4.9. As can be seen in Figure 4.9, the top half

of the flowchart is dedicated to pre-processing the training data into a single array, which

will be the input to the classifier (as required by OpenCV). From the flowchart the steps

in obtaining the eye and non-eye training data are shown as two separate branches working

in parallel, whereas in the actual implementation of the application software this occurred

sequentially. The only reason for this representation was the lack of space, and functionally

it makes no difference since these branches were essentially independent of each other and

could easily have been implemented to be executed in parallel.

The first step in the flowchart is to determine how many training sub-images were available

for each class in its associated directory, and this was obtained by using the Linux operating

system API. Once the total number of images has been determined, each image would then

be loaded from disk to obtain its feature vector. The feature vector for each training image

was the pixel intensities normalized with maximum pixel intensity of each image, in order

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

Chapter 4 Design and Implementation

Load eye training

image

Classifier?

Select SVM kernel

type
Select AdaBoost type Select MLP type

Set training

parameters

Save classifier as

XML file

SVM AdaBoost Feedforward neural network

Train classifier

Get total amount of

eye training images

Add feature vector to

training array with

+1 label

Load non-eye

training image

Get total amount of

non-eye training

images

Create a feature vector

from the image pixel

intensities

Last non-eye

image?

Add feature vector to

training array with

-1 label

Last eye

image?

YesYes

NoNo

Create a feature vector

from the image pixel

intensities

Figure 4.9: The application software flowchart for training an eye classifier.

to compensate (to some degree at least) for the effect of varying ambient light during the

capturing of the images. In other words, the feature vector for each training image had 65x65

elements, with the value of each element being in the range [0,1]. Each feature vector would

then be assigned a label, which told the classifier if the current training example belonged

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

64

Chapter 4 Design and Implementation

to either the eye class (a label value of +1) or to the non-eye class (a label value of -1). As

soon as the complete array has been created, the selected classifier would then be trained

with this array. The values of +1 for an eye (positive) label and -1 for a non-eye (negative)

label, was a requirement of the particular OpenCV implementation.

Given a selected configuration type, the classifier specific training parameters had to be setup

before training could commence. The classifier specific training parameters that were used for

each configuration can be found in Chapter 5. Finally, the training of the classifier was then

started, which could take a considerable amount of time depending on the selected classifier

and the amount of training data. Since a training time of even a couple of seconds would

make the GUI non-responsive (i.e. it will not be possible to refresh the GUI while training),

a separate thread had to be created that executed the actual training of the classifier, which

then simply notified the main GUI thread upon completion of the training. If the training

process finished successfully, the resulting classifier would then be written to disk in the XML

file format, so that it could be loaded at a later stage for the class prediction of a given feature

vector.

Eye Classifier Testing

For a given trained classifier, the next important step was to test its classification accuracy.

As mentioned in the previous section, only a subset of the total subjects were used for training

the classifiers, with the remaining subjects being used for testing the classifiers. As soon as

the testing data has been placed in two separate directories, one for eyes and one for non-eyes,

the application software would use this data to test a classifier as shown in the flowchart of

Figure 4.10. As with the training flowchart, the classifier performance testing with the eye

and non-eye images are shown in Figure 4.10 as two separate processes running in parallel,

whereas in the actual implementation this occurs sequentially. Again, the only reason for

this representation is the lack of space and functionally it makes not difference.

Firstly the trained classifier was loaded from a XML file stored on disk, followed by determ-

ining how many eye and non-eye testing images were located in their respective directories.

Next, a testing image was loaded and its feature vector (i.e. the normalized pixel intensit-

ies) was extracted in exactly the same way as with the training process. The feature vector

was then presented to the classifier, which predicted the class that it belonged to. Since

the testing images were manually sorted as eyes and non-eyes, and were placed in separate

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

65

Chapter 4 Design and Implementation

Load eye

testing image

Get total amount of

eye testing images

Predict the feature

vector class

Load non-eye

testing image

Get total amount of

non-eye testing

images

Prediction < 0?

Predict the feature

vector class

Prediction > 0?

Increment correct

classification counter

Increment incorrect

classification counter

Increment correct

classification counter

Increment incorrect

classification counter

Last non-eye

image?

Last eye

image?

Calculate combined

classification accuracy

No

Yes

No

Yes

Yes

No

Yes

No

Load the classifier

from XML file

Create a feature vector

from the image pixel

intensities

Create a feature vector

from the image pixel

intensities

Figure 4.10: The application software flowchart for testing an eye classifier.

directories, the application software knew what the output of the classifier ought to be.

A classification attempt of a testing image was considered correct when the prediction out-

come was larger than zero for an eye image, or smaller the zero for a non-eye image. In

such cases, the respective correct classification counters were incremented by one, otherwise

the incorrect classification counters were incremented by one. This was repeated for all of

the eye and non-eye testing images and the final classifier accuracy was then calculated as

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

66

Chapter 4 Design and Implementation

a percentage of the number of testing images that were correctly classified out of the total

number of testing images.

Once tested, the accuracy of a classifier for a single subject could be improved by re-training

the classifier with the testing examples that were incorrectly classified with the previous

testing round. The accuracy of a classifier used for unseen subjects can perhaps also be

further improved by simply using more training data from more individual subjects. However,

increasing the size of the training set will only improve the accuracy of the classifier up to a

point, in which case more training data will actually decrease the accuracy. The experimental

results from Chapter 5 have shown that it is challenging to obtain a classifier that can

generalize well for all types of people. This indicates just how complex the underlying eye

model being learned is, which is mainly due to the large inter-subject variability.

Eye Detection

Once a classifier was considered accurate enough, which for this research was initially decided

to be a correct classification rate of above 95%, it could be used for the real-time eye detection

phase of eye tracking. A correct classification rate of above 95% was chosen as a benchmark,

due to the similar results obtained by Zhu and Ji [19] for their SVM classifiers. The process

for eye detection is shown in the flowchart of Figure 4.11 and the reader will notice that this

flowchart is simply a combination of some of the functions already described in the three

previous sections. The eye detection process, as described earlier in this section, was used

to initialize the eye tracking phase and will only be shown as the Eye detection block in the

flowchart of the complete eye tracking system (see Figure 4.12, in an attempt to provide a

more easily understandable view of the complete system.

The first step of the real-time eye detection phase was to properly initialize the system, as

described in Section 4.3.3, which was followed by the loading of the trained classifier from

its XML file. The actual classifier that was used in the final system, was Discrete AdaBoost

(the reasoning behind this choice can be found in Chapter 5.

Given that the system was correctly initialized, a bright/dark pupil image pair could then

be captured as described in Section 4.3.3. The resulting bright and dark pupil images were

then subtracted from each other to produce a difference image, which was then adaptively

thresholded to obtain a binary (i.e. black and white) image, which contained white blobs.

These white blobs, which represent the possible eye candidates, were detected by means of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

67

Chapter 4 Design and Implementation

Capture

bright / dark

pupil image pair

Initialize system

Subtract images

Adaptive threshold

difference image

Get white blobs

Map blobs to dark

pupil image

Extract

corresponding 65x65

pixel sub-images

Two eyes

detected?

No

Yes

Load classifier

from XML file

Classify eye

candidates

To eye tracking

Verify successful eye

classification through

geometric constraints

Eyes verified?

Yes

No

Figure 4.11: The application software flowchart for detecting eyes in real-time.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

68

Chapter 4 Design and Implementation

a connected component analysis and their locations were mapped back to the original dark

pupil image from which the corresponding 65x65 pixel sub-images were extracted.

For each of the extracted sub-images its feature vector was obtained, which was then presented

to the Discrete AdaBoost classifier to predict if the sub-image was either an eye or a non-eye.

It was likely that multiple detected white blobs could be different parts of the same eye,

so therefore if the classifier predicted that a given sub-image was an eye, it should first be

checked if its location did not overlap with a previously detected eye. It was also observed that

the Discrete AdaBoost classifier would occasionally produced false positives (i.e. non-eyes

classified as eyes) and therefore the classified eyes were verified through the use of geometric

constraints based upon the angle and distance relationship between the two detected eyes.

The actual metric used for this verification process was determined experimentally and can

be found in Chapter 5.

If the eyes were not successfully detected from all of the eye candidates for a given bright/dark

pupil image pair, the detection process was repeated until both the eyes were detected. If

both the eyes were successfully detected, the locations of the individual eyes were presented

to the tracking phase, which were then used to track the eyes from frame to frame. As soon

as the tracking phase realized that it had lost track of the eyes (which was inevitable) the

eye detection phase, as described ins from frame to frame. As soon as the tracking phase

realized that it had lost track of the eyes (which was inevitable) the eye detection phase, as

described in Figure 4.11, was again executed to re-initialize the eye tracking phase.

Kalman Filtering Dynamics

Before continuing onto the design of the eye tracking application software, it is first necessary

to describe the dynamics of the Kalman filter and the requirements for the OpenCV mean-

shift tracking algorithm (described in the next sub-section), which were the key components

in the eye tracking algorithm. The motion model used for the Kalman filter in this research

was based upon the similar model used by Zhu and Ji [19]. Recall from Chapter 2 that the

current Kalman process state can be represented with the following equation:

xk = Axk−1 +Buk + wk (4.3.1)

where xk is the current state, xk−1 the previous state and A the transfer matrix relating the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

69

Chapter 4 Design and Implementation

previous state to the current state. The variable uk is the control input, which is simply zero

in this case since the system has no control over how the subject will move around. The

variable wk is known as the process noise, which was chosen to be fixed as 1e-5, which was

based on some trial-and-error experimenting, since it was difficult to actually measure the

process noise. To further improve the Kalman tracker, the process noise should be measured

for a number of different scenarios and should then be set accordingly. The process noise

might actually change over time, so it might even be necessary to update this at runtime.

However, for the proof-of-concept the fixed value of 1e-5 was deemed accurate enough and

the actual measurement of the process noise is left as future work.

Since any object tracking in an image is essentially two dimensional motion, the Kalman

state can be represented as two position variables x and y, and two velocities vx and vy:

xk =

x

y

vx

vy

(4.3.2)

This representation of the state implies that the transfer matrix, A, should have the following

form to relate previous state to the current state, according to time steps:

A =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

(4.3.3)

For this particular setup, dt was chosen as 200 after some trial-and-error experimenting.

Also recall that the actual measurements made of the state is represented with the following

equation:

zk = Hxk + vk (4.3.4)

where the matrix H relates the measurement to the state with some added measurement

noise, vk, which was chosen to be a constant value of 1e-1. Similar to the process noise, the

constant value chosen for the measurement noise was determined on a trial-and-error basis.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

70

Chapter 4 Design and Implementation

In practice, the measurement noise is likely to change over time, but for this proof-of-concept

the fixed value of 1e-1 was considered accurate enough. As future work, it might be useful to

adapt the measurement noise to how well the Hough transform detects the circles associated

with the eyes, since this will directly affect the measurement made by the mean-shift tracker.

By using a camera, it is typically only possible to directly measure the position of the object

being tracked, and therefore zk only contains position variables:

zk =

zx
zy

k

(4.3.5)

The matrix H relates the measurement to the state and therefore has the form

H =

1 0

0 1

0 0

0 0

(4.3.6)

Given the Kalman dynamics, the a priori estimate can therefore be calculated as:

x−k = Axk−1 + wk (4.3.7)

and after making the measurement z−k , the predication can be corrected with this measure-

ment:

xk = x−k +Kk(z−k −Hkx
−
k) (4.3.8)

where Kk is the Kalman gain as discussed Chapter 2. The Kalman filter will therefore be

used to predict the state of the eyes [x, y, vx, vy] and the mean-shift tracking to measure only

the positions, [zx, zy], of the eyes (as will be discussed shortly).

Mean-shift Tracking Requirements

Also recall from Chapter 2 that the mean-shift procedure is a non-parametric estimator of

the density gradient of some density distribution of a data set, which were pixel intensities in

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

71

Chapter 4 Design and Implementation

this case. The mean-shift tracking algorithm as implemented by OpenCV was used for this

research and therefore the implication of the previous sentence was that the input image to

the mean-shift tracking algorithm had to be pre-processed to effectively segment the object

to be tracked (the eyes in this case) from the background.

The OpenCV implementation only accepted grayscale input images and when initialized at

some starting location, the search window would then be shifted with each iteration until

it reached a maximum pixel intensity distribution. To simplify matters, it was decided that

the input image should be pre-processed to produce a binary image with a black background

(i.e. zero pixel intensity) containing white blobs (i.e. 255 pixel intensity) that represented

the eyes to be tracked. The approach followed to pre-process the input image in this format,

is described in the next section. As mentioned before, the mean-shift tracking algorithm was

effectively used to take the measurements for the Kalman filtering.

Eye Tracking

Only once all of the three previous application software components had been successfully

developed, could the actual eye tracking algorithm be implemented, which is shown in the

flowchart of Figure 4.12. As expected, the first half of the eye tracking flowchart consists of a

number of functional blocks that was described in the previous sections. The flowchart starts

out by initializing the system as described in Section 4.3.3, followed by the loading of the

Discrete AdaBoost classifier from a XML file. The eye detection process was then initiated

by the capturing of a bright/dark pupil image pair, which was used to detect the eyes as

described in Section 4.3.3. If both the eyes were successfully detected the eye tracker could

be initialized with the detected eyes, otherwise the eye detection process was repeated until

both the eyes were detected.

As soon as the eye tracker was initialized, the eyes could be tracked from frame to frame,

and to achieve this the eye tracker required bright pupil images. It was decided to track the

bright pupils since they produced the most distinct feature that could be robustly tracked. A

continuous stream of bright pupil images was simply achieved by leaving the inner set of NIR

LEDs on (and the outer set off) while capturing images. The developed eye tracker algorithm

was a combination of a Kalman filter (used for eye location prediction and correction) with

the mean-shift procedure (used to make “measurements” of the eye locations).

Since the eyes had to be tracked in real-time, it was important to spent as little time as

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

72

Chapter 4 Design and Implementation

Capture

bright / dark

pupil image pair

Initialize system

Eye detection

Success?

No

Load classifier

from XML file

Initialize mean-shift

tracker

Set ROI

Pre-process ROI

Capture bright

pupil image

Perform Kalman

prediction for the

location of each eye

Calculate tracking

metrics

Lost track?

Yes

No

Yes

Take a “measurement”
of the eye locations

through the mean-

shift procedure

Perform Kalman

correction for the

location of each eye

Figure 4.12: The application software flowchart for tracking the detected eyes.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

73

Chapter 4 Design and Implementation

possible on processing the image and to this extend it was decided to only process a certain

region of interest (ROI). This was of course a reasonable approach, since the locations of the

eyes from the previous frame could be used to set the ROI in the current frame, and if the

ROI was large enough (without defeating the purpose) it was highly unlikely that the eyes

would have moved out of the current ROI in just one frame.

Before the eye tracker could be applied, the ROI first had to be pre-processed for taking

mean-shift “measurements”. In cases where the mean-shift procedure was used for tracking

objects in a color image, the image would usually be pre-processed by backprojecting the

hue histogram of the object (calculated during initialization) onto each received frame. This

would effectively segment the object (based on its color) from the background and would

result in the mean-shift procedure easily converging to the location of the object in each pre-

processed frame. However, since only grayscale images were used in this research, experiments

have confirmed that histogram backprojection was not very effective in segmenting the bright

pupils from the background.

Since the bright pupil pixel intensities were significantly higher than the surrounding face

pixel intensities, there were strong edges in the region of the bright pupils. These edges were

therefore detected by first smoothing the ROI with a Gaussian kernel and then applying

Canny edge detection as implemented in OpenCV. As the reader might already expect at

this point, the Canny edge detection revealed the bright pupils as circles. Other regions of

the eyes, eyebrows and the nose also exhibited strong edges and would typically interfere with

the mean-shift procedure and therefore the eyes (modeled as circles) had to be segmented

from the other detected edges.

The circles that were formed after Canny edge detection were not perfect circles, which had

to be taken into account in order to detect the circles. For this reason it was decided to use

the Hough transform for circle detection, which is a method for finding imperfect instances of

objects within a certain class of shapes (circles in this case). OpenCV had an implementation

of the Hough transform that was specifically developed for detecting circles, and was therefore

used to this extent.

This specific Hough transform implementation would typically detect multiple circles from

the edges (which were not always actual circles), but sporadic detections were filtered out to

a large extent based upon the following criteria related to the previously discussed geometric

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

74

Chapter 4 Design and Implementation

constraints:

• The minimum distance between any two detected circles had to be at least 100 pixels,

since for this particular setup the distance between two actual eyes would never be

below 100 pixels.

• The radius of the detected circles had to be between 5 and 25 pixels, since the circles

formed as a result of the bright pupil effect would vary in size according to the ambient

light, i.e. the pupils would contract as the ambient light becomes brighter. The size of

the bright pupils would also vary in size as the subject moved closer or further away

from the camera, but since the distance to the camera was quite restricted, this did

not have a major influence. The chosen minimum and maximum pixel radiuses were

specific to this particular setup.

After applying these constraints most of the sporadic circle detections would be filtered

out, but there would usually still remain a number of detected circles that were not actual

eyes. This was typically the case for other objects within the ROI that had a similar circular

shape, e.g. certain types of earrings. Finally, the ROI was cleared and the remaining detected

circles were redrawn as perfect flood-filled circles within the ROI. The typical result of this

pre-processing step was a black ROI with solid white circles at the locations of the pupils

and other randomly (but scarcely) placed solid white circles. The eye detection phase would

produce the locations of the actual eyes and therefore the mean-shift tracker would initially

‘lock’ onto the correct redrawn circles that correspond to actual eyes, and would then track

the correct redrawn circles from frame to frame.

This pre-processed ROI was now ready for applying the mean-shift procedure to take “meas-

urements” of the location of each eyes, but before this actually occurred two Kalman filters

(one for each eye) were used to predict the locations of the eyes. When the eye tracker was

initialized, the Kalman filters and the mean-shift trackers (also one for each eye) were initial-

ized with the coordinates of the centers of the two detected eye windows, as obtained from

the eye detection phase. Once the Kalman prediction has been made, the mean-shift trackers

were used to “measure” the actual location of each eye in the ROI. Since the pre-processed

ROI essentially contains a black background with white solid circles at the locations of the

eyes, the mean-shift trackers easily converged to the center of each circle as long as the bright

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75

Chapter 4 Design and Implementation

pupils were present. The centers of the circles were then used as the “measurements”, which

were in turn used by the Kalman filters to correct the initial location predictions.

By combining Kalman filtering with mean-shift tracking, the “measurements” for the eye

locations were usually very accurate as long as the bright pupils were present (due to mean-

shift tracking), but when the bright pupils dissapear momentarily the eye locations could still

be accurately predicted (due to Kalman filtering) as long as the subject did not make erratic

head movements. This proved to be a very robust approach for tracking the eyes, as will be

shown in Chapter 5.

For the human observer it is quite simple to determine when eye tracking has been lost, but

for the system itself it was of course less obvious. Therefore it was necessary to have some

mechanism that would be capable of detecting when the system has lost track of the eyes

(which was inevitable). One possible approach that was initially used, was to use the trained

classifier, as used for eye detection, to verify the predicted eye location in each frame. How-

ever, this proved to be cumbersome since by design the variations allowed in eye appearance

are significantly larger in the tracking phase when compared to the detection phase, which

implied that the classifier struggled much more to correctly classify the eyes (i.e. a lot of

false negatives occurred) resulting in unnecessary re-detection of the eyes. In addition, the

inherent false negative rate of the trained classifier (even for simple frontal face images) would

also too easily disrupt the tracking process.

For these reasons it was necessary to use some other metric and it was decided to apply

the same geometric constraints from frame to frame, as proposed for the verification of

the detected eyes as described in the previous section. However, for the tracking phase it

was again observed that there could be much more variation in the distance between the

eyes when compared to the eye detection phase, and therefore the distance thresholds were

slightly increased. By using these geometric constraints meant that the system could quite

accurately detect when eye tracking has been lost, so that the re-detection of the eyes could

again be initiated.

4.4 CONCLUDING REMARKS

This chapter presented the reader with the complete design of the developed eye tracker,

covering all of the hardware and software aspects of the system. The aim of this chapter was

to enable a technically competent person to reproduce the entire system based only on the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

76

Chapter 4 Design and Implementation

information contained in this chapter and the associated appendices. The chapter started out

by providing the reader with a functional overview of the entire system and how the various

components of the system interfaced with each other.

This was followed by an in depth discussion of the hardware design of the system, which firstly

described the rationale behind the selection of the various hardware components and secondly

the designs of the hardware components (that were not COTS) were presented, in particular

the designs of the constant current LED drivers and the PIC16F887-based embedded system.

Where applicable, further details of some of the hardware aspects were placed in appendices.

Finally, the design of the various software components were presented, which were divided

into the embedded firmware running on the PIC16F887 and the application software running

on the PC. The designs of the various software components were only explained in flowcharts,

since it was argued that presenting the reader with a number of code snippets or pseudo code

would add unnecessary detail, which would only result in complicating the explanation of

the core concepts of the software. In addition, the documentation for the various SDKs and

libraries that were used in the software were extensive and sufficient in most cases.

The final configuration of the eye tracking system is shown in Figure 4.13 and Figure 4.14.

Admittedly, there is room for improving and optimizing the design of the final system, espe-

cially the embedded system and the mechanical configuration, but this was of course not the

goal of this research and is left as future work.

Figure 4.13: A frontal view of the final eye tracking system.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

77

Chapter 4 Design and Implementation

Figure 4.14: A top view of the final eye tracking system.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

78

Chapter 5

RESULTS AND APPLICATIONS

In this chapter the results from the various aspects of the eye tracking system will be presen-

ted. The results are divided into five sections, with the first section presenting the results

from using the bright/dark pupil effect. The second section presents the results from the three

different classifiers used to detect the eyes, given the potential eye candidates as produced

by the exploitation of the bright/dark pupil effect. The third section presents the results

from the complete eye tracking system, which was heavily dependent on the results from

the previous two mentioned sections. The fourth section provides some typical applications

for the eye tracking system, while the final section provides the concluding remarks on the

results obtained in this chapter.

5.1 THE BRIGHT PUPIL EFFECT

Although the bright pupil effect is quite well documented in the literature, the various consid-

erations surrounding the hardware setup, in particular the camera and the NIR illumination,

are seldomly presented in much detail. Even in the cases where the actual hardware used

were given, it was not possible or desirable to reproduce the same configuration.

In almost all of the literature found on eye tracking based on the bright/dark pupil effect,

in particular [50], [51] and [19], an analog camera was used with interlaced scanning where

the NIR illumination was synchronized with the even and odd fields to produce the bright

and dark pupil effect, respectively. Although these systems worked well with this approach,

the implication was that an analog camera had to be used with a separate frame grabber

to obtain the images from the camera. However, in recent years with the advent of high

performance digital cameras with direct camera interfaces (e.g. USB, Firewire and GigE),

Chapter 5 Results and Applications

the use of analog cameras with frame grabbers have significantly decreased.

In addition, from the literature it appeared as though the various authors had very little

control over the camera and also did not attempt to control the input to the camera, for

example, by using optical filters or dynamically adapting the camera’s sensor exposure to

the ambient lighting conditions. In this light it was decided not to use a camera based on

technology that was considered by many to be outdated and resulted in the selection of a

GigE Vision camera, which was combined with an optical bandpass filter. The implication

of this selection of hardware was that there was essentially no information available in the

public domain that described the ideal configuration for effectively obtaining the bright pupil

effect and therefore this had to be determined on a trial-and-error basis. The focus was on

determining the ideal configuration for obtaining the bright pupil effect, since this was a

critical requirement for detecting and tracking the eyes.

Figure 5.1: An example image of an attempt to obtain the bright pupil effect with 850nm NIR

LEDs in a Caucasian subject. The bright pupil effect was present, but not strong enough for practical

purposes.

Based on the reasoning presented in Section 4.2.1, the Prosilica GC1380 GigE camera was

selected with the goal to determine which combination of NIR illumination and an optical

filter would yield the best results for obtaining the bright pupil effect. Mainly due to avail-

ability, the NIR illumination that was first considered was the SFH4232 LEDs from Osram,

which had a center of spectral emission at 850nm. The initial experiments were performed on

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

80

Chapter 5 Results and Applications

Figure 5.2: An example image of an unsuccesful attempt to obtain the bright pupil effect with

850nm NIR LEDs in a subject from Indian decent.

Figure 5.3: An example image of an unsuccesful attempt to obtain the bright pupil effect with

850nm NIR LEDs in a subject from African decent.

a Caucasian male (the author of this thesis), which was situated a distance between 550mm

to 650mm away from the camera. It was found that the bright pupil effect was the strongest

when used with the optical bandpass filter of Figure 4.3.

However, the bright pupil effect obtained with the combination of the Prosilica GC1380

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

81

Chapter 5 Results and Applications

camera, the particular optical bandpass filter and the 850nm NIR illumination was not nearly

as prominent as illustrated in the literature. In fact, with this configuration it was found that

the bright pupil effect was barely visible with certain subjects, most notably subjects from

African or Indian decent that in general have much darker eyes when compared to Caucasian

subjects. For example, consider Figure 5.1, which shows an attempt to obtain the bright pupil

effect with a Caucasian subject. From this figure it can be seen that the bright pupil effect

was present, but will typically not be strong enough to robustly detect the eyes. Figure 5.2

and Figure 5.3 show examples of attempts to obtain the bright pupil effect in an Indian and

an African subject, respectively. With the the Indian subject the bright pupil effect was, for

all practical purposes, not present while the bright pupil effect was only barely present with

the African subject.

Figure 5.4: Four example images, (a)-(d), of a strong bright pupil effect with Caucasian subjects,

using 780nm LEDs.

The weak bright pupil effect based on the 850nm NIR illumination can mainly be attributed

to the low sensitivity of the camera’s sensor to light at this wavelength and therefore the

logical next step was to use NIR illumination at lower wavelengths. When considering the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

82

Chapter 5 Results and Applications

Figure 5.5: Two example images, (a) and (b), of a relatively weak bright pupil effect with African

subjects using 780nm LEDs.

sensitivity of the camera’s sensor and the peak of transmission of the chosen optical bandpass

filter, coupled with the requirement that the illumination still had to fall within the NIR band

of wavelengths, resulted in the selection of of LEDs at wavelengths of 780nm and 810nm.

The experiment to obtain the bright pupil effect was again performed on the author at a

distance of between 550mm and 650mm from the camera, but this time with both the 780nm

and 810nm NIR LEDs. At both of these wavelengths the bright pupil effect was much stronger

when compared to the 850nm NIR LEDs, but it was the 780nm NIR LEDs that ultimately

produced the strongest bright pupil effect, which was very similar to the results shown in the

literature. Figure 5.4 shows example images for four Caucasian subjects for which the bright

pupil effect was very strong at 780nm, with (d) showing that the bright pupil effect could still

easily be obtained when the subject was wearing transparent glasses. Figure 5.5 shows two

example images of the bright pupil effect in African subjects at 780nm, for which the bright

pupil effect was present but relatively weak. This weak bright pupil effect was observed in

most of the African subjects tested, but was still enough in most cases to still produce actual

eye candidates for eye detection. However, the weak bright pupil effect did place a limitation

on the accuracy of the eye tracking phase.

It should be noted that all of the results presented in this section were obtained with a

Prosilica GC1380 camera together with a JF4.8 high resolution machine vision lens, which had

a focal length of 4.8mm. This particular camera and lens were the property of DPSS, which

were initially used to determine the best possible configuration before actually purchasing

this expensive piece of equipment. In the final design, as presented in Chapter 4, the same

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

83

Chapter 5 Results and Applications

camera model was used but the Pentax C2514-M lens was used (instead of the JF4.8), which

had a focal length of 25mm. In the final design, all of the equipment was the property of the

University of Pretoria.

5.1.1 Discussion

The experimental results on the bright/dark pupil effect presented in this section have shown

that illumination at 780nm produced the strongest bright pupil effect, which was critical to

both the eye detection and the eye tracking phases. However, the chosen NIR illumination

to obtain the bright pupil effect was strongly dependent on the sensitivity range of the actual

camera being used, together with the response of the optical band-pass filter that was used. It

is believed that there still exists a slight mismatch between the 780nm illumination used, the

camera’s sensor and the optical band-pass filter since none of the components were custom

made for each other. In particular, a different camera sensor, which is more sensitive in the

NIR spectrum of light would more easily produce the bright pupil effect, which implies that

less NIR LEDs might be necessary to obtain the same effect.

A very interesting observation that was made, is the variability of the bright pupil effect

among different ethnic groups. In almost all of the Caucasian subjects that were tested the

bright pupil effect was very strong, whereas the bright pupil effect was in general weak among

African and Indian subjects. Asian and Hispanic subjects were not available for testing, but

their results would be compelling. Nguyen et al [11] also observed this phenomenon, and

based on their results it can be expected that the bright pupil effect might even be stronger in

Hispanic subjects when compared to Caucasian subjects, whereas Asian subjects are expected

to have a weaker bright pupil effect when compared to Caucasian subjects. This variability of

the bright pupil effect was mentioned a couple of times in the literature, but the cause of this

variability is apparently still unknown, since it was not very well documented in the literature

at the time of writing this thesis. Given that the majority of the current eye tracking systems

are based on the bright pupil effect, it is perhaps strange that this phenomenon did not

already received much more attention.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

84

Chapter 5 Results and Applications

Figure 5.6: The bright pupil image as produced by on-center illumination from 780nm NIR LEDs.

Figure 5.7: The dark pupil image as produced by off-center illumination from 780nm NIR LEDs.

5.2 EYE DETECTION

5.2.1 Eye Candidate Extraction

Given the strong bright pupil effect that was obtained with the configuration of 780nm

NIR LEDs, it was relatively simple to obtain the possible eye candidates. For example,

consider the bright and dark pupil images from the author as illustrated in Figure 5.6 and

Figure 5.7, respectively. The pixel intensities from the dark pupil image were subtracted from

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

85

Chapter 5 Results and Applications

Figure 5.8: The resulting difference image from subtracting the dark pupil image (Figure 5.7) from

the bright pupil image (Figure 5.6).

Figure 5.9: The resulting binary image from adaptively thresholding the difference image (Fig-

ure 5.8).

the corresponding pixel intensities in the bright pupil image, which yielded the difference

image of Figure 5.8. From this difference image it is already apparent where the eyes are

located. The next step was to adaptively threshold the difference image to obtain a binary

image (i.e. only black and white pixels), which is shown in Figure 5.9.

The aim of the final binary image was to significantly reduce the number of possible eye

candidates, as opposed to scanning the entire image, as necessary to detect the eyes. A

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

86

Chapter 5 Results and Applications

connected component analysis was performed on the binary image to obtain the white blobs,

which were then mapped back to the original dark pupil image to extract the corresponding

sub-images. From Figure 5.9 it can be seen that the white blobs in the regions of the eyes

were the most prominent, with a number of other smaller white blobs also being present due

to background objects reflecting the on-center and off-center NIR illumination in a similar

fashion than the eyes. It was observed that a dark background that typically contains almost

no objects that strongly reflect light, would result in a binary image that essentially only

contained the white blobs that were associated with the eyes. In such cases the eyes could

then almost be detected directly, making the eye detection process extremely efficient.

5.2.2 Preliminary Eye Classification Results

Given the extracted sub-images as a result of the white blobs in the binary image, a classifier

was required to discriminate between the eye and non-eye sub-images. In similar work presen-

ted by Zhu et al [19], SVM classifiers were used, which achieved high accuracy rates and was

therefore the first type of classifier that was used. Also based on the high accuracies achieved

in face detection in the work presented by Viola and Jones [66], the different variants of the

AdaBoost classifier were also used for discrimination. Finally, as a baseline for comparison,

two types of artificial neural network classifiers were used.

Various configurations for each type of classifier were available and, depending on the applic-

ation, some configurations will perform better than others. For this research the following

SVM kernels were considered (as provided by the OpenCV SVM implementation): poly-

nomial, Gaussian radial basis functions (RBF) and sigmoid. In the case of AdaBoost the

different implementations that were considered (as provided by the OpenCV Boosting im-

plementation) were: Discrete AdaBoost, Real AdaBoost, LogitBoost and Gentle AdaBoost.

More details on these AdaBoost variants can be found in Friedman et al [29]. For the

neural network classifiers the most widely used random sequential backpropagation (BACK-

PROP) and resilient backpropagation (RPROP) methods were considered (also provided by

the OpenCV).

Due to some uncertainty of how well these various classifiers would perform at the task

of eye classification, preliminary tests had to be performed to narrow down the options

for the final classifier that would ultimately be used. The preliminary classification tests

were performed on a dataset consisting of a single Caucasian subject, obtained with the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

87

Chapter 5 Results and Applications

hardware configuration from DPSS, with the only significant difference from the final design

(as presented in Chapter 4) being the lens that was used with the camera. The effect of using

the JF4.8 lens was that the subject was between 550mm and 650mm away from the camera,

which resulted in a suitable resolution for the sub-images (to be classified) to be 35x35 pixels.

Table 5.1: A summary of the preliminary dataset used for the classifier performance evaluation.

Preliminary dataset

Number of subjects: 1

Subject information: Only male and Caucasian

Training set: 739 eye (positive) / 660 non-eye (negative)

Testing set: 236 eye / 210 non-eye

Image resolution: 35x35

There was also uncertainty (mainly due to the author’s inexperience with the specific classi-

fiers) as to which configuration for each type of classifier would yield the best performance

results, and therefore these preliminary tests were conducted with all of the possible config-

urations provided by their respective OpenCV implementations.

A total of 975 eye and 870 non-eye sub-images (at a resolution of 35x35 pixels) were extracted

from the captured images, with the raw pixel intensities of the sub-image being the feature

vector. The extracted sub-images were then randomly divided into a training set and a

testing set. The training set consisted of 739 eye (positive) and 660 non-eye (negative)

images, whereas the testing set consisted of 236 eye and 210 non-eye images. The considered

classifiers were trained on the training set and their respective accuracies were measured

with the classification of the “unseen” testing set. A summary of the dataset used for the

preliminary classification performance evaluation is shown in Table 5.1.

The preliminary results from the considered classifiers are shown in Table 5.2 to Table 5.7. For

the neural network classification, the RPROP method of training was also considered but the

classical BACKPROP method consistently outperformed RPROP and since neural networks

were only used a baseline for comparison, it was considered unnecessary to also include

the RPROP results. For SVM classification the Sigmoid kernel was also considered, but its

performance was very poor and was therefore considered unsuitable for eye classification. The

parameters for the neural networks and AdaBoost classifiers were manually selected, whereas

the optimal parameters for the SVM classifiers were automatically obtained by means of a

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

88

Chapter 5 Results and Applications

grid search. The manual selection of the parameters for the neural network and AdaBoost

classifiers were made on a trial-and-error basis until the best possible results were obtained.

As mentioned previously, the personal computer that was used for training had an Intel

Core 2 Quad CPU (Q8300 with a clock speed of 2.5 GHz) with 2GB of RAM. The Ubuntu

10.04 (Lucid Lynx) operating system was installed on the computer and during training no

programs other than the normal operating processes were running. Besides classification

accuracy, the training time was also considered to be a performance metric of the classifier.

Although the training process occurs offline, the training time should still be reasonable for

very large training sets from multiple subjects, as assumed necessary to produce a classifier

that would be able to generalizes well. One of the goals of the chosen classifier was that it

would be possible to train it with an average PC, not requiring a high-performance CPU or

a vast amount of RAM (training time was related to the RAM usage).

The best performing neural network had three hidden layers, with 200 neurons in each hidden

layer. For this configuration the True Positive Rate (TPR) was 93.9% (i.e. actual eyes

correctly classified) and the True Negative Rate (TNR) was 94.0% (i.e. actual non-eyes

correctly classified). Futher results for the neural networks are presented in Table 5.3, which

shows that the overall accuracy of the best performing configuration was also 93.9%. The

False Positive Rate (FPR) was 6.0% (i.e. actual non-eyes incorrectly classified as eyes) and

the False Negative Rate (FNR) was 6.1% (i.e. actual non-eyes incorrectly classified as eyes).

The best performing SVM configuration, in terms of both accuracy and training time, was

achieved with the RBF kernel, which achieved a TPR of 96.3% and a TNR of 95.9%. Ad-

ditional results on the SVM classification results are shown in Table 5.5, which indicates

that the overall accuracy of the RBF kernel was 96.1%, while the FPR was 4.1% and the

FNR was 3.7%. In terms of overall accuracy, the second degree polynomial kernel performed

slightly better than the RBF kernel, but took almost 4 times as long to train. Similarly, the

RBF kernel only slightly outperformed the third degree polynomial kernel in terms of overall

accuracy, but the third degree polynomial kernel took more than 11 times as long to train.

All of the AdaBoost algorithms performed exceptionally well, with high accuracy and a

training time of well below a minute. Discrete AdaBoost was the best performing classifier

and achieved a TPR of 97.5% and a TNR of 96.8%. Further results for the AdaBoost classifiers

are shown in Table 5.7, which indicate that for Discrete AdaBoost the overall accuracy was

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

Chapter 5 Results and Applications

97.2%, while the FPR was 3.2% and the FNR was 2.5%. These preliminary results for the

group of AdaBoost classifiers confirmed the expectation that AdaBoost would be well suited

for the task of eye classification. Due to the very similar performance results, all of the

AdaBoost algorithms (except LogitBoost) were considered for further testing.

When considering the performance results from Table 5.3, Table 5.5 and Table 5.7, the best

performing configurations from each type of classifier were selected to be tested again on an

extended dataset, which contained various subjects from a number of different ethnic groups.

Table 5.2: Initial classifier performance results of the artificial neural networks, using sequential

backpropagation, on a single subject with 739 eye and 660 non-eye training images, and 236 eye and

210 non-eye testing images.

Classifier Parameters Training time Accuracy

(HH:MM:SS) Eyes Non-eyes

ANN

BACKPROP 2 hidden layers ± 00:01:50 91.8% 93.1%

(50 neurons per layer)

BACKPROP 2 hidden layers ± 00:05:24 92.2% 90.8%

(100 neurons per layer)

BACKPROP 2 hidden layers ± 00:18:38 91.8% 90.8%

(200 neurons per layer)

BACKPROP 3 hidden layers ± 00:01:57 92.2% 91.7%

(50 neurons per layer)

BACKPROP 3 hidden layers ± 00:06:28 92.6% 91.7%

(100 neurons per layer)

BACKPROP 3 hidden layers ± 00:21:23 93.9% 94.0%

(200 neurons per layer)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

90

Chapter 5 Results and Applications

Table 5.3: Initial classifier performance results of the artificial neural networks on 236 eye (positive)

and 210 non-eye (negative) testing images.

Classifier Overall False positive False negative

accuracy rate (FPR) rate (FNR)

ANN

BACKPROP 92.4% 6.9% 8.2%

(2 H/L, 50 neurons)

BACKPROP 91.6% 9.2% 7.8%

(2 H/L, 100 neurons)

BACKPROP 91.3% 9.2% 8.2%

(2 H/L, 200 neurons)

BACKPROP 92.0% 8.3% 7.8%

(3 H/L, 50 neurons)

BACKPROP 92.2% 8.3% 7.4%

(3 H/L, 100 neurons)

BACKPROP 93.9% 6.0% 6.1%

(3 H/L, 200 neurons)

Table 5.4: Initial classifier performance results of SVMs on a single subject with 739 eye and 660

non-eye training images, and 236 eye and 210 non-eye testing images.

Classifier Parameters Training time Accuracy

(HH:MM:SS) Eyes Non-eyes

SVM

RBF kernel γ = 0.03375, ± 00:09:16 96.3% 95.9%

C = 12.5

Polynomial kernel γ = 0.00225, ± 00:37:02 91.0% 89.9%

(Degree = 1) coef0 = 0.1,

C = 62.5

Polynomial kernel γ = 0.03375, ± 00:36:01 96.7% 95.9%

(Degree = 2) coef0 = 0.1,

C = 2.5

Polynomial kernel γ = 0.03375, ± 01:43:34 95.5% 96.3%

(Degree = 3) coef0 = 0.1,

C = 1.4

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

91

Chapter 5 Results and Applications

Table 5.5: Initial classifier performance results of the SVMs on 236 eye (positive) and 210 non-eye

(negative) testing images.

Classifier Overall False positive False negative

accuracy rate (FPR) rate (FNR)

SVM

RBF kernel 96.1% 4.1% 3.7%

Polynomial kernel 90.5% 10.1% 9.0%

(degree = 1)

Polynomial kernel 96.3% 4.1% 3.3%

(degree = 2)

Polynomial kernel 95.9% 3.7% 4.5%

(degree = 3)

Table 5.6: Initial classifier performance results of AdaBoost on a single subject with 739 eye and

660 non-eye training images, and 236 eye and 210 non-eye testing images.

Classifier Parameters Training time Accuracy

(HH:MM:SS) Eyes Non-eyes

AdaBoost

Discrete AdaBoost Weak count = 100, ± 00:00:29 97.5% 96.8%

max depth = 5

Real AdaBoost Weak count = 100, ± 00:00:33 95.9% 97.7%

max depth = 5

LogitBoost Weak count = 100, ± 00:00:34 94.3% 91.3%

max depth = 5

Gentle AdaBoost Weak count = 100, ± 00:00:35 96.7% 97.2%

max depth = 5

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

92

Chapter 5 Results and Applications

Table 5.7: Initial classifier performance results of AdaBoost on 236 eye (positive) and 210 non-eye

(negative) testing images.

Classifier Overall False positive False negative

accuracy rate (FPR) rate (FNR)

AdaBoost

Discrete AdaBoost 97.2% 3.2% 2.5%

Real AdaBoost 96.8% 2.3% 4.1%

LogitBoost 92.9% 8.7% 5.7%

Gentle AdaBoost 97.0% 2.8% 3.3%

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

93

Chapter 5 Results and Applications

5.2.3 Final Eye Classification Results

Table 5.8: A summary of the final dataset used for the classifier performance evaluation.

Final dataset

Number of subjects: 17

Subject information: - 3 African female subjects

- 1 African male subject

- 4 Caucasian female subjects

- 9 Caucasian male subjects

Training set: 2632 eye (positive) / 3681 non-eye (negative)

Testing set: 909 eye / 2101 non-eye

Image resolution: 65x65

The next step was therefore to again perform the classifier performance testing, but on a

larger dataset in order to determine how well these classifiers could generalize on various

subjects that had not been used for training. To obtain this dataset, the camera setup was

slightly modified from the one used at DPSS. At this point in time, the University of Pretoria

purchased its own Prosilica GC1380 camera and lens for the purpose of this research. The

camera was the same as the one used at DPSS, but the lens was different. The selected lens

was the Pentax C2514-M high resolution lens, which was specifically designed for machine

vision applications.

This lens had a focal length of 25mm, which implied that the subjects had to be located

further away from the camera to obtain properly focused images. Pentax recommended that

an ideal object distance for this lens was approximately 1.5 meter, and therefore the subjects

used to obtain this training set was located between 1400mm and 1600mm away from the

camera, as opposed to the 550mm to 650mm used in the initial setup at DPSS. This setup

also resulted in an increased resolution of the extracted sub-images to be classified, which

was now 65x65 pixels as opposed to the 35x35 pixels in the initial setup.

Given this new setup, the dataset of images were captured from 17 different subjects. This

dataset consisted of 3 African females, 1 African male, 4 Caucasian females and 9 Caucasian

males. The images were captured indoors under various ambient lighting conditions (i.e.

different times during the day) with some of the subjects also wearing glasses, in an attempt

to keep the dataset as general as possible. For training purposes the images from 13 of the 17

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

94

Chapter 5 Results and Applications

subjects were used, with the images of the remaining 4 subject being used for testing purposes.

The testing set consisted of one African female, the only African male, one Caucasian female

and one Caucasian male, in order to be representative of both ethnical background and sex.

As a result the final training set consisted of 2632 eye and 3681 non-eye images, whereas the

final testing set consisted of 909 eye and 2101 non-eye images. Since in practice there would

typically be much more actual non-eyes than actual eyes, it was decided that the testing

set of non-eyes should contain considerably more examples. The feature vector of an image

was again the raw pixel intensities, which implied that a feature vector consisted of 65x65

elements (the image resolution), which was much larger than the 35x35 element feature vector

used in the preliminary classifier performance testing. As a result, it was expected that the

classifier training times would be significantly longer. A few examples images that were used

for training the different classifiers are shown in Figure 5.10 (eyes) and Figure 5.11 (non-

eyes). A summary of the final dataset that was used for the classifier performance evaluation

is shown in Table 5.8.

The final eye classifier performance results are shown in Table 5.9 and Table 5.10. At a

glance, it can already be seen that these classifier performance results were significantly

worse when compared to the preliminary classifier performance results for a single subject.

The sequential backpropagation neural network had a TPR of 72.7% and a TNR of 92.7%,

which was a reduction of 21.2% for the TPR (from 93.9%) and a reduction of 1.3% for the

TNR (from 94.0%). Therefore the observation that can be made, was that the neural network

classifier struggled much more with correctly classifying eyes than non-eyes. From Table 5.10

the overall classifier accuracy of the neural network was 86.6%, but this was actually quite

misleading since there were more than twice as many non-eye testing images, which biased

the overall accuracy towards the TNR. Had there been an even amount of eye and non-eye

testing examples, the overall accuracy would have been considerably lower. The training

time of the neural network also drastically increased by almost 16 times, from 21:23 minutes

to 5:36:35 hours, but the reader should take into account that the size of the feature vector

together with the number of training examples increased drastically.

A similar trend was observed with the SVM classification on the larger data set, but in this

case the volatile memory requirement was a serious hampering factor. When the prelimin-

ary classification testing was performed, the PC that was used had 2GB of RAM installed.

However, when the SVM training (with a RBF kernel) was performed on this larger data set,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

95

Chapter 5 Results and Applications

Figure 5.10: A few eye training examples (i.e. positive examples) as used in the training set for the

final classification testing.

Figure 5.11: A few non-eye training examples (i.e. negative examples) as used in the training set

for the final classification testing.

the training thread crashed repeatedly as a result of running out of memory. Consequently

an additional 4GB of RAM had to be installed and therefore the PC had a total of 6GB of

memory, which enabled the SVM training to be completed. For comparison a second degree

polynomial kernel was instead used for SVM training, but even the 6GB of RAM was not

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

96

Chapter 5 Results and Applications

enough for the training to complete! The total time for SVM training with a RBF kernel

increased by almost 7 times from 9:16 minutes to 1:03:33 hours.

Table 5.9: The final classifier performance results on 17 subjects with 2632 eye and 3681 non-eye

training images from 13 subjects, and 909 eye and 2101 non-eye testing images from 4 subjects.

Classifier Parameters Training time Accuracy

(HH:MM:SS) Eyes Non-eyes

ANN

BACKPROP 3 hidden layers ± 05:36:35 72.7% 92.7%

(200 neurons per layer)

SVM

RBF kernel γ = 0.03375, ± 01:03:33 74.3% 97.3%

C = 62.5

AdaBoost

Discrete AdaBoost Weak count = 200, ± 00:16:18 85.0% 95.5%

max depth = 5

Real AdaBoost Weak count = 200, ± 00:17:36 79.1% 95.5%

max depth = 5

Gentle AdaBoost Weak count = 200, ± 00:18:38 83.9% 95.6%

max depth = 5

Table 5.10: The final classifier performance results on 17 subjects with 2632 eye and 3681 non-eye

training images from 13 subjects, and 909 eye and 2101 non-eye testing images from 4 subjects.

Classifier Overall False positive False negative

accuracy rate (FPR) rate (FNR)

ANN

BACKPROP 86.6% 7.3% 27.3%

(3 H/L, 200 neurons)

SVM

RBF kernel 90.3% 2.7% 25.7%

AdaBoost

Discrete AdaBoost 92.3% 4.5% 15.0%

Real AdaBoost 90.5% 4.5% 20.9%

Gentle AdaBoost 92.1% 4.4% 16.1%

In terms of performance, the RBF SVM classifier had a TPR of 74.3% and a TNR of 97.3%.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

97

Chapter 5 Results and Applications

This was a reduction of 22.0% for the TPR (from 96.3%) and an increase of 1.4% for the

TNR (from 95.9%). As with the neural network, it was observed that the SVM classifier

struggled more to correctly classify actual eyes, whereas it had seemingly very little trouble

in correctly classifying non-eyes. From Table 5.10 the overall accuracy of the RBF SVM

classifier was 90.3%, which was biased towards the TNR (as mentioned with the neural

network performance results).

A similar performance trend was again observed in the AdaBoost classifier performance, but

to a lesser extent. As mentioned before, Discrete AdaBoost, Real AdaBoost and Gentle

AdaBoost were all considered for further testing on the final dataset due to their very similar

preliminary performance results. However, it should be noted that the parameters used for

these AdaBoost classifiers were slightly changed from those used in the preliminary classifier

evaluation. The amount of weak classifiers for AdaBoost were doubled, after some trial runs

revealed an increase in performance. Since AdaBoost trains much faster when compared to

the other classifiers, it was possible to experiment with different parameters to obtain the

best possible results. This parameter ‘tweaking’ was not necessary in SVM training, since the

optimal parameters were already obtained through a grid search during the training process

and due to the extremely long training time, the neural network classifier was unattractive

to start with.

Discrete AdaBoost took almost 34 times longer to train from 29 seconds to 16:18 minutes,

while Real AdaBoost took 32 times longer to train from 33 seconds to 17:36 minutes. Simil-

arly, Gentle AdaBoost took almost 32 times longer to train from 35 seconds to 18:38 minutes.

This drastic increase can again be attributed to a much larger training set and the fact that

the size of feature vectors was more than tripled from 35x35 to 65x65.

In terms of accuracy the Discrete AdaBoost classifier had a TPR of 85.0% (a decrease of

12.5% from 97.5%) and a TNR of 95.5% (a decrease of 1.3% from 96.8%). The Real AdaBoost

classifier had a TPR of 79.1% (a decrease of 16.8% from 95.9%) and TNR of 95.5% (a decrease

of 2.2% from 97.7%). Likewise, the Gentle AdaBoost had a TPR of 83.9% (a decrease of

12.8% from 96.7%) and a TNR of 95.6% (a decrease of 1.6% from 97.2%). From Table 5.10

the overall accuracy was 92.3% for Discrete AdaBoost, 90.5% for Real AdaBoost and 92.1%

for Gentle AdaBoost, which was also biased towards the TNR. The AdaBoost classifiers also

had very little trouble in correctly classifying actual non-eyes, but performed much better

(more than 10% for Discrete AdaBoost) in correctly classifying actual eyes when compared

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

98

Chapter 5 Results and Applications

to both the neural network and the RBF SVM classifiers.

5.2.4 Eye Detection Results

From the final classification results presented in Table 5.9, it was evident that the Discrete

AdaBoost classifier provided the best generalization results for eye detection and was con-

sequently chosen as the classifier for the final system. Given all of the possible eye candidates

due to the bright/dark pupil effect, the Discrete AdaBoost classifier would therefore be used

to discriminate between eyes and non-eyes during operation of the system. Although this

proved to be a highly effective method of detecting eyes, it was observed that a few false

positives occurred from time to time (i.e. ‘eyes’ were detected that were not actually eyes).

This implied that the eye tracking phase would then be initialized with a non-eye, which was

fortunately usually detected within a couple of frames, only to re-initialize the eye detection

phase. As a result a lot of processing time was wasted due to incorrect classification and

therefore this had to be improved.

In order to verify the correct classification of eyes, geometric constraints were used in the

form of the distance-to-angle relationship between two detected eyes. The use of such a

geometric constraint was motivated by the observation that incorrect classification typically

only occurred for one of the actual eyes, which in most cases implied that one eye was

successfully detected and the second incorrectly detected ‘eye’ was situated either far away

from the actual eye or at a large angle with respect to the actual eye. In either case the

distance or angle (or both) between the actual eye and the incorrect eye was much larger

than it would have been if both the detected eyes were actual eyes.

Since an image is essentially a 2-dimensional projection of the 3-dimensional space, the dis-

tance between the eyes will not remain fixed from frame-to-frame as it would in the 3-

dimensional space. For example, the distance between the eyes for frontal face images with

no rotation will be larger when compared to frontal face images with sideways head rotation.

In order to get a feeling for these distances, some measurement experiments were performed

on a single subject. The Discrete AdaBoost classifier was used to detect the eyes and the

correct classification was then manually verified. In cases where the eyes were correctly de-

tected, the distance between the eyes were measured together with the angle between the

eyes (with respect to the horizontal plane) by using the following formulas:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

99

Chapter 5 Results and Applications

Eye distance =
√

(x2 − x1)2 + (y2 − y1)2 [pixels] (5.2.1)

Eye angle = cos−1
(|x2 − x1|
Eye distance

)
[degrees] (5.2.2)

where point (x1, y1) is the center of the left eye in the image (i.e. the actual right eye) and

point (x2, y2) is the center of the right eye in the image (i.e. the actual left eye). The eye

distances and angles were then measured for a single subject for various head poses to obtain

a metric to verify the correct classification of the eyes. The eye distances were categorized

according to the eye angle range it fell into (approximately 10 measurements per range),

and for each range the minimum and maximum values were determined, which are shown in

Table 5.11.

Table 5.11: The minimum and maximum distances between two detected eyes, for a given range of

angles between the eyes (with respect to the horizontal plane).

Eye Angle Range [degrees] Min Distance [pixels] Max Distance [pixels]

0 - 10 111.5 190.1

11 - 20 136.9 168.4

21 - 30 133.0 165.1

31 - 40 144.0 162.2

41 - 50 130.1 160.6

51 - 60 157.1 173.8

From Table 5.11 it can be seen that the largest variation in the distance between the eyes,

occurred in the range 0 to 10 degrees. These large variations in distance for this small range

of angles, was mainly due to out-of-plane (i.e. sideways) head rotations. It was observed that

in most of the cases when false positives occurred, the other detected eye was an actual eye

and at least either the distance or the angle between the false positive ‘eye’ and the other

actual eye was much larger than the typical distance or angle between two correctly classified

eyes. This was of course dependent on the background and this might not always be the case.

Nevertheless, the very simple verification metric that was formulated from this data, was that

two detected eyes were only considered to be actual eyes if the angle between them was smaller

than 60 degrees and the distance between them was within the range 100 to 200 pixels. This

is admittedly a rather crude approach since it depends on the image resolution, the actual

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

100

Chapter 5 Results and Applications

Figure 5.12: Eye detection results for a subject without wearing glasses, for various head poses,

some of which caused significant occlusion. In each example image the distance between the detected

eyes as well as the angle between the eyes (with respect to the horizontal plane) are also given.

distance that the subject is away from the camera and to a lesser extend the subject itself.

However, by employing this simple metric in the test setup, it made the occurrences of false

positives extremely rare. It should be noted that false negatives (i.e. an actual eye classified

as a non-eye) was not much of a concern, since the system would just keep on attempting to

detect both eyes until it succeeded.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

101

Chapter 5 Results and Applications

Figure 5.13: Eye detection results for a subject wearing sunglasses (top) and normal reading glasses

(bottom), for various head poses. In each example image the distance between the detected eyes as

well as the angle between the eyes (with respect to the horizontal plane) are also given. Note that the

subject used for these images was not used in the training set of the classifier.

A few eye detection results for a subject (without wearing glasses) are shown in Figure 5.12,

after employing this simple verification metric, which ranged from simple frontal eye detection

to eye detection for large head movements, which could cause significant occlusions. In all of

the images the angle between the detected eyes, as well as the distance between them are also

shown, and the reader will notice that in every case the conditions of the simple verification

metric were met.

Examples for eye detection with a subject, which was not in the training set of the classifier,

wearing glasses are also shown in Figure 5.13. The top two examples are for sunglasses, while

the bottom two examples are for normal reading glasses. It is evident that the system was still

able to accurately detect the eyes while the subject was wearing glasses, even under different

head poses. The reader will again notice that in every case the conditions of the simple

verification metric were met. The system would be able to detect the eyes as along as the

glasses were transparent to the NIR light and the reflections of the light from the glasses were

not too severe. The system would, for example, fail when the subject was wearing polarized

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

102

Chapter 5 Results and Applications

sunglasses, since the eyes would in such cases not be visible at all. Also under certain head

poses the reflected light from the glasses or the frame of the glasses would result in large

occlusions, which made eye detection quite difficult.

From the results shown in Figure 5.12 and Figure 5.13 it is apparent that the presented

eye detection approach was very robust in accurately detecting the eyes under various head

poses, significant occlusion, varying ambient light and also in situations where the subject

wore glasses. Also by using the trained Discrete AdaBoost classifier from Table 5.9, resulted

in the robust detection of unseen subjects, although in certain cases a number of attempts

were necessary before the eyes were successfully detected.

Since the proposed eye detection process was heavily dependent on the specifically designed

hardware, it was not possible to directly compare it was other eye detection techniques in the

literature, which used readily available datasets. It would of course be possible to generate

a number of bright/dark pupil image pairs and manually mark the eyes in each dark pupil

image and then execute this eye detection process on it and count in how many bright/dark

pupil image pairs the eyes were successfully detected. However, the author believed that this

would be a pointless exercise for the following reasons:

1. At the time of writing this thesis, there was no standard benchmark for the difficulty

of the captured bright/dark pupil image pairs, e.g. the author could have chosen 100

bright/dark pupil image pairs of predominantly pure frontal head poses in which it

would be relatively easy to detect the eyes and conclude that the eye detection approach

was highly robust, which may perhaps not be the case.

2. The system was designed to be persistent, so even if the eyes were not detected with

the first attempt, the system would keep trying until it succeeded. This implied that

even if the system only successfully detected the eyes once in every third bright/dark

pupil image pair (i.e. a successful detection rate of 33.3%), it might still be more

than sufficient for a given application. The reader is reminded that the classification

results from Table 5.9 suggest that the Discrete AdaBoost classifier is far more likely

to misclassify an actual eye image than an actual non-eye image.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

103

Chapter 5 Results and Applications

5.2.5 Discussion

This section presented the detailed results of the proposed eye detection approach followed

in this research and started out by describing how the bright/dark pupil effect could be used

to robustly and with minimal processing, obtain eye candidates. This was arguably the most

efficient method of detecting the eyes, since the entire image does not have to be scanned

in order to detect the eyes. If the image background contained little or no objects that

reflected the NIR light in a similar manner than the pupils, the resulting eye candidates were

almost limited to just the actual eyes, making this process even more efficient. However,

a potential major limitation of this approach is the fact that the bright pupil effect was

not consistent across ethnic groups, which implied that there could potentially be no major

differences between the bright and dark pupil images in a subject, which in turn means that

the resulting eye candidates might not even contain the actual eyes. In particular, this was

observed for African and Indian subjects.

Given a number of eye candidates, the performance of three types of classifiers were evaluated

to determine which type of classifier would be the best at discriminating between eyes and

non-eyes. Preliminary experiments were performed on a single Caucasian subject in order to

get an idea of how well these classifiers could perform at the specific task of eye classification.

From the preliminary performance results, it was already apparent that the AdaBoost classi-

fier (and its variants) would most likely be the best suited for this particular application. One

of the goals of this research was to develop an eye tracker that worked with various subjects,

without any prior calibration and therefore the training and testing datasets were extended

to contain a total of 17 individual subjects from different ethnic groups.

The best performing classifiers from the preliminary classification results were again trained

on the extended dataset, but were this time tested with subjects that were not present during

training. Again the AdaBoost classifiers, and in particular Discrete AdaBoost, produced

superior results when compared to artificial neural networks and SVMs, with a TPR of 85.0%

and a TNR of 95.5%. Artificial neural networks were only used as a baseline for comparison,

and it was clear from the start that it would not be used in the final configuration, but

it should be noted that in practice the neural network might actually require more training

examples than were used in this research, in order to obtain optimal results. It was interesting

to note that the Discrete AdaBoost classifier significantly outperformed the SVM classifier

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

104

Chapter 5 Results and Applications

with a RBF kernel, something that was not completely expected.

This result can perhaps be explained in terms of the complexity of the actual underlying

eye model that was being learned. When only considering a single subject, the appearance

of the eye can change drastically with different head poses, as well as when the subject was

wearing glasses. This large variability in eye appearance already makes the underlying eye

model rather complex, but this eye model becomes much more complex when introducing

inter-subject variability (which is known to be very large). Since the underlying eye model is

in reality so complex, overfitting becomes a problem and therefore the classifier that can resist

overfitting the best, will produce the best results. From the literature it is well known that

AdaBoost is in general particularly good at resisting overfitting, which is therefore considered

the most likely explanation for its superior performance at eye classification.

In any case, from a practical and real-world point of view, simpler is almost always better and

the Discrete AdaBoost classifier is yet another example thereof (for eye detection at least),

which obtained highly accurate results at a fraction of the computational complexity of both

artificial neural networks and SVMs.

Another somewhat unexpected result was that all of the classifiers performed exceptionally

well at correctly classifying the non-eyes of the extended dataset. It was expected that some

non-eye examples would eventually have a very similar intensity distribution when compared

to actual eye examples and consequently incorrectly classify non-eyes as eyes (i.e. false

positives). In fact the opposite was more prevalent, which made it more likely for an eye

to be classified as a non-eye (i.e. false negative). Fortunately, this was actually a favorable

result, since false negatives will create much less of a negative perception (from the user’s

point of view) of the system’s accuracy when compared to false positives.

However, false positives did occur occasionally, which were addressed by using a simple

geometric constraint (based on measurements of the angle and distance between the eyes)

to verify the correct classification of eyes. By using this simple metric, the false positive

rate dropped drastically but did still occur in very rare instances, which were fortunately

quickly detected by the eye tracking phase. False positives typically only occurred when both

detected eyes were not actually eyes and were situated close enough to each other to satisfy

the geometric constraint.

The results from this section have revealed that there are significant inter-subject variations

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105

Chapter 5 Results and Applications

and that some form of system calibration was inevitable, either for the training of the classifier

or for the thresholds for the geometric constraints.

5.3 EYE TRACKING

5.3.1 Frame Pre-processing

The first step of the eye tracking phase was to define the ROI, which had to be large enough so

that the movement of the eyes would not result in the eyes in the next frame to be outside of

the ROI, and also had to be small enough to still significantly speed up the image processing.

The resolution of the images produced by the camera was 1360x1024 pixels and after some

rule-of-thumb experimenting, it was determined that a ROI of 600x300 was reasonable since

large sideway head movements were more likely than large up and down head movements

(i.e. its physically easier for a subject to make sideway head movements).

The placement of the origin (the top left pixel coordinates) of the 600x300 ROI was calculated

according to the location of the left detected eye in the image as follows:

ROIx = LDEx −ROIwidth ∗ 0.25 (5.3.1)

ROIy = LDEy −ROIheight ∗ 0.25 (5.3.2)

where LDEx,y is the top left coordinates of the bounding window of the left detected eye,

with ROIwidth and ROIheight being equal to 600 and 300, respectively. If one of the corner

coordinates of the ROI fell outside of the image bounds, its particular coordinate would simply

be assigned to the bound in question. By only processing the much smaller ROI, implied

that a significant amount of processing time was saved by only focusing on the immediate

region around the eyes.

As discussed in the design of the eye tracking algorithm (Chapter 4), once the eyes were

successfully detected, the bright pupils were modeled as white flood-filled circles which were

then redrawn on a black ROI and then tracked in this manner from frame-to-frame. An

important step in this approach was to detect the edges in the ROI, which can then in turn

be used to detect the circles corresponding to the pupils. This was achieved by first smoothing

the ROI and then applying the Canny edge detector to the smoothed ROI. A few examples

of the resulting edges after applying Canny edge detection are shown in Figure 5.14, with the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

106

Chapter 5 Results and Applications

Figure 5.14: A few examples of the original images (left) and its corresponding ROI (right) after

smoothing (using a Gaussian kernel) and applying the Canny edge detector. From these examples it

is evident that the pupils can be modeled as circles.

left-hand images being the original images and the right-hand images indicating the detected

edges in the ROI.

Equations 5.3.1 and 5.3.2 were used in Figure 5.14 to calculate the ROI and it was evident

that it was much more efficient to only process the ROI, as opposed to the entire image. From

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

107

Chapter 5 Results and Applications

Figure 5.14 it can be seen that other than the eyes themselves, the eyebrows as well as the

nose also produced strong edges in the region of the eyes. It was also evident that modeling

the pupils as circles was a valid assumption, but required a relative high level of contrast

between the pupil and the cornea of the eye, which was exactly achieved by the bright pupil

effect.

Figure 5.15: An example image in which the Canny edge detector did not produce a proper circle

for tracking the right eye in the image (i.e. the actual left eye).

The implication of modeling the pupils as circles was that this approach was quite dependent

on the bright pupil effect being present. An example of how the lack of the bright pupil effect

sometimes made it very difficult to model the pupils as circles, are shown in Figure 5.15.

Although the bright pupil effect was in general strong with this subject, in this particular

case the head pose made the bright pupil effect dissapear in the right eye in the image and

the resulting semi-circle was actually due to the bottom edge of the cornea. In African and

Indian subjects where the bright pupil effect was in general weak, it became cumbersome to

detect the pupils as circles due to the lack of the required contrast.

Also in outdoor scenarios where the ambient light during daytime is very bright, the pupils

would contract to limit the amount of light entering the eye (an evolutionary design) and

therefore the area of the pupil that can reflect the NIR light becomes very small and the

bright pupil effect would almost be non-existent in any human subject. These are distinct

limitations of using the bright pupil effect as a feature for eye tracking, something that is

seldomly mentioned in the literature. Nevertheless, in the many situations where the bright

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

108

Chapter 5 Results and Applications

pupil is in fact strong, it would indeed be a very robust feature to track and remains the

reason why most current eye tracking systems are based upon it.

Figure 5.16: An example image in which the Hough transform was used to detect circles, after

applying Canny edge detection. The left-hand image was the original image, whereas the right-hand

image was the detected circles redrawn (as the same size) on the cleared ROI. Note that two of the

detected circles were at the locations of the eyes.

Given the detected edges, as illustrated in Figure 5.14, the circles could then be detected

using the Hough transform, which is an effective technique for detecting imperfect instances

of objects (i.e. circles in this case). An example of how the Hough transform detected circles,

is shown in Figure 5.16. The left-hand image shows the original image and the right-hand

image shows all the detected circles for this particular case, but redrawn as the same size in

the cleared ROI. The reader will notice that there were two detected circles at the locations of

the eyes, which corresponds to the circles that were formed by the edges of the bright pupils.

The circles due to the bright pupils were consistently detected from frame to frame, as long

as reasonable head movements were followed, i.e. no sudden or erratic head movements.

5.3.2 Kalman Filtering Combined with Mean-shift Tracking

The detected and redrawn circles, representing the bright pupils, were ultimately the features

that were tracked. At this point, both the Kalman trackers and the mean-shift trackers were

oblivious of what they were actually tracking and it might as well have been any underlying

object being represented as a circle. After the eyes have been successfully detected and the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

109

Chapter 5 Results and Applications

ROI has been pre-processed to only contain solid circles, both the Kalman trackers and the

mean-shift trackers were initialized at the center of the detected eye windows. These starting

points were in almost all cases located close to the centroids of the redrawn circles that

corresponded to the actual eyes. Eye tracking was therefore achieved by Kalman predicting

the coordinates of the centroid, “measuring” the coordinates of the centroid with the mean-

shift tracker and finally Kalman correcting the prediction with the “measurement”, which

was then repeated for each frame.

Experiment 1: Consecutive Eye Tracking Frames

The first experiment that was conducted to determine how well the eye tracker worked, was

to count the number of consecutive frames that the system was able to track both eyes. The

parameters of the experiment were as follow:

• Subjects:

– Caucasian

– Strong bright pupil effect

– Did not wear any glasses

• Distance from camera:

– 1400mm to 1600mm

• Head movements:

– Relative smooth head movements, with a few exceptions

– Random free head movements

– Constant head movement

• Conditions:

– Indoors

– Relatively low ambient light

The subjects were asked to sit in front of the camera and to look directly at the camera, at

which point the eyes were detected and the eye tracking initialized. From this point onwards

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

110

Chapter 5 Results and Applications

Table 5.12: The experimental results for counting the number of consecutive frames for which the

system was able to successfully track the eyes of subjects.

Experimental run Number of Comments

consecutive frames

1 251

2 128 Sudden change of direction

3 126 Blinking during motion

4 279

5 225

6 124 Fast nodding

7 162

8 128

9 422 Relative smooth, in-plane head movements

10 354

11 342

12 234

13 126

14 457 Particular strong bright-pupils

15 230

Average 239.2

the number of consecutive frames were counted until the geometric measurement determined

that the system had lost track of the eyes, which was also manually verified. The subjects

were asked to maintain constant head movements, so that the head was never stationary,

since it would of course be trivial to track the eyes in such cases. The subjects were also

asked to perform relatively smooth head movements, but still keep the movements as natural

as possible. There was no pattern in the head movements and the subjects could change

direction whenever they felt like it. The subjects were also allowed to vary their distances

from the camera, but still had to remain in the range of 1400mm to 1600mm. It was estimated

that the frame rate during this experiment was in the region of 15 frames per second (FPS)

at full resolution.

The results for 15 runs of this experiment are shown in Table 5.12, with the last column

providing a brief explanation of the circumstances under which the system lost track of the

eyes in outlying cases. Given that the frame rate was approximately 15 FPS and the average

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

111

Chapter 5 Results and Applications

number of consecutive tracked frames was 239.2, this amounted to an average duration of

almost 16 seconds of successful tracking, under constant head movements, before the system

lost track. In general, when the system lost track, eye re-detection and tracking initialization

took under 2 seconds, which was more a limitation of the hardware setup then the eye

detection algorithm. Example frames for two of the eye tracking sequences are shown in

Figure 5.17.

It was difficult to exactly quantify these results, since there was no similar baseline for compar-

ison found in the literature with regards to eye tracking. For example, Zhu and Ji [19] tested

their eye tracking system under different eye conditions (i.e. open, closed and occluded) and

manually marked the locations of the eyes and then counted the number of frames in which

their system successfully tracked the eyes. Their measurements therefore give the accuracy

percentage for a given amount of frames, but this does not give an idea of how long the

system would be able to track the eyes before requiring re-initialization. Although accuracy

is indeed an important requirement, from a practical point of view it is also important to

have a system that does not too frequently have to be re-initialized, since eye detection is

typically much more computationally intensive than tracking.

Figure 5.17: A few consecutive eye tracking example images of a Caucasian female under reasonable

head movements. The frame numbers in the sequence are also shown in each image.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

112

Chapter 5 Results and Applications

The eye tracking system in this research relied on feedback and could quickly detect when

tracking had been lost and was also highly accurate in the detection of the eyes, so therefore it

was argued that the amount of frames accurately tracked out of some total amount of frames

was not a very useful metric to quantify performance, mainly due to the dynamic nature

of this system. Another problem with quantifying eye tracking in general was that even if

there were similar results available in the literature, there was no universal definition for

“reasonable” head movements and it is therefore rather subjective from research to research.

Nevertheless, when considering the results from Table 5.12 the author believes that an average

of 239.2 consecutive successful tracking frames, under constant head movements, was a good

indication of robustness since in many real-world applications it could be assumed that the

subject would only occasionally perform large head movements, in which case the system

would have very little difficulty in tracking the eyes for extended periods.

The main situations under which the system lost track occurred when the bright pupil diss-

apeared during head movements, e.g. long blinking periods, sudden change of head direction

and occlusion of the eyes due to out-of-plane head rotations. Tracking, in particular the

mean-shift tracker, also drifted off in situations where the circles (resulting from frame pre-

processing) were incorrectly detected close to the actual eyes (e.g. the eyebrows or forehead)

by means of the Hough transform.

Experiment 2: Occlusion Handling

Eye occlusion during tracking was inevitable and it was therefore important that the system

would be capable of handling this to a certain extent. The eye tracking approach followed in

this research was heavily dependent on the presence of the bright pupils and therefore it was

expected that eye tracking would fail if the bright pupils were not present for relative long

periods during head movement.

However, the system is in most cases capable of handling brief disappearances of the bright

pupils by means of the Kalman prediction phase. If the mean-shift tracker was the only

means of tracking that was employed, the tracking window would remain stationary in the

pre-processed ROI if the bright pupil disappeared, since there will be no circle present at the

particular location of the eye and the search window would therefore be completely black, i.e.

the gradient of the pixel intensity distribution would already be zero. By combining Kalman

tracking with mean-shift tracking resulted in the locations of the eyes being predicted before

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

113

Chapter 5 Results and Applications

being measured, which implied that the tracking windows would keep on moving in the

estimated direction of motion, even if no eyes (i.e. white circles) were measured. If the

actual motion of the eyes continued in the same direction after the bright pupils disappeared

momentarily, the tracking windows would at least be over part of the actual eyes by the time

bright pupils reappeared again, which would enable the mean-shift trackers to easily “lock”

onto the eyes again. If the bright pupils disappeared for too long relative to the motion, the

tracking windows essentially only relied on the Kalman predictions and by the time the bright

pupil reappeared, the tracking windows would typically be too far away from the actual eyes

for the mean-shift tracker to make the necessary corrections.

Figure 5.18: Four eye tracking example images of a Caucasian female for eye occlusions due to

sideway head rotation and blinking. For these examples, it is apparent that the system could handle

these types of eye occlusions.

In this light, the aim of this experiment was to determine how well the system could handle

eye occlusions and it was argued that the only way that the results could be quantified was

with examples. The first example from Figure 5.18 shows four examples of typical occlusion

scenarios during a sequence of frames, with the frame number indicated in each image. As

can be seen in Figure 5.18, the typical causes of eye occlusions were sideway head rotations

and blinking. The system was able to handle these types of occlusions under relative slow

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

114

Chapter 5 Results and Applications

head motion or under faster head motion, provided that the occlusion did not last too long.

For example, consider the top left and bottom left images of Figure 5.18, where the head

movements were purely sideway head rotation. In this case the bright pupil located at

the direction of rotation eventually dissapeared as the head rotated, which implied a zero

measurement. This meant that the tracking window remained relatively stationary and did

not drift away too easily. This was due to the bright pupil gradually moving slower and

then disappearing, which meant that the Kalman prediction phase did not expect large

motion. When the subject then rotated her head back to its original position, the bright

pupil reappeared and the mean-shift tracker could then easily “lock” onto the eye again.

A similar occlusion situation occurred when the subject blinked while the head remained

stationary, as shown in the top right and bottom right images of Figure 5.18. In this case the

bright pupils would actually disappear abruptly, but since the head was relatively stationary,

large motion was again not predicted by the Kalman prediction phase. The tracking window

would therefore initially jump due to the first Kalman prediction right after the bright pupil

disappeared, but would then settle and remain relatively stationary close to the eyes. When

the subject opened her eyes again, the bright pupils reappeared and the mean-shift trackers

could then easily “lock” onto the eye.

Figure 5.19: An example of how the system was capable of recovering from a relatively slow eye

closure during head movements. In the left image the eyes were closed and the eye tracker mistakenly

tracked the eyebrows. In the right image the eyes were opened again and the bright pupils re-appeared,

which enabled the system to again “lock” onto the eyes.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

115

Chapter 5 Results and Applications

The system was also capable of handling relatively short eye blinks during head motion as

shown in Figure 5.19. In this case the subject were rotating her head upwards and was then

requested to perform a short blink, simulating involuntary blinking. The bright pupils would

then abruptly disappear but because there was motion before this disappearance, the Kalman

prediction would let the tracking window jump in the direction of the expected motion (left

image of Figure 5.19). In this case the predicted location was close enough to where the bright

pupils actually reappeared when the eyes were opened again, which enabled the mean-shift

tracker to “lock” onto the eyes (right image of Figure 5.19).

Experiment 3: Eye Tracking with Glasses

The final experiment that was conducted, was to determine how well the system could track

the eyes when a subject wore glasses. The number of consecutive frames in which the eyes

could be successfully tracked was again considered to be the most appropriate metric to

quantify the performance. This experiment was therefore essentially the same as the first

experiment, but with the following differences:

• Only a single subject were tested, in which case he wore reading glasses in half of the

sequences and sunglasses in the other half of the sequences.

• Head movements were much more restricted and slower when compared to the first

experiment.

The results for the number of consecutive frames tracked for 10 runs of this experiment are

shown in Table 5.13. When considering the average number (125.7) of consecutive tracked

frames from Table 5.13, this amounts to just over 8 seconds of consecutive tracking at 15

FPS. This is not a particularly impressive result, especially when taking into account that

the head movements were much more constrained when compared to the first experiment.

The eye detection phase still accurately initialized the eye tracking phase when the subject

wore glasses and in cases which the subject’s head remained essentially stationary, the system

at least had no difficulty in tracking the eyes. Examples for which the system was able to

accurately track the eyes under relative stationary conditions are shown in Figure 5.20 and

Figure 5.21 for reading glasses and sunglasses, respectively. Note in Figure 5.21 that the

sunglasses actually seemed to enhance the bright pupil effect.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

116

Chapter 5 Results and Applications

Table 5.13: The experimental results for counting the number of consecutive frames that the system

was able to successfully track the eyes of a subject wearing glasses.

Experimental run Number of

consecutive frames

1 198

2 47

3 101

4 244

5 94

6 185

7 70

8 74

9 160

10 84

Average 125.7

Figure 5.20: Two examples of how the system was able to track the eyes when a Caucasian subject

wore normal reading glasses. The system was able to track the eyes reasonably well, but much worse

when compared to the subject not wearing glasses.

As soon as the subject started with head movements, the eye tracking windows would typically

“jump” around and would be distracted with relative ease. Upon further inspection of the

processed ROI it was found that other reflections due to the NIR light from the glasses itself,

would exhibit similar behavior than the actual bright pupils and were therefore prone to be

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

117

Chapter 5 Results and Applications

Figure 5.21: Two examples of how the system was able to track the eyes when a Caucasian subject

wore sunglasses. The system was able to track the eyes only when the subject’s head was stationary,

and in general performed much worse than for reading glasses. It was interesting to note that in this

specific case, the sunglasses actually enhanced the bright pupil effect.

mistaken for eyes. Examples for which the system failed to track the eyes when the subject

wore glasses, are shown in Figure 5.22 and Figure 5.23 for reading glasses and sunglasses,

respectively.

Figure 5.22: Two example of how the system failed to track the eyes when a Caucasian subject wore

normal reading glasses. It was observed that the reflection from glasses themselves were a significant

source of noise, which was the main reason for failure.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

118

Chapter 5 Results and Applications

Figure 5.23: Two example of how the system failed to track the eyes when a Caucasian subject wore

sunglasses. It was again observed that the reflection from glasses themselves were a significant source

of noise, which was particularly severe for this pair of sunglasses.

These results may perhaps not be exactly what were hoped for, but does not necessarily mean

that the eyes cannot be tracked when a subject wears glasses. It simply implies that the eyes

should perhaps be modeled as a slightly more complex object, rather than just circles. Since

the bright pupil effect still remained strong in this particular case, it might be worth while

to consider incorporating adaptive thresholding, but this will be left as future work.

5.3.3 Discussion

The final approach used for eye tracking, as discussed in this section, was the result of

numerous informal trial-and-error experiments performed to find a way to accurately segment

the eyes for their background. Provided that the bright pupil effect was present, it was found

to be a very robust feature to track, in particular for Caucasian subjects for which the bright

pupil effect was in general strong. As necessary for the mean-shift tracker, the bright pupils

were segmented by first detecting the edges in the ROI, using the Canny edge detector.

Secondly the pupils were modeled as circles and the Hough transform was used to detect

circles from the edges resulting from Canny edge detection. Finally the ROI was cleared and

the detected circles were redrawn, which were then used for taking “measurements" (via the

mean-shift tracker) for the Kalman trackers.

The developed eye tracking algorithm was able to accurately and with relative ease, track

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

119

Chapter 5 Results and Applications

the eyes for frontal face head movements (perhaps more appropriately described as head

translations) for extended periods, provided that the head movements were not too fast and

erratic. In fact, the performance of the eye tracking algorithm actually exceeded expectations

and could handle much faster head movements than anticipated. The system also handled

occlusions, due to out-of-plane head rotations, well and could in such cases still track the eyes

even when the bright pupils were not present for short periods. Eye occlusions due to blinks

could easily be handled when the subject’s head was stationary and could also be handled

during head movements, provided that the blinks were not too long.

Since only the ROI and not the entire image was processed for each frame, the eye tracking

algorithm was executed at high speed to enable real-time performance, which is of course an

important requirement for real-world applications. The relatively low computational require-

ments for only processing the ROI also means that it would be possible for this eye tracking

algorithm to be implemented on an embedded hardware platforms for applications in which

it would not be possible to use a normal PC.

Although the developed eye tracking system was capable of robustly tracking the eyes, the

following limitations were identified:

• The robustness of the system was dependent on the bright pupil effect to provide enough

contrast to detect the edges of the pupil as a circle. As mentioned before, it was observed

that the bright pupil effect varies among different ethnic groups, and it was in general

weak in African and Indian subjects, which limits the usefulness of the system for these

groups of people.

• It was observed that the NIR illumination had a tiring effect on the eyes after constant

exposure to it for an extended period of time. The intensity of the NIR illumination was

measured at DPSS and found it to be within current eye safety regulations. However, in

recent years many questions were raised on the constant exposure to NIR illumination

and its effect on the human eye, with the final answer being inconclusive at the time of

writing this thesis. Division 6 of the International Commission on Illumination (CIE)

formed a technical committee (TC6-64) to provide new safety regulations for exactly

this scenario and when these regulations are published, the amount of NIR illumination

used for this research might potentially not be considered safe over the long run.

• A related limitation that was observed, was that it appeared that there was still a slight

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

120

Chapter 5 Results and Applications

mismatch between the camera’s sensor and the 780nm NIR illumination. To enhance

the bright pupil effect and limit the amount of daylight entering the camera’s lens, an

optical bandpass filter was used. This worked well, but in situations of very low ambient

light the exposure time of the camera’s sensor had to be significantly increased. The

implication of an increased exposure time was that the resulting images would easily

blur during motion, which in turn made it very difficult to detect the pupil edges and

ultimately track the eyes. A likely solution to this problem is to use a camera that is

specifically designed for the NIR illumination. By using such a camera, it might actually

result in the first limitation being less profound and potentially solve this particular

limitation as well as the second limitation, since such a sensor would be more sensitive

to 780nm illumination, which in turn implies that less 780nm illumination might be

required to achieve the same effect.

• The system struggled a lot with tracking the eyes when the subject wore glasses, which

was mainly due to NIR light being reflected off the glasses, which appeared very similar

than the actual bright pupil.

5.4 APPLICATIONS OF EYE TRACKING

5.4.1 Driver Fatigue Detection

In recent years driver fatigue related accidents, especially in the heavy vehicle industry, have

become a major concern and highlighted a need for some system that would be capable of

monitoring the fatigue level of a driver and pro-actively warn the driver in advance or perhaps

some control room in critical conditions. A very important requirement for such a system

is that it has to be completely non-intrusive and should not disturb the driver in any way.

For this reason monitoring the driver by means of a camera would be an ideal method for

monitoring fatigue. In particular by tracking the eyes, various accurate fatigue metrics can

be calculated, such as the percentage of eye closure for certain period of time or the blink

duration in general.

The ambient light will vary drastically for driving conditions, and it is therefore sensible to

use an appropriate camera with active infrared illumination. The theory is that the active

infrared light is not visible to the driver and should therefore not interfere with the task of

driving. However, following this research, the issue can be raised that even though the infrared

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

121

Chapter 5 Results and Applications

light may not be visible to the driver it might still have a tiring effect on the eyes, which would

then ultimately defy the whole purpose. At this point in time, monitoring the driver with a

camera is in many circles considered an invasion of privacy and has therefore still not been

widely accepted. Nevertheless, it still remains an accurate method for monitoring fatigue

and have been proposed by numerous authors including [67], [68], [69], [50], [51] and [48].

Commercial camera-based fatigue detection systems include Smart Eye Pro 2 by Smart Eye

AB [70] and the DSS system by Seeing Machines [71].

5.4.2 A User Interface for the Severely Disabled

Another popular application of eye tracking systems, is to provide severely disabled people

with a computer interface to interact with the world. These people are typically not mentally

disabled, but physically disabled in which case it is impossible from them to use their body

parts to physically control a pointing device such as a computer mouse, for example. There-

fore an eye tracking, but more specifically a gaze tracking system can be used to pinpoint

the position on a screen at which the user is staring. For example, a keyboard can be drawn

on a screen and the user would then stare at a specific key, which can then be virtually

clicked by blinking. The most frequent use for these eye tracking systems is to move the

cursor on a computer screen, based on where the user is looking on the screen. Authors that

proposed such systems include [72], [38] and [73]. Eyegaze Edge by LC Technologies [74] is a

commercial eye gaze tracking system, specifically designed for physically disabled people.

5.4.3 Human Behavior Research

Perhaps one of the first applications of eye tracking was for research in a wide range of human

behavior studies. Some of the research fields that use eye tracking systems include:

• Cognitive and behavioral psychology, e.g. how experts and novices interpret dynamic

stimuli, eye gaze behavior in children with dyslexia, etc.

• Medical research, e.g. estimating depth perception for improving minimal invasive

surgery, lung nodule detection, etc.

• Ophthalmology and vision science, e.g. out-of-focus blurring for displays to improve

visual comfort, determining the regions of interest in videos , etc.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

122

Chapter 5 Results and Applications

• Marketing research, e.g. how people scan websites on the Internet, how people perceive

advertisements, etc.

Very popular commercial eye tracking products developed specifically for these types of re-

search fields are the T60 and T120 eye trackers from Tobii [75].

5.5 CONCLUDING REMARKS

In this chapter the detailed performance results of the eye tracking system were presen-

ted, which started out with results for achieving the bright pupil effect with the developed

hardware. Since the bright pupil effect was a critical aspect of both the eye detection and

tracking phase, it was important to achieve a strong bright pupil effect. As was shown, a

strong bright pupil effect was indeed obtained, but it was found to be inconsistent among

people from different ethnic groups, which is perhaps a limiting factor of this approach.

Following the results of the bright pupil effect, the results for the eye detection phase was

presented. These results indicated that the proposed eye detection approach was very robust

in detecting the eyes under various head poses as well as when the subject wore glasses.

The conclusion that was drawn, was that AdaBoost is very effective in classifying eyes and

could also generalize well on subjects that were not used during the training phase of the

classifier. However, although the AdaBoost classifier performed well on unseen subjects, it

was probably not good enough for all unseen subjects and therefore some form of calibration

would be necessary for practical purposes.

Finally the eye tracking results were presented in the form of three conducted experiments.

The results from these experiments have shown that the system was very effective in tracking

the eyes for reasonable free head movements and was also capable of handling occlusions in

various forms. The system did however struggle to track the eyes when the subject wore

glasses, but it is believed that this can be improved in future work.

The chapter also presented some applications of eye tracking, which was by no means exhaust-

ive, but does illustrate the usefulness of an accurate eye tracking system in many real-world

problems. Therefore the work presented in this thesis may not merely be of academic interest,

but can also prove to be valuable in practice.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

123

Chapter 6

CONCLUSION

Although the aim of the academic research presented in this thesis was concerned with im-

proving the machine vision task of eye tracking, significant effort went into developing the

hardware platform to enable this research. This research therefore had a very strong prac-

tical aspect and solved a number of real-world problems in the process of developing the eye

tracking system. This implies that this system can potentially be very useful for a number

of other research activities and perhaps even become a part of a commercial product.

The results from the eye detection phase illustrated just how robust the application of the

bright/dark pupil effect can be in detecting the eyes. By combining the bright/dark pupil

effect with a strong classifier such as AdaBoost and using geometric constraints, the occur-

rences of false positives were extremely low. However, the classification results also revealed

that there was significant inter-subject variability even for the relatively small dataset of 17

subjects, which implies that for a practical eye tracking system, some form of subject calibra-

tion would be inevitable. Another concern was that the bright pupil effect varied significantly

among ethnic groups, being particularly weak for African and Indian subjects. This of course

raised the question of just how applicable bright/dark pupil based eye detection (and in effect

eye tracking) would be for the general public, especially in an ethnic diverse country such as

South Africa. Nevertheless, when the bright/dark pupil effect is present, there is arguably

not a more efficient and robust method for eye detection.

The approach followed for eye tracking was also heavily dependent on the appearance of the

bright pupil, but the way in which the eyes were tracked decoupled the Kalman tracking

and mean-shift tracking from what was actually being tracked. This is a nice feature, which

implied that the way in which the eyes were modelled can be changed with relative ease,

Chapter 6 Conclusion

without affecting the actual eye tracking procedures. Although the proposed approach for

eye tracking could robustly track the eyes as long as the bright pupils were present, there

were two main concerns.

The first concern that was observed, was that constant exposure to the NIR illumination for

an extended period of time (2 to 3 hours) had a tiring effect on the eyes. As mentioned before,

this might be due to additional NIR illumination used to compensate for the slight mismatch

of the camera’s sensor and the particular wavelength of the NIR light. If the current research

performed by the CIE shows that long term exposure to NIR light can be harmful, this might

significantly limit the use of any active IR-based eye tracking system (almost all commercial

eye tracking systems are based upon active IR light).

The second concern was that the system struggled a lot with tracking the eyes when the

subject wore glasses, even though the sunglasses used for the experiments actually enhanced

the bright pupil effect. This was mainly due to the reflections that the glasses made (which

were similar to bright pupils), as well as the strong edges resulting from the frame of the

glasses. This is a common problem with current eye tracking systems and some more research

is still necessary to compensate for this.

Overall the performance of the system was very satisfying and all of the initial goals were

achieved and even exceeded, with the exception of eye tracking when the subject wore glasses.

However, there is always room for improving the system, but this is left as future work as

discussed next.

6.1 FUTURE WORK

Due to the difficult nature of eye tracking under practical conditions, there are still a number

of unresolved issues and aspects than can optimized, including the following:

• A better understanding of the inter-subject variability for the bright pupil effect is

required, such as at what wavelengths of NIR light the reflection from the pupil is the

strongest. The optimal wavelengths might well be significantly different for people,

depending on their ethnic group.

• Currently the feature vector for eye classification is just the raw pixel intensities, which

becomes cumbersome for very large datasets. As an optimization, some form of feature

extraction (e.g. SURF) or compact descriptors (e.g. Fourier descriptors) can be used

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

125

Chapter 6 Conclusion

to significantly reduce the size of the feature vectors.

• The combination of Kalman tracking with mean-shift tracking was found to be very

robust for tracking, but it would probably even be more robust if some other feature for

tracking (besides the bright pupil) could additionally be incorporated. It would also be

sensible to use a completely different eye tracking technique for comparison. Currently

particle filters for tracking have become quite popular and it would be interesting to

see its performance for eye tracking.

• The system struggled to track the eyes when a subject wore glasses, and considering a

different approach for handling glasses would definitely be worth while.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

126

Bibliography

[1] R. Coetzer, “Driver fatigue detection : A literature survey,” University of Pretoria (for

Eskom), Tech. Rep., 2009.

[2] D. Hansen and Q. Ji, “In the eye of the beholder: A survey of models for eyes and gaze,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 3, pp.

478–500, 2010.

[3] R. Coetzer and G. Hancke, “Driver fatigue detection : A survey,” in AFRICON, 2009.

AFRICON ’09., September 2009, pp. 1 –6.

[4] R. Coetzer, “Driver fatigue detection based on eye tracking (wip paper),” in SATNAC

2010, September 2010.

[5] R. Coetzer and G. Hancke, “Eye detection for a real-time vehicle driver fatigue monit-

oring system,” in Intelligent Vehicles Symposium (IV), 2011 IEEE, june 2011, pp. 66

–71.

[6] T. Hutchinson, “Human-computer interaction using eye-gaze input,” IEEE Transactions

on systems, man, and cybernetics, vol. 19, no. 6, pp. 1527–1534, November 1989.

[7] ——, “Eye movement detection with improved calibration and speed,” Patent US

4 950 069, 08 21, 1990.

[8] Y. Ebisawa and S. Satoh, “Effectiveness of pupil area detection technique using two

light sources and image difference method,” Proceedings of the Annual Conference on

Engineering in Medicine and Biology, vol. 15, no. 3, pp. 1268–1269, October 1993.

[9] Y. Ebisawa, “Improved video-based eye-gaze detection method,” IEEE Transactions on

Instrumentation and Measurement, vol. 47, no. 4, pp. 948–955, 1998.

Chapter 6 Conclusion

[10] C. Morimoto, D. Koons, A. A., and M. Flickner, “Pupil detection and tracking using

multiple light sources,” Image and vision computing, vol. 18, no. 4, pp. 331–335, March

2000.

[11] K. Nguyen, C. Wagner, D. Koons, and M. Flicker, “Differences in infrared bright pupil

response of human eyes,” Proceedings ETRA 2002: Eye Tracking Research and Applic-

ations Symposium, pp. 133–138, March 2002.

[12] F. Mulvey, A. Villanueva, D. Sliney, R. Lange, S. Cotmore, and M. Donegan, “D5.4

Exploration of safety issues in eyetracking,” Communication by Gaze Interaction (CO-

GAIN), Tech. Rep., 2008.

[13] V. Vapnik, The nature of statistical learning theory. Springer: New York, 1995.

[14] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20, pp.

273–297, 1995.

[15] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I. Guyon,

Müller, E. Säckinger, P. Simard, and V. Vapnik, “Learning algorihms for classification:

A comparison on handwritten digit recognition,” Neural Networks, pp. 261–276, 1995.

[16] H. Drucker, D. Wu, and V. Vapnik, “Support vector machines for spam categorization,”

IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1048–1054, 1999.

[17] S. Bengio and J. Mariéthoz, “Learning the decision function for speaker verification,”

IEEE internation conference on acoustics, speech and signal processing - proceedings,

vol. 1, pp. 425–428, 2001.

[18] B. Heisele, P. Ho, and T. Poggio, “Face recognition with support vector machines: global

versus component-based,” 8th International conference on computer vision, vol. 2, pp.

688–694, July 2001.

[19] Z. Zhu and Q. Ji, “Robust real-time eye detection and tracking under variable lighting

conditions and various face orientations,” Computer vision and image understanding,

vol. 98, pp. 124–154, 2005.

[20] K. Bennett and O. Mangasarian, “Robust linear programming discrimination of two

linearly inseparable sets,” Optimization Methods Software, vol. 1, pp. 23–34, 1992.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

128

Chapter 6 Conclusion

[21] R. Schapire, “The strength of weak learnability,” Machine learning, vol. 5, pp. 197–227,

1990.

[22] X. Li, L. Wang, and E. Sung, “Adaboost with svm-based component classifiers,” Engin-

eering Applications of Artificial Intelligence, vol. 21, no. 5, pp. 785–795, August 2008.

[23] Y. Freund, “Boosting a weak learning algorithm by majority,” Information and compu-

tation, vol. 121, pp. 256–285, 1995.

[24] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-line learning and

an application to boosting,” Journal of Computer and System Science, vol. 55, no. 1,

pp. 119–139, August 1997.

[25] H. Drucker and C. Cortes, “Boosting decision trees,” In advances in neural information

processing systems 8, pp. 479–485, 1996.

[26] J. Quinlan, “Bagging, boosting and c4.5,” In proceedings of the thirteenth national con-

ference on artificial intelligence, pp. 725–730, 1996.

[27] L. Breiman, “Arcing classifiers,” The annals of statistics, vol. 3, no. 26, pp. 801–849,

1998.

[28] R. Schapire, Y. Freund, P. Bartlett, and W. Lee, “Boosting the margin: A new explan-

ation for the effectiveness of voting methods,” The Annals of Statistics, vol. 5, no. 26,

pp. 1651–1686, October 1998.

[29] J. Friedman, H. T., and R. Tibshirani, “Special invited paper: Additive logistic regres-

sion: a statistical view of boosting,” The annals of statistics, vol. 2, no. 28, pp. 337–407,

2000.

[30] G. Welch and G. Bishop, “A introduction to the Kalman filter,” UNC-Chapel Hill, TR

95-041, July 2006.

[31] H. Sorenson, “Least-squares estimation: from Gauss to Kalman,” IEEE Spectrum, vol. 7,

pp. 63–68, July 1970.

[32] R. Brown and P. Hwang, Introduction to random signals and applied Kalman filtering,

2nd ed. John Wiley and Sons Inc, 1992.

[33] O. Jacobs, Introduction to control theory, 2nd ed. Oxford University Press, 1993.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

129

Chapter 6 Conclusion

[34] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings

of the IEEE, vol. 92, no. 3, pp. 401–422, March 2004.

[35] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a density function, with

application in pattern recognition,” IEEE Transactions on infomation theory, vol. 21,

no. 1, pp. 32–40, January 1975.

[36] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space ana-

lysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 24, no. 5,

pp. 603–619, May 2002.

[37] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[38] K. Kim and R. Ramakrishna, “Vision-based eye-gaze tracking for human computer in-

terface,” IEEE SMC99 Conference Proceedings 1999 IEEE International Conference on

Systems Man and Cybernetics, pp. 324–329, 1999.

[39] D. Young, H. Tunley, and R. Samuels, “Specialised Hough transform and active contour

methods for real-time eye tracking,” School of Cognitive and Computing Sciences, Tech.

Rep., 1995.

[40] A. Yuille, P. Hallinan, and D. Cohen, “Feature extraction from faces using deformable

templates,” Internationl journal of computer vision, vol. 8, no. 2, pp. 99–111, 1992.

[41] G. Feng and P. Yuen, “Variance projection function and its application to eye detection

for human face recognition,” Pattern recognition letters, vol. 19, pp. 899–906, 1998.

[42] S. Kawato and J. Ohya, “Real-time detection of nodding and head-shaking by directly

detecting and tracking the "between-eyes",” in Proceedings of the Fourth IEEE Interna-

tional Conference on Automatic Face and Gesture Recognition 2000, 2000, pp. 40–45.

[43] ——, “Two-step approach for real-time eye tracking with a new filtering technique,” in

Systems, Man, and Cybernetics, 2000 IEEE International Conference on, vol. 2, 2000,

pp. 1366–1371.

[44] C. Morimoto, T. Santos, and A. Muniz, “Automatic iris segmentation using active near

infra red lighting,” Computer Graphics and Image Processing, 2005. SIBGRAPI 2005.

18th Brazilian Symposium on, pp. 37–43, October 2005.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

130

Chapter 6 Conclusion

[45] K. Grauman, M. Betke, J. Gips, and G. R. Bradski, “Communication via eye blinks -

detection and duration analysis in real time,” in Proceedings of the 2001 IEEE Computer

Society Conference on, vol. 1, 2001, pp. 1010–1017.

[46] F. Samaria and S. Young, “Hmm-based architecture for face identification,” Image Vision

Computing, pp. 537–543, 1994.

[47] J. Huang and H. Wechsler, “Eye detection using optimalwavelet packets and radial basis

functions (rbfs),” International Journal of Pattern Recognition and Artificial Intelli-

gence, vol. 13, no. 7, pp. 1009–1026, 1999.

[48] T. Ishikawa, S. Baker, I. Matthews, and T. Kanade, “Passive driver gaze tracking with

active appearance models,” in In Proceedings of the 11th World Congress on Intelligent

Transportation Systems, October 2004.

[49] D. Hansen, J. Hansen, M. Nielsen, A. Johansen, and M. Stegmann, “Eye typing us-

ing markov and active appearance models,” in Applications of Computer Vision, 2002.

(WACV 2002). Proceedings. Sixth IEEE Workshop on, 2002, pp. 132 – 136.

[50] Q. Ji and X. Yang, “Real-time eye, gaze and face pose tracking for monitoring driver

vigilance,” Real Time Imaging, vol. 1, no. 8, pp. 357–377, Febuary 2002.

[51] Q. Ji, Z. Zhu, and P. Lan, “Real-time nonintrusive monitoring and prediction of driver

fatigue,” IEEE transactions on vehicular technology, vol. 53, no. 4, pp. 1052–1068, July

2004.

[52] K. Talmi and J. Liu, “Eye and gaze tracking for visually controlled interactive stereo-

scopic displays,” Signal Processing: Image Communication, vol. 14, no. 10, pp. 799–810,

1999.

[53] T. Morris, P. Blenkhorn, and F. Zaidi, “Blink detection for real-time eye tracking,”

Journal of Network and Computer Applications, vol. 25, no. 2, pp. 129–143, 2002.

[54] B. D. Lucas and T. Kanade, “An iterative image registration technique with an ap-

plication to stereo vision,” in Proceedings of the 7th international joint conference on

Artificial intelligence, vol. 2, 1981, pp. 674–679.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

131

Chapter 6 Conclusion

[55] A. Haro, M. Flickner, and I. Essa, “Detecting and tracking eyes by using their physiolo-

gical properties, dynamics, and appearance,” in Computer Vision and Pattern Recogni-

tion, 2000. Proceedings. IEEE Conference on, vol. 1, 2000, pp. 163–168.

[56] D. Hansen and A. Pece, “Eye tracking in the wild,” Computer Vision and Image Under-

standing, vol. 98, no. 1, pp. 155–181, 2005.

[57] M. Isard and A. Blake, “Condensation - conditional density propagation for visual track-

ing,” International Journal of Computer Vision, vol. 29, pp. 5–28, 1998.

[58] A. Vision Technologies, “Prosilica GC1380 data sheet,” Taschenweg 2a, 07646 Stadtroda,

Germany, Accessed January 2010. [Online]. Available: http://www.alliedvisiontec.com

[59] ——, “Prosilica GC1600 data sheet,” Taschenweg 2a, 07646 Stadtroda, Germany,

Accessed January 2010. [Online]. Available: http://www.alliedvisiontec.com

[60] ——, “Prosilica GE1900 data sheet,” Taschenweg 2a, 07646 Stadtroda, Germany,

Accessed January 2010. [Online]. Available: http://www.alliedvisiontec.com

[61] O. Opto Semiconductors, “SFH4232 data sheet,” Accessed Febuary 2010. [Online].

Available: http://catalog.osram-os.com/

[62] A. Vision Technologies, “Prosilica GC1380 user manual,” Taschenweg 2a,

07646 Stadtroda, Germany, Accessed January 2010. [Online]. Available:

http://www.alliedvisiontec.com

[63] National Semiconductor, “WEBENCH Designer for LED Drivers,” Accessed July 2011.

[Online]. Available: http://www.national.com/en/led/index.html

[64] Microchip, “PICKit 2 User Guide,” Accessed July 2011. [Online]. Available:

http://ww1.microchip.com/downloads/en/devicedoc/51553e.pdf

[65] ——, “PIC16F887 datasheet,” Accessed July 2011. [Online]. Available:

http://ww1.microchip.com/downloads/en/devicedoc/41291e.pdf

[66] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple fea-

tures,” Computer Vision and Pattern Recognition, IEEE Computer Society Conference

on, vol. 1, pp. 511–518, 2001.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

132

[67] D. Dinges, M. Mallis, and J. Powell, “Evaluation of techniques for ocular measurement

as an index of fatigue and the basis for alertness management,” Department of transport

safety, vol. 808, no. 762, April 1998.

[68] A. Albu, B. Widsten, T. Wang, J. Lan, and J. Mah, “A computer vision-based system for

real-time detection of sleep onset in fatigued drivers,” Intelligent Vehicles Symposium,

2008 IEEE, pp. 25–30, June 2008.

[69] M. Eriksson and N. Papanikolopoulos, “Driver fatigue: a vision-based approach to auto-

matic diagnosis,” Transportation Research Part C: Emerging Technologies, vol. 9, no. 6,

pp. 399–413, December 2001.

[70] S. Eye. (2011, October) Smart eye pro 2. [Online]. Available:

http://www.smarteye.se/products/vehicle-eye-trackers

[71] S. Machines. (2011, October) Driver State Sensor (DSS). [Online]. Available:

http://www.seeingmachines.com/product/dss/

[72] A. De Santis and D. Iacoviello, “Robust real time eye tracking for computer interface

for disabled people,” Comput. Methods Prog. Biomed., vol. 96, pp. 1–11, October 2009.

[73] A. Kaufman, A. Bandopadhay, and B. Shaviv, “An eye tracking computer user interface,”

in Virtual Reality, 1993. Proceedings., IEEE 1993 Symposium on Research Frontiers in,

October 1993, pp. 120–121.

[74] L. Technologies. (2011, October) Eyegaze edge. [Online]. Available:

http://www.eyegaze.com/content/assistive-technology

[75] Tobii. (2011, October) Tobii T60 and T120. [Online]. Available: http://www.tobii.com/

Appendix A

SERIAL COMMUNICATION PROTOCOL

The serial communication protocol between the PC and the embedded system (i.e. the

PIC16F887) is presented in this Appendix. This very simple 4-byte protocol was developed

under the assumption that the communication will be error free in the controlled lab envir-

onment. Therefore in practice this protocol will not be robust enough for reliable communic-

ation. The small amount of commands required was also not enough to justify an elaborate

protocol. The general packet structures of a command and a response is shown in Table A.1

and Table A.2, respectively.

Table A.1: The general packet structure for commands from the PC to the embedded system.

Packet fields < STX > < Command > < Parameters > < ETX >

Value 0x02 See Table A.3 See Table A.3 0x03

Table A.2: The general packet structure for a response from the embedded system to the PC.

Packet fields < STX > < Response > < Command Type > < ETX >

ACK = 0x06 Command value as

Value 0x02 NACK = 0x15 defined in Table A.3 0x03

The commands and their parameters that have been implemented as well as a description of

each command can be found in Table A.3.

The embedded system will always respond when issued with a command, in the form of either

an acknowledgement (ACK) or a negative acknowledgment (NACK). A NACK response will

only be issued when the embedded system does not recognize the given command. The

response to a command will be of the form as described in Table A.2, with the Command

Appendix A Serial Communication Protocol

Table A.3: The available commands in the simple 4-byte serial protocol

Command Value Parameters Description

Name

Ping 0x50 / 0x70 (’P’/’p’) None Used to check connectivity

(Set to 0x00) between the PC and the

embedded system.

Detect 0x42 / 0x62 (’B’/’b’) None Used to capture a bright

Eyes (Set to 0x00) and dark pupil image pair

for eye detection.

Set Inner 0x49 / 0x69 (’I’/’i’) OFF = 0x00 Used to switch the

LEDs ON = 0x01 inner set of LEDs

on and off.

Set Outer 0x4F / 0x6F (’O’/’o’) OFF = 0x00 Used to switch the

LEDs ON = 0x01 outer set of LEDs

on and off.

Capture 0x43 / 0x63 (’C’/’c’) STOP = 0x00 Used to continuously

Video START = 0x01 capture images for

eye tracking.

Type indicating which command has been ACKed or NACKed.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

135

Appendix B

PROSILICA GC1380 TRIGGERING

Figure B.1: The general purpose I/O port of the Prosilica GC1380 camera (see the technical manual

[62]).

The Prosilica GC1380 camera provides a general purpose I/O (GPIO) port which allows for

additional control of the camera, in particular external triggering for image acquisition. On

the camera side a Hirose HR10A-10R-12PB connector is used and in order to get access to

this GPIO port, the mating connector that was used, was the Hirose HR10A-10P-12S.

The pin out of the GPIO can be found in Table B.1. From this table it can be seen that

there are two triggering inputs, one opto-isolated input and one non-isolated input. Since

the fastest possible triggering time was required and the controlled lab environment has very

little noise, the non-isolated triggering input was the best suited. As a result the Sync 2

Input (camera GPIO pin 11) was connected to port RD1 (PIC16F887 pin 20) and the Sync 2

Output (camera GPIO pin 12) was connected to port RD0 (PIC16F887 pin 19), both through

a buffer to protect the PIC microcontroller.

Appendix B Prosilica GC1380 Triggering

Table B.1: The general purpose I/O port pin out of the Prosilica GC1380 (see the technical manual

[62])

Pin Function

1 Power Ground

2 12V Power

3 Sync Input 1 - isolated

4 Sync Output 1 - isolated

5 Isolated Ground

6 Video Iris

7 DNC

8 RS-232 TXD

9 RS-232 RXD

10 Signal ground

11 Sync Input 2 - non-isolated

12 Sync Output 2 - non-isolated

The camera also had to be correctly configured over the GigE interface to enable external

triggering. Table B.2 shows all the relevant parameters that had to be configured, as well as

their values for this particular setup.

Table B.2: The relevant Prosilica GC1380 camera parameter configuration for externa triggering.

Parameter Value

AcquisitionMode SingleFrame

FrameStartTriggerMode SyncIn2

FrameStartTriggerEvent EdgeRising

SyncOut2Invert Off

SyncOut2Mode FramerTriggerReady

Once the the camera has been correctly configured for external triggering, the PIC microcon-

troller has to provide the necessary timing signals as shown in Figure B.2. The Sync 2 Output

pin of the camera produces the Trigger Ready signal, which the PIC microcontroller will first

read and then subsequently produce the User Trigger signal to initiate the sensor exposure.

Once image acquisition have been completed, the image will automatically be transmitted

to the PC over the GigE interface, where the camera’s software development kit (SDK) will

present the image to the developed application software.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

137

Appendix B Prosilica GC1380 Triggering

Figure B.2: The timing diagram necessary for external triggering of the Prosilica GC1380 camera

(see the technical manual [62]).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

138

