Combining synchronous averaging with a Gaussian mixture model novelty
detection scheme for vibration-based condition monitoring of a gearbox

T Heynsa’b’*, PS Heyns®, JP de Villiers®?

“Department of Electronic and Computer Engineering, University of Pretoria
b Defence Peace Safety and Security (DPSS) division of the Council for Scientific and Industrial Research (CSIR) of South Africa

¢Dynamic Systems Group, Department of Mechanical and Aeronautical Engineering, University of Pretoria

Abstract

This paper investigates how Gaussian mixture models (GMM) may be used to detect and trend fault induced
vibration signal irregularities, such as those which might be indicative of the onset of gear damage. The negative
log likelihood (NLL) of signal segments are computed and used as measure of the extent to which a signal segment
deviates from a reference density distribution which represents the healthy gearbox. The NLL discrepancy signal
is subsequently synchronous averaged so that an intuitive, yet sensitive and robust, representation may be obtained
which offers insight into the nature and extent to which a gear is damaged. The methodology is applicable to
non-linear, non-stationary machine response signals.

Keywords: Condition based maintenance, Negative log likelihood transform, Gaussian mixture model,
Synchronous averaging

1. Introduction

Time synchronous averaging (TSA) has been proposed as early as 1975 [1], and is still recognised as an essen-
tial diagnostic procedure for condition monitoring of rotating equipment [2, 3, 4]. The TSA is computed as the
ensemble average of the time domain signal over a number of shaft revolutions. Synchronous averaging requires
an integer number of samples per shaft revolution. For this reason a preprocessing stage is often employed during
which the signal is resampled at constant shaft angular intervals [3, 5]. Since synchronous averaging generally
requires signal resampling, this paper will omit the reference to the time domain and simply refer to synchronous
averaging (SA), thereby implying that the procedure has been performed in the angular domain.

SA reduces noise and non-synchronous signal components, hence enhancing the signal characteristics of interest.
Despite its general efficiency, SA suffers from certain limitations. Barszcz and Randall [5] perform a case study
where a tooth crack in the planetary gear in a wind turbine cannot be detected by the SA approach. Further
analysis by means of spectral kurtosis indicates that development of the failure could be detected even as early as
8 weeks in advance. Since the case study investigates a catastrophic failure from a real wind turbine the amount
of available data is limited. Barszcz and Randall nevertheless conclude that SA is unlikely to detect the damage,
even if sufficient data are available. This is because the detected peaks caused by the tooth crack have a very
short duration, occur seldom and have varying amplitudes. It is concluded that the phase modulation induced
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by the elastic deformation of the gear train components impede the SA process to such an extent that the high
frequency pulses cannot be detected. Stander and Heyns [6] also investigate the amplitude and phase effects which
are caused by the change in input torque to a gearbox. They propose a synchronous averaging methodology which
compensates for the phase shifting in the measured structural response.

Residual signal analysis is a technique where non-fault related vibration components are removed from a signal so
that only those signal components which are indicative of machine faults remain. A number of different residual
signal methodologies have been investigated in literature. Wang and Wong [7] investigate how an autoregressive
(AR) filter which is representative of the baseline vibration signal can be used to detect fault induced signal outliers
in a novel signal. Heyns et al. [8] extend Wang and Wong’s idea to better deal with time-varying operating
conditions. This is done by implementing an assemble of weighted AR models, each of which represents the
healthy vibration data, but for different operating conditions. When applied to a novel signal, the model weights
are iteratively updated so as to better account for the instantaneous operating conditions, hence obtaining a residual
signal which is more sensitive and robust under time-varying operating conditions. They also propose that the
structure of the residual signal may be analysed to detect periodic events (outliers), as this may provide insight
regarding the nature of the gear damage.

The AR filter based residual signal technique is conceptually related to a large group of methodologies which are
concerned with outlier or novelty detection in data sets. Essentially these outlier or novelty detection methodologies
are capable of modelling one class data (e.g. normal data) and then subsequently detecting samples (e.g. fault
induced) which deviate from the baseline model. Some popular novelty or outlier detection methods include: rule
based techniques, neural networks (including multilayer perceptrons, self organizing maps and auto-associative
networks), support vector machines, Bayesian networks, nearest neighbour and distance techniques, as well as
Gaussian Mixture Models (GMM) density based approaches [9]. Timusk et al. [10] conducts an interesting
study where a number of novelty detection algorithms are used in conjunction with various signal preprocessing
techniques to analyse data which were generated on an experimental gearbox test rig under time-varying operating
conditions. The preprocessing and novelty detection techniques are used to extract robust features which are shown
capable of discerning between a number of specified fault conditions. A related problem is that of speaker change
detection, where the problem is to determine the time instances in an audio stream when a voice or speaker change.
In recent years GMM-based change detection methodologies have served as the dominant approach for speaker
change detection, primarily due to GMM’s good ability to detect various acoustic changes [11].

This paper proposes a novel gear monitoring technique, which combines ideas from residual analysis, novelty
detection and synchronous averaging. A Gaussian mixture model (GMM) is used to represent patterns in signal
segments as observed for a healthy gearbox. The reference GMM density distribution is subsequently used to
measure the extent to which short signal segments from a novel vibration measurement deviate from the healthy
behaviour. The severity and the periodicity of the signal deviations are analysed for diagnostic information.

The proposed framework is illustrated on a simple analytical example which approximately represents vibration
response signals from a gearbox which is subject to significant amplitude and phase modulation. The methodology
is subsequently investigated on data which were generated on an experimental gear test rig. The test rig was
subject to time-varying operating conditions. It is seen that GMM density distributions are potentially capable
of detecting fault induced signal deviations in signals which are subject to fluctuating operating conditions. On
the investigated data sets the negative log likelihood (NLL) synchronous averaging methodology outperforms
conventional vibration signal synchronous averaging and spectral analysis.

2. Methodology

This paper proposes a methodology which combines concepts from residual analysis, novelty detection and syn-
chronous averaging. The methodology comprise four key steps as illustrated in figure 1.
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Figure 1: Diagram of the four key steps of the proposed NLL discrepancy signal synchronous averaging methodology.

1. The vibration signal is resampled at constant gear angular increments.

2. The resampled signal is segmented into block windows of fixed length. The signal segments are
synchronous with specific shaft angular intervals. A window length may be chosen for instance to represent
the (approximate) duration for which a gear-pinion tooth pair is in mesh.

3. The negative log likelihood (NLL) of each signal segment is computed. The NLL discrepancy signal is used
as a measure of the extent to which individual signal segments deviate from the expected healthy behaviour.

4. All the NLL values which correspond to any particular gear (or pinion) angular interval are ensemble
averaged. Gear angular intervals with small averaged NLL values correspond well to the expected
behaviour, while large averaged NLL values indicate the possible presence of damage.

Novelty detection with Gaussian Mixture Models

The methodology implemented in this paper makes use of Gaussian mixture model (GMM) density distributions
to compute the negative log likelihoods (NLL) of short signal segments. A linear combination of Gaussians can
give rise to complex multivariate probability densities. Almost any continuous density function may be
approximated to arbitrary precision by implementing sufficiently many Gaussian components with appropriately
selected means, covariances and mixing coefficients [12, 13]. GMM density estimates may thus be well suited to
represent the possibly non-linear covariances or multiple density modes which may arise in signal sequences
which have been generated under time-varying operating conditions. Individual mixture components may
represent various, unobserved (latent) operating conditions. GMM models are fairly simple to implement, given
that sufficient data are available for optimisation by means of expectation maximisation, and given that the length
of the vector of random variables (length of the signal segment) does not give rise to very large dimensionalities.
A probability density distributions may be used to generate a metric of similarity based on the natural logarithm
of the likelihood of the observed sample [14] !. In this paper the negative natural logarithm of the likelihood
(NLL) is used as a measure of discrepancy.

Dividing the signal into segments

The time domain vibration signal is resampled at constant increments of the shaft angular position. Signal
resampling is implemented with piecewise-cubic interpolation and is based on a one pulse per shaft rotation
tachometer reference signal. The resampled signal is subsequently cut into short signal segments by means of
block windows.

The window length and the extent to which the windows overlap influence the resolution and sensitivity of the
resulting NLL discrepancy signal. Longer window lengths offer more contextual information, however a long
window length also increases the dimensionality of the reference density distribution. High dimensional density
distributions as estimated with GMMs are more subject to local minima during optimisation and also to data
overfitting, which may result in poor generalisation [12]. Long windows also result in increased smearing
(reduced temporal resolution) of the NLL discrepancy signal.

IPlease note that while probability and likelihood are related they are not interchangeable concepts. A likelihood value is obtained from
a density distribution function when it is evaluated for a specific realisation of a continuous variable (or vector of variables). A probability is
obtained by integrating a density distribution over a specified range of values which the random variable might take on. Probability is always
limited to the interval [0-1], while likelihood is not.



Consider that the signal segments may be generated in a manner similar to the sliding window approach
implemented by a conventional auto-regressive (AR) filter in time-series analysis. Signal segments are created by
moving the window one datum point at a time. The AR model does not differentiate between vibration signal
segments which are generated at different shaft angular intervals. The output from the AR model is thus
completely based on the contextual information which is contained in the previous number of signal datum points.

The NLL discrepancy signal implemented in this paper was initially investigated using a similar sliding window
approach to that employed in conventional time-series analysis. While this approach was seen to work reasonably
well, it was later realised that a more specific density distribution could be constructed if the signal segments are
generated in such a manner that it inherently reflects knowledge of the structure of the signal.

In this paper it is assumed that only a single tachometer signal is available. If the tachometer is mounted on the
gear shaft, then the gear angular position may be estimated in a consistent manner. Since the pinion generally
rotates at a different frequency than the gear, it will not be known at the start of new measurements which pinion
tooth is in mesh. If tachometers are mounted on both the pinion and the gear, or if it is only required to monitor
the gear, then unique density models may be constructed for individual gear and pinion angular intervals.

In this paper the signal segments are generated such that they correspond to the periodicity of the gear meshing
frequency. The number of windows per rotation of the gear is set equal to the number of teeth on the gear. The
windows do not overlap, but immediately succeed each other. The gear mesh frequency often significantly
contributes to (or dominates) the overall energy in the vibration signal. Signal segments with periodicities which
correspond to the gear mesh frequency are generally much more similar, compared to signal segments selected at
random. These segments may subsequently be used to obtain a density distribution which is subject to less
variance, and which may subsequently result in more sensitive NLL discrepancy values. Figure 2 illustrates the
implemented windowing methodology.

Fixed shaft angular intervals

Figure 2: Representation of the fixed window intervals which correspond to approximate pinion-gear meshing periods.
Let the angular domain resampled vibration signal be denoted p = [p1 p> ... pw ... py]7 Where N is the number
of resampled datum points per rotation of the shaft on which the tachometer is mounted The vibration signal is
truncated so that all the data before the first and after the last tacho pulses are discarded. Let r represent the integer

number of complete shaft rotations during the measurement, so that rN is the length of the resampled vibration
signal. Let T, represent the number of teeth on the gear, and let 7}, represent the number of teeth on the pinion.

If the tachometer is mounted on the gear shaft, then the window length L,, is obtained as the number of datum
points per rotation of the gear, divided by the number of gear teeth L,, = N/T,. Similarly if the tachometer is
mounted on the pinion shaft then the window length is obtained as L,, = N/T),. Let the first signal segment be
represented by the column vector s; = [p; p2 ... pr,,|7 and the second segment by s, = [pr, 1 PL,+2 - PaL, ) -
This is repeated until N /L,, signal segments have been obtained. The signal segments are collected in the matrix

X;, where Xs = [s1 82 ...S,y/z, ]. Each column in X; represents a pinion-gear meshing period.



A measure of discrepancy (NLL value) will be computed for each column in X;. The resulting NLL discrepancy
signal will have a much lower sampling rate than the original vibration signal. The lower sampling rate reduces
the computational burden of the algorithm, without discarding diagnostic information. The NLL sampling
frequency corresponds to one value for each pinion-gear mesh. The NLL discrepancy signal may thus be
synchronous averaged with respect to either the gear or the pinion without the need for additional resampling.

Density estimation with Gaussian mixture models

A Gaussian mixture model (GMM) is optimised to represent the density distribution which corresponds to signal
segments from the healthy gearbox. Alternative non-parametric methods, such as density estimation with Parzen
windows, may also be considered. However, non-parametric approaches tend to be both memory and
computationally intensive, while also being more prone to data overfitting, especially for high dimensional
density distributions [13].

A GMM comprises a weighted super positioning of individual multivariate Gaussian components [12]. The
complexity of a GMM may be controlled by limiting the number of mixture components, or by constraining the
covariance matrices. When sufficient training data are available GMMSs may be used to estimate very complex
density distributions [12, 13]. Mixture models are for instance well suited to represent data which might be
generated by different classes. The classes may be unknown and thus treated as latent variables [13]. A density
distribution may thus represent vibration signal segments which have been generated under different operating
conditions, but of which the operating conditions is unobserved (latent). A mixture model with K components is
denoted as [12]:

K
p(g) =Y mN(glue. %), (1)
k=1

where the mixing coefficients m; must sum to 1, ):f: 1 T = 1. Given that N(g|ug,Zy) > 0 a sufficient condition
that p(g) > 0 is that m; > O for all k. If each of the individual components are valid, and the aforementioned
constraints are satisfied, then the resulting mixture model will also be a valid density function which integrates to
1[12].

The model parameters are optimised in Matlab using expectation maximisation (EM) so as to maximise the
likelihood of the observed data. A good reference on the topic of expectation maximisation is provided by Bishop
[12]. The EM algorithm is initialised by centring the GMM components on randomly selected samples from the
training set. The EM algorithm is not guaranteed to find the global optimum, so that it is expected that the
performance from different optimisation runs will differ slightly. The EM optimisation step is thus repeated a
number of times, and the solution which offers the best results is subsequently selected.

Conditional density distributions

Occasionally the operating conditions (or at least covariates which partially describe the operating conditions)
may be measured. It may then be possible to use the knowledge of the operating conditions to refine the
computed NLL values. This may be done by conditioning the outcome of the observed signal segment on the
measured operating conditions. This should render the computed NLL values more robust to time-varying
operating conditions, and subsequently more sensitive to fault induced signal outliers.

Consider for example that the shaft angular speed (as possibly estimated from the tachometer) may occasionally
be proportional to the applied torque on a gearbox. The angular speed may subsequently co-vary (possibly in a
non-linear manner) with the amplitude or phase modulation of a signal segment.



As previously defined the column vector s; is used to represent a single signal segment. Let ¢; represent the
column vector which contains variables which are representative of the observed operating conditions which
corresponds to the period during which the segment s; is measured. The operating conditions vector ¢; may for
example contain one entry which represents the mean angular velocity and a different one which describes the
applied load.

The likelihood of a signal segment s; as conditioned on the vector describing the associated operating conditions
¢;, is equal to the joint likelihood of both s; and ¢;, divided by the likelihood of ¢;, so that P(s;|¢;) = P(s;,¢;)/P(¢;)
[12].

A GMM may first be used to estimate a joint density distribution for both the signal segments and the operating
conditions as contained in the matrix X,

X, — S1 S2 N SVN/LW
SC —
¢t € ... crN/LW

A separate GMM may then be estimated for the operating conditions contained in matrix X, = [¢] €3 ...C,y /Lw] 2
The conditional NLL value, y, for any signal segment may then be computed, y; = —In[P(s;,¢;)/P(c;)].

Model selection

The more components a mixture model has the more expressive (more degrees of freedom) it becomes,
theoretically allowing for a better representation of the density distribution of the data. Complex models are
however also more prone to data overfitting, which may result in poor generalisation [12]. A model which does
not generalise well may detect many false signal outliers, hence resulting in decreased performance.

There are a number of methods which may be considered for selecting the optimal number of mixture
components. Some popular methodologies include: the Akaike information criterion, Bayes’ information
criterion, and Bayesian model selection. Since data of the gearbox in its healthy condition may generally be
assumed to be fairly abundant, and due to its ease of implementation, this paper resorts to model selection based
on likelihood cross-validation as discussed by Smyth [15].

Cross-validation is a popular and simple method for measuring the ability of a model to generalise well [12] and
Smyth [15] concludes that it is also well suited to selecting the number of components for a GMM, particularly
when data and computational resources are relatively plentiful.

In essence the data which represent the healthy gearbox are divided into two sets. The first set is used to optimise
the GMM by means of expectation maximisation. The second set is then used to measure the ability of the trained
GMM to generalize well on novel data. This approach is used to investigate the appropriateness of different
numbers of mixture components.

Synchronous averaging

In this paper a special case of the synchronous average is implemented. The NLL discrepancy signal y has a
sampling frequency (samples per rotation of the gear) which is equal to the number of teeth on the gear. Similarly

>The Gaussian distribution has the favourable characteristic that it is particularly easy to marginalise over variables. This renders it possible
to avoid the necessity to train a second GMM model. The density distribution which only represents the operating conditions can be obtained
from the full distribution which explain the joint signal segments and operating conditions distribution. This is done by simply discarding
appropriate indices from the mean vector and covariance functions. The reader is referred to the book by Bishop [12] for additional reference
to marginalisation in Gaussian distributions



is the number of NLL datum points per rotation of the pinion equal to the number of teeth on the pinion. For this
reason no further resampling of the NLL discrepancy signal will be required. The number of full shaft rotations
during the measurement is represented by r. The gear synchronous average §¢ is computed as:

8

1 .
= - Zy,,ng, fori=1..T,, (2)
n=1

where )7,5' represents the synchronous average associated with the ith tooth on the gear and ¥ is the number of
complete revolutions completed by the gear during the measurement. Similarly the pinion synchronous average
y” is computed as:
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)_}f):;zynxy'p, fori:l...Tp, (3)
n=1

where yf-’ represents the synchronous average associated with the ith tooth on the pinion and r” is the number of
complete revolutions completed by the pinion during the measurement.

3. Analytic investigation

A simple analytical example is used to illustrate the underlying approach followed by the NLL discrepancy
analysis technique. The analytic example is based on the gear model developed by McFadden [16], and which is
also implemented by Combet and Gelman [17]. A vibration signal for a one stage gearbox is approximated by the
following model:

p(t) = f Py(1+ay(t))cos(2xh ft 4 0, (t) + 6°) 4 n(r) 4)
m=0

where P, is the amplitude of the hth mesh harmonic, f;, is the average mesh frequency for the stage considered,
ay(t) and 6,(t) are the amplitude and phase modulation functions of mesh harmonic 4 and 6} is the initial phase
of harmonic 4. The additive background noise n(t) is assumed to be independently sampled from a zero mean
normal distribution with a standard deviation of ©.

The mesh frequency f;, is proportional to the rotational speeds f, and f, of the pinion and gear, through the
number of teeth 7, and 7, on the pinion and the gear.

fm = Tpfp = Tgfg 5

The healthy vibration signal is approximated by 3 harmonic components, M = 3. The amplitudes P, of all three
components are simply set to 1. The signal is generated with 10k samples per revolution of the pinion.

The number of teeth on the pinion and the gear are respectively selected as 7, = 20, and T, = 43. A measurement
of 3s long is generated. During this time the gearbox is subject to a time-varying load. It is assumed that the
pinion shaft speed is directly proportional to the applied torque. During the first 0.6s of the signal the gearbox is



Table 1: Instantaneous pinion rotational frequency
time interval  pinion rotational frequency
first 0.4 s fp(t) =5x[140.3sin(1.37¢)]
last 2.6 s fp(t) =5x[140.5sin(5 x 1.371)]

Table 2: Instantaneous amplitude modulation
time interval amplitude modulation function
first 0.4s ap(t) = 0.3sin(1.37r)
last 0.6s ap(t) = 0.5sin(5 x 1.37t)

subject to a rapid and significant sinusoidal load fluctuation, during the last 2.4s the gearbox is subject to a
smaller, more gradual sinusoidal load fluctuation. Due to the presence of the time-varying operating conditions,
the signal experiences frequency, amplitude and phase modulation.

The pinion has a mean rotational frequency of E(f,) = 5 Hz. Its instantaneous frequency f,(¢) (due to the
time-varying operating conditions) is indicated in table 1:

The amplitude and phase modulation are set proportional to the time-varying pinion shaft speed. The amplitude
modulation ay, is similar for each of the tooth meshing harmonic components 4 = 1,2,3 as indicated in table 2.

The phase modulation 6y, is also proportional to the instantaneous pinion frequency for each of the harmonics
h =1,2,3. However the phase modulation must also account for the wavelength of the harmonic. Short
wavelengths must be phase modulated proportionally more than long wavelengths in order to ensure that the
different phase components are not distorted and do not move relative to one another. The resulting phase
modulation is presented in table 3

The initial phase 9;? of each of the harmonics is simply set to 0.

A single fault is simulated on the tenth pinion tooth. If the gear has a local defect such as a tooth root crack, then
changes will occur in the vibration when the affected teeth are in mesh. McFadden [16] represents a localised
gear crack by means of amplitude and phase modulation functions which are periodic with the gear rotational
frequency. This assumption may result in a fairly deterministic fault component. The case study performed by
Barszcz and Randall [5] however indicates that localised gear tooth cracks may give rise to high frequency
(impulsive like) signal components, of which the amplitude may have a large variance. The experimental study
performed in this paper indicates similar fault behaviour.

The pinion tooth damage is simulated in this paper by assuming that the tooth root crack gives rise to a relatively
high frequency signal component. This is simulated by appending a tenth order harmonic to the signal, which
obeys the same operating condition related amplitude and phase modulation rules as the first three (healthy
gear)harmonic components. It is assumed that the high frequency component is only exited when the faulty tooth
is in mesh, and then quickly dies out. This is done by amplitude modulating the 10th harmonic by an asymmetric
saw-tooth waveform. The saw-tooth waveform is created in Matlab using the Tripuls function. The saw-tooth has
a repetition frequency which corresponds to the rotational frequency of the pinion. The saw-tooth width is equal
to the period that the 11th tooth is in mesh. In other words the 10th harmonic has zero energy at all positions,
except for the approximate duration that the faulty tooth is in mesh. It will be seen that the high frequency 10th
harmonic, which is subject to significant load induced amplitude and phase modulation will behave sufficiently
stochastic so that conventional synchronous averaging will fail to detect it.



Table 3: Instantaneous phase modulation
time interval ~ phase modulation function
first 0.4s 6, =0.2h x 0.5sin(5 x 1.37¢)
last 2.4s 6, = 0.2k x 0.3sin(1.37r)
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Figure 3: (a) Simulated damaged vibration waveform subject to amplitude and phase modulation, (b) enlarged view of the simulated vibration
signal, (c) the saw tooth amplitude modulated 10th order harmonic component which represents the transient fault induced signal component,
(d) an enlarged view of one of the fault induced signal transients indicates the saw-tooth nature of the envelope of the component.

Figures 3 (a)-(d) investigate the nature of the simulated vibration waveform. Figure 3 (a) illustrates the noise-free,
damaged vibration waveform, which is sampled at 10k datum points per revolution of the pinion. This results in
500 data points per signal segment. In Figure 3 (b) the noise free vibration signal is magnified, such that a single
complete revolution of the pinion is visible. The fault induced signal distortion is seen at 0.1s. Figure 3 (c) shows
the 10th harmonic (fault induced) signal component. The 10th harmonic is subject to the same load induced
amplitude modulation experienced by the other "healthy’ harmonics, but is also transient due to its amplitude
multiplication with the saw-tooth waveform. Figure 3 (d) presents an enlarged view of a single fault induced
signal transient.
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Figure 4: (a) Overlay of multiple signal segments from a healthy pinion tooth, indicating both amplitude and phase modulation, (b) overlay
of multiple signal segments from the damaged pinion tooth, indicating how the higher frequency components significantly smears out (c) the
resulting (noise free) synchronous average with respect to the pinion. The damage induced signal distortion on the 11th tooth (angular position
180-198 degrees) is almost invisible.

Figure 4 (a) illustrates the nature and extent of the amplitude and phase modulation present in signal segments
which corresponds to a healthy tooth. The signal segments are presented without any additive noise. Each signal
segment is 500 datum points long and corresponds to a tooth meshing period. Figure 4 (b) investigates the effect
of the amplitude and phase modulation on signal segments which corresponds to the 11th (damaged) pinion tooth.
Figure 4 (c) indicates the conventional vibration signal synchronous average. The high frequency component is
smeared out due to the load induced phase modulation. This renders the damage on the 11th tooth near invisible
in the conventional synchronous average. The synchronous average is computed on a noise free signal, so that the
small amount of damage on the 11th tooth may be observed. As soon as signal noise is added it becomes
impossible to identify the damaged gear tooth.
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Figure 5: (a) Illustrates the NLL discrepancy signals as computed for the vibration signal, the continuous line represents NLL values —In[P(s)]
computed with a GMM which is limited to 2 components with diagonal covariance matrices, the dashed line represents a GMM with 2
components which have unconstrained covariance matrices, and the dash-dotted line (which closely corresponds to the dashed line) represents
NLL values as conditioned on the pinion shaft angular velocity —In[P(s;,¢;)/P(¢;)]. (b) The NLL of the operating conditions In[P(c;)].

A GMM density distribution is used to represent the signal segments which correspond to the fault free data. The
vibration signal is sampled at 10k datum points per rotation of the pinion. Since there are 20 teeth on the pinion
the signal segments have a length of 500 data points. The window length of 500 data points results in a GMM
with many free parameters. In general it might be beneficial to consider down sampling the vibration signal so
that a smaller GMM may be implemented. Alternatively it may also be considered to extract and model a subset
of features (e.g. through principal component, or wavelet analysis). Lastly may it also be considered to constrain
the covariance matrices, for instance by implementing diagonal covariance matrices.

Three approaches are investigated towards implementing the proposed strategy. The GMMs are implemented on
vibration signals which were subject to random noise. A noise standard deviation of o = 0.25 is implemented.
This noise level renders it completely impossible to identify the faulty gear tooth by means of conventional
synchronous averaging.

The first approach is implemented by using a GMM with constrained covariance matrices. A diagonal covariance
matrix is not capable of modelling the covariance between different datum points, but is also less prone to overfit
data. GMMs with different numbers of mixture components are investigated. It is found that a single component
with a constrained diagonal covariance is especially poor at discerning between time-varying operating conditions
and fault induced signal outliers. Performance is significantly improved by implementing 2 components, but it is
found that at least 10 components are required to obtain results which are comparable with a 1 component full
rank covariance GMM model. The performance of a 2 components GMM with diagonal covariance matrices are
indicated in figure 5 (a) with the solid (blue) line. The NLL values are seen to be sensitive to the operating
conditions.

The second approach implements a GMM with full rank covariance matrices. Full rank covariance matrices
render it possible to model the interdependencies between different datum points in a signal segment. Even a
single full rank covariance component performs quite well in this simple analytical example. The dashed line in
figure 5 (a) indicates the NLL values as obtained with a 2 component GMM with full rank covariance matrices.
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The third and final approach investigates the use of conditional NLL values. To compute any single conditional
negative log likelihood value —In[P(s;, ¢;)/P(c;)] it is required to estimate two GMM density distributions, one
which represents the joint density distribution P(s;, ¢;) for the signal segments s;, for i = 1..rN and the operating
condition variable(s) ¢;, for i = 1..rN, and a second density distribution P(c;) which represents the operating
conditions. Only a single operating condition variable is investigated, so that the vector ¢; reduces to a variable c;.
The pinion angular velocity is used as operating condition variable c, since it is known to be indicative of the
amplitude and phase modulation. Both density distributions are estimated with 2 component GMM models with
full rank covariance matrices.

Figure 5 (b) indicates the computed NLL for the operating conditions. It is seen that the NLL values for the
operating conditions which correspond to the first 0.4s generally have large values. This shows that the first 0.4s
of operating conditions are not well representative of the typical operating conditions. A large spike is observed at
the end of the 0.4s. This represents the transition from one operating condition to the other. The large spike
indicates that this transitional operating condition is very uncommon.

The NLL discrepancy signal obtained for the GMM with the diagonally constrained covariance matrices is
represented by the continuous line in figure 5 (a). The limited covariance matrix used by the GMM results in a
NLL discrepancy signal which is sensitive to the operating conditions and subsequently not well suited for
detecting the fault induced signal component.

The NLL values obtained for the full rank covariance GMM model is represented by the dashed line, and the
dash-dotted line illustrates the conditional NLL values. The NLL discrepancy signal obtained for both the full
rank covariance GMM model and the conditional NLL discrepancy signal are very similar. This indicates that the
joint density distribution did not manage well to model the non-linear correlation between the signal segments
and the pinion rotational frequency. In this scenario conditioning the NLL on the operating condition did not
serve to render the NLL more robust to the time-varying operating conditions. However the NLL values obtained
for the operating conditions (figure 5 (b)) may still be beneficial. Those sections of the vibration signal which
were generated under operating conditions which are not well representative of the typical operating conditions
may be discarded. For instance, figure 5 (b) may be used to determine that the first 0.4 seconds of signal should
be discarded and not used to compute the NLL synchronous average.
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Figure 6: (a) The synchronous averages of the signal segment NLL values which correspond to the 20 teeth on the pinion, and (b) the
synchronous averages which correspond to the 43 gear teeth.

Figures 6 (a) and (b) respectively indicate the NLL synchronous averages with respect to the pinion, and the gear.
The NLL signals are generated with the unconditional full rank covariance GMM with 2 components. These
synchronous averages are computed by using the whole (noisy) NLL signal, which includes the first 0.4s during
which the gear was subject to significant fluctuating operating conditions. The pinion completed 14 whole
rotations, while the gear only completed 6. A single averaged datum point corresponds to each gear mesh period.
This renders it possible to synchronous average the NLL values with respect to both the pinion and the gear
without the need to resample the NLL signal. A large average NLL value corresponds to the 11th pinion tooth,
clearly indicating the presence of the fault induced signal irregularity.

In this simple analytical example, the NLL synchronous average was able to clearly detect tooth damage, which
could not be detected by conventional synchronous averaging.

4. Experimental setup

The proposed NLL synchronous averaging methodology is subsequently investigated on experimental data which
were recorded in the Sasol Laboratory for Structural Mechanics at the University of Pretoria [18].
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Figure 7: The experimental setup of the gear test rig.

Gear damage was investigated on a single stage Flender E20A gearbox (rated load of 20 Nm) with helical gears
and a step up ratio of 1:1.96. A mounted test bed was designed to conduct accelerated gear life tests on the
gearbox under time-varying load conditions. As such the monitored gearbox was mounted between two Flender
E60A gearboxes, the first of which served to step the torque up and the second to step it down. The E60A gearbox
pair increased the torque over the E20A test gearbox by a ratio of 1:4.72. The fundamental system frequencies are
presented in table 4.

Table 4: Fundamental frequencies

Gearbox Role Shaft input | Teeth ratio | Shaft output | Mean Meshing Frequency
Flender E60A | Speed step down 24.5 Hz 18/85 5.19 Hz 441 Hz
Flender E20A | Test gearbox, speed stepup | 5.19 Hz 43/22 10.13 Hz 223 Hz
Flender E60A | Speed step up 10.13 Hz 85/18 47.88 Hz 862 Hz

The step down gearbox was driven by a 5.5 kW three phase four pole WEG squirrel cage electric motor. The step
up gearbox was connected to a flywheel which in turn was coupled with a 5.5 kVA Mecc Alte Spa three phase
alternator to apply the load.

The instantaneous gear and pinion angular positions and velocities were estimated from a synchronising pulse
which was measured by means of a proximity switch on the key of the E20A gear shaft. The gear casing
acceleration response was measured in the vertical direction by means of a 10 V/g PCB integrated circuit
piezoelectric industrial accelerometer. The measurements were taken with a Siglab model 20-42 signal analyser
at a sampling frequency of 51.2 kHz.

A number of time-varying loading conditions were investigated. The load conditions are summarized in Table 5.
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Table 5: Load case specifications

Load case | Load function | Frequency | Minimum load | Maximum load
1 Sine 0.5 Hz 7.4 Nm 14.7 Nm
2 Sine 1Hz 7.4 Nm 14.7 Nm
3 Square 0.5Hz 7.4 Nm 14.7 Nm
4 Square 1Hz 7.4 Nm 14.7 Nm
5 Chrip 0.1-2 Hz 7.4 Nm 14.7 Nm
6 Random 0.1-2 Hz 7.4 Nm 14.7 Nm

Four measurements for each load condition were recorded. The first measurement represented the healthy
gearbox. Flank wear was subsequently induced on one of the gear teeth by progressively removing more of the
gear tooth face. Each measurement was recorded for 30s.

Table 6: Seeded gear damage condition

Measurement Fault severity
0 Good condition
1 100 pm tooth face removal
2 200 pm tooth face removal
3 300 pm tooth face removal

The subsequent sections investigate the vibration signal, the vibration based synchronous average, the spectrum
analysis, the NLL discrepancy transform and the NLL synchronous average. The magnitude of the results vary
slightly depending on the load scenario, however the nature of the results remain fairly consistent. For this reason
one load scenario, namely the 0.5 Hz sinusoidal load scenario will consistently be used to visualise the
application of the techniques.

Time domain waveform

The time domain waveform for load scenario 2, with the 0.5 Hz sinusoidal component, is illustrated in figures 8
(a)-(d), where (a) represents the healthy waveform, and (b)-(d) represent progressive damage. The sinusoidal
component of the load induces periodic amplitude and phase modulation in the signal. As the damage increase
the presence of signal impulses becomes apparent. In general the kurtosis values for the signals increase for the
2nd and especially the 3rd damage condition. The first damage condition can usually not be detected based on the
kurtosis of the signal. The magnitude of the impulses, as observed for any one damage condition and any one
loading scenario, tends to vary significantly.
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Figure 8: Vibration signal generated under 0.5Hz sinusoidal loading condition, for (a) the healthy gear, and (b)-(d) progressive stages of
damage.

Power spectral density (PSD)

The order domain power spectral densities (PSD) of the vibration signals are investigated. Towards this goal the
time domain signals are resampled to the order domain by means of piecewise cubic interpolation of the once per
gear revolution impulses as measured with the proximity probe.

Before resampling is performed the signal is further low-pass filtered to avoid aliasing. The time-domain signal
which has a sampling frequency of 51.2 kHz is resampled at 8600 datum points per revolution of the gear. The
gear has an average rotational frequency of 5.19 Hz, so that the angular domain resampling of 8600 datum points
approximately corresponds to a time domain sampling rate of 44.6 kHz. To avoid aliasing during the resampling
period an eighth-order lowpass Chebyshev Type I filter is used with a cut-off frequency of 35 kHz.

The natural logarithms for the order domain PSDs as computed for the 0.5 Hz sinusoidal time-varying load are
presented in figures 9 (a)-(d), where (a) represents the gear in a good condition, and (b)-(d) represent progressive
stages of damage. The first order corresponds to the gear rotational frequency of 5.19 Hz.

The PSD for each signal is computed as follows. The signal (of approximate length 1.4 x 10°) is divided into 3,
partially overlapping sections of 2!° datum points each. Each of the sections are Hanning windowed. Their FFTs
(Fast Fourier Transforms) are then computed before the results are averaged. The FFTs are subsequently
multiplied by their complex conjugates to obtain the PSD values. To compensate for the Hanning window the
signal amplitude is corrected by factor 8/3. The PSD window length is selected to offer a compromise between
spectral resolution, and the noise level of the PSD.
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Figure 9: The order domain PSDs of the vibration signals as measured under the 0.5 Hz loading condition for (a) no damage, and (b) - (d)
progressive stages of damage.

Significant energy is observed at approximately the 2nd order (10.14 Hz) and the 4.8th order (24.5 Hz), which
respectively correspond to the drive shaft frequencies for the E60A step up and step down gearboxes. A
prominent peak is observed at the 19.3th order (100 Hz). This peak corresponds to twice the 50 Hz AC line
frequency. Generally the 100 Hz component tends to be more prominent in motors and alternators than the AC
frequency component. Side bands due to amplitude modulation are observed around this 100 Hz frequency, this is
especially noticeable in figures 9 (a) and (b). Large signal energy components are also identified at the following
orders; the 28.9th (150 Hz), the 33.7th (175 Hz), the 38.5th (200 Hz), and the 43th (223 Hz). The 150 Hz and 200
Hz components may be harmonics which correspond to the excitation induced by the AC line current. The 175
Hz component might be due to amplitude modulation between the 200 Hz component and the 24.5 Hz E60A
drive shaft frequency component. The 43th order component corresponds to the gear meshing frequency of the
Flender E20A gearbox of interest.

While it is not indicated on the current axis, energy components which correspond to the E60A step down
gearbox meshing frequency of 441 Hz and the E60A step up gearbox meshing frequency of 862 Hz may also be
observed on the extended PSD.

The frequency components which are of interest with regard to the condition of the gear in the Flender F20A
gearbox are magnified for better inspection in figures 10 (a)-(h).
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Figure 10: Close up of the natural logarithm of the order domain PSDs of the 0.5Hz sinusoidal time-varying load. Figures (a), (c), (¢) and (g)
magnifies the energy components in the vicinity of the 1st order (gear rotational frequency) for progressive stages of damage. Figures (b), (d),
(f) and (h) magnifies the energy components in the vicinity of the 43st order (mesh frequency) for progressive stages of damage.

Figures 10 (a), (c), (e) and (g) illustrate the signal energy around the first order component which correspond to
the gear rotational frequency, while figures 10 (b), (d), (f) and (h) illustrate the signal energy associated with the
43 order (gear mesh frequency).

It is interesting to note the increase in the energy at the tooth-meshing frequency from a fault on one tooth.
Damage to one tooth normally does not increase the tooth-mesh component since this component represents the
averaged energy associated with the meshing of all of the teeth. This increased energy must be due to some
nonlinear effects. It will be seen in vibration signal synchronous average (figure 11) that the signal energy does
indeed slightly increase at sections other than just the damaged gear tooth. This might potentially be due to
torsional dynamics induced by the shaft flywheel. Figures 10 (f) and (h) indicate increased energy at the
tooth-meshing energy, as well as increased energy at the 42th and 44th orders. This is indicative of amplitude
modulation between the Ist order (gear rotational frequency) and the 43th order (meshing frequency). This result
is in line with the fact that the damage is on the gear and not the pinion. The energy associated with the 1st order
does not consistently increase as the gear tooth damage progresses.

Synchronous averages of the resampled vibration signal

The vibration signal synchronous averages are computed, both for the gear and the pinion.
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Each signal is approximately 30s long. With gear and pinion rotational frequencies of respectively 5.19 Hz and
10.12 Hz this results in 154 and 302 complete revolutions of respectively the gear and the pinion.
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Figure 11: Vibration signal synchronous average for the 0.5 Hz fluctuating load. Progressive localised gear damage is indicated in (a) - (d),
while (e) - (h) depict the synchronous averages of the fault-free pinion.

Figures 11 (a)-(h) illustrate the vibration signal synchronous averages for the 0.5 Hz sinusoidal time-varying
loading condition. The figures (a), (c), (e) and (f) indicate the synchronous averages for progressive gear damage,
while (b), (d), (f) and (h) are computed with respect to the pinion. Notice that the x-axis (angular position)
indicated for the pinion is not consistent. This is because the tachometer is mounted on the gear shaft and not the
pinion. The initial pinion angular phase is unknown at the beginning of each signal measurement. It is however
possible to align the pinion synchronous averages by optimising their cross-correlation.

The initial gear damage (first stage) is not evident from the gear synchronous averages, however the more
advanced second and third stages of damage is evident. The nature of the damage is however not readily evident.
The pinion synchronous averages are also influenced by the presence of the gear tooth damage. This renders the
pinion synchronous averages somewhat ambiguous, as it may appear that the pinion is subject to general wear.

NLL discrepancy measure implementation

The angular resampled frequency has 8600 datum points per revolution of the gear. The gear has 43 teeth, while
the pinion has 22. A window length is selected so as to correspond to the gear meshing period. The window
length is thus set equal to 200 datum points (L,, = 8600/43).
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A reference density distribution is estimated by means of a GMM with full-rank covariance matrices. The
cross-validated NLL is used as measure of generalisation. It is found that 2 components generalise well. More
components might be used without overfitting, but also without increased performance. It is also investigated
whether conditioning the NLL on the gear angular speed improved the averaged magnitude of the NLL values on
the validation set. Limited improvement is observed. It is subsequently decided to implement a 2 component
GMM with full rank covariance matrices, without conditioning the NLL on any operating conditions.
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Figure 12: The NLL discrepancy signal associated with (a) the healthy gearbox, and (b)-(d) with increased stages of damage. The NLL
discrepancy signal enhances the presence of fault induced signal outliers.

Figures 12 (a)-(d) illustrate the NLL discrepancy signal as computed for the 0.5 Hz sinusoidal loading condition.
Figure 12 (a) illustrates the NLL values associated with the healthy gearbox, while (b)-(d) illustrate progressive
stages of damage. The NLL discrepancy signal has a significantly lower sampling resolution (by a factor of 200)
compared to the vibration signal. Each NLL datum point represents a single meshing period.

Figures 12 (a)-(d) illustrate the importance of analysing the natural logarithm of the likelihood, rather than the
likelihood values themselves. The outliers must be scaled such that a few significant outliers do not completely
dominate the discrepancy signal. The likelihood values of outliers in figures 12 (c) and (d) are so large (and
subject to such variance) that the likelihood (compared to the log likelihood) synchronous averages would be very
noisy and difficult to interpret. The NLL synchronous averages are also more linearly proportional to the
magnitude of the fault induced damage.
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Figure 13: The NLL synchronous averages for the 0.5 Hz sinusoidal time-varying load condition, as computed with respect to the gear for
progressive stages of damage (a), (c), (¢) and (f), and as computed with respect to the pinion for progressive stages of wear (b), (d), (f) and (h).
Please notice that the y-axes on (a)-(d) are scaled different to those of (e)-(h).

The NLL synchronous averages for the 0.5 Hz sinusoidal fluctuating operating as computed with respect to the
gear for progressive stages of damage are depicted in figures 13 (a), (c), (e) and (f), and as computed with respect
to the pinion for progressive stages of wear are depicted in (b), (d), (f) and (h). The initial (first stage) damage on
the gear results in very small NLL values. For this reason the y-axes on figures 13 (a)-(d) are magnified compared
to the later stages of damage depicted in (e)-(h). The damage condition is fairly simple to interpret and the
presence of damage of the gear is quite evident.

The results obtained for the other loading conditions proved conceptually very similar to the presented results for
the 0.5 Hz sinusoidal loading condition. Future research should be conducted to investigate the methodology
under greater time-varying operating conditions.

5. Conclusion

This paper proposed a novel gear condition monitoring method which comprise two steps:

Firstly a NLL transform of a vibration signal is computed. The NLL transform is used to enhance diagnostic
information in the signal, while suppressing signal components which are representative of normal operating
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conditions. The NLL is less sensitive to fluctuating load conditions, while also being smoother than the original
signal.

Secondly the structure in the NLL discrepancy signal is analysed by means of synchronous averaging. The NLL
synchronous average allows for an intuitive yet sensitive and robust, visual comparison of the novelty of signal
patterns at different angular positions. The novelty of signal patterns can be used as an indication of the presence
of damage.

A simple analytic example was used to illustrate how time-varying operating conditions (and especially phase
modulation) may impede the ability of conventional vibration signal synchronous averaging to extract high
frequency signal components. In this simple case study the NLL synchronous average proved significantly more
sensitive to high frequency fault induced signal components.

Vibration data from an experimental gear test rig were subsequently used to further investigate the proposed
methodology. An E20A Flender gearbox was subjected to a number of different time-varying loading conditions.
Each of the loading conditions were used to generate vibration data for one of four stages of induced damage on a
gear tooth. The NLL synchronous average proved simpler to interpret and more sensitive the induced fault
compared to order domain spectral analysis and conventional synchronous averaging.

It is believed that the proposed methodology may be used to generate a simple, yet robust representation of the
conditions of a gearbox. This representation may potentially be used to visualise the condition of a gearbox, or as
a preprocessing stage to extract features which may subsequently be of use in a diagnostic change detection, or in
a fault classification algorithm.

The research presented in this paper was conducted with the aim of finding an approach which may lead to a cost
effective diagnostic technique for the condition monitoring of rotating machines. It is believed that the proposed
methodology proves worthy of further investigation. Future research should especially consider the potential of
the proposed methodology on more extensive time-varying operating conditions.
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