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THESIS SUMMARY 
 

Title: The Ride Comfort vs. Handling Compromise for Off-Road Vehicles 
 
Author: PIETER SCHALK ELS 
 
Supervisor: Prof. N.J. Theron 
 
Department: Mechanical and Aeronautical Engineering, University of Pretoria 
 
Degree: Philosophiae Doctor (Mechanical Engineering) 
 
This thesis examines the classic ride comfort vs. handling compromise when designing a 
vehicle suspension system. A controllable suspension system, that can, through the use of 
suitable control algorithms, eliminate this compromise, is proposed and implemented.  
 
It is a well known fact that if a vehicle suspension system is designed for best ride 
comfort, then handling performance will suffer and vice versa. This is especially true for 
the class of vehicle that need to perform well both on- and off-road such as Sports Utility 
Vehicles (SUV’s) and wheeled military vehicles. These vehicles form the focus of this 
investigation. 
 
The ride comfort and handling of a Land Rover Defender 110 Sports Utility Vehicle is 
investigated using mathematical modelling and field tests. The full vehicle, non-linear 
mathematical model, built in MSC ADAMS software, is verified against test data, with 
favourable correlation between modelled and measured results. The model is 
subsequently modified to incorporate hydropneumatic springs and used to obtain 
optimised spring and damper characteristics for ride comfort and handling respectively. 
Ride comfort is optimised by minimising vertical acceleration when driving in a straight 
line over a rough, off-road terrain profile. Handling is optimised by minimising the body 
roll angle through a double lane change manoeuvre. It is found that these optimised 
results are at opposite corners of the design space, i.e. ride comfort requires a soft 
suspension while handling requires a stiff suspension. It is shown that the ride comfort vs. 
handling compromise can only be eliminated by having an active suspension system, or a 
controllable suspension system that can switch between a soft and a stiff spring, as well as 
low and high damping. This switching must occur rapidly and automatically without 
driver intervention. 
 
A prototype 4 State Semi-active Suspension System (4S4) is designed, manufactured, 
tested and modelled mathematically. This system enables switching between low and 
high damping, as well as between soft and stiff springs in less than 100 milliseconds.  
 
A control strategy to switch the suspension system between the “ride” mode and the 
“handling” mode is proposed, implemented on a test vehicle and evaluated during vehicle 
tests over various on- and off-road terrains and for various handling manoeuvres. The 
control strategy is found to be simple and cost effective to implement and works 
extremely well. Improvements of the order of 50% can be achieved for both ride comfort 
and handling.   
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SAMEVATTING VAN PROEFSKRIF 
 

Titel: Die Ritgemak vs. Hantering Kompromie vir Veldvoertuie 
 
Outeur: PIETER SCHALK ELS 
 
Studieleier: Prof. N.J. Theron 
 
Departement: Meganiese en Lugvaartkundige Ingenieurswese 
 Universiteit van Pretoria 
 
Graad: PhD in Ingenieurswese (Meganiese Ingenieurswese) 
 
In hierdie proefskrif word die klassieke kompromie wat getref moet word tussen ritgemak 
en hantering, tydens die ontwerp van ‘n voertuig suspensiestelsel ondersoek. ‘n 
Beheerbare suspensiestelsel, wat die kompromie kan elimineer deur gebruik te maak van 
toepaslike beheeralgoritmes, word voorgestel en geïmplementeer.  
 
Dit is ‘n bekende feit dat, wanneer die karakteristieke van ‘n voertuigsuspensiestelsel 
ontwerp word vir die beste moontlike ritgemak, die hantering nie na wense is nie, en ook 
omgekeerd. Dit is veral waar vir ‘n spesifieke kategorie van voertuie, soos veldvoertuie 
en militêre wielvoertuie, wat oor goeie ritgemak en hantering, beide op paaie en in die 
veld, moet beskik. Die fokus van die huidige studie val op hierdie kategorie voertuie. 
  
Die ritgemak en hantering van ‘n Land Rover Defender 110 veldvoertuig is ondersoek 
deur gebruik te maak van wiskundige modellering en veldtoetse. Die volvoertuig, nie-
lineêre wiskundige model, soos ontwikkel met behulp van MSC ADAMS sagteware, is 
geverifieer teen eksperimentele data en goeie korrelasie is verkry. Die model is verander 
ten einde ‘n hidropneumatiese veer-en-demperstelsel te inkorporeer en verder gebruik om 
optimale veer- en demperkarakteristieke vir onderskeidelik ritgemak en hantering te 
verkry. Ritgemak is geoptimeer deur in ‘n reguit lyn oor ‘n rowwe veldterreinprofiel te ry, 
terwyl hantering geoptimeer is deur ‘n dubbelbaanveranderingsmaneuver uit te voer. Die 
resultaat is dat die geoptimeerde karakteristieke op die twee uiterstes van die 
ontwerpsgebied lê.  Beste ritgemak benodig ‘n sagte suspensie terwyl beste hantering ‘n 
harde suspensie benodig. Daar word aangedui dat die ritgemak vs. hantering kompromie 
slegs elimineer kan word deur gebruik van ‘n aktiewe suspensiestelsel, of ‘n beheerbare 
suspensiestelsel wat kan skakel tussen ‘n sagte en stywe veer, asook hoë en lae demping. 
Dié oorskakeling moet vinnig en outomaties geskied sonder enige ingryping van die 
voertuigbestuurder. 
 
‘n Prototipe 4 Stadium Semi-aktiewe Suspensie Stelsel (4S4) is ontwerp, vervaardig, 
getoets en wiskundig gemodelleer. Die stelsel skakel tussen hoë en lae demping, asook 
tussen ‘n stywe en sagte veer binne 100 millisekondes.  
 
‘n Beheerstrategie wat die suspensiestelsel skakel tussen die “ritgemak” en “hantering” 
modes is voorgestel, op ‘n toetsvoertuig geïmplementeer en evalueer tydens 
voertuigtoetse oor verskeie pad- en veldry toestande, asook tydens omrol- en 
hanteringstoetse. Die beheerstrategie is koste-effektief en maklik om te implementeer en 
werk besonder goed. Verbeterings in die orde van 50% kan behaal word vir beide 
ritgemak en hantering. 
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