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Abstract 25 

2,6-Dimethoxyphenol is a phenolic compound that  is extensively used for the measurement of 26 

laccase activity, but is often not exploited for its potential as an antioxidant compound. Since 27 

laccase can be used to modify phenolic antioxidants as a way of improving their activities, the 28 

present study investigated the laccase-mediated oxidation of 2,6-dimethoxyphenol in biphasic or 29 

homogenous aqueous-organic media for the production of compounds with higher antioxidant 30 

capacity than the starting substrate. The main product was a dimer (m/z 305.0672), which was 31 

further characterized as a symmetrical C-C linked 3,3’,5,5’-tetramethoxy biphenyl-4,4’-diol. In 32 

the monophasic system, the dimer was preferentially formed when acetone was used as co-33 

solvent, while in the biphasic system, formation of the dimer increased as the concentration of 34 

ethyl acetate was increased from 50 to 90 %. The dimer showed higher antioxidant capacity than 35 

the substrate (≈ 2×) as demonstrated by standard antioxidant assays (DPPH and FRAP). These 36 

results demonstrate that a product of the laccase-catalysed oxidation of 2,6-dimethoxyphenol can 37 

find useful application as a bioactive compound.   38 
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1. Introduction 57 

 Increased interest in the use of natural phenolic compounds as antioxidants and their 58 

potential related health benefits [1,2] have become apparent in recent times.  These are part of a 59 

number of secondary metabolites found in plants that aid in the protection of plant tissue against 60 

insects, infections, pathogen attack and UV radiation [3,4]. Generally, antioxidants are an 61 

important class of compounds, that when present at low concentrations relative to an oxidizable 62 

substrate, significantly delay, retard or inhibit oxidation of that substrate. Phenolic antioxidants, 63 

in particular, are known to act as terminators of free radicals [5]. A major feature of free radicals 64 

is that they have extremely high chemical reactivity (due to the presence of unpaired electrons), 65 

which   accounts for the reasons why they inflict damage in cells [6]. Since cell damage caused 66 

by free radicals has been implicated in various pathophysiological conditions such as liver 67 

cirrhosis, atherosclerosis, cancer, diabetes, neurological disorders, ischemia/reperfusion, and 68 

aging [7-11], compounds that can scavenge free radicals have great potential in ameliorating 69 

these disease processes [12-15].  Attention is being increasingly shifted away from synthetic 70 

antioxidants due to potential health hazards and thus plant phenols are increasingly becoming a 71 

subject of intensive research due to their bioactive properties and much reduced adverse side 72 

effects. 73 

2,6-Dimethoxyphenol (2,6-DMP) and its derivatives, are plant phenols that form the 74 

predominant smoke component of thermal degradation products from hardwood. It forms about 75 

70-80 % of total methoxyphenols in birchwood smoke which are of great importance for the 76 

smoke flavour, preservation and antioxidant effect [16]. As a major component of birchwood 77 

smoke, its antioxidant capacity is stronger than the 2-methoxyphenols that are present in lower 78 

amounts [17]. 2,6-DMP is widely documented as a substrate in the determination of laccase 79 
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activity. Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper-80 

containing enzymes which reduce molecular oxygen to water and simultaneously perform one-81 

electron oxidation of various substrates such as diphenols, methoxy-substituted monophenols 82 

and aromatic and aliphatic amines [18]. Laccases have been reported to catalyze the 83 

oligomerisation or polymerization of many phenolic compounds as a way of increasing 84 

antioxidant capacity [19-21].  85 

Although some products of laccase-catalysed oxidation of 2,6-DMP have been 86 

characterised [22-24], the studies mainly focused on determining the suitability of its use in 87 

laccase assays [23].  Application of the 2,6-DMP oxidation products as antioxidants in their own 88 

right has not yet been investigated. As part of our attempts to enzymatically modify phenolic 89 

molecules as a way of enhancing their bioactive properties [19,25-27], this work investigates the 90 

potential of the laccase produced by Trametes pubescens to modify 2,6-DMP as a way of 91 

increasing its antioxidant capacity  92 

 93 

2. Materials and methods 94 

2.1. Chemicals and enzyme  95 

2,6-DMP and other chemicals were purchased from Sigma–Aldrich, South Africa. Extracellular 96 

laccase was produced by fermentation of the white rot fungal strain Trametes pubescens (strain 97 

CBS 696.94) using an airlift reactor, and purified as described by Ryan et al. [28]. The T. 98 

pubescens strain was obtained from the Institute of Applied Microbiology, University of Natural 99 

Resources and Life Sciences (Vienna, Austria) and is currently deposited in the stock culture 100 

collection at the Biocatalysis and Technical Biology Research Group, Cape Peninsula University 101 
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of Technology. The culture is maintained on 3 % (w/v) malt extract agar plates at 4 oC and sub-102 

cultured every 60 days to maintain viability. 103 

 104 

2.2. Enzyme activity  105 

Laccase activity was determined spectrophotometrically by monitoring the oxidation of 106 

2,2,’-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS, ε420 = 36,000 M-1cm-1) as the 107 

substrate [29].  The reaction mixture contained 0.330 ml ABTS (5 mM), 2.5 ml 0.1 M sodium 108 

acetate buffer pH 5.0 (previously determined as the optimum pH for T. pubescens laccase) and 109 

0.17 ml laccase. Oxidation of the ABTS was monitored by measuring the increase in absorbance 110 

at 420 nm. One unit of laccase activity was defined as the amount of enzyme required to oxidise 111 

1 µmol of ABTS per minute at 25 °C. 112 

 113 

2.3. Oxidation of 2,6-DMP  114 

A biphasic system comprising buffer with ethyl acetate as co-solvent or a monophasic 115 

system with miscible solvents (methanol, ethanol, toluene or acetone) as co-solvents was 116 

employed for the oxidation reactions. For the biphasic system the reaction mixture contained 2,6-117 

DMP (10 mM), laccase (10 U) in 100 mM sodium acetate buffer (pH 5.0) and ethyl acetate. The 118 

effect of ethyl acetate on product formation was tested by varying its concentration (50, 60, 70, 119 

80, 90, and 95%, v/v) and the effect of reaction time on product formation was also determined 120 

(1 – 8 hours; time variation only performed using 90 %, v/v, ethyl acetate – previously 121 

determined as the optimum co-solvent concentration). In the monophasic system the miscible 122 

solvents were used at 80 %, v/v (previously determined as the optimum for product yield and 123 

reduced side reactions). The reactions were carried out for 24 hours at 28 °C with shaking, using 124 
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an orbital shaker at 180 rpm.  The reactions were monitored by Thin Layer Chromatography 125 

(TLC) and High Performance Liquid Chromatography (HPLC).  126 

 127 

2.4. Thin Layer Chromatography (TLC) 128 

TLC analysis was performed on aluminium–backed silica gel 60 F254 (Merck) plates 129 

using heptane: ethyl acetate: acetic acid (1:1:0.05, v/v/v) as the mobile phase. The compounds 130 

were visualized by exposure to UV light at 254 nm.  131 

 132 

2.5. High Performance Liquid Chromatography (HPLC) 133 

When miscible solvents were used, an equal volume of ice cold methanol (99.8 %) was 134 

added to the reaction mixtures to precipitate out the protein. The mixture was allowed to stand on 135 

ice for 20 min before centrifugation at 0 ºC for 15 min at 14,000 x g. In the biphasic system, 136 

however, the enzyme was readily separated from the product. The supernatant (1.2 ml aliquots) 137 

was transferred into clean vials and analysed by HPLC.  HPLC analysis was carried out using a 138 

Dionex UltiMate 3000 HPLC system (Dionex Softron, Germany) equipped with a 3000RS 139 

pump, WPS 3000RS autosampler and a DAD-3000RS detector. Separation of the reaction 140 

products was carried out on a reversed phase Sunfire C18 column (5µm, 4.6×150 mm) (Waters, 141 

Ireland) using a linear gradient of 0.1 % v/v formic acid (solvent A) and acetonitrile (99.9 %) 142 

(solvent B) at a flow rate of 0.5 ml min−1, an injection volume of 10 µl and an oven temperature 143 

of 30 oC.  The gradient set up was as follows:  98 % A to 0 % A (20 min); 0 % A to 98 % A (20- 144 

21 min); 98 % A (21-23 min). The products were monitored and detected at 280 nm.  145 
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 146 

2.6. Product purification 147 

The reaction products were purified by flash chromatography. The miscible solvents 148 

containing products were evaporated using a rotary evaporator (at 60 ºC) (Heidolph, Germany) 149 

and the product extracted with ethyl acetate followed by separation using a separation funnel. 150 

The aqueous phase was washed twice with ethyl acetate and monitored for the absence of 151 

product. The organic phase was dried using a rotary evaporator (Heidolph, Germany). For the 152 

biphasic system, the organic phase was separated using a separation funnel and the aqueous 153 

phase washed twice with ethyl acetate. The organic phase was evaporated (at 60 ºC) under 154 

reduced pressure with a rotary evaporator and the crude residue purified by silica flash 155 

chromatography using heptane: ethyl acetate: acetic acid (1:1:0.05, v/v/v) as mobile phase. The 156 

pure fractions were dried using a rotary evaporator and the products sequentially washed with 157 

acetone, methanol and then acetone again to remove the acetic acid.  158 

 159 

2.7 Product characterisation  160 

The purified product was characterised by mass spectrometry and Nuclear Magnetic 161 

Resonance (NMR) analysis. 162 

 163 

2.7.1. Liquid chromatography-mass spectrometry (LC-MS) 164 

LC-MS was performed on a Dionex HPLC system (Dionex Softron, Germering, 165 

Germany) equipped with a binary solvent manager and autosampler coupled to a Brucker ESI Q-166 

TOF mass spectrometer (Bruker Daltonik GmbH, Germany). The products were separated by 167 

reversed phase chromatography using gradient elution as described above. MS spectra were 168 
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acquired in negative mode using the full scan and auto MS/MS (collision energy 25 eV) scan 169 

modes with dual spray for reference mass solution. Electrospray voltage was set to +3500 V. Dry 170 

gas flow was set to 8 l min−1 with a temperature of 220 °C and nebulizer gas pressure was set to 171 

17.5 psi. Smart Formula 3D (combining exact mass and isotopic pattern information in MS and 172 

MS/MS spectra) allowed for generation of formula of relevant compounds. 173 

 174 

2.7.2. Nuclear Magnetic Resonance (NMR) analysis 175 

NMR spectra were recorded using a VARIAN 200 spectrometer (1H, 200MHz; 13C, 176 

50MHz). The spectra were determined at ambient temperature in deuterated chloroform (CDCl3) 177 

and methanol solutions, with CHCl3 at δ 7.26 for 1H NMR spectra and chloroform (δ 77.00) for 178 

13C-NMR spectra as internal standards. In the NMR spectra, assignments of signals with the 179 

same superscripts are interchangeable. Splitting patterns are designated as “s”, “d”, “t”, “q”, “m” 180 

and “bs”. These symbols indicate “singlet”, “doublet”, “triplet”, “quartet”, “multiplet” and 181 

“broad singlet”. 182 

 183 

2.8. Antioxidant activity determination 184 

Antioxidant activities of the substrate (2,6-DMP) and oxidation product were determined 185 

using three methods: DPPH (2, 2’ -diphenyl-1-picrylhydrazyl) scavenging effect, TEAC (Trolox 186 

equivalent antioxidant capacity) assay, and  FRAP (ferric reducing antioxidant power) analysis. 187 

 188 

2.8.1 DPPH (2, 2’ -diphenyl-1-picrylhydrazyl) scavenging effect 189 

Antioxidant capacity was determined by measuring DPPH radical-scavenging activity 190 

[30]. Briefly, 3.9 ml of DPPH dissolved in methanol (0.025 mg/ml) was added to 0.1 ml sample 191 
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(dissolved in methanol) at various concentrations. The mixture was shaken vigorously and 192 

incubated at room temperature in the dark for 60 min, and the decrease in absorbance at 517 nm 193 

determined using a spectrophotometer (Rayleigh UV–9200, China). The remaining concentration 194 

of DPPH in the reaction medium was then calculated from a calibration curve obtained with 195 

DPPH at 517 nm.  196 

 197 

The percentage of remaining DPPH (DPPHR) was calculated as follows: 198 

% DPPHR = [(DPPH)T/(DPPH)T=0] X 100  199 

 200 

where (DPPH)T is the concentration of DPPH at the time of 60 min and (DPPH)T=0 is the 201 

concentration of DPPH at time zero (initial concentration). The percentage of remaining DPPH 202 

against the sample/standard concentration was plotted to obtain the amount of antioxidant (mM) 203 

necessary to decrease the initial concentration of DPPH by 50 % (EC50).  204 

 205 

2.8.2. TEAC (Trolox equivalent antioxidant capacity) assay 206 

The ABTS radical scavenging activity of 2,6-DMP and its product were determined 207 

according to the method described by Re et al. [31]. The trolox equivalent antioxidant capacity 208 

(TEAC) method is based on the ability of antioxidant molecules to quench ABTS・+, a blue-209 

green chromophore with characteristic absorption at 734 nm, compared with that of Trolox, a 210 

water soluble vitamin E analog. The addition of antioxidants to the preformed radical cation 211 

decolourizes the ABTS・+ as it is reduced to ABTS. ABTS・+ solution was prepared 12-16 h 212 

before use by mixing ABTS salt (7 mM) with potassium persulfate (2.45 mM) and then stored in 213 

the dark until the assay was performed. The ABTS・+ solution was diluted with methanol to give 214 



10 
 

an absorbance of 0.70 ± 0.002 at 734 nm. Each sample (100 µl) prepared at different 215 

concentrations was mixed with 1100 µl ABTS・+ solution and the absorbance read after a 30 min 216 

incubation at 25°C.  217 

 218 

2.8.3. FRAP (ferric reducing antioxidant power) analysis 219 

Total antioxidant activity was measured by ferric reducing antioxidant power (FRAP) 220 

assay of Benzie and Strain [32,33]. The FRAP assay uses antioxidants as reductants in a redox-221 

linked colorimetric method, employing an easily reduced oxidant system present in 222 

stoichiometric excess. The principle behind this is that, at low pH, reduction of ferric tripyridyl 223 

triazine (Fe III TPTZ) complex to ferrous form (which has an intense blue colour) can be 224 

monitored by measuring the change in absorbance at 593 nm. The reaction is non-specific, in 225 

that any half reaction that has lower redox potential, under reaction conditions, than that of ferric 226 

ferrous half reaction, will drive the ferrous (Fe III to Fe II) ion formation. The change in 227 

absorbance is therefore, directly related to the combined or “total” reducing power of the 228 

electron donating antioxidants present in the reaction mixture.  229 

The working FRAP reagent was produced by mixing 300 mM acetate buffer (pH 3.6), 10 230 

mM 2,4,6-tripyridyl-s-triazine (TPTZ) solution and 20 mM FeCl3.6H2O in a 10:1:1 ratio just 231 

before use and heated to 37 oC. The 300 mM acetate buffer was prepared by mixing 3.1 g of 232 

sodium acetate trihydrate (C2H3NaO2.3H2O) with 16 ml glacial acetic acid and brought to 1 l 233 

with distilled water. The TPTZ solution was prepared by making a solution of 10 mM TPTZ in 234 

40 mM HCl. Sample (100 µl) was mixed with 3 ml of working FRAP reagent and absorbance 235 

(593 nm) is measured at 0 minute after vortexing. Thereafter, samples were placed at 37oC in a 236 

water bath and absorbance measured after 4 min. Ascorbic acid standards (0.1 mM-1.0 mM) 237 
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were processed in the same way and a standard curve (Fig. 1) was prepared by plotting the average 238 

FRAP value versus its concentration. The calibration curve revealed a highly positive linear relation 239 

(R² = 0.9882) between the mean FRAP value and the concentration of the ascorbic acid 240 

standards. This curve was therefore used to estimate antioxidant potential (FRAP values) of the 241 

test samples.  242 

 243 

 3. Results and Discussion 244 

 245 

3.1. Laccase-catalysed oxidation of 2,6-DMP  246 

HPLC analysis of the laccase-catalysed oxidation of 2,6-DMP showed the formation of 247 

five products at tR 9.0 min (P1), tR 9.5 min (P2), tR 10.1 min (P3), tR 10.8 min (P4), and tR 11.3 248 

min (P5) (Fig. 2). The product P4 was the main product constituting 36.96 % (as determined by 249 

peak areas) of the soluble products separated by HPLC compared to P1 (8.25 %), P2 (13.09 %), 250 

P3 (19.79 %) and P5 (21.92 %). LC-MS analysis in negative mode showed that both products P1 251 

and P2 had distinct signals at m/z 277.07; P3 and P4 had signals at m/z 305.07 while P5 had an 252 

ion signal at m/z 291.09 (Fig. 3). These [M-H]- ion signals suggest dimerisation of 2,6-DMP to 253 

form the main product P4, demethylation of P4 to form P5, and loss of two methyl groups to 254 

form P1 and P2. Minor products were observed (only with the more sensitive MS detector) at 255 

m/z 263.0637 and m/z 249.0484 suggesting loss of 3 methyl groups and 4 methyl groups by the 256 

dimer, respectively. Demethylatyion of methoxy-substituted phenolic substrates is a well known 257 

reaction in the modification of structurally similar lignin molecules [34-36].  The dimer, product 258 

P4, (m/z 305.0672) showed a simple fragmentation pattern in which there was a successive 259 

neutral loss of methyl groups (m/z 290.0447, -1 methyl group; m/z 275.0208, -2 methyl groups; 260 

m/z 261.0402, -3 methyl groups, and m/z 247.0256, -4 methyl groups) (Fig. 4A). Similar 261 
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fragmentation patterns were observed with the minor products P2 and P5 (Fig. 4B and 4C, 262 

respectively). Fig. 5 shows the predicted mechanism of formation of mass fragments from the 263 

main product, P4. 264 

After flash chromatography, the yield of the purified main product (m/z 305.0672) was 265 

20.91 % (expressed as a percentage of the starting material). NMR analysis of the product (Fig. 266 

6) showed that the dimer was linked through a C-C linkage to form a 3,3’,5,5’-tetramethoxy 267 

biphenyl-4,4’-diol  (insert, Fig. 6).  268 

The symmetry of the molecule was instrumental in the easy interpretation of the NMR 269 

spectra and therefore easy identification of the molecule. In the 1H NMR spectrum three signals 270 

in the relative ratio of 6:2:1 were evident in CDCl3. Assignment of the 12-proton singlet at δ 3.94 271 

was for the four methoxy groups at C-2 and C-6, while an aryl doublet (J = 1.8 Hz) at δ 6.68 was 272 

assigned to the two meta coupled aromatic hydrogens, H-3 and H-5. A broad single peak at δ 273 

6.58 with integration for two hydrogens and D2O, exchangeable, is assigned to the two phenolic 274 

groups at C-1. 275 

The 13C NMR spectrum was equally easy to assign again due its high degree of 276 

symmetry. The signal at δ 56.1 was clearly due to the 4 MeO groups while a relatively strong 277 

signal at δ 103.8 is assigned to C-3 and C-5 being the only ones with attached hydrogens to 278 

increase the relaxation times thus enhancing the intensity of the signal. Weak signals at δ 133.2 279 

and δ 134.4 were assigned to C-4 and C-1, respectively. Finally the signal for C-2 and C-6 at δ 280 

147.1 is the most de-shielded as a consequence of it being attached to methoxy groups. 281 

Based on the results of LC-MS and NMR, the scheme shown in Fig. 7 is proposed as the 282 

possible pathway for the synthesis of the dimer. As shown in Fig. 7, the 2,6-DMP went through a 283 

single-electron-oxidation by laccase catalysis to produce phenoxy radical species which form 284 
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para-radical species through resonance stabilisation. A recombination of two molecules of para-285 

radical species then produced the dimer. Our observations are similar to the work of Wan et al., 286 

[22] which focussed on characterising the oxidation products as a way of understanding the 287 

suitability of 2,6-dimenthoxyphenol as a laccase substrate in different reaction conditions, 288 

whereas the current work seeks not only to chemically characterise the dimeric products but also 289 

to investigate their potential as antioxidants. In earlier studies, two dimeric products (m/z 304 290 

and m/z 306) were produced in crystal form when the extracellular enzyme activities of Trametes 291 

versicolor were investigated for their ability to oxidatively couple 2,6-DMP [24]. Comparative 292 

experiments using different laccase substrates demonstrated that 2,6-DMP was the most suitable 293 

substrate for laccase assays as judged by a number of factors including the stability of its 294 

oxidised dimeric coloured product (3,3’,5,5’-tetramethoxydiphenylquinone) form, its high 295 

absorption molar coefficient, weak acidic optimal pH and oxidation efficiency for a number of 296 

blue multicopper enzymes [23]. In related studies, laccase-catalysed coupling of  2,6-DMP in 297 

acetone buffer mixture was reported to produce 3,3’5,5’-tetramethoxydiphenolquinone via the C-298 

C coupling in acidic conditions and C-O coupling in basic conditions producing 2,6-dimethyl-299 

1,4-phenylene oxide [37].  300 

 301 

3.2. Effect of organic solvents 302 

2,6-DMP is frequently used as a substrate of the laccase oxidation assay and the enzyme 303 

activity determination is usually performed in aqueous solution. However, due to inherent 304 

advantages of using organic solvents in biocatalysis reactions [38,39], the effect of the nature of 305 

the organic solvent, the concentration of the solvent and biocatalysis reaction time were studied 306 

in order to obtain the best reaction conditions for product formation. Biocatalysis in the presence 307 
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of organic solvents already has been shown to result in the synthesis of novel compounds and 308 

opens up new synthetic pathways. Generally, organic solvents have a lot of advantages when 309 

employed in biocatalysis, such as higher solubility of hydrophobic species, reduction of water 310 

activity, reduction of microbial contamination and the incidence of side reactions found in water, 311 

it aids separation and results in improved yields [40].  312 

In the biphasic system, there was an increase in the formation of the major product, P4 313 

(dimer) (as measured by HPLC-MS analysis), as the concentration of ethyl acetate was increased 314 

from 50 % to 90 %, after which a decline in product formation was observed (Fig. 8). However, 315 

in toluene no product of interest was formed. Production of the dimer in ethyl acetate as co-316 

solvent was increased until 7 h of incubation after which there was a pronounced decline in 317 

product formation (Fig. 9). 318 

In the monophasic system, solvents with a lower value of relative polarity favoured the 319 

formation of the 2,6-DMP dimer, product P4 (Fig. 10): acetone (0.355) > ethanol (0.654) > 320 

methanol (0.762). In previous studies, the nature of the solvent has been shown to affect enzyme 321 

activity in biocatalysis with non-polar hydrophobic solvents often providing higher reaction rates 322 

than more polar, hydrophilic solvents [41]. In related work, the enhancement of laccase-323 

catalysed oxidation of catechin and epicatechin in less polar organic solvents (as compared to 324 

highly polar media), has been reported [42]. These results further show that the enzyme 325 

employed for this study has the ability to function in solvents with lower polarity where the 326 

essential water layer bound around the enzyme active site has not been stripped away [43]. 327 

 328 
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3.3. Antioxidant activity determination 329 

Many spectrophotometric assays are currently employed to measure the antioxidant 330 

capacity of biological samples. The most popular are the ABTS (2,2’-azino-bis-3-331 

ethylbenzthiazoline-6-sulphonic acid)  or TEAC (trolox equivalent antioxidant capacity) assay, 332 

the DPPH (1,1-diphenyl-2-picrylhydrazyl) assay, and the FRAP (ferric reducing antioxidant 333 

power) assay [44]. Specifically, the ABTS assay is based on the generation of a blue/green 334 

ABTS.+ that can be reduced by antioxidants; the DPPH assay is based on the reduction of the 335 

purple DPPH. to 1,1-diphenyl-2-picryl hydrazine whereas, the FRAP assay is different from 336 

these two as there are no free radicals involved, but the reduction of ferric iron (Fe3+) to ferrous 337 

iron (Fe2+) is monitored. These assays are quick and do not require sophisticated equipment, such 338 

as a fluorescence detector or a GC-MS, which make these assays suitable for the analyses of 339 

multiple tissue samples. The antioxidant activities of the synthesised product (P4) and the 340 

substrate (2,6-DMP) were therefore evaluated using these three methods. 341 

Interestingly, the DPPH scavenging activity, TEAC and FRAP analysis of the products 342 

showed that the dimer exhibited higher antioxidant activity than the substrate (Table 1). The 343 

dimer showed a 119.32, 53.15 and 93.25 % increase in antioxidant activity for FRAP, TEAC and 344 

DPPH, respectively, as when compared to the substrate. The increase in antioxidant capacity of 345 

the dimer could be attributed to an increase in electron donating groups after dimerisation [45], 346 

which tends to reduce the O-H bond dissociation energy and favour the resonance delocalisation 347 

of the phenoxyl radical [46].   348 

 349 

 350 

 351 
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 4. Conclusion 352 

Laccase from T. pubescens catalysed the oxidation of 2,6-DMP in a monophasic or 353 

biphasic system to form a symmetrical C-C linked dimer with higher antioxidant capacity than 354 

the substrate, as was demonstrated by standard antioxidant assays (DPPH, FRAP and TEAC). By 355 

appropriate selection of the organic co-solvent, the dimer was obtained in good yields. To the 356 

best of our knowledge, this is the first report on laccase-catalysed oxidation of 2,6-DMP to 357 

produce potent antioxidants. As antioxidants continue to have value as nutraceuticals and /or 358 

components of cosmetics, this compound can find useful application in such areas.  359 
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Table 1 530 

Antioxidant activity of 2,6-dimethoxyphenol (2,6-DMP) and the dimeric product, P4 531 

 532 
Molecule Molecular 

weight 
EC50 DPPHa    TEACb value       FRAPc value

 
2,6-DMP 

 
154.18 

 
0.802 ± 0.005 

 
   1.095 ± 0.006 

 
     1.242 ± 0.005 
 

2,6-DMP dimer, 
product P4 

306.11 0.415 ± 0.012    1.677 ± 0.011      2.724 ± 0.045

 533 
aEC50 is defined as the concentration (mM) of antioxidant that brings about 50 % loss of the DPPH. [30]. Values 534 

are means ± SD of three replicate determinations. 535 

 536 

bThe Trolox equivalent antioxidant activity (TEAC) of  the antioxidant is defined as the 537 

concentration of  Trolox solution (mM) with an antioxidant potential equivalent to 1.0 mM 538 

solution of the substance under investigation [47]. 539 

 540 

cThe FRAP (ferric reducing antioxidant power) of the sample is the concentration of ascorbic 541 

solution (mM) having the ability to reduce ferric iron (Fe3+) to ferrous iron (Fe2+) with an 542 

equivalent antioxidant potential to 1.0 mM solution of the sample under investigation [32].  543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 
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Figure captions 553 

 554 

Fig. 1. Calibration curve for the determination of FRAP value using ascorbic acid standards (0.1, 555 

0.2, 0.4, 0.6, 0.8, 1.0 mM). y = 1.0707x + 0.0653, R² = 0.9882. 556 

 557 

Fig. 2. Laccase-catalysed oxidation of 2,6-dimethoxyphenol to form dimeric products (P1-P5)  558 

 559 

Fig. 3. Mass spectra of the oxidation products of 2,6-dimethoxyphenol during oxidation by T. 560 

pubescens laccase.  561 

 562 

Fig. 4. MS/MS spectra of the main oxidation product (m/z 305.0672, A) of  563 

2,6- dimethoxyphenol  and the minor products (m/z 277.0726, B; m/z 291.0883, C) 564 

 565 

Fig. 5. Predicted mechanism of mass fragments formation from the dimer of 2,6-566 

dimethoxyphenol. 567 

 568 

Fig. 6. 1H NMR spectrum of the dimer formed during laccase-mediated oxidation of 2,6- 569 

dimethoxyphenol  570 

Insert: elucidated structure of the dimer (3,3’,5,5’-tetramethoxy biphenyl-4,4’-diol) 571 

 572 

Fig. 7. Proposed mechanism for the laccase – catalyzed oxidation of 2,6 – dimethoxyphenol to 573 

produce the dimer (3,3’,5,5’-tetramethoxy biphenyl-4,4’-diol) . 574 

 575 
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Fig. 8. Effect of ethyl acetate content on the formation of the 2,6-Dimethoxyphenol dimer (P4) in 576 

a biphasic system with sodium acetate buffer (pH 5.0) as co-solvent. All results are means ± 577 

standard deviation (SD) of three replicate determinations. 578 

 579 

Fig. 9. Effect of reaction time on laccase-catalyzed oxidation of 2,6 dimethoxyphenol. All results 580 

are means ± SD of three replicate determinations. 581 

 582 

Fig. 10. Effect of organic co-solvent on laccase-catalyzed oxidation of 2,6-dimethoxyphenol to 583 

form the dimer, product P4. All results are means ± SD of three replicate determinations. 584 
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Fig. 1. 599 
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Fig. 2. 615 
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Fig. 3. 634 
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Fig. 4. 646 
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Fig. 5.  663 
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Fig. 6.  677 
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Fig. 7. 694 
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Fig. 8. 712 
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Fig. 9.  727 
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Fig. 10.  743 
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