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Abstract 

This paper presents a three-dimensional geometric optimisation of cooling channels in 

forced convection of a vascularised material with the localised self-cooling property subjected 

to a heat flux. A square configuration was studied with different porosities. Analytical and 

numerical solutions were provided. The geometrical configuration was optimised in such a 

way that the peak temperature was minimised at every point in the solid body. The 

optimisation was subject to the constraint of a fixed global volume of solid material, but the 

elemental volume was allowed to morph.  The solid material was subject to a heat flux on one 

side and the cooling fluid was forced through the channels from the opposite direction with a 

specified pressure difference. The structure had three degrees of freedom as design variables: 

the elemental volume, channel hydraulic diameter and channel-to-channel spacing. A 

gradient-based optimisation algorithm was used to determine the optimal geometry that gave 

the lowest thermal resistance. This optimiser adequately handled the numerical objective 

function obtained from numerical simulations of the fluid flow and heat transfer. The 

numerical results obtained were in agreement with a theoretical formulation using scale 

analysis and the method of intersection of asymptotes.  The results obtained show that as the 

pressure difference increases, the minimised thermal resistance decreases.  The results also 

show the behaviour of the applied pressure difference on the optimised geometry. The use of 
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the optimiser made the numerical results to be more robust with respect to the optimum 

internal configurations of the flow systems and the dimensionless pressure difference.  

Keywords: mathematical optimization, vascularization, constructal theory, square channels, 

dynamic-Q 

Nomenclature 

Ac
 Cross-sectional area of the channel, m

2
 

As
 Cross-sectional area of the structure, m

2
 

Be Bejan number 

CP
 Specific heat at constant pressure, J/kg K 

dh
 Hydraulic diameter, m 

H Structure height, m 

h Elemental height , m 

hc Channel height , m 

i Mesh iteration index 

k Thermal conductivity, W/mK 

L Axial length, m 

N Number of channels 

n Normal 

P Pressure, Pa 

q′′  Heat flux, W/m
2
 

R Thermal resistance 

s Channel spacing, m 

T Temperature, 0C 
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u  Velocity, m/s 

u
�

 Velocity vector, m/s 

V Global structure volume, m
3
 

vc
 Channel volume, m

3
 

v
el

 Elemental volume, m
3
 

W Structure width, m 

w Elemental width, m 

wc Cooling channel width, m 

x, y, z Cartesian coordinates, m 

 

Greek symbols 

α  Thermal diffusivity, 2m /s  

µ  Viscosity, kg/m.s 

ρ  Density,  kg/m
3 

∂  Differential 

∞  Far extreme end, free stream 

φ  Porosity 

∆  Difference 

∇  Differential operator 

γ Convergence criterion 

 

Subscripts 

f Fluid 

in Inlet 

max Maximum, peak 

min Minimum 
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opt Optimum 

r Ratio 

s Solid 

w Wall 

 

1. Introduction 

Material with the property of self-healing and self-cooling is becoming more 

promising in heat transfer analysis [1-7]. The development of vascularisation of materials 

indicates flow architectures that conduct and circulate fluids at every point within the solid 

body. This solid body (slab) may be performing or experiencing mechanical functions such as 

mechanical loading, sensing and morphing. The self-cooling ability of vascularised material 

to bathe volumetrically at every point of a solid body gave birth to the name “smart material”.   

Constructal theory and design [8, 9] have been adopted as an optimisation technique for the 

development of a procedure that is sufficiently allocating and optimising a fixed global space 

constraint using a physical law (constructal law). The method seeks to optimise the flow 

architecture that predicts the flow and thermal fluid behaviour in a structure that is subject to 

a global volume constraint. Bejan [8, 9] stated this law as: For a finite-size system to persist 

in time (to live), it must evolve in such a way that it provides easier access to the imposed 

(global) currents that flow through it.  In a smart material, constructal theory ideally helps in 

the vascularisation of the smart material structure by morphing the flow architecture 

configuration to provide easier and greater access of flow through it.  

The application of this theory started with Bejan and Sciubba [10], who obtained a 

dimensionless pressure difference number for optimal spacing from board to board of an array 

of parallel plates to channel length ratio and a maximum heat transfer density, which can be 

fitted in a fixed volume in an electronic cooling application using the method of intersection 
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of asymptotes. The applications of this theory have been reviewed [11, 12] where, under 

certain global constraints, the best architecture of a flow system can be achieved with the one 

that gives less global flow resistances, or allows high global flow access. In other words, the 

shapes of the channels and the elemental structure that is subject to global constraint are 

allowed to morph. The optimisation of heat exchangers and multiscale devices by constructal 

theory has also recently been reviewed and summarised by Reis [13] and Fan and Luo [14].  

 Bello-Ochende et al. [15] conducted  a three-dimensional optimisation of heat sinks and 

cooling channels  with heat flux using scale analysis and the intersection of asymptotes 

method based on constructal theory to investigate and predict the design and optimisation of 

the geometric configurations of the cooling channels. Rocha et al. [16] and Biserni et al. [17] 

applied the theory to optimise the geometry of C- and H-shaped cavities respectively that 

intrude into a solid conducting wall in order to minimise the thermal resistance between the 

solid and the cavities, Lorenzini et al. [18]  used the theory to minimise the thermal resistance 

between the solid and the cavities by optimising the geometry of isothermal cavities  that 

evolve from T- and Y-shaped of a solid conducting wall. 

Cho et al  [ 19] numerically investigated the flow and thermal behaviour of  vascular 

cooling plate for the volumetric bathing of the smart structures. Constructal theory 

applications on the vascularisation revolution of smart materials can also be found in open 

literature  [20-25]. Also, the constructal theory for optimisation of several components and 

systems and components in engineering applications has been extensively discussed and 

documented in the literature [26-29].  

The recent comment by Meyer [30] on the latest review of constructal theory by Bejan and 

Lorente [31] shows that the application of constructal law in all fields of educational design is 

a wide road to future advances. 
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This paper is borne out of the work of Kim et al. [7], who theoretically and numerically 

analysed vascularised materials with heating from one side and coolant forced from the other 

side for parallel plates and cylindrical channel configurations in an attempt to find the channel 

configurations that minimised the non-uniform temperature distribution of a vascularised 

solid body. This paper focuses on the mathematical optimisation of laminar forced convection 

heat transfer through a vascularised solid with square channels. It examines the optimisation 

of a fixed and finite global volume of solid material with an array of square cooling channels, 

with a uniform heat flux from one side. The objective is the building of a smaller construct to 

form part of a larger construct body with a self-cooling function that will lead to the 

minimisation of the global thermal resistance or, inversely, the maximisation of the heat 

transfer rate density (the total heat transfer rate per unit volume). This is achieved by 

designing the body in a vascularised manner and by forcing a coolant to the heated spot in a 

fast and efficient way so as to significantly reduce the peak temperature at any point inside the 

volume that needs cooling. The solution of Kim et al. [7] will be used as comparison for the 

results reported in this paper. 

 

2. Computational model 

The schematic diagram of the physical configuration is shown in Figure 1. The system 

consists of a solid body of fixed global volume, V, which is heated with uniform heat flux 

q′′ on the left side. The body is cooled by forcing a single-phase cooling fluid (water) from the 

right side through the parallel cooling channels. The flow is driven along the length L, of the 

square channel (wc = hc) with a fixed pressure difference ∆P, in a transverse and counter-

direction to the heat flux. An elemental volume shown in Figure 2 consisting of a cooling 

channel and the surrounding solid was used for analysis because of the assumption of the 
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symmetrical heat distribution on the left side of the structure.  The heat transfer in the 

elemental volume is a conjugate problem, which combines heat conduction in the solid and 

the convection in the working fluid. 

Design variables 

In Figure 2, an elemental volume, e l
v , constraint is considered to be composed of an 

elemental cooling channel of hydraulic diameter dh (dh = wc = hc ). The surrounding solid of 

thickness s  (spacing between channels) is defined as: 

w h=  (1) 

The elemental volume is:  

2
v w L
el

=  
(2) 

and the width of an elemental volume is: 

h
w d s= +  (3) 

Therefore, the number of channels in the structure arrangement can be defined as: 

( )
  

2
h

HW
N

d s

=
+

 (4) 

and the void fraction or porosity of the unit structure can be defined as: 

2

     c h

el

v d

v w
φ

 
= =  

 
 

(5) 

The fundamental problem under consideration is the numerical optimisation of  the channel 

hydraulic diameter, dh, and the channel spacing, s, which corresponds to the minimum 

resistance of a fixed volume for a specified pressure drop. The optimisation is evaluated from 

the analysis of the extreme limits of 0
h

d≤ ≤ ∞  and the extreme limits of 0 s≤ ≤ ∞ . The 

optimal values of the design variables within the prescribed interval of the extreme limits 

exhibit the minimum thermal resistance.  
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The temperature distribution in the elemental volume was determined by solving the equation 

for the conservation of mass, momentum and energy numerically. A section of the discretised 

three-dimensional computational domain of the elemental volume is shown in Figure 3. The 

cooling fluid was water, which was forced through the cooling channels by a specified 

pressure difference, ∆P, across the axial length of the structure. The fluid is assumed to be in 

single phase, steady and Newtonian with constant properties. Water as fluid is more 

promising than air, because air-cooling techniques are not likely to meet the challenge of high 

heat dissipation in electronic packages [32, 33]. The governing differential equations used for 

the fluid flow and heat transfer analysis in the elemental volume of the structure are:  

0u∇ ⋅ =
�

 (6) 

( ) 2
u u P uρ µ⋅∇ = −∇ + ∇
� � �

 (7) 

( ) 2C u T k T
f Pf f

ρ ⋅∇ = ∇
�

 (8) 

The energy equation for the solid part of the elemental volume can be written as: 

2
 0k T

s
∇ =  (9) 

The continuity of the heat flux at the interface between the solid and the liquid is given as: 

w w

T T
k = k
s fn n

∂ ∂

∂ ∂
 (10) 

A no-slip boundary condition is specified for the fluid at the wall of the channel,   

0u =
�

 (11) 

At the inlet (z = L),  

0u u
x y

= =  (12) 

T T
in

=  (13) 
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2

Be
P P

outL

αµ
= +  

(14) 

 

where, the Bejan number 34, 35], Be, is the dimensionless pressure difference and given as: 

2

f

PL
Be

µα

∆
=      

 

(15) 

and  

f

f

f Pf

k

C
α

ρ
=      

 

(16) 

 

  At the outlet (z = 0), the pressure is prescribed as zero normal stress   

1 P atm
out

=  (17) 

At the left side of the wall, the thermal boundary condition that is imposed is assumed to be: 

T
q k

s z

∂
′′ =

∂
 

(18) 

at the solid boundaries, the remaining outside walls and the plane of symmetry were modelled 

as adiabatic as shown in Figure 2. 

0T∇ =  (19) 

The measure of performance is the minimum global thermal resistance, which could be 

expressed in a dimensionless form as:  

( )
min

max minin

R

k T T
f

q L

−
=

′′
 

(20) 

and it is a function of the optimised design variables and the peak temperature. 

( )
minmin max,  ,  

opt opth elR f d v T=  (21) 
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min
R  is the minimised thermal resistance for the optimised design variables. The inverse of 

min
R  

is the optimised overall global thermal conductance. 

The effect of material properties later be taken into consideration by the ratio of the thermal 

conductivities 

 
k
sk

r k
f

=  22 

 

3. Numerical procedure, grid analysis and code validation 

The simulation work began by fixing the length of the channel, prescribed pressure 

difference, porosity, heat flux and material properties and we  kept varying  values of 

hydraulic diameter  of the channel in order to identify the best (optimal) internal configuration 

that minimised the peak temperature. The numerical solution of the continuity, momentum 

and energy Eqs. (6) - (9) along with the boundary conditions (10) - (19) was obtained by 

using a three-dimensional commercial package Fluent™ [36], which employs a finite volume 

method. The details of the method are m explained by Patankar [37]. Fluent™ was coupled 

with the geometry and mesh generation package Gambit [38] using MATLAB [39] to allow 

the automation and running of the simulation process. After the simulation had converged, an 

output file was obtained containing all the necessary simulation data and results for the post-

processing and analysis. The computational domain was discretised using hexahedral/wedge 

elements.  A second-order upwind scheme was used to discretise the combined convection 

and diffusion terms in the momentum and energy equations. The SIMPLE algorithm was then 

employed to solve the coupled pressure-velocity fields of the transport equations. A flow chart 

representing the numerical procedure is shown in Figure 4. The solution is assumed to have 

converged when the normalised residuals of the mass and momentum equations fall below 10
-

6
 and while the residual convergence of energy equation was set to less than 10

-10
. The 
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number of grid cells used for the simulations varied for different elemental volume and 

porosities. However, grid independence tests for several mesh refinements were carried out to 

ensure the accuracy of the numerical results. The convergence criterion for the overall thermal 

resistance as the quantity monitored was:  

( ) ( )

( )
1max max

max

0.01
ii

i

T T

T
γ +

−
= ≤  (23) 

 

where i is the mesh iteration index. The mesh was more refined as i increases. The 1−i  mesh 

was selected as a converged mesh when the criterion (23) was satisfied.  

Table 1 shows the grid independence test performed for the case where dh = 400 µm   and 

 = 0.2φ  for Be = 10
8
. Computational cell densities of 3 675, 5952, 11 200 and 20 160 were 

used for the grid independence test. Almost identical results were predicted when 5 952 and 

11 200 cells were used. Therefore, a further increase in the cell density beyond 11 200 has a 

negligible effect on the results. 

Table 1: Grid independence study with   = 400 m
h

d µ  and  = 0.2φ  for  
810  Be =

 

Number of nodes Number of cells maxT  
( ) ( )

( )
1max max

max

ii

i

T T

T
γ −

−
=  

5 456 3 675 33.09371 - 

8 718 5 952 32.79123 0.009194 

15 005 11 200 32.772 0.000587 

26 609 20 160 32.67453 0.002983 

 

The validation of the numerical simulation was carried out by comparing the present 

simulation with that of Kim et al [7] for a cylindrical configuration as shown in Figure 5 for 
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the case where  = 0.1φ  and kr = 10. The curves were found to be similar in trend and the 

solutions were in good agreement with a deviation of less than 7%.   

 

4. Numerical results  

In this section, we present results for the case when the channel hydraulic diameter (or 

channel width/height) was in the range of 0.1 mm to 1.5 mm and the porosities ranged 

between 0.1    0.3φ≤ ≤  and a fixed length of L = 10 mm and fixed applied dimensionless 

pressure differences of 8
10Be = . The thermal conductivity of the solid structure (stainless 

steel) was 16.27 W/m.K; and the heat flux supplied at the left wall was 100 kW/m
2
. The 

thermophysical properties of water [40] used in this study were based on water at 300 K  and 

the inlet water temperature was fixed at this temperature.   

Figures 6 and 7 show the existence of an optimum hydraulic diameter and elemental volume 

size in which the peak temperature is minimised at any point in the channel for the square 

configuration studied. Figure 6 shows the peak temperature as a function of the channel 

hydraulic diameter. It shows that there exists an optimal channel hydraulic diameter, which 

lies in the range 0.01 ≤ dh/L ≤ 0.05 minimising the peak temperature.  Also, the elemental 

volume of the structure has a strong effect on the peak temperature as shown in Figure 7. The 

minimum peak temperature is achieved when the optimal elemental volume is in the range 

0.05 mm
3 
≤ vel ≤ 8 mm

3
. This indicates that the global peak temperature decreases as the 

design variables (hydraulic diameter and elemental volume)  increase or the global peak 

temperature decreases as the design variables decrease until it gets to the optimal design 

values. Therefore, any increase or decrease in the design variable beyond the optimal values 

indicates that the working fluid is not properly engaged in the cooling process, which is 

detrimental to the global performance of the system. The results show that the optimal 
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arrangement of the elemental volume for the entire structure at this fixed pressure difference 

should be very small in order to achieve a better cooling. Figures 6 and 7 also show that 

porosity has a significant effect on the peak temperature. The best cooling occurs at the 

highest porosity. That is, as the porosity increases, the peak temperature decreases. 

 

5. Mathematical optimisation and optimisation problem 

In this section, we introduce an optimisation algorithm that will search and identify 

the optimal design variables at which the system will perform at an optimum. A numerical 

algorithm, Dynamic-Q [41], was employed and incorporated into the finite volume solver and 

grid (geometry and mesh) generation package by using MATLAB as shown in Figure 4 for 

more efficient and better accuracy in determining the optimal performance.  

The Dynamic-Q is a multidimensional and robust gradient-based optimisation algorithm, 

which does not require an explicit line search. The technique involves the application of a 

dynamic trajectory LFOPC optimisation algorithm to successive quadratic approximations of 

the actual problem [42]. The algorithm is also specifically designed to handle constrained 

problems where the objective and constraint functions are expensive to evaluate. The details 

of the Dynamic-Q and applications can be found in open literature [41-47].  

5.1 Design variable  constraints 

The constraint ranges for the optimisation are:  

0.1    0.3φ≤ ≤  (24) 

0    w L≤ ≤  (25) 

0    d w
h

≤ ≤  
(26) 

0    s w≤ ≤  (27) 
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The design and optimisation technique involves the search for and identification of the best 

channel layout that minimises the peak temperature, 
max

T , such that the minimum thermal 

resistance between the fixed volume and the cooling fluid is obtained with the desired 

objectives function. The hydraulic diameter and the channel spacing and elemental volume of 

the square configuration were considered as design variables. A number of numerical 

optimisations and calculations were carried out within the design constraint ranges given in 

Eqs. (24) – (27) and the results are presented in the succeeding section in order to show the 

optimal behaviour of the entire system. The optimisation process was repeated for applied 

dimensionless pressure differences, Be, from 10
5
  to 10

9
.   

 

5.2. Effect of applied pressure difference on optimised geometry and minimised thermal 

resistance 

Figure 8 shows the effect of the minimised thermal resistance as a function of applied 

dimensionless pressure difference. Minimised thermal resistance decreases as the applied 

dimensionless pressure difference and porosity increase. Figure 9 shows that the optimal 

hydraulic diameter decreases as the pressure differences increase and there exists a unique 

optimal geometry for each of the applied pressure differences. The trend is in agreement with 

previous work [7, 43]. 

 

5.3. Effect of material properties on optimised geometry minimised thermal resistance 

The effect of material properties on the minimum thermal resistance and optimised 

internal configuration was also studied. This was best investigated by numerically simulating 

conjugate heat transfer in an elemental volume for different values of thermal conductivity 

ratio. 
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The numerical simulations follow the same procedure already discussed to show the existence 

of an optimal geometry. We started the simulation by fixing  = 0.2φ , Be = 10
8
 and  kr = 10 and 

kr = 100.  We then varied the hydraulic diameter and the elemental volume until we got the 

minimum peak temperature. Figure 10 shows that optimal geometry exists at different 

thermal conductivity ratios and minimum peak temperatures are achieved when 
r

k is high.  

We later carried on an optimisation process to determine the best geometry that gives us the 

lowest thermal resistance temperature by using the optimisation algorithm. We fixed  = 0.2φ  

and Be = 10
8
 for all the design constraint ranges and for different values of thermal 

conductivity ratios ranging from kr = 1 to kr = 10
4
. Figures 11 and 12 show the effect of the 

thermal conductivity ratio on the minimised global thermal resistance and optimised 

hydraulic diameter at fixed  = 0.2φ  and Be = 10
8
. The minimised thermal resistance decreases 

as the thermal conductivity ratio increases. This shows that material properties have a strong 

effect on the thermal resistance. The materials with a high thermal conductivity property 

reduce the thermal resistance. Figure 12 shows that the thermal conductivity ratio has a 

significant influence on the optimised hydraulic diameter. As the thermal conductivity ratio 

increases, the optimal hydraulic diameter increases. However, at higher thermal conductivity 

ratios (say Be ≥ 4 000), the thermal conductivity has a negligible effect on the minimised 

thermal resistance and optimised hydraulic diameter. 

We repeated the optimisation process for all the design constraint ranges from kr = 1 to 100 

for applied dimensionless pressure differences ranging from Be = 10
5
  to 10

9
, and 

 = 0.1 to 0.2φ  to determine the global behaviour of the whole system.  Figures 13 to 15 show 

the effect of the applied dimensionless pressure difference on the minimum thermal resistance 

and the internal geometry for different values of thermal conductivity ratio and porosity. 

Figure 13 shows that the minimised thermal resistance decreases as the applied dimensionless 
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pressure difference, thermal conductivity ratio and porosity increase. Also, Figures 14 and 15 

show that there are unique design variables for each applied dimensionless pressure 

difference, thermal conductivity ratio and porosity. 

Figures 16a and 16b show the temperature contours of the elemental volume and of the inner 

wall of the cooling channel with cooling fluid, respectively. The blue region indicates the 

region of low temperature and the red region indicates that of high temperature. The arrow 

indicates the direction of flow.         

 

6. Method of intersection of asymptotes 

This section investigated further the numerical solution of the optimisation of flow and heat 

transfer with the analytical solution. The theoretical analysis for the vascularised 

configurations followed the application of the intersection of asymptotes method and scale 

analysis [7, 15, 48-51] to provide the existence of an optimal geometry that minimised the 

peak temperature and global thermal resistance. The method of intersection of asymptotes 

outlined by Kim et al. [7] was used to determine the optimal geometric shape. The objective 

was to provide the relationship between the global objective function  in terms of global 

thermal resistance, R, and the varying hydraulic diameter, 
h

d , in the two extremes at  0
h

d →  

and hd → ∞ . The optimal geometry value, 
opth

d , that corresponds to, minR , is located 

approximately where the two asymptotes intercept. The following assumptions were made 

throughout the analysis: inlet temperature and the pressure difference, ∆P, driving the pump 

are fixed with a uniform flow distribution in all the channels, laminar flow, constant cross-

sectional area of the channels, negligible inlet and exit plenum losses, negligible axial 

conduction. An elemental volume is treated because of the symmetry of the heat distribution.  

The analysis of a square volume element is completely analogous to what is presented in Kim 
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et al. [7], using the same procedure as outlined by Kim et al. [7]. We have that the 

dimensionless thermal resistance, R, behaviour in the extreme limit of a small square channel 

is given as: 

( )max in 1

2
32f

dk T T hR Be
q L Lφ

−

−
 −

= ≅  
 ′′
 

 (28) 

From Eq. 28, it can be concluded that in the small diameter extreme, R , increases as 0
h

d → . 

In the opposite extreme limit (large channel), the dimensionless global thermal resistance is 

defined in terms of dimensionless pressure difference as:                                         

( ) 1 2max in 10.75
f h

r

k T T d
R k

q L L
φ

−−
−

= ≅
′′

 (29) 

 

From Eq. (29), it can be concluded that in the large channel diameter extreme, R , increases 

as hd → ∞ . 

The geometric optimisation in terms of channel geometry could be achieved by combining 

Eqs. (28) and (29) using the intersection of asymptotes method as shown in Figure 17. The 

optimal dimension can generally be approximated for the hydraulic diameter where the two 

extreme curves intersect. The intersection result is: 

1 6 1 3 1 33.494
opth

r

d
k Be

L
φ − −≈  (30) 

where 
opthd  is the optimal hydraulic diameter of the cooling channel. 

The optimal spacing  
opt

s   between channels follows from Eqs. (3), (5) and (30):  

( )1 6 1 3 1 3 1/23.494 1
opt

r

s
k Be

L
φ φ− − −≈ −  (31) 

Eqs. (30) and (31)  show that in the two extremes, the hydraulic diameter and channel spacing 

decrease as the pressure difference increases for fixed porosity. 
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The minimum dimensionless global thermal resistance can be obtained for an elemental 

volume for the configuration that corresponds to the optimal geometries by substituting Eq. 

(30) into Eq. (28) as:   

( )
( )

2 3max in 1 3min
min 2.62

f

r

k T T
R k Be

q L
φ

− −
−

= ≅
′′

 (32) 

 

Equation (32) shows that the minimised global thermal resistance decreases monotonically 

as, Be , increases for a fixed porosity. 

The optimisation results of Eqs. (30) and (32) agreed within a factor of the order of one with 

th corresponding result of Kim et al. [7], because geometrically, the hydraulic diameter of a 

circular duct and that of a square duct are the same. 

 

7. Correlations of the theoretical method and numerical optimisation 

The analytical results of Eqs. (30) to (32) were used to validate the numerical solutions. The 

numerical and approximate solutions based on scale analysis at optimal geometry 

dimensions are in good agreement and the solutions have similar trends as shown in Figures 

18 to 20. 

Figure 18 shows the minimised dimensionless global thermal resistance group as a function 

of the dimensionless pressure difference at optimised design variables for the configuration. 

The analytical and the numerical results show that the minimised global thermal resistance 

group decreases as the dimensionless pressure difference increases. Figures 19 and 20 show 

the effect of the dimensionless pressure difference on the optimised dimensionless design 

variable groups. The curves show that the optimised design variables decrease as the applied 

dimensionless pressure difference and porosity increase. This shows that a unique optimal 
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design geometry exists for each applied dimensionless pressure difference, thermal 

conductivity ratio and porosity. 

Also the optimised spacing is directly proportional to the optimised hydraulic diameter. This 

is also due to the fact that the elemental volume is not fixed, but it is allowed to morph for a 

fixed porosity. In all cases (objective function and design variables), the theoretical and 

numerical values agree within a factor of the order one for the worst case. These results are 

also in agreement with past research work [7, 43]. 

 

8. Conclusion 

This paper studied the numerical and analytical optimisation of geometric structures of 

square cooling channels of vascularised material with a localised self-cooling property subject 

to a heat flux on one side in such a way that the peak temperature is minimised at every point 

in the solid body. The numerical results obtained are in good agreement with results obtained 

in the approximate solutions based on scale analysis at optimal geometry dimensions. The 

approximate dimensionless global thermal resistance predicts the trend obtained in the 

numerical results.  This shows that there are unique optimal design variables (geometries) for 

a given applied dimensionless pressure number for fixed porosity. The use of the optimisation 

algorithm coupled with the CFD package made the numerical results to be more robust with 

respect to the selection of optima structure geometries, internal configurations of the flow 

channels and dimensionless pressure difference. 

The results also show that the material property has a significant influence on the 

performance of the cooling channel. Therefore, when designing the cooling structure of 

vascularised material, the internal and external geometries of the structure, material properties 

and pump power requirements are very important parameters to be considered in achieving 

efficient and optimal designs for the best performance. 
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