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Abstract 

 

Protea cynaroides L. (King Protea) is a well known cutflower. Seeds and stem 

cuttings are commonly used to propagate P. cynaroides. However, the success rate 

and rooting rate of seeds and cuttings, are inconsistent and slow. The potential of in 

vitro propagation as an alternative method to produce P. cynaroides plantlets was 

investigated. In vitro studies consisted of in vitro germination of mature zygotic 

embryos, micrografting and direct somatic embryogenesis of zygotic embryos and 

excised cotyledons. In the germination study, temperature was the most important 

factor in obtaining a high germination percentage. Alternating temperatures of 

21±2ºC/12±2ºC (light/dark) was suitable for germination and over 90% of embryos 

germinated, while the germination percentage of embryos at 25±2ºC was poor. 

Plantlets were successfully established in ex vitro conditions when planted in a 

peat/coir/sand mixture. Micrografting of P. cynaroides was done by grafting 

microshoots (microscion), which was taken from in-vitro-established nodal explants, 

onto roots of decapitated in-vitro-germinated seedlings. After the graft union formed, 

buds on the microscion sprouted. A protocol to induce direct somatic embryogenesis 

was developed. Direct somatic embryogenesis was achieved on both P. cynaroides 

mature zygotic embryos and excised cotyledons. The addition of auxins such as NAA 

and 2,4-D singly or in combination with TDZ, BAP or kinetin suppressed the 

formation of somatic embryos. Formation of somatic embryos was observed in 

medium lacking growth regulators. Germination of somatic embryos was highest in 

medium containing GA3. The roles of starch and phenolic compounds in the rooting 

of P. cynaroides cuttings were also studied. Starch and total soluble phenol analyses 
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results revealed a positive correlation between high root formation and increased 

starch and phenolic content. NMR and MS analyses identified high amounts of 3,4-

dihydroxybenzoic acid in stems of P. cynaroides. In vitro bioassay showed that 3,4-

dihydroxybenzoic acid stimulated and inhibited root growth of P. cynaroides 

explants, depending on the concentration. A link was made between the endogenous 

concentration levels of 3,4-dihydroxybenzoic acid and rooting of P. cynaroides stem 

cuttings. Findings of this study contribute towards a better understanding of the roles 

starch and phenolic compounds play in the rooting of P. cynaroides. 

 

 

Keywords: Protea cynaroides, in vitro germination, micrografting, somatic 

embryogenesis, phenolic compounds, starch 
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INTRODUCTION  
 

 

Protea cynaroides (King Protea) is a multi-stemmed, upright shrub that grows to 

between 0.3 and 2 m tall. It has sparse branches, with hairless stems (Rebelo, 2000). 

The leaves are round, oval or narrowly elliptic, ranging from 50 to 120 mm in length 

and 50 to 75 mm in width. The flowerhead sizes range from 120 mm to 300 mm in 

diameter and the colour of the bracts, which are either hairy or hairless, range from 

pink to creamy-white (Patterson-Jones, 2000).  

 

The King Protea is the national flower of South Africa. They are widely spread 

throughout the south-western and southern parts of South Africa. Its magnificent 

inflorescence is a well known cutflower in many parts of the world. The most 

common methods of propagation are by seeds and stem cuttings. However, 

propagation by both seeds and stem cuttings have limitations in large-scale 

commercial production. Seed germination is usually inconsistent, even when the seed 

is treated with seed primers. However, the main problem with plants derived from 

seeds is genetic variation. This is particularly problematic when uniform blooms of a 

specific cultivar are highly sought after in the market place. Vegetative propagation of 

protea cuttings has become more common, nevertheless, this has its own limitations. 

The difficulty in inducing quick and consistent rooting of stem cuttings has not been 

overcome. At the moment, P. cynaroides cuttings take four to six months to root in 

the mistbed, prior to being transplanted to the field. After transplanting, it takes 

several years for the first high quality flower to be produced, which makes it an 

expensive flower to produce. Currently, some flowers are still picked from the wild, 

which firstly, do not always adhere to international standards, and secondly, cannot 

maintain a consistent flow of quality floral products to the floriculture industry 

(Coetzee, 2000).  

 

Even with the abovementioned problems in the propagation of P. cynaroides, the 

cultivation of proteas in general has gradually increased over the years, mainly 

through the increase in area being planted. Although the majority is grown in the 

southern hemisphere, cultivation areas in the northern hemisphere have increased 

from 800 ha in 2000 to 900 ha in 2004 (Anonymous, 2005). South Africa is the world 

 1

 
 
 



leader regarding the total area of Proteaceae grown, which in 2004 was 3,853 ha, of 

which 2795 ha was broadcast sown. This is followed by Australia with an estimated 

1,230 ha, while in the northern hemisphere, California leads the way with 

approximately 405 ha, followed by Israel with 270 ha. The amount of fresh 

Proteaceae flowers exported by South Africa has steadily increased from 

approximately 2,100 tons in the early nineties to over 4,200 tons in 2004 

(Anonymous, 2005). 

 

Very few studies on the in vitro propagation of P. cynaroides have been reported. 

Nevertheless, the establishment (Ben-Jaacov and Jacobs, 1986) and multiplication 

(Wu, 2001) of P. cynaroides explants have been investigated, where explants were 

successfully cultured in vitro. In vitro rooting of these explants were however, not 

successful. Furthermore, the use of other in vitro propagation methods, such as 

somatic embryogenesis and zygote culture to obtain rooted plantlets has not been 

reported.  

 

In numerous studies, reviewed in Chapter 1, it has been shown that micropropagation 

techniques, whether through in vitro embryo culture, somatic embryogenesis, 

organogenesis or micrografting, can overcome common problems such as slow 

germination, low regeneration rate and poor rooting capacity of various plant species. 

The main objective of the research reported in this thesis was to introduce alternative 

propagation methods for P. cynaroides, which included in vitro culture of zygotic 

embryos, micrografting and somatic embryogenesis. These in vitro propagation 

practices could ultimately be used in practice to breed and mass propagate one of the 

most valuable Protea species. Furthermore, the aim of this study was to contribute 

new knowledge towards the understanding of the roles of starch and phenolic 

compounds in the root formation of P. cynaroides, through allelopathy and 

biochemical studies. 
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