

# In vitro anti-HIV-1 properties of

# ethnobotanically selected South African

# plants used in the treatment of sexually

## transmitted diseases

by

Thilivhali Emmanuel Tshikalange

Submitted in partial fulfilment of the requirements for

DOCTOR OF PHILOSOPHIAE: (OPTION) MEDICINAL PLANT SCIENCE

**Department of Plant Science** 

Faculty of Natural and Agricultural Sciences

**University of Pretoria** 

Promoter: Prof JJM Meyer

**SEPTEMBER 2007** 



# ACKNOWLEDGEMENTS

I am very grateful to the following individuals and institutions who contributed towards this project.

My supervisor Prof J.J.M. Meyer and Prof N. Lall for all their guidance, suggestions, encouragement and support throughout the course of research.

Dr Ahmed Hussein for all his help and advice with the isolation and identification of compounds.

Dr Mariana van de Venter (Nelson Mandela Metropolitan University) for assistance with the reverse transcriptase assay.

Prof Eduardo Munoz (Spain) for assistance with the anti-HIV assays.

Prof Fredrik Ivars (Sweden) for assistance with NF-κB assays.

Bridgette and Adrian for toxicity assays.

Dr Josef de Beer for his words of encouragement throughout my studies.

My cousin Alipfali and traditional healers for their help during plant collection.

My family for being there for me (especially my son Wanga and his mother Muhangwi).

All my friends for the moral support they gave me.



I declare that the thesis, which I hereby submit for the degree of PhD Medicinal Plant Science (option) at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

SIGNATURE: .....

DATE: .....



# TABLE OF CONTENTS

| Summary: |
|----------|
|----------|

#### **Chapter 1: Introduction**

| 1.1 Background                                             | 1  |
|------------------------------------------------------------|----|
| 1.2 HIV/AIDS                                               | 2  |
| 1.2.1. HIV life cycle                                      | 2  |
| 1.2.2 HIV treatment and research on natural products       | 5  |
| 1.2.3 Nuclear factor kappa B and viral Tat Trans-activator | 8  |
| 1.3 Aims and objectives and objectives of the study        | 10 |
| 1.4 Plant selection                                        | 11 |
| 1.5 Scope of thesis                                        | 12 |
| 1.6 Hypothesis                                             | 12 |
| 1.7 References                                             | 13 |

# Chapter 2: Activity of crude extracts against glycohydrolase and reverse transcriptase enzymes

| 2.1 Introduction              | 18 |
|-------------------------------|----|
| 2.2 Material and methods      | 19 |
| 2.2.1 Plant material          | 19 |
| 2.2.2 Preparation of extracts |    |



| 2.2.3 Glycohydrolase enzymes    | .22  |
|---------------------------------|------|
| 2.2.4 HIV reverse transcriptase | .23  |
| 2.3 Results and discussion      | . 24 |
| 2.4 References                  | 28   |

#### Chapter 3: NF-KB, Hela-Tat and cytotoxicity assays on plant extracts

| 3.1 Introduction           | 33  |
|----------------------------|-----|
| 3.2 Materials and methods  | .34 |
| 3.2.1 Plant material       | 34  |
| 3.2.2 Cell lines           | 34  |
| 3.2.3 NF-кB assay          | 35  |
| 3.2.4 Hela Tat luc assay   | 36  |
| 3.2.5 Hela-Tet-OnLuc assay | 36  |
| 3.2.6 Cytotoxicity assay   | .37 |
| 3.3 Results and discussion | 38  |
| 3.4 References             | 45  |

# Chapter 4: Isolation of compounds from *Elaeodendron transvaalense* extracts

| 4.1 Introduction        | 47   |
|-------------------------|------|
| 4.1.1 Plant description | 48   |
| 4.1.2 Medicinal uses    | 49   |
| 4.1.3 Chemistry         | . 50 |



| 4.2 Materials and methods                       | 51  |
|-------------------------------------------------|-----|
| 4.2.1 Plant material                            | 51  |
| 4.2.2 Preparation of extracts                   | 51  |
| 4.2.3 Isolation and identification of compounds | 51  |
| 4.3 Results and discussion                      | 52  |
| 4.3.1 Triterpenoids isolated                    | 57  |
| 4.3.2 Methylepigallocatechin                    | .69 |
| 4.3.3 Phenolic derivative and depside           | 73  |
| 4.4 References                                  | 80  |

# Chapter 5: Anti-HIV activity of compounds isolated from *Elaeodendron transvaalense*

| 5.1 Introduction                                              |
|---------------------------------------------------------------|
| 5.2 Materials and methods                                     |
| 5.2.1 C-Med 100 100®86                                        |
| 5.2.2 Transient transfection and luciferase activity analysis |
| 5.2.3 Hela-Tat-Luc assay 87                                   |
| 5.2.4 Anti-HIV-1 replication88                                |
| 5.2.4.1 Production of VSV-pseudotyped recombinant             |
| viruses 88                                                    |
| 5.2.4.2 VSV-pseudotyped HIV-1 infection assay                 |
| 5.2.4.3 HIV reverse transcriptase (RT) assay 89               |
| 5.3 Results and discussion 89                                 |
| 5.4 References                                                |



#### Chapter 6: Cytotoxicity of *Elaeodendron transvaalense*

#### extract and isolated compounds

| 6.1 Introduction                               | 96  |
|------------------------------------------------|-----|
| 6.2 Materials and methods                      | 97  |
| 6.2.1 Plant material                           | 97  |
| 6.2.2 Preparation of the extract               | 98  |
| 6.2.3 Cell culture                             | 98  |
| 6.2.4 Toxicity screening (XTT viability assay) | 98  |
| 6.3 Results and discussion                     | 100 |
| 6.4 References                                 | 105 |

#### Chapter 7: General discussion and conclusions

| 7.1 Introduction 108                                                          |
|-------------------------------------------------------------------------------|
| 7.2 Activity of crude extracts against reverse transcriptase and              |
| glycohydrolase enzymes109                                                     |
| 7.3 NF-κB, Hela-Tat and cytotoxicity assays on plant extract109               |
| 7.4 Isolation of compounds from <i>Elaeodendron transvaalense</i> extract 110 |
| 7.5 Anti-HIV activity of pure compounds isolated from Elaeodendron            |
| transvaalense                                                                 |
| 7.6 Cytotoxicity of Elaeodendron transvaalense extract and isolated           |
| compounds111                                                                  |
| 7.7 Conclusion111                                                             |



# LIST OF FIGURES

### Chapter 1

| Figure 1.1: Worldwide HIV infection in 2005                              | 3   |
|--------------------------------------------------------------------------|-----|
| Figure 1.2: Worldwide HIV prevalence rates in 2005                       | 3   |
| Figure 1.3: The replication cycle of HIV-1                               | 4   |
| Figure 1.4: Anti-HIV constituents obtained from root bark of Zanthoxylum |     |
| ailanthoides                                                             | .6  |
| Figure 1.5: The RNA genome of HIV-1                                      | . 7 |
| Figure 1.6: Nuclear Factor kappa B (NF-κB) pathway                       | .8  |
| Figure 1.7: A model for regulation of Tat mediated transcriptional       |     |
| activation of the chromatinized HIV LTR promoter                         | 9   |

| Figure 2.1: Reverse transcriptase colorimetric assay principle         23          |
|------------------------------------------------------------------------------------|
| Chapter 3                                                                          |
| Figure 3.1: Graph showing the anti-NF-κB activity of plant extracts at 50          |
| μg/ml concentration41                                                              |
| Figure 3.2: Graph showing the anti-Tat activity of plant extracts at 50 $\mu$ g/ml |
| concentration                                                                      |



| Figure 4.1: Bark and branches of Elaeodendron transvaalense48                |
|------------------------------------------------------------------------------|
| Figure 4.2: Compounds isolated from <i>E. transvaalense</i>                  |
| Figure 4.3: Column chromatography 53                                         |
| Figure 4.3: Schematic presentation of isolation steps followed               |
| Figure 4.5: Fractions from silica column on TLC pates sprayed with Vanillin  |
| reagent. Plate A and B developed with Hexane: ethyl acetate (7:3), Plate C   |
| and D fractions developed with hexane: ethyl acetate (1:9)                   |
|                                                                              |
| Figure 4.6 The 11 pooled fractions (silica column 1) TLC plates sprayed with |
| Vanillin reagent                                                             |
| Figure 4.7: Isolated compounds as seen on TLC plate sprayed with vanillin    |
|                                                                              |
| Figure 4.8: Structures of isolated triterpenes                               |
| Figure 4.9: <sup>1</sup> H – NMR spectrum of Compound 1                      |
| Figure 4.10: <sup>13</sup> C – NMR spectrum of Compound 1                    |
| Figure 4.11: HMBC spectrum of Compound 1                                     |
| Figure 4.12: NOESY spectrum of Compound 1                                    |
| Figure 4.13: <sup>1</sup> H – NMR spectrum of Compound 2                     |
| Figure 4.14: <sup>13</sup> C – NMR spectrum of Compound 2                    |
| Figure 4.15: HMBC spectrum of Compound 3                                     |
| Figure 4.16: HMQC spectrum of Compound 3                                     |
| Figure 4.17: Structure of Compound 5                                         |
| Figure 4.18: <sup>1</sup> H – NMR spectrum of Compound 571                   |
| <b>Figure 4.19:</b> ${}^{13}C$ – NMR spectrum of Compound <b>5</b>           |



| Figure 4.20: Structures of Compound 6                     | 73 |
|-----------------------------------------------------------|----|
| Figure 4.21: Structures of Compound 7                     | 74 |
| Figure 4.22: <sup>1</sup> H – NMR spectrum of Compound 6  | 76 |
| Figure 4.23: <sup>13</sup> C – NMR spectrum of Compound 6 | 77 |
| Figure 4.24: <sup>1</sup> H – NMR spectrum of Compound 7  |    |
| Figure 4.25: <sup>13</sup> C – NMR spectrum of Compound 7 | 79 |

| Figure 6.1: Plate design for cytotoxicity assay                                  | 99  |
|----------------------------------------------------------------------------------|-----|
| Figure 6.2: Effect of <i>E. transvaalense</i> crude extract and isolated compour | nds |
| on the growth of the normal Vero cell line                                       | 101 |
| Figure 6.3: Effect of <i>E. transvaalense</i> crude extract and isolated compour | nds |
| on the growth of the MCF-7 cell line                                             | 102 |



# LIST OF TABLES

### Chapter 2

| Table 2.1: Medicinal plants investigated in this study for anti-HIV activity | 21 |
|------------------------------------------------------------------------------|----|
| Table 2.2: Inhibition of glycohydrolase (percent) in the presence of         |    |
| ten medicinal plant extracts at 200 $\mu$ g/ml concentration                 | 25 |
| Table: 2.3: Effect of plant extracts on the activity of recombinant HIV –1   |    |
| reverse transcriptase                                                        | 26 |

### Chapter 3

| Table 3.1: Results of anti-HIV evaluations for all plant extracts          |
|----------------------------------------------------------------------------|
| tested at 50 μg/ml 40                                                      |
| Table 3.2: Results of anti-HIV evaluations for plant extracts that         |
| showed activity 43                                                         |
| Table 3.3: Cell death (necrosis) percentage at 6, 24 and 32 hour intervals |
|                                                                            |

| Table 4.1: Other medicinal uses of E. transvaalense                                      | 49  |
|------------------------------------------------------------------------------------------|-----|
| <b>Table 4.2</b> : ${}^{1}H$ – NMR and ${}^{13}C$ – NMR data from tritepernoids isolated | .60 |
| <b>Table 4.3</b> : ${}^{1}H$ – NMR and ${}^{13}C$ – NMR data of compound <b>5</b>        | 70  |



### Chapter 5

| Table 5.1: Results | of a | anti-HIV | evaluations | for | plant | extracts | that | showed |
|--------------------|------|----------|-------------|-----|-------|----------|------|--------|
| activity           |      |          |             |     |       |          |      | 90     |

### Chapter 6

 Table 6.1: IC<sub>50</sub> of the crude extract and isolated compounds from

| E. | transvaalense | after | 4 days | on | Vero | and | breast | cancer | (MCF-7) | cells |
|----|---------------|-------|--------|----|------|-----|--------|--------|---------|-------|
|    |               |       |        |    |      |     |        |        |         | . 103 |



# LIST OF ABBREVIATIONS

| Abbreviation         | Explanation                                |
|----------------------|--------------------------------------------|
| AIDS:                | acquired immunodeficiency syndrome         |
| <sup>13</sup> C-NMR: | carbon-nuclear magnetic resonance          |
| COSY:                | correlated spectroscopy                    |
| DNA:                 | deoxyribonucleic acid                      |
| DMSO:                | dimethylsulfoxide                          |
| DPPH:                | 1,2 –diphenyl-2-picrylhydrazyl             |
| HIV:                 | human immunodeficiency virus               |
| HMBC:                | heteronuclear multiple bond correlation    |
| HMQC:                | heteronuclear multiple quantum correlation |
| <sup>1</sup> H-NMR:  | proton-nuclear magnetic resonance          |
| LTR:                 | long terminal repeat                       |
| MRNA:                | messenger ribonucleic acid                 |
| NF-κB:               | nuclear factor kappa B                     |
| NMR:                 | nuclear magnetic resonance                 |
| NOESY:               | nuclear overhauser effect spectroscopy     |
| PBS:                 | phosphate buffer saline                    |
| RT:                  | reverse transcriptase                      |
| STD:                 | sexually transmitted disease               |
| Tat:                 | transactivating regulatory protein         |
| TB:                  | tuberculosis                               |
| TLC:                 | thin layer chromatography                  |
| UV:                  | ultra violet                               |



| WHO: | World Health Organization                      |
|------|------------------------------------------------|
| XTT: | 2,3-bis- [2-methoxy-4-nitro-5-sulfophenyl]-2H- |
|      | tetrazolium-5-carboxanilide                    |



### Summary

In vitro anti-HIV-1 properties of ethnobotanically selected

South African plants used in the treatment of sexually transmitted

diseases

by Thilivhali Emmanuel Tshikalange Promoter: Prof J.J. Marion Meyer Department of Plant Science Degree: PhD Medicinal Plant Science (option)

Extracts of ten ethnobotanically selected medicinal plants used in the treatment of STD's were investigated for their anti-HIV properties against enzymes and proteins that play a role in the HIV life cycle. The antiviral activity was studied through the luciferase-based assay targeting the HIV promoter activation induced by either the HIV-1 Tat protein or the cellular transcription factor NF-κB, both required for efficient HIV-1 replication. Of the ten plant extracts investigated *Zanthoxylum davyi* and *Elaeodendron transvaalense* showed the most promising results. These extracts also showed specific luciferase inhibitory activity in the Hela-Tet-ON assay and did not show significant toxicity on MT2 cell line. The plant extracts were also tested against some enzymes (glycohydrolase and reverse transcriptase) that play a significant role in the HIV life cycle. *Senna petersiana* and *Terminalia sericea* showed to be potential inhibitors of both glycohydrolase and reverse



transcriptase enzymes. Futher phytochemical studies of *E. transvaalense* have led to the isolation of four known triterpenes [lup-20(30)-ene-3,29-diol,  $(3\alpha)$ -(9Cl)] (1), [ lup-20(29)-ene-30-hydroxy-(9Cl)] (2),  $\Psi$  – taraxastanonol (3),  $\beta$ sitosterol (4) a catechin 4' -O- methylepigallocatechin (5), the rarely found phenolic derivative, atraric acid (6) and the depside, atranorin (7). The activities of Compound 6 and 7 were not analyzed further because of the low amount isolated. To evaluate the antiviral activity of the other five isolated compounds, NF-kB, anti-Tat and viral replication assays were performed. Only lup-20(29)-ene-30-hydroxy-(9Cl) (2) inhibited NF-κB activity at a low concentration of 10  $\mu$ g/ml. Lup-20(30)-ene-3,29-diol, (3 $\alpha$ )-(9Cl) (1) and  $\Psi$  – taraxastanonol (3) showed anti-NF- $\kappa$ B inhibition at a higher concentration of 50  $\mu$ g/ml. The activities of the isolated compounds were not significant in other anti-HIV assays. All five isolated compounds were further analyzed for cytotoxicity using the XTT assay on Vero and MCF-7 breast cancer cell lines. Compound 2 demonstrated greater than 50 % growth inhibition at 25 µg/ml. The crude extract and other isolated compounds showed very little or no toxicity at the same concentration. The isolated compounds were also tested in the HIV-reverse transcriptase assay and none of these compounds displayed any RT activity. These results support the ethnomedicinal uses of these plants to some extent.

Keywords: Cytotoxicity; Terpenoid; HIV; NF-κB; Elaeodendron transvaalense